
Exploiting the Routing Flexibility for Energy/Performance Aware Mapping of
Regular NoC Architectures ∗

Jingcao Hu Radu Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

e-mail:{jingcao, radum}@ece.cmu.edu

Abstract

In this paper, we present an algorithm which automati-
cally maps the IPs onto a generic regular Network on Chip
(NoC) architecture and constructs a deadlock-free determin-
istic routing function such that the total communication en-
ergy is minimized. At the same time, the performance of
the resulting communication system is guaranteed to sat-
isfy the specified constraints through bandwidth reservation.
As the main contribution, we first formulate the problem of
energy/performance aware mapping, in a topological sense,
and show how the routing flexibility can be exploited to ex-
pand the solution space and improve the solution quality.
An efficient branch-and-bound algorithm is then described to
solve this problem. Experimental results show that the pro-
posed algorithm is very fast, and significant energy savings
can be achieved. For instance, for a complex video/audio
application, 51.7% energy savings have been observed, on
average, compared to an ad-hoc implementation.

1. Introduction
Regular tile-based NoC architecture was recently pro-

posed to mitigate complex on-chip communication problems
[1][4][5]. As shown in the left of Fig. 1, such a chip con-
sists of regular tiles where each tile can be a general-purpose
processor, a DSP, a memory subsystem,etc. A router is em-
bedded within each tile with the objective of connecting it
to its neighboring tiles. Thus, instead of routing design-
specific global on-chip wires, the inter-tile communication
can be achieved by routing packets.

Given a target application described as a set of concurrent
tasks which have been assigned and scheduled, to exploit
such an architecture, the fundamental questions to answer
are: i) which tileeach IP should be mapped to,ii) what rout-
ing algorithmis suitable for directing the information among
tiles, such that the metrics of interest are optimized. More
precisely, in order to get the best power/performance trade-
off, the designer needs to determine thetopological place-

∗Research supported by NSF CCR-00-93104 and DARPA/Marco Gigas-
cale Research Center (GSRC), and SRC 2001-HJ-898.

(2,0) (2,3)(2,2)(2,1)

(3,0) (3,3)(3,2)(3,1)

(0,0) (0,3)(0,2)(0,1)

(1,0) (1,3)(1,2)(1,1)

Tile

Network
Logic

Tile-based Architecture Communication Task Graph

Mapping+Routing

ASIC1

CPU1

DSP1
DSP2

DSP3

ASIC2

Mapping?

Mapping?

Routing?

Figure 1. Tile-based arch and mapping/routing
problems

mentof these IPs onto different tiles. Referring to Fig. 1,
this means to determine, for instance, onto which tile (e.g.
(3,1), (1,3)etc.) each IP (e.g. DSP2, DSP3etc.) should
be placed. Since there may exist multipleminimal routing
paths, one also needs to selectone qualified path for each
communicating tile pair. For example, one has to deter-
mine which path (e.g. (3,1)→(2,1)→(2,2)→(1,2)→(1,3) or
(3,1)→ (3,2)→(3,3)→(2,3)→(1,3) etc.) should the packets
follow to send data from DSP2 to DSP3, if these two IPs are
meant to be placed to tile (3,1) and (1,3), respectively.

While task assignment and scheduling problems have
been addressed before [2], themappingand routing prob-
lems described above represent a new challenge, especially
in the context of the regular tile-based architecture, as this
significantly impacts the energy and performance metrics of
the system. In this paper, we address this very issue and pro-
pose an efficient algorithm to solve it. To this end, we first
propose a suitable routing scheme (Sec. 3) and a new energy
model (Sec. 4) for NoC. The problem of mapping and rout-
ing path allocation are then formulated in Sec. 5. Next, an ef-
ficient branch-and-bound algorithm is proposed to solve this
problem under performance constraints (Sec. 6). Experimen-
tal results in Sec. 7 show that significant energy savings can
be achieved, while guaranteeing the specified system perfor-
mance. For instance, for a complex video/audio application,
on average, 51.7% energy savings have been observed com-
pared to an ad-hoc implementation.

2 Related Work
In [1][4][5], the on-chip interconnection networks are

proposed to structure the top-level wires on a chip and fa-

1530-1591/03 $17.00 2003 IEEE

cilitate modular design. While these papers discuss the over-
all advantages and challenges of regular NoC architecture, to
the best of our knowledge, our work is the first to address the
mappingandrouting path allocationproblems for tile-based
architectures and provide an efficient way to solve them. Al-
though routing (especially wormhole-based routing [3]) has
been a hot research topic in the area ofdirect networks for
parallel and distributed systems [6][7][8], the specifics of
NoC force us to re-think standard network techniques and
adapt them to the context of NoC architectures. In what fol-
lows, we address this issue by presenting a suitable routing
technique for NoC together with an algorithm for automatic
generation of the routing function.

3 The Proposed Routing Scheme for NoCs
The major differences between regular data-networks and

NoCs are:
A. Buffering space: To minimize the implementation cost,
it’s more reasonable to useregistersas buffers for on-chip
routers instead of huge memories (SRAM or DRAM) as is
the case of regular data-networks. This also helps in decreas-
ing access latency, which is critical for typical SoC applica-
tions.
B. Use of deterministic routing: We believe that for NoC,
deterministic routing is more suitable because:
• Resource limitation and stringent latency requirements

Compared to deterministic routers, implementing adap-
tive routers requires by far more resources. Moreover, since
in adaptive routing the packets may arrive out of order, huge
buffering space is needed to reorder them. This, together
with its protocol overhead leads to prohibitive cost, extra de-
lay and jitter.
• Traffic predictability

In contrast to typical regular data-networks, most NoCs
need to support one application or, at most, a small class of
applications. Consequently, the designer has a good under-
standing of the traffic characteristics and can use this infor-
mation to avoid congestion by wisely mapping the IPs and
allocating the routing paths. This further weakens the poten-
tial advantages of adaptive routing.

In summary, because of the aforementioned characteris-
tics, together with consideration for deadlock problem, pro-
grammability,etc, we argue that the most appropriate routing
technique for NoC should bedeterministic, deadlock-free,
minimal, wormhole-based[11].

4 Platform Description
In this section, we describe the regular tile-based architec-

ture and the energy model for its communication network.

4.1 The Architecture
The system under consideration is composed ofn×n tiles

interconnected by a 2D mesh network1. Fig. 2 shows an ab-
stract view of a tile in this architecture.

1We use 2D mesh network simply because it naturally fits the tile-based
architecture. However, our algorithm can be extended for other topologies.

Processing
Core Router

buffer
West
Input

West
Output

buffer
East
Input

East
Output

b
uf

fe
r

N
o

rt
h

In
p

ut

N
o

rt
h

O
u

tp
u

t

b
uf

fe
r

S
o

u
th

In

p
ut

 S
o

u
th

O

u
tp

u
t

bu
ffe

r

Pro
c.

Inp
ut

Pro

c.

Out
pu

t

One
tile

Routing
table

Crossbar
Switch

Figure 2. The typical structure of a tile

Each tile in Fig. 2 is composed of aprocessing coreand a
router. The router is connected to the four neighboring tiles
and its local processing core via channels (each consisting of
two one-directional point-to-pointlinks).

Due to the limited resources, buffers are implemented us-
ing registers (typically in the size of one or two flits each).
A 5×5 crossbar switch is used as the switching fabric in the
router. Based on the source/destination address, the routing
table decides which output link the packet should be deliv-
ered to.

4.2 The Energy Model
Ye et al. [9] proposed a model for power consumption of

network routers. Thebit energy(Ebit) metric is defined as the
energy consumed when one bit of data is transported through
the router:

Ebit = ESbit +EBbit +EWbit (1)

whereESbit , EBbit andEWbit represent the energy consumed by
the switch, buffering and interconnection wires, respectively.
(The authors in [9] assume the buffers are implemented in
SRAM or DRAM.) However, the above power model is tar-
geted for network routers where theentire chip is occupied
by justonerouter. For tile-based NoC architectures, we need
a new energy model because:
• In Eq. (1),EBbit becomes dominant during congestion,

as accessing and refreshing the memory are power expen-
sive. This is no longer true for NoC where buffers are imple-
mented with registers.
• In Eq. (1), EWbit is the energy consumed on the wires

inside the switch fabric. For NoC, the energy consumedon
the linksbetween tiles (ELbit) should also be included. Thus,
the average energy consumed in sending one bit of data from
a tile to its neighboring tile can be calculated as:

Ebit = ESbit +EBbit +EWbit +ELbit (2)

Since the length of a link is typically in the order ofmm,
the energy consumed by buffering (EBbit) and internal wires
(EWbit) is negligible2 compared toELbit ; Eq. (2) reduces to:

Ebit = ESbit +ELbit (3)

2We evaluated the energy consumption metrics using Spice for a 0.35µm
technology. The results show thatEBbit = 0.073pJ, which is indeed negligi-
ble compared toELbit (typically in the order ofpJ).

Consequently, in our new model, the average energy con-
sumption of sending one bit of data from tileti to tile t j is:

E
ti ,t j
bit = nhops×ESbit +(nhops−1)×ELbit (4)

wherenhops is the number of routers the bit passes.
For 2D mesh networks withminimal routing, Eq. (4)

shows that the average energy consumption of sending one
bit of data fromti to t j is determined by theManhattandis-
tance between them.

5 Problem Formulation
Simply stated, for a given application, we try to decide

onto which tile should each IP be mapped and how should
the packets be routed, such that the total communication
energy consumption is minimized under performance con-
straints. To formulate this problem more formally, we define
the following terms:
Definition 1 An Application Characterization Graph
(APCG) G = G(C,A) is a directedgraph, where each ver-
tex ci represents one selected IP, and each directed arcai, j
characterizes the communication fromci to c j . Eachai, j has
the following properties:

• v(ai, j): arc volume from vertexci to c j , which stands
for the communication volume (bits) from ci to c j .

• b(ai, j): arc bandwidth requirement from vertexci to
c j , which stands for the minimum bandwidth (bits/sec.)
that should be allocated by the network in order to meet
the performance constraints.

Definition 2 An Architecture Characterization Graph
(ARCG) G ′ = G(T,R) is a directedgraph, where each ver-
texti represents one tile in the architecture, and each directed
arc r i, j represents the routing fromti to t j . Eachr i, j has the
following properties:

• Pi, j : a set of candidateminimalpaths from tileti to tile
t j . ∀pi, j ∈Pi, j , L(pi, j) gives the set of links used bypi, j .

• e(r i, j): arc cost. This represents the average energy con-
sumption (joule) of sending one bit of data fromti to t j ,

i. e., E
ti ,t j
bit .

Definition 3 For an ARCGG ′ = G(T,R), a routing function
R : R→P mapsr i, j to onerouting pathpi, j , wherepi, j ∈Pi, j .

Using these definitions, the energy/performance aware
mapping and routing path allocation problem can be formu-
lated as:

Given an APCG and an ARCG that satisfy
size(APCG)≤ size(ARCG) (5)

find a mapping functionmap() from APCG to ARCG and
adeadlock-free, minimalrouting functionR () which:

min{Energy= ∑
∀ai, j

v(ai, j)×e(rmap(ci),map(c j))} (6)

such that:
∀ci ∈C, map(ci) ∈ T (7)

∀ci 6= c j ∈C, map(ci) 6= map(c j) (8)

∀ link lk,B(lk)≥ ∑
∀ai, j

b(ai, j)× f (lk,R (rmap(ci),map(c j))) (9)

whereB(lk) is the bandwidth of linklk, and:

f (lk, pm,n) =
{

0 : lk 6∈ L(pm,n)
1 : lk ∈ L(pm,n)

In this formulation, conditions (7) and (8) mean that each
IP should be mapped to exactly one tile and no tile can host
more than one IP. Eq. (9) guarantees that the communication
traffic (load) of any link will not exceed its bandwidth.

We show in detail in [11] that the impact of mapping on
the energy consumption is significant. In order to generate
the best solution, routing paths have to be wisely allocated.
In the following, we propose an efficient algorithm which
can find nearly optimal solutions in reasonable run times.

6 Energy/Performance Aware Mapping and
Routing Path Allocation

6.1 The Data Structure
Our approach is based on abranch-and-boundalgorithm

which efficiently walks through thesearching treethat rep-
resents the solution space. Fig. 3 shows a searching tree ex-
ample for mapping a 4-IP application onto a 2×2-tile archi-
tecture.

xxxx

031x

Root
Node

Internal
Node

0xxx 1xxx 2xxx

01xx 02xx 03xx

032x

21xx 23xx

230x 231x

3xxx

20xx

0321 2301 23100312
Leaf
Node

PAT
2−>3:2−>3
3−>2:3−>2

PAT

1−>2:1−>0−>2
3−>2:3−>2
2−>3:2−>3

2−>1:2−>3−>1
......

Figure 3. An example search tree

Each node in the tree is either aroot node, aninternal
node, or aleaf node. The root node corresponds to the state
whereno IP has been mapped andno routing path has been
allocated. Each internal node represents apartial mapping.
For example, the node labeled “23xx” represents a partial
mapping whereIP0 and IP1 are mapped to tilet2 and tile
t3 respectively, whileIP2 and IP3 are still unmapped. Each
leaf node represents acompletemapping of the IPs to the
tiles. Each node also has apath allocation table(PAT) which
stores the routing paths for the traffic among itsoccupied
tiles. For instance, the PAT of node “231x” in Fig. 3 shows
that the traffic fromt1 to t2 takes the patht1 → t0 → t2, etc.
The PAT of any node is automatically generated by the algo-
rithm. When a child node is generated, the PAT of its parent
node is inherited. Next, the routing paths for the traffic in-
volving the newly occupied tile are allocated and added to its
PAT. Caution must be taken to ensure freedom of deadlock.

To explain the algorithm, we define the following terms:
Definition 4 Thecostof a node is the energy consumed by
the communication among those IPs that have already been
mapped.
Definition 5 Let M be the set of vertices in the APCG that
have already have been mapped. A node is called alegal
node if and only if it satisfies the following tow conditions:

• The routing paths specified by the PAT are deadlock
free.

• ∀lk,B(lk) ≥ ∑∀ai, j ,cic j∈M b(ai, j)× f (lk, pmap(ci),map(c j))
where pmap(ci),map(c j) is the routing path from tile
map(ci) to map(c j) specified by the PAT.

6.2 The Branch-and-Bound Algorithm
Given the above definitions, finding the optimal solution

of Eq. (6) is equivalent to finding thelegal leaf node which
has theminimalcost. To achieve this, our algorithm searches
the optimal solution by alternating the following two steps:

Branch: An unexpanded node is selected and its nextun-
mappedIP is enumeratively assigned to the remainingunoc-
cupiedtiles to generate the corresponding new child nodes.
The PAT of each child node is also generated by first copying
its parent node’s PAT and then allocating the routing paths
for the traffics between the newly occupied tile and the other
occupied tiles. The routing paths specified by the PAT have
to be deadlock-free.

Bound: Each of the newly generated child nodes is in-
spected to see if it is possible to generate the best leaf nodes
later. A node can be trimmed away without further expan-
sion if either its cost or its Lower Bound Cost (LBC) is
higher than thelowestUpper Bound Cost (UBC) that has
been found3.

How the algorithm allocates the routing paths is critical
to its performance. Better routing path allocation helps bal-
ancing the traffic which leads to a better solution, but needs
more time to compute. Next, we describe our routing path al-
location heuristic which can find a good routing path within
reasonably short computational times.

Routing path allocation has the objective to finddeadlock-
free, minimalrouting paths, and at the same time, to balance
the traffic across the links.

To be deadlock free, the routing algorithm needs to pro-
hibit at least one turnin each of the possible routing cy-
cles. In addition, it shouldnot prohibit more turns than nec-
essary to preserve the adaptiveness. Based on this, several
deadlock-free adaptive routing algorithms have been pro-
posed [7], includingwest-first, north-lastandnegative-first.
In [8], Chiu proposed theodd-eventurn model which re-
stricts the locations where some types of turns can take place
such that the algorithm remains deadlock-free.

In our algorithm, we convert the adaptiveness offered by
the above algorithms into the flexibility for the routing path
allocation by constructing aLegal Turn Set(LTS). A LTS is
composed of andonly of those turns allowed in the corre-
sponding algorithm. Any path to be allocated can only em-
ploy turns from the LTS. The advantage of using LTS is two
folds: First, since the turns are restricted to LTS, deadlock-
free routing is guaranteed. Second, since only minimum
turns are prohibited, the routing path allocation is still highly
flexible.

3The computation of UBC/LBC is important for the performance of our
algorithm. Please refer to [11] for a detailed description of the method that
we use to compute UBC and LBC.

Theoretically, the turns allowed inanyof such deadlock-
free adaptive routing algorithms can be used to construct a
LTS. In this paper, we choosewest-firstandodd-evenrout-
ing algorithm to build our LTS’s4. Both of these two algo-
rithms prohibit only1

4 of the total possible turns. However,
the degree of the adaptiveness provided byodd-evenrouting
is distributed more evenly than that provided bywest-first.

Given an LTS, the following heuristic is used to allocate
routing paths for a List of Communication Loads (LCL):

Sort LCL by the flexibility of each CL
for each CL in LCL {

cur tile = CL.source; dst tile=CL.destination
while(cur tile 6= dst tile) {

link = choose link(cur tile, dst tile);
cur tile = link.next tile();
link.add load(CL.bandwidth); }}

Figure 4. Routing Path Allocation

In Fig. 4, the Communication Load (CL) is first sorted by
flexibility. The flexibility of a CL can be 1 (if there exists
more than onelegal path5) or 0 (otherwise). CLs with lower
flexibility are given higher priorities for path allocation. If
two CLs are tied in flexibility, the one with higher bandwidth
requirement is given priority. Functionchooselink returns
the leastloaded link allowed by LTS.

6.3 The Pseudo Code

Sort the IPs by communication demand
root node = new node(NULL)
MUBC =+∞, best mapping cost = +∞
PQ.Insert(root node)
while(!PQ.Empty()) {

cur node = PQ.Next()
for each unoccupied tile ti {

generate child node nnew
allocate routing paths
if(nnew’s mirror node exists in the PQ)

continue
if(nnew.LBC >MUBC) continue
if(nnew.isLeafNode) {

if(nnew.cost < best mapping cost) {
best mapping cost = nnew.cost
best mapping = nnew }}

else {
if(nnew.UBC<MUBC) MUBC =nnew.UBC
PQ.insert(nnew) }}

}

Figure 5. The pseudo code of the algorithm

Fig. 5 gives the pseudo code of our algorithm. Two
speedup techniques are employed to trim away more non-
promising nodes, early in the search process:
• IP ordering: IPs are sorted by their communication de-
mands (∑∀ j 6=i{v(ai, j)+v(a j,i)} for IP ci) so that the IPs with
higher demand will be mapped earlier. Since the positions

4north-lastandnegative-firstrouting are similar towest-firstrouting.
5A legalpath has to beminimaland employ only those turns in the LTS.

of the IPs with higher demands have larger impact on the
overall communication energy consumption, fixing their po-
sitions earlier helps exposing those non-promising nodes ear-
lier in the searching process; this reduces the number of
nodes to be expanded.
•Priority queue (PQ): The PQ sorts the nodes to be branched
based on their cost. The lower the cost of the node, the higher
the priority it has for branching, as expanding a node with
lower cost will more likely decrease the minimum UBC.

Obviously, as the system size scales up, the run time of
the algorithm will also increase. Fortunately, we can trade-
off the solution quality with run time by limiting the max-
imum length of PQ. When PQ’s length reaches a threshold
value, strict criteria are applied to select the child nodes for
insertion into PQ.

7 Experimental Results

7.1 Evaluation on Random Applications

We first compare the run-time and the solution quality of
our algorithm against asimulated annealingoptimizer (SA).
To make the comparison fair, SA was optimized by carefully
selecting parameters such as number of moves per temper-
ature, cooling schedule,etc. Since SA restricts itself toXY
routing, for the first set of experiments, we also configure our
algorithm to run without exploiting the routing flexibility by
fixing it to just XY routing. In the following, we call this
version EPAM-XY. (EPAM stands for Energy/Performance
Aware Mapping.)

Four categories (I, II, III, IV) of random benchmarks were
generated, each containing 10 applications with 9, 16, 25 and
36 IPs, respectively. EPAM-XY and SA were then applied
to map these applications onto architectures with the same
number of tiles. The results are shown in Fig. 6.

0 20 40
0

0.5

1

Energy ratio vs. system size

System size(number of tiles)

E
ne

rg
y

ra
tio

(o
ur

 a
lg

/S
A

)

0 20 40
0

50

100

Speedup ratio vs. system size

System size(number of tiles)

S
pe

ed
up

 ra
tio

(o
ur

 a
lg

/S
A

)

Figure 6. Comparison between SA and EPAM-XY

As shown in Fig. 6, for applications with 9 tiles, EPAM-
XY runs 45 times faster than SA, on average. As the system
size scales up, the speedup also increases dramatically. For
applications with 36 tiles, the average speedup of EPAM-
XY over SA increases to127. Meanwhile, the solutions pro-
duced by our algorithm remain very competitive. Indeed, the
energy consumption of the solutions generated by EPAM-
XY is only 3%, 6% and 10% larger than the SA solutions for
category II, III and IV, respectively. For category I, EPAM-
XY even finds better solutions because it can walk through
the whole search tree due to the small problem size.

To evaluate the benefits of exploiting the routing flexibil-
ity, we also applied our algorithm on benchmark applications
using different LTS configurations. The comparison between
the algorithms with LTS’s based onXYrouting (EPAM-XY),
Odd-Evenrouting (EPAM-OE) andWest-First(EPAM-WF)
is shown in Fig. 7.

5 10 15 20

1

1.5

Comparison on a 36−tile application

Link Capacity (100Mb/s)

E
ne

rg
y

co
ns

um
pt

io
n

(W
) EPAM−XY

EPAM−OE
EPAM−WF

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18
Improvement over EPAM−XY

System size (number of tiles)

Im
pr

ov
em

en
t (

%
)

EPAM−OE
EPAM−WF

Figure 7. The effectiveness of routing flexibility
exploitation

The left part of Fig. 7 shows how EPAM-XY, EPAM-OE
and EPAM-WF perform for a typical 36-tile application as
the link bandwidth constraints change. The results demon-
strate two advantages of routing flexibility exploitation:
• First, it helps to find solutions for architectures with lower
link bandwidth (which implies a lower implementation cost).
For example, for this application, without exploiting the rout-
ing flexibility, the link bandwidth has to be 526Mb/s (or
higher) in order to find a solution which meets the perfor-
mance constraints. By exploiting the routing flexibility, the
link bandwidth requirement decreases to 476Mb/s (EPAM-
OE) and 500Mb/s (EPAM-WF), respectively.
• Second, given the same architecture, exploiting routing
flexibility leads to solutions with less energy consumption.
The benefit becomes more significant as the links’ loads
reach their capacity. For instance, using the architecture
where each link can provide 526Mb/sbandwidth, the power
consumption of the solution generated by EPAM-XY is
1.60W. The power consumptions of the solutions generated
by EPAM-OE and EPAM-WF are only 1.50W and 1.04W
respectively. So significant power savings are achieved.

The right part of Fig. 7 shows how the effectiveness of
routing flexibility exploitation changes as the problem size
scales. LetBWmin be the minimum link bandwidth needed
by the corresponding algorithm to be able to find a solution
which meets the performance constraints. The improvement

(Y-axis) is defined asBWmin
XY −BWmin

BWmin , which is a measure of
how much the link bandwidth can be relaxed by exploiting
routing flexibility compared to that using the EPAM-XY. As
we can see, both EPAM-OE and EPAM-WF perform better
than EPAM-XY. For applications with 16 tiles, EPAM-OE
provides 5.69% improvement over EPAM-XY, on average.
As the problem size scales up to 36 tiles and 64 tiles, the
average improvement increases to 10.51% and 16.74%, re-
spectively.

Overall, EPAM-OE performsmuch betterthan EPAM-
WF, due to the fact that theodd-evenrouting provides more
even adaptiveness than thewest-firstrouting [8].

7.2 A Video/Audio Application
To evaluate the potential of our algorithm for real ap-

plications, we applied it to a generic MultiMedia System
(MMS) [11]. MMS is an integrated video/audio system
which includes anH263 video encoder, anH263 video de-
coder, anMP3 audio encoder and anMP3 audio decoder.
We first partition MMS into 40 concurrent tasks and then as-
sign/schedule these tasks onto 16 selected IPs available from
industry [12]. These IPs range from DSP, generic proces-
sor, embedded DRAM to customized ASIC. We then use real
video and audio clips as inputs to derive the communication
patterns among these IPs.

Applying EPAM-OE to MMS, the solution is found in less
than 0.5 sec. CPU time. An ad-hoc implementation was also
developed to serve as reference. The results are shown in
Table I.

Table 1. Comparison of ad-hoc vs. EPAM-OE
Movie clips Ad-hoc(mW) EPAM-OE(mW) Savings
box/hand 171.2 82.8 51.6%
akiyo/cup 226.2 104.8 53.7%

man/phone 133.3 66.88 49.8%

In Table 1, each row represents the power consumption of
using two movie clips as simulation inputs, with one clip for
the video/audio encoder and the other for the video/audio de-
coder. Compared to the ad-hoc solution, we observe around
51.7% energy savings, on average, which demonstrates the
effectiveness of our algorithm.

To compare the performance between EPAM-OE and SA,
both of them are applied to MMS for an architecture whose
link bandwidth is fixed to 333Mb/s. The results are shown
in Table 2.

Table 2. Comparison between SA and EPAM-OE
SA EPAM-OE Improvement

Run Time (sec) 25.55 0.31 82.419
Power (mW) 119.36 105.12 11.9%

As shown in Table 2, our algorithm generates a better so-
lution (about 12% less power) with significantly shorter run
time compared to SA. We should point out that while the
time of SA is affordable for this system (because it has only
4×4 tiles), the run time of SA increases dramatically as the
system size scales up. For instance, for systems with 7×7
tiles, the average run time of SA increases to 2.2 hours. For
systems with 10× 10 tiles (which may be available in the
near future [5]), our algorithm needs just a few minutes to
complete while the run time of SA becomes prohibitive (in
our experiments, SA did not finish in 40 hours of CPU time).

To show how much improvement our algorithm can
achieve by exploiting routing flexibility, we applied EPAM-
XY, EPAM-OE and EPAM-WF to MMS (Fig. 8). As shown
in Fig. 8, EPAM-XY fails to find a solution when the link
bandwidth decreases to 324Mb/s (point A in Fig. 8). In
contrast, both EPAM-OE and EPAM-WF can still find so-
lution even the link bandwidth decreases to 307Mb/s (point

3 4 5 6 7 8
0.1

0.12

0.14

0.16
Comparison using MMS

Link Capacity (100Mb/s)

E
ne

rg
y

co
ns

um
pt

io
n

(W
)

EPAM−XY
EPAM−OE
EPAM−WF

A

B

Figure 8. Comparison Using MMS Application

B in Fig. 8), thus suggesting a 5.5% improvement. Given the
same architecture whose link bandwidth is fixed to 324Mb/s,
the power consumptions of the solutions found by EPAM-
OE and EPAM-WF are both 109.2mW, while the power
consumption of the EPAM-XY solution is 150.9mW; thus,
27.6% of power savings are achieved. Again, this shows the
advantage of exploiting the routing flexibility.

8 Conclusion and Future Work
In this paper, we proposed an efficient algorithm for solv-

ing the mapping and routing path allocation problems in reg-
ular tile-based NoC architectures. Although we focus on the
architectures interconnected by 2D mesh networks, our al-
gorithm can be adapted to otherregular architectures with
different network topologies. This remains to be done as fu-
ture work.

References
[1] W. J. Dally, B. Towles, “Route packets, not wires: on-chip intercon-

nection networks,”Proc. DAC, pp. 684–689, June 2001.
[2] J. Chang, M. Pedram, “Codex-dp: co-design of communicating sys-

tems using dynamic programming,”IEEE Tran. on CAD of Inte-
grated Circuits and Systems, vol. 19, no. 7, July 2002.

[3] W. J. Dally, C. L. Seitz, “The torus routing chip,”Journal of Dis-
tributed Computing, vol. 1, no. 3, pp. 187–196, 1986.

[4] A. Hemani, et al, “Network on a chip: an architecture for billion
transistor era,”Proc. of the IEEE NorChip Conf., Nov. 2000.

[5] S. Kumar,et al, “A network on chip architecture and design method-
ology,” Proc. Symposium on VLSI, pp. 117–124, April 2002.

[6] L. M. Ni, P. K. McKinley “A survey of wormhole routing techniques
in direct networks,”Computer, vol. 26, no. 2, Feb. 1993.

[7] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,”Proc.
ISCA, May 1992.

[8] G. Chiu, “The odd-even turn model for adaptive routing,”IEEE Tran.
on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729–738, July
2000.

[9] T. T. Ye, L. Benini, G. De Micheli, “Analysis of power consumption
on switch fabrics in network routers,”Proc. DAC, June 2002.

[10] R. P. Dick, D. L. Rhodes, W. Wolf, “TGFF: task graphs for free,”
Proc. Intl. Workshop on Hardware/Software Codesign, March 1998.

[11] J. Hu, R. Marculescu, “Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures,”
CSSI Technical Report, Carnegie Mellon University, Sept. 2002.
Available at http://www.ece.cmu.edu/∼sld/publications.html

[12] http://www.mentor.com/inventra/cores/catalog/index.html

