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A recently proposed data-driven H2-optimal control approach is demonstrated on a laboratory setup. Most
adaptive optics (AO) systems are based on a control law that neglects the temporal evolution of the wavefront.
The proposed control approach is able to exploit the spatiotemporal correlation in the wavefront without as-
suming any form of decoupling. By analyzing the dynamic behavior of the wavefront sensor (WFS), it is shown
that if the wavefront correction device can be considered static, the transfer function from control input to WFS
output reduces to a two-tap impulse response and an integer number of samples delay. Considering this model
structure, a data-driven identification procedure is developed to estimate the relevant parameters from mea-
surement data. The specific structure allows for an analytical expression of the optimal controller in terms of
the system matrices of the minimum-phase spectral factor of the atmospheric disturbance model. The perfor-
mance of the optimal controller is compared with that of the standard AO control law. An analysis of the domi-
nant error sources shows that optimal control may reduce the temporal error. © 2007 Optical Society of
America
OCIS codes: 010.1080, 010.1330.
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. INTRODUCTION
daptive optics1,2 (AO) is a well-established technique for

eal-time compensation of the optical wavefront distor-
ions introduced by a turbulent medium. It has found
idespread application in ground-based astronomical im-
ging, where it is used to counteract the devastating ef-
ect of atmospheric turbulence on the angular resolution.
n this paper we concentrate on the control aspects of AO.
ost AO systems are based on a control strategy that is

ot able to exploit the spatiotemporal correlation in the
avefront. Usually, the control law (see, e.g., Ref. 3) con-

ists of a cascade of a static part, concerned with the prob-
em of finding the actuator inputs that provide the best fit
o the wavefront, and a series of parallel feedback loops
esponsible for stability and closed-loop performance. In
he simplest case, the static wavefront reconstruction and
tting step is formulated as a matrix inversion problem.
o improve the accuracy, both maximum-likelihood and
aximum a posteriori techniques have been used to in-

lude prior knowledge of the spatial correlation of the
avefront.3,4 Prior knowledge of the temporal evolution of

he wavefront is usually not included in the control de-
ign. Each of the parallel feedback loops typically consists
f a first-order lag filter or proportional-integral controller
f which the parameters are tuned to make a trade-off
mong disturbance rejection, noise propagation, and
losed-loop stability. To relax the trade-off, modal control
ptimization has been proposed.5,6 In this approach the
avefront is decomposed into a set of modes of which the
1084-7529/07/061714-12/$15.00 © 2
orresponding servo gains are optimized independently.
The separation of the control law into static wavefront

econstruction and temporal compensation is based on
he assumption that the spatial and temporal dynamics
an be decoupled. The Taylor hypothesis,7,8 which states
hat atmospheric turbulence evolves at a time scale that
s long compared with the time it takes for the wind-
lown inhomogeneities to cross the line of sight, shows
hat the decoupling assumption will generally fail. When
he turbulence can be considered as a frozen layer, there
xists a strong correlation between the spatial and tem-
oral dynamics that may be used to the benefit of the con-
roller. By including a priori knowledge of the spatiotem-
oral correlation, wavefront sensor (WFS) measurements
rom the past and from neighboring channels may be used
o predict future wavefront distortions. In this way, it
hould be possible to reduce the temporal error due to sys-
em delays. Also, the sensitivity to measurement noise
ay be reduced. Since the temporal error is often one of

he major error sources in AO,3 advanced control is ex-
ected to improve the overall system performance. This
ay be an improvement in terms of the ability to sup-

ress wavefront distortions or in terms of the limiting
agnitude of the guide star.
To exploit the spatiotemporal correlation in the wave-

ront, we have recently proposed a data-driven
2-optimal control strategy (see Refs. 9 and 10). This con-

ists of a dedicated subspace-identification algorithm that
s used to identify a multivariable atmospheric distur-
007 Optical Society of America
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ance model on the basis of open-loop WFS data. Given a
odel of the AO system, the identified model is used to

ompute the controller by formulating the control prob-
em in an H2-optimal control framework. This approach is
losely related to the minimum-variance controller design
r linear quadratic Gaussian (LQG) formalism used in
efs. 11–15. The main difference is hence not in the

ramework of analysis, but in the data-driven modeling of
he atmosphere and in the way the minimum-variance
ontroller is computed. The subspace-identification algo-
ithm provides an efficient way of identifying an atmo-
pheric disturbance model without assuming any form of
ecoupling or imposing a restriction on the length of the
mpulse response. Since the identified disturbance model
s sufficiently general to capture the spatiotemporal cor-
elation in the wavefront, the proposed H2-optimal con-
rol strategy should be able to benefit from the correlation
mposed by, for instance the Taylor hypothesis.

The existing LQG approaches, on the other hand, are
ased on an atmospheric disturbance model that either
ssumes modal decoupling12 or consists only of a first-
rder autoregressive model.11,13–15 A consequence of this
estrictive structure is that the disturbance model is able
o describe only part of the spatiotemporal correlation in
he wavefront. This implies in turn that the LQG control-
er computed on the basis of such a model is not able to
ully exploit the spatiotemporal correlation in the wave-
ront.

Another advantage of the proposed control approach is
hat the subspace-identification algorithm directly esti-
ates an atmospheric disturbance model that is
inimum-phase with respect to the WFS output. This

roperty can be used to derive an analytical expression
or the optimal controller in the case that the transfer
unction from control input to WFS output consists of a
ain matrix and a sample delay. This results in a nonit-
rative way to go from open-loop WFS data to closed-loop
ontroller design. The relation between the minimum-
ariance controller and the commonly applied control law
onsisting of a static wavefront reconstructor followed by
series of first-order parallel lag filters has been investi-

ated before. It has been shown that under nearly ideal
onditions of no loop and no deformable-mirror dynamics,
his type of control law is optimal for isotropic, first-order
tmospheric wavefront distortions (see, e.g., Refs. 14 and
5).
The goal of this paper is twofold. First, by analyzing the

ynamic behavior of an AO system it will be shown that if
he wavefront correction device can be considered static,
he transfer function from control input to WFS output
an be modeled as a two-tap impulse response and an in-
eger number of samples delay. Considering this model
tructure is useful, as it allows the analytical expression
or the optimal controller to be extended. This will be
emonstrated in a forthcoming paper.16 After deriving the
odel structure, a data-driven identification procedure is

eveloped to estimate the relevant model parameters
rom measurement data. Together with the H2-optimal
ontrol strategy, this leads to a control design procedure
n which all control relevant models, except static optical
ransformation from phase to slopes, are estimated from
ata. The second goal of this paper is to demonstrate that
he data-driven H2-optimal control approach is able to re-
uce the temporal error caused by latencies and band-
idth limitations. The validation is performed on an AO

aboratory setup. The remainder of this paper is orga-
ized as follows. Section 2 provides a brief description of
he AO setup used to validate the proposed optimal con-
rol approach, while Section 3 is focused on modeling of
he AO system. Section 4 summarizes the main steps of
he proposed control approach. The performance of the
ptimal controller will be compared with that of a conven-
ional AO control law, which will be briefly reviewed in
ection 5. This section also provides an overview of the
ominant error sources and the criteria used for perfor-
ance evaluation. The outcome of the experiments is de-

cribed in Section 6. Section 7 concludes the paper.

. EXPERIMENTAL SETUP
igure 1 shows the layout of the AO system used to vali-
ate the proposed control approach. In the setup, light
rom a HeNe laser ��=633 nm� is focused on a 20 �m pin-
ole P1 and is then collimated by the lens L1 to mimic a
istant point source. The atmospheric turbulence is simu-
ated by a turbulence simulator TS consisting of a circular
lane-parallel glass plate that is rotated through the col-
imated beam. One side of the glass plate has been ma-
hined in such a way that the resulting wavefront distor-
ions approximate a Kolmogorov distribution. The
istortions are characterized by a Fried parameter1 of r0
2 mm. With an entrance pupil of D=10 mm, this gives
ise to a D /r0 of 5. By adjusting the rotational speed of the
lass plate it is possible to simulate different windspeeds
f a single layer of frozen turbulence.

The distorted light is directed to a tip–tilt mirror (TT)
hat is conjugated to the entrance pupil P2. Separate tip–
ilt compensation is important since compensation by the
eformable mirror (DM) would demand too much of its
ynamic range. Via the beam splitter BS1, the entrance
upil is re-imaged on both the DM and the calibration
irror M3. During normal operation the mirror M3 is

hielded—it is used only to calibrate the wavefront sensor
WFS). The DM is a 37-channel electrostatic membrane
irror provided by OKO Technologies.17 The mirror has a

Fig. 1. Schematic representation of AO test bench.
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lear aperture of 15 mm diameter and electrostatic actua-
ors arranged in a hexagonal grid with an interactuator
pacing of 1.8 mm.

A disadvantage of electrostatic actuation is that the ac-
uators are able to apply only a pulling force on the mem-
rane. To allow bidirectional actuation, a bias is added to
he control input. This bias introduces additional focus
hich is compensated by the negative lens L6. In the con-

rol design it is assumed that the transfer function from
ontrol input to WFS output can be described by a linear
ime invariant (LTI) system. The DM movement, how-
ver, is proportional to the applied voltage squared and
herefore needs to be linearized. This is achieved by tak-
ng the DM actuator voltage equal to the square root of
he biased control input. This neutralizes the static non-
inearity.

The beam splitter BS2 divides the light into a science
ath and a WFS path. The camera C1 in the science path
rovides an enlarged image of the point source after
avefront correction. In the WFS path a Shack–
artmann sensor is used to probe the residual phase er-

ors. This consists of a hexagonal array of 127 microlenses
ith a focal distance of 15 mm and a pitch of 300 �m
ounted on the digital camera C2. The beam size in the
FS path is reduced to 3.3 mm and the WFS is conju-

ated to the entrance pupil. Figure 2 provides an impres-
ion of the sensor–actuator layout of the system. The fig-
re shows a CCD image of the WFS spots in the case that
here are no atmospheric wavefront distortions. The
rosses on top of the image show the approximate posi-
ions of the DM actuators in the WFS image plane. The
ontrol computer is a general purpose PC with a 3 GHz

ig. 2. (Color online) Impression of the sensor–actuator layout.

Fig. 3. (Color online) Schematic r
ntel Pentium IV processor running real-time LINUX.
hile implementing the control algorithm, the control

omputer is also responsible for processing the frames
rom the WFS camera. Using a standard center-of-mass
ype of algorithm with background compensation and an
djustable threshold level,1,18 the control computer has to
stimate the deviation of the spots from their nominal po-
ition.

A second general-purpose PC is used for simultaneous
ecording of the images from the cameras C1 and C2.
hese images are used for performance evaluation. To
ave a well-established time reference, the frame grab-
ers of both cameras are triggered by an external pulse
enerator. Precise sampling and timing of the control ac-
ion is of utmost importance to demonstrate the optimal
ontrol approach. Jitter on the sample frequency causes a
ismatch between the expected and actual time of com-

ensation, implying a loss in performance.

. MODELING THE AO SYSTEM
omputing the H2-optimal controller requires a control-

elevant model of both the AO system and the atmo-
pheric distortions. In this section we will consider the
roblem of modeling the discrete-time transfer function
rom control input to WFS output. It will be assumed that
he wavefront distortions can be represented by a finite-
imensional vector signal ��·��Rm�. Whether the signal
�·� provides a zonal or modal representation of the wave-

ront is irrelevant as long as its mean square error pro-
ides a good approximation of the mean square wavefront
ver the aperture. A similar representation will be used
or the phase correction applied by the DM and TT mirror
m�·�. Furthermore, we will use the argument of a signal

e.g., ��·�] to distinguish between its continuous-time
��t� , t�R� and discrete-time counterpart ���k� ,k�N�.
he sampling time is denoted by T.

. Active Mirror and WFS Model Structure
n order to derive the model structure of the discrete-time
ransfer function from control input to WFS output, con-
ider the block scheme of the Shack–Hartmann WFS in
ig. 3. The WFS is not able to directly measure the wave-

ront phase ��t�, but provides a discrete-time signal s�k�
hat is a filtered version of its slope. It will be assumed
hat the optical transformation from phase ��t� to slope
�t� can be modeled by the static mapping c�t�=G��t�,
ith G�Rmc�m� the so-called geometry matrix. The ma-

rix G is determined by the WFS geometry and the basis
sed to parametrize the phase (see, e.g., Refs. 1 and 2).
ince the phase cannot be measured, this relation is the
nly part of an AO system model that cannot not be esti-
ated from data. The shaded block in Fig. 3 models the

ntation of Shack–Hartmann WFS.
eprese
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ynamics introduced by the CCD camera. The spot posi-
ions on the CCD camera cannot be observed instanta-
eously but the camera integrates the image over an ex-
osure time te�R. At the end of the integration, the
mage is read from the CCD camera, which is then again
eset to zero. Furthermore, the time required to read and
rocess the frames introduces a time delay td�R. The en-
ire process is repeated with a sampling interval T. With
he measurement noise represented by the additive zero-
ean white noise term ��k�, the WFS output at the

iscrete-time instants t=kT, k�N can hence be expressed
s

s�k� = G��k� + ��k�, �1�

here ��k�� 1
te

�kT−te

kT ���− td�d�. Since the delay and the in-
egrating action affect all channels in a similar way, the

FS dynamics are fully decoupled. Furthermore, it is
lear that only the part of ��k� that is in the row space of

is able to contribute to s�k�. This observation can be
sed to introduce a reduced basis that parametrizes only
he informative part of s�k�. The main advantage of such

basis is that it reduces the effective number of WFS
hannels that have to be modeled. Moreover, it improves
he numerical conditioning of the identification and con-
rol problem by removing the linear dependence between
he components of the signal G��k�. The reduced basis is
btained by considering the singular value decomposition
SVD),

G = U�VT = �U1 U2���1 0

0 0��V1
T

V2
T� , �2�

here U and V are partitioned such that the matrix �1
ontains all nonzero singular values. By substituting the
VD into Eq. (1) and exploiting the orthogonality of U,

.e., U1U1
T+U2U2

T=I, the signal s�k� can be decomposed as

s�k� = U1�1��k� + �U1U1
T + U2U2

T���k� = U1y�k�

+ U2U2
T��k�,

here ��k��V1
T��k�, y�k���1��k�+n�k�, and n�k�

U1
T��k�. Since the spaces spanned by U1 and U2 are or-

hogonal and ��k� is a zero-mean white noise process un-
orrelated to ��k�, the second term is not related to the
urbulence process. For this reason, it is possible to re-
lace the WFS signal s�k� with the lower-dimensional sig-
al y�k� without losing any relevant information. Further-
ore, by multiplying Eq. (3) from the left by U1

T it is clear
hat the signal y�k� can be simply obtained as y�k�
U1

Ts�k�. Since the wavefront cannot be measured di-
ectly, the only way to relate ��k� to y�k� is via the re-
uced WFS model

Fig. 4. (Color online) Schematic represen
y�k� = �1��k� + n�k�. �3�

ecause of the orthogonality of V, ��k� can be decomposed
s ��k�=V1V1

T��k�+V2T2
T��k�. By substituting this in the

efinition of ��k� it is clear that only the first term, i.e.,
1V1

T��k�, can be reconstructed from the measurements.
urthermore, since the signals V1V1

T��k� and ��k� have
he same 2-norm, the control problem can be reformu-
ated as finding the controller that minimizes the vari-
nce of ��k�.
In accordance with the above definitions, the reduced

epresentation of the applied phase correction is defined
s �m�k��V1

T�kT−te

kT �m��− td�d�, while the corresponding
esidual phase error is 	�k����k�−�m�k�. Since the WFS
s linear in its input, the output corresponding to 	�k� can
e expressed as r�k��y�k�−ym�k�, where y�k� and ym�k�
enote the contributions due to ��k� and �m�k�, respec-
ively.

Figure 4 provides a schematic representation of the re-
ation between control input u�k��Rmu and WFS output
m�k�. The digital-to-analog (D/A) converter makes the
iscrete-time signal u�k� into a continuous-time signal
�t�, which is the input to the DM and the TT mirror. As a
esult, ym�k� can be modeled as the output of the discrete-
ime system formed by the cascade of the D/A converter,
ctive mirrors, and WFS.
In the proposed H2-optimal control approach there is

o separate loop for controlling the TT mirror. Controlling
he TT mirror is seen as an integral part of the control de-
ign. The DM and TT mirror are described by a single in-
egrated model. The discrete-time transfer function from
�k� to ym�k� is denoted by �1H�z�, where �m�z�
H�z�u�z� describes the mirror dynamics. It has been re-
ently shown19 that given a continuous-time mirror
odel, the discrete-time transfer function form control in-

ut to WFS output can be computed using the step-
nvariant transformation.20,21 Even though this could be
sed to derive H�z�, the analysis will be performed in the
ime-domain as this provides more insight.

Since the active mirrors used in the experimental setup
ave a time constant that is short compared with the
CD exposure time, they can be considered static, and the
nly dynamics results from the WFS sampling process.
he projected wavefront V1

T�m�t� can hence be expressed
s V1

T�m�t�=H̄u�t�, with H̄�Rmy�my a static influence ma-
rix. By substituting this static mirror model in the defi-
ition of �m�k�, we can write

�m�k� =
1

te
�

kT−te−td

kT−td

H̄u���d�. �4�

The continuous-time actuator input u�t� is obtained
rom a zero-order hold type of D/A converter operated at
he same sample frequency as the camera, i.e.,

of AO system as seen from the controller.
tation



B
t


a
t
s
−
s
E

w

o
�
a
f

T
t
s
s
l
r
p
a
(

B
I
p
i
p
w
f
m
w
t
e
p

b
D
q
i
b

p
i

d
e
f

w
I
y
k
p
c

w

a
c
m
a
t
c
n
l
c
p
o
I
a
t

t
s
i
c
z
t
s
n
d

B
e
m
g
fi
e
G
g

4
T
H
p

1718 J. Opt. Soc. Am. A/Vol. 24, No. 6 /June 2007 Hinnen et al.
u�t� � u�k� for kT 
 t � �k + 1�T. �5�

ecause of the physical limitations of the CCD camera,
he exposure time should always be in the range 0� te
T. According to Eq. (4), this implies that �m�k� depends

t most on two past samples of u�k�. To elaborate the in-
egral, divide the time delay td into an integer number of
amples delay d�N with a remainder �d�R as td=dT
�d, where d�1 and 0��d
T. Furthermore, let us as-
ume for the moment that te
�d. Then by substituting
q. (5) in Eq. (4) �m�k� can be expressed as

�m�k� = H̄	 1

te
�

0

�d

u�k − d�d� +
1

te
�

T+�d−te

T

u�k − d − 1�d�

�6a�

=H̄��1u�k − d� + �2u�k − d − 1��, �6b�

ith �1=�d / te and �2= �te−�d� / te.
A similar analysis can be performed for te
�d; the WFS

utput ym�k� can still be expressed as in Eq. (6b), but with

1=1 and �2=0. By introducing the definitions H��1H̄
nd ���2 /�1 it is clear that the discrete-time-transfer
unction from u�k� to �m�k� can be expressed as

H�z� = z−d�H + �z−1H�. �7�

he above model structure with ��R will also hold when
he DM is not purely static but has a time constant that is
hort compared with te. This is nicely illustrated by the
imulation example in Ref. 21. If the time constant is too
arge, the mirror model substituted into Eq. (4) should be
eplaced by a dynamic one. Because of this, the WFS out-
ut ym�k� will depend on more than two samples of u�k�,
nd so the required number of finite impulse response
FIR) taps for modeling g�z� will increase.

. Data-Driven Modeling of the AO System
n this section we will develop a data-driven identification
rocedure for estimating the model parameters � and H
n Eq. (7). For the time being, it will be assumed that both
arameters are unknown. This is for instance the case
hen either �d or te is not known, or when the DM differs

rom being purely static. The strategy of estimating the
odel parameters from measurement data fits perfectly
ith the philosophy of using data-driven identification. If

he parameter � is known in advance, the procedure for
stimating H reduces to a standard linear least-squares
roblem.
The unknown model parameters are estimated on the

asis of the WFS response ym�k� measured by exciting the
M and TT mirror with a zero-mean white noise se-
uence u�k�. Given the measured response ym�k�, the goal
s to minimize in a prediction error sense22 the difference
etween ym�k� and ŷm�k�=�1H�z�u�k�, i.e.,

min
H�z�

�
k=d+1

N−1

�ym�k� − ŷm�k��2
2. �8�

The main difficulty in solving the above optimization
roblem is its nonconvexity due to the product of � and H
n Eq. (7). Hence, for numerical optimization it would be
esirable to have an efficient way of initialization. To this
nd, we consider the following more general FIR model
or H�z� that results in a convex optimization problem:

H�z� = �
i=p1

p2

z−iHi−p1+1, �9�

here p�p2−p1+1 denotes the number of nonzero taps.
ndeed, substituting this expression into Eq. (8), via

ˆm�k�, and adjusting the lower limit in the summation to
=p1+1 results in a linear least-squares problem in the
arameters Hi, i� 
1, . . . ,p�. The solution to this problem
an be computed analytically as

�Ĥp . . . Ĥ2 Ĥ1� = �1
−1Yp2,N−1�U0,p,N−p2

�†, �10�

here

U0,p,N−p2
� �

um�0� . . . um�N − p2 − 1�

� � �

um�p − 1� . . . um�N − p1�
� ,

nd Yp2,N−1� �ym�p2� . . .ym�N−1��. By making a proper
hoice for p1 and p2, exploratory identification experi-
ents can be used both to obtain an initial estimate of �

nd to determine delay d. Indeed, if p1 and p2 are such
hat p1
d
p2−1, and if the model structure Eq. (7) is
orrect, the first j coefficient matrices H1 , . . . ,Hj have a
egligible norm, implying d= j+p1. Furthermore, it fol-

ows from the derivation of Eq. (7) that there are two
ases to be considered. First, if te
�d, � is zero, which im-
lies that the exploratory experiments should give rise to
nly one FIR coefficient significantly different from zero.
f this is the case, the problem of identifying H reduces to
standard linear least-squares problem, and H can be es-

imated by setting p1=p2=d in Eq. (10).
On the other hand, if te
�d, there should be precisely

wo FIR coefficient matrices Hj+1 and Hj+2 with a norm
ignificantly different from zero. The ratio of these norms,
.e. �Hj+2�2 / �Hj+1�2, provides an estimate of �. The so-
omputed � is then used to initialize a numerical optimi-
ation procedure for solving Eq. (8). Even though this op-
imization problem is nonconvex, it can be efficiently
olved by using separable least-squares.23 To this end,
ote that for a fixed value of �, Eq. (8) reduces to a stan-
ard least-squares problem in H that has the solution

H��� = �1
−1Yp2,N−1��I �I�U0.2,N−d−1�†. �11�

y substituting this expression in Eq. (8) it is possible to
liminate H, which gives rise to a scalar nonlinear opti-
ization problem over the parameter � only. Having a

ood initial estimate, this optimization problem can be ef-
ciently solved using a numerical algorithm based on,
.g., Levenberg–Marquardt or Gauss–Newton iterations.
iven the optimal value for �, the corresponding H is
iven by Eq. (11).

. DATA-DRIVEN OPTIMAL CONTROL
his section provides a brief outline of the data-driven
2-optimal control design strategy validated in this pa-

er. The control approach is based on the work presented
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n Refs. 9 and 10 and departs from the generalized plan
epicted in Fig. 5. The main components, indicated by the
haded boxes, are the AO system model H�z� and an at-
ospheric disturbance model S�z� describing the uncor-

ected wavefront distortions ��k� and corresponding WFS
utput y�k�. In this section we will restrict our attention
o the special case that the AO system model reduces to a
ain matrix and an integer number of samples delay, i.e.,
�z�=z−dH, since this is the type of AO system considered

n the validation experiments. However, as will be shown
n a forthcoming paper,16 all results can be extended to an
O system of the form of Eq. (7).
After identifying H�z�, the first step of the control de-

ign strategy is to determine the disturbance model S�z�.
ere, it is assumed that the second-order statistics of the

ignal y�k� can be described as white noise filtered by a
TI system. Without loss of generality, this shaping filter

s in innovation form with respect to y�k�. This in combi-
ation with Eq. (3) gives rise to the following model struc-
ure:

S:�
x�k + 1� = Adx�k� + Kdv�k�

y�k� = �1Cdx�k� + v�k�

��k� = Cdx�k� + ��k�
, �12�

here �Ad−Kd�1Cd��Rnd�nd and Ad�Rnd�nd are stable,
�k� is a zero-mean white innovation sequence, and the
�k���1

−1�v�k�−n�k�� is defined in such a way that ��k� is
ndependent from the measurement noise n�k�. The sys-
em matrices Ad, Kd, and Cd are full and no additional
tructure is imposed. Considering use of such a model is
easonable if the statistical properties of the wavefront
hange on a time scale that is long with respect to the
ime scale of the fluctuations themselves. Indeed, valida-
ion experiments on open-loop WFS data from the Will-
am Herschel Telescope have shown that a model of this
orm can be used to predict future wavefront distortions.9

he system matrices of the atmospheric disturbance
odel S�z� are identified on the basis of open-loop WFS
ata y�k�. Data-driven modeling has the advantage that it
rovides a good match with the prevalent turbulence con-
itions. Moreover, since the disturbance model of Eq. (12)
oes not assume any form of decoupling, it is sufficiently
eneral to capture the spatiotemporal correlation imposed
y a frozen flow. A consequence of this extensive descrip-
ion is that already relatively small AO systems give rise
o a sizeable identification problem. For this reason, a
edicated subspace-identification algorithm has been pro-
osed in Ref. 9. Using an efficient implementation this
tep can be performed on a general purpose PC for AO
ystems with up to a few hundred WFS channels. For sig-
ificantly larger systems more efficient algorithms need
o be developed.

Given the identified atmospheric disturbance model
�z� and the transfer function H�z�, the final step of the
ontrol design strategy is to compute the optimal control-
er. The control objective is to find the controller that

inimizes the 2-norm of the performance output e�k�. As
an be easily verified, this is equivalent to finding the con-
roller C�z� that minimizes the cost function

J = E
	T�k�	�k�� + E
uT�k�Qu�k��, �13�

here E denotes the conditional expectation, and the
egularization matrix Q=QT�0 is typically chosen diag-
nal. The regularization makes a trade-off between the
bjectives of minimizing the expected residual wavefront
rror and minimizing the control effort.

By expressing the control problem in the generalized
lant framework, the problem of finding the optimal con-
roller C�z� was reduced to a standard H2-optimal control
roblem (see, e.g., Ref. 20). Computing the H2-optimal
ontroller generally involves the numerical solution of
wo algebraic Riccati equations. However, because of the
inimum-phase property of the atmospheric disturbance
odel of Eq. (12) and the special structure of the AO sys-

em model (i.e., H=z−dH), these Riccati equations can
Fig. 5. (Color online) Schematic representation of the closed-loop AO system.
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oth be avoided. This gives rise to the following state-
pace expression for the optimal feedback controller C�z�:

� ��k + 1�

u�k� � =�� Ã + z−d+1Kd�1HF

F�Ã + z−d+1Kd�1HF�
� Kd

FKd
�� ��k�

r�k�� ,

�14�

here Ã�A−Kd�1Cd, F�HQ
† CdAd−1, and HQ

† � �HTH
Q�−1HT. That the controller in Eq. (14) is indeed the op-

imal controller that is minimizing cost function (13) has
een proved9 for the case that d=1 and Q=�I, with ��R.
he proof for different d and Q can be performed in a com-
letely analogous manner.
Having an analytical expression for the optimal con-

roller is useful as this leads to an efficient implementa-
ion. Together with the subspace-identification algorithm,
t gives rise to a noniterative way to go from open-loop

easurement data y�k� to closed-loop controller design.
y comparing the state-space equations of the optimal
nd the atmospheric disturbance model, it can be shown
hat u�k� can be expressed as

u�k� = HQ
† �̂�k + d�k�, �15�

here HQ
† can be interpreted as a regularized inverse of

he DM influence matrix H, and �̂�k+d �k� denotes the
onditional estimate of ��k+d� given the past closed-loop
FS data r�j�=y�j�−ym�j�, j
k. From this interpretation

t is clear that the optimal controller consists of a part
hat is concerned with predicting future wavefront distor-
ions and a static mapping that projects the estimated
avefront on the actuator space. Also the common AO

ontrol approach, which will be briefly reviewed in Sec-
ion 5, decomposes into a wavefront reconstruction step
ollowed by a projection on the actuator space. The main
ifference between both approaches, however, is that in
he optimal control approach the static wavefront recon-
truction is replaced by dynamic prediction.

. VALIDATION PROCEDURE AND
ERFORMANCE MEASURES
his section focuses on the validation procedure used to
emonstrate the benefit of optimal control. Before going
nto detail on this, it is important to highlight some of the
eculiarities of the setup. The setup has an unusual ge-
metry with significantly more microlenses than actua-
ors (see Fig. 2). There are approximately 1.78 micro-
enses per r0, whereas the number of actuators per r0 is
nly 1.11. The relatively low number of actuators gives
ise to a considerable fitting error. In this paper we at-
ribute to the fitting error any error that is caused by the
ifference between the estimated required phase correc-
ion [i.e., �̂�k+d �k� in the optimal control approach] and
he actual phase correction by the mirror. This includes
oth errors due to the physical inability of DM to take an
rbitrary shape and errors caused by imperfections in the
rojection on the actuator space. Since there are approxi-
ately 1.78 microlenses per r0 the wavefront is still rea-

onably sampled, which is attractive for performance
valuation. A consequence of this is also that a consider-
ble part of the fitting error can be actually observed.
Another complication of the setup is that the DM has a
ather limited actuator range. The DM has a maximum
eflection of 9.0 �m at the center of the mirror. The de-
ection at the edges is however much smaller since the
irror membrane is clamped. The available actuator

ange is insufficient for suppressing the peaks of the dis-
ortions. To avoid actuator saturation, we employ the pos-
ibility of penalizing the control input. Avoiding actuator
aturation is important as it leads to violation of the lin-
arity assumption and may destabilize the control loop.
n most AO systems, actuator saturation is not an issue.

hen it is a problem, increasing the input regularization
s usually not the best option as it is overly conservative.
or this reason, actuator saturation should ideally be ac-
ounted for in the control design. This is, however, beyond
he scope of this paper. Applying an input regularization
oes not need to be a problem in demonstrating the pro-
osed control approach. From Eq. (15) it is clear that in-
reasing the input regularization will lead to a further in-
rease of the wavefront fitting error by perturbing the
rojection on the actuator space. By a proper design of the
alidation procedure it is possible to single out the contri-
ution of the fitting error.
The proposed data-driven H2-optimal control approach

as been compared with a regularized version of a com-
only applied AO control law.2,3 For conformity with the

est of the paper, this control law will be reviewed in
erms of the reduced signal representation. The applied
O control law decomposes into a static wavefront fitting
nd reconstruction step and a temporal compensator.
iven a WFS measurement y�k�, the static part is con-

erned with finding the actuator input u�k� that would
rovide the best fit to the wavefront. Let the static rela-
ion between u�k� and y�k� be given by u�k�=Ry�k� and let
he mirrors be modeled as �m�k�=Hu�k�. Then, with the

FS model of Eq. (3), the problem of finding the control
atrix is formulated as

R = arg min
R

„E
���k� − HRy�k��T���k� − HRy�k���

+ E
u�k�Qu�k��…. �16�

In comparison with the usual minimum-variance for-
ulation of the reconstruction problem, Eq. (16) includes
penalty on the control effort. The additional regulariza-

ion is necessary both to avoid actuator saturation and to
nable a fair comparison with the optimal control ap-
roach. Under the assumption that wavefront ��k� and
he measurement noise n�k� are uncorrelated, R is given
y

�17�

here C��E
��k��T�k�� and Cn�E
n�k�nT�k��. In Eq. (17)
he control matrix R has been split into two parts. The es-
imation matrix E provides a minimum-variance estimate
f the wavefront ��̂�k�=Ey�k��, while F can be interpreted
s a projection onto the actuator space. With F=HQ

† , this
ecomposition shows that the input regularization en-
bles a fair comparison with the optimal control approach
f the only dynamics in H�z� is an integer number of
amples delay. Since the AO system operates in closed
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oop, the static reconstruction Rr�k� can be interpreted as
n estimate of the increment needed to the current actua-
or commands. In order to ensure closed-loop perfor-
ance, the temporal compensator has therefore to pos-

ess integrating action. The control law used for
erformance comparison is given by u�k�=c1 / �1
c2z−1�Rr�k�, with c1�R and c2�R as user-defined con-

rol parameters.
In evaluating the reconstruction matrix R, the covari-

nce matrix C� is computed theoretically assuming a per-
ect Kolmogorov spatial distribution. Furthermore, it is
ssumed that the measurement noise has a covariance
atrix of the form Cn=�n

2I, where the variance of the
oise �n

2 is estimated from open-loop WFS data y�k� for a
tatic distortion. Since the AO system is operated in
losed loop, the reconstruction matrix should actually be
omputed using the closed-loop covariance matrix C	

E
	�k�	T�k�� rather than C� (see, e.g., Refs. 24 and 15).
his modification in wavefront statistics, however, is usu-
lly neglected.
Also in this paper we will simply use the open-loop co-

ariance matrix C�. Note that since the measurement
oise in the setup is rather small, the effect of replacing
he closed-loop covariance with the open-loop covariance
s almost negligible. The choice of the control parameters
1 and c2 will be considered in Section 6.

In order to show that optimal control is indeed able to
chieve a performance improvement with respect to the
ommon approach, it is important to have a better insight
nto the dominant error sources. In the experimental
etup, the wavefront error is dominated by the fitting er-
or and the temporal error. From the above discussion it
s clear that if the only dynamics in H�z� is an integer
umber of samples delay, the common and optimal control
pproach use the same projection onto the actuator space.
his implies that both control approaches give rise to pre-
isely the same fitting error. Any difference in perfor-
ance is hence caused by a difference in the ability to ac-

urately predict the wavefront at the time of correction.
he wavefront prediction accuracy in the validation ex-
eriments is determined mainly by the temporal error.
ere, the temporal error refers to the error that is caused
y the dynamic mismatch between the moment of esti-
ating the wavefront and the actual correction. Both

andwidth limitations and pure time delays may contrib-
te to this error.
To better distinguish between the contributions of the

tting and temporal error it is useful to study their de-
endence on the sample frequency and the turbulence
onditions. Considering the static projection operator HQ

† ,
t is clear that for a fixed DM the fitting error depends
nly on the spatial distribution of the turbulence. Since
he Fried parameter r0 in the setup is fixed, the fitting er-
or can also be considered constant. The temporal error
n the other hand depends on the temporal dynamics of
he controller and the atmosphere. Under the assumption
hat the bandwidth of the temporal compensator in the
ommon control approach is proportional to the sample
requency f, the temporal error for Kolmogorov turbulence
ay be expressed as �t

2=��fG / f�5/3, where ��R is a scal-
ng constant and fG is known as the Greenwood
requency.1,25 The Greenwood frequency is a characteris-
ic frequency of the turbulence and for a single frozen
ayer with wind velocity v it is given by fG=0.427�v /r0�.
ince the fitting error and temporal error are uncorre-

ated the total wavefront error is obtained by summing
he variances, which forms the motivation to consider the
rror model

�	
2 � a0 + a1�fG/f�a2, �18�

here a0, a1, and a2�0. For the common control law, the
onstant a2 should be close to 5/3. It will be assumed that
he residual wavefront error obtained with the optimal
ontrol approach satisfies the same expression, possibly
ith a different constant a2.
The performance of both controllers has been compared

t different Greenwood-to-sample frequency ratios. At
ach Greenwood-to-sample frequency ratio, the mean
quare residual wavefront error is estimated on the basis
f Ns=5500 samples of WFS signal r�k�. Given these data,
he sample estimate of the mean square residual wave-
ront error is computed as

�̂	
2 =

1

�Ns − 1�m�
�
k=1

Ns

	̂�k�T	̂�k�, �19�

ith 	̂�k�=�1
−1r�k�. To verify if the error model (18) indeed

rovides a good description of the residual wavefront er-
or, it has been fitted to the observed values of �̂	

2. For a
xed a0, the problem of estimating the coefficients a1 and
2 boils down to fitting an exponential relation a1�f / fG�a2

o the measurements ��̂	
2−a0�. Such a fitting problem is

onveniently solved on a logarithmic scale, as this renders
he error model linear in the unknowns log10�a1� and a2.
his forms the motivation for defining the following least-
quares problem to estimate a0, a1, and a2:

min
a1,a2

�log10��̄	
2 − a0� − 1 log10�a1� − a2 log10�f̄��2

2, �20�

here �̄	
2 and f̄ are the vectors obtained by stacking the

ifferent observations of �̂	
2 and the corresponding fG / f ra-

ios, respectively, and 1 is a vector of the same dimension
s �̄	

2 and f̄ with all elements equal to 1. Since the above
ptimization problem is a linear least-squares problem for
xed a0, separable least-squares can be used to transform

nto a single parameter optimization problem.
Besides �̂	

2, a number of other criteria have been used
or characterizing the performance. Since the H2-optimal
ontroller is designed to minimize the cost function (13),
n obvious choice is to look at the relative improvement of
his function. Let Ĵc and Ĵo denote the sample estimates
f the cost function defined in accordance with Eq. (19).
hen the relative improvement is computed as Ĵc / Ĵo. Fur-

hermore, it is interesting to have performance measures
hat directly relate to the quality of the corrected image.
or this reason, the Strehl ratio and the normalized en-
ircled energy have also been computed. Both of these
erformance measures are derived from the long-
xposure image mimicked by averaging Nf=250 frames of
he science camera. The averaged image is background
ompensated to account for the CCD dark pattern. Since
he science camera has a fixed exposure time of 5 ms, the
otal recording time in each experiment is constant.
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The Strehl ratio is the most commonly used perfor-
ance metric in AO.1,2 Let Ī�p� denote the background-

ompensated, long-exposure image, with p�N2 the pixel
oordinate in the CCD frame, and let Br�p0�= 
p�N2 � �p
p0�2�r� denote all pixels p�N2 in a circle with radius r
round the point p0�R2. Further, let q0 denote the radius
f the theoretical diffraction-limited spot computed on the
asis of the aperture size. Then the first step in estimat-
ng the Strehl ratio is to extract a neighborhood with a ra-
ius 0.2q0 around the pixel pm�N with maximum inten-
ity. This neighborhood is used to obtain refined estimates
f the peak intensity Iq and position pq by fitting a qua-
ratic form to the measured intensity Ī�p�, p�B0.2q0

�pm�.
ith the refined estimate of the peak position a larger

eighborhood B2p0
�pq� is extracted over which the total

ux is computed as It=�p�B2q0�pq�
Ī�p�. Also the diffraction

imited total flux Id on this neighborhood is computed
rom the theoretical diffraction pattern with unit peak in-
ensity by oversampling the pixels by a factor of 8.

In the final step, the Strehl ratio is computed by
eighting the estimated peak intensity by the ratio
f the measured and the theoretically computed total
ux, i.e., S= �Iq /It�Id. Using the same notation, the
ormalized encircled energy is defined as E�r�
maxpo

��p�Br�po�Ī�p� /�pĪ�p��. This provides a measure of
he fraction of the total incident energy that is contained
n the central core of the spot. The better the wavefront
orrection, the more energy is concentrated in the central
ore, and the faster E�r� increases with r.

. EXPERIMENTAL RESULTS
oth the H2-optimal control approach and the common
O control law have been implemented on the experimen-

al setup. After aligning the WFS, only 69 of the 127 mi-
rolenses are illuminated sufficiently to be used for wave-
ront sensing. This implies that the unreduced WFS
ignal consists of ms=138 channels. The geometry matrix

specifying the relation between slope measurements
nd phase is defined by adapting the well-known Fried
onfiguration for a hexagonal grid. Just as for a rectangu-
ar grid, the position of the phase points is determined by
hifting the hexagonal grid over half the pitch size. The
educed WFS signal y�k�, obtained by projecting out the
odes that cannot be related to the wavefront, consists of
y=88 channels. During the experiments, the WFS expo-

ure time was adjusted to 5 ms. The WFS gain has been
alibrated using the TT mirror.

The exploratory identification experiments in the data-
riven identification procedure for estimating the model
arameters � and H in H�z� show that there is only one
IR coefficient that differs significantly from zero. This is

n perfect agreement with the observation that the real-
ime software is implemented in such a way that, for the
iven exposure time and sample frequencies, the time de-
ay between control input and WFS output is always 2
amples, i.e., d=2 and �d=T. From Subsection 3.A it is
lear that, for te
�d and �=0, H�z� reduces to H�z�
z−2H. An even more important argument for considering

his reduced model structure is the close agreement be-
ween measured and predicted WFS output. Validation
xperiments on a data set of N=1000 samples show a
ean variance accounted for26 of more than 99.2% over

he channels. This implies that more than 99.2% of the
ariance y�k� can be explained by the identified model.
he identified transfer function therefore provides an ac-
urate description of the true system.

Both control algorithms have been tested for
reenwood-to-sample frequency ratios in the range fG / f
�0.015,0.43�. Realistic values for the Greenwood fre-

uency can range tens to hundreds of Hertz (see, e.g., Ref.
). For an AO system with a sample frequency of f
500 Hz, this gives rise to Greenwood-to-sample fre-
uency ratios that are roughly in the range fG / f
�0.04,0.4�. Most AO systems, however, will probably be

esigned to operate at the lower end of this range. The up-
er bound of fG / f=0.4 especially is rather large as it im-
lies a characteristic turbulence frequency close to the
yquist frequency. The reason for considering these high
reenwood-to-sample frequency ratios is that the fitting
rror in the experimental setup is relatively large. As a
esult of this, it takes higher fG / f ratios for the temporal
rror to become the dominant factor. Furthermore, com-
aring both control algorithms over a wide range of
reenwood-to-sample frequency ratios is interesting as it
rovides some insight into the possible increase in
reenwood-to-sample frequency ratio while maintaining
certain performance level.
To verify if the residual wavefront error indeed depends

nly on the ratio of fG and f, and not on their respective
alues, the fG / f ratios have been obtained by considering
ifferent Greenwood and sample frequency combinations.
ome of these combinations give rise to the same or
pproximately the same f / fG ratio. The sample rates used
o obtain the different f / fG ratios include
� 
4.44,6.44,8.33,10.41,12.5,14.29,16.67,20.0� Hz.

At each Greenwood-to-sample frequency ratio, the per-
ormance of the common control approach is determined
sing the same value for c1 and c2. The control param-
ters were tuned to minimize �̂	

2 at a fG / f ratio of 0.043.
his resulted in c1=0.48 and c2=0.98. These parameters
ive rise to a reasonable performance over the entire
reenwood-to-sample frequency range without loss of sta-
ility. In fact, the values are close to the ones found by re-
eating the tuning procedure at a number of test points
ver the considered range. The reason for this weak de-
endence on the Greenwood-to-sample frequency ratio is
hat the setup uses a bright light source so that the mea-
urement noise contribution is rather small. As a result,
he problem of finding the optimal control parameters
urns into the one of maximizing the control bandwidth
ithout losing stability.
Since the only dynamic in the AO system is a two-

ample delay, i.e., H�z�=z−2H, the control parameters for
hich the system is still stable are independent of the
reenwood-to-sample frequency ratio. For a fair compari-

on, the same input regularization matrix Q has been
sed in both control approaches. The regularization ma-
rix is chosen diagonal, i.e., Q=diag
q1 ,q2 , . . . ,qmu

�, and
he control effort weighting qi on each of the actuators is
uned to avoid actuator saturation and to ensure that the
M stays within a linear range. This results in an addi-

ional weight on the actuators with a small dynamic
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ange, like the actuators near the edge of the DM. The TT
irror, on the other hand, does not require regulariza-

ion. In the optimal control approach, the atmospheric
isturbance model S�z� is identified on the basis of Ns
5500 samples of open-loop WFS data y�k�. The model or-
er, i.e., the dimension of the state vector in all validation
xperiments is chosen equal to nd=256. The subspace-
dentification algorithm is able to identify atmospheric
isturbance models of higher order (e.g., nd=300, nd
350) but this does not lead to any performance improve-
ent.
The estimated mean square residual phase error �̂	

2 ob-
ained in the different experiments is depicted in Fig. 6.
ach circle and each cross is the result of an experiment
t a specified Greenwood-to-sample frequency ratio using
he optimal and common control approach, respectively.
s expected from the discussion in Section 5, the perfor-
ance improvement increases with Greenwood-to-sample

requency ratio. Whereas the improvement is rather low
t low Greenwood-to-sample frequency ratios, a consider-
ble improvement is observed at high ratios. The dashed
urve in Fig. 6 represents the fit of the error model of Eq.
18) to the residual phase error �̂	

2 obtained with the com-
on control approach. The corresponding fit for the opti-
al control approach is depicted by the solid curve. Since

he residual phase error for the optimal control approach
hows a rather weak dependence on the Greenwood-to-
ample frequency ratio, the estimate of the parameters a1
nd a2 is quite sensitive to a slight variation in a0. For
his reason, optimization over a0 is omitted and its value
s fixed to the value of a0 found for the common control
pproach. This is a reasonable assumption, since the fit-
ing error in both approaches should be the same. The fit-
ed error models obtained in this way are given by

�̂	
2 � 0.1833 + 44.21�fG/f�1.6616,

�̂	
2 � 0.1833 + 0.3853�fG/f�0.7642,

or the common and the optimal approach, respectively.
Figure 6 shows that the above relations provide an ac-

urate fit to the mean square residual phase error ob-
erved in the experiments. Furthermore, the fitted expo-
ent a for the common control approach is in close

ig. 6. (Color online) Mean square error as a function of the
reenwood-to-sample frequency ratio.
2

greement with the theoretical value 5/3��1.667�. These
bservations support the error model (18) and show that
ptimal control is indeed effective in reducing the tempo-
al error. Since at low Greenwood-to-sample frequency ra-
ios the fitting error becomes the limiting factor, only
ittle can be gained by optimal control in this regime.

To prove that the performance at low Greenwood-to-
ample frequency ratios is indeed limited by the fitting er-
or, it is useful to estimate this error on the basis of the
vailable open-loop data y�k�. This is achieved by first re-
onstructing the uncorrected wavefront as �̂�k�=�1

−1y�k�.
ince the operator HQ

† can be interpreted as the projection
f �̂�k� on the actuator space, the actuator commands can
e computed as û�k�=HQ

† u�k�. The computed actuator
ommands are then used to determine the wavefront cor-
ection �̂m�k�=Hû�k�. Neglecting all dynamics, the fitting
rror can now be estimated as the mean square error of

ˆ �k�= �̂�k�− �̂m�k�. To demonstrate the effect of the regu-
arization, û�k� has been computed both with and without
nput regularization. Furthermore, the effect of actuator
aturation has been investigated by chopping off the sig-
als that are out of range.
The averaged estimated mean square fitting error and

he standard deviation over the different data sets are
hown in Table 1. The table shows that when accounting
or both the input regularization and the actuator satura-
ion the estimated fitting error is in close agreement with
he constant a0 obtained from the error model. The fitting
rror estimated on the basis of the open-loop WFS data is
ithin 2 standard deviations of the estimated value of a0.
urthermore, Table 1 shows that actuator saturation al-
ost doubles the observed fitting error. The additional in-

rease of the fitting error by accounting for both regular-
zation and saturation is rather small since both error
ontributions are strongly correlated, as the regulariza-
ion parameter Q has been tuned to avoid actuator satu-
ation.

As pointed out in Section 5, the relative improvement
n cost function and the Strehl ratio have been used as ad-
itional measures of performance. They have been evalu-
ted at the Greenwood-to-sample frequency ratios indi-
ated by the vertical dashed lines in Fig. 6 and are
ummarized in Table 2. The results in this table are con-
istent with the previous observations. They show a con-
iderable performance improvement for large Greenwood-
o-sample frequency ratios, while the performance
mprovement at low Greenwood-to-sample frequency ra-
ios is rather modest. The relative improvement in cost
unction is especially large. This is to be expected as the

2-optimal controller is designed to minimize this crite-
ion. Moreover, this suggests that the performance gain
ay be much larger if no input regularization is needed.
Table 2 shows that optimal control is also able to

chieve a performance improvement with respect to the

Table 1. Estimate of DM Fitting Error

egularization Saturation �̂f
2 Std

o no 0.087 0.003
o yes 0.170 0.009
es yes 0.197 0.007
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trehl ratio. Especially at large Greenwood-to-sample fre-
uency ratios, optimal control gives rise to a considerably
igher Strehl ratio. Figure 7 shows the normalized en-
ircled energy achieved with both the optimal and the
ommon AO control approach for different Greenwood-to-
ample frequency ratios. Also, this figure shows that opti-
al control is able to improve the science image and that

he gain in performance increases with the Greenwood-to-
ample frequency ratio. Whereas the encircled energy
urves obtained with the common control approach indi-
ate a rather spread out intensity pattern, optimal control
ives rise to a science image in which a larger fraction of
he incident energy is concentrated in the central core.

Finally, note that optimal control significantly reduces
he sensitivity of the Strehl ratio and the normalized en-
rgy to variation in the Greenwood-to-sample frequency
atio. This is in accordance with the observation that the
ean square residual phase error shows a weaker depen-

ence on the Greenwood-to-sample frequency ratio for the
ptimal than for the common control approach. Optimal
ontrol is therefore also attractive from the viewpoint of
erformance robustness.

. CONCLUSIONS
n this paper, we have demonstrated a recently proposed
ata-driven H2-optimal control approach on an experi-
ental setup. In contrast to existing AO control ap-

roaches, this approach does not assume any form of de-
oupling and has the potential to exploit the
patiotemporal correlation imposed by the Taylor hypoth-
sis. In the first step a dedicated subspace-identification
lgorithm is used to identify a multivariable atmospheric

Table 2. Performance Comparison of Common and
Optimal Control Approach

G / f
�10−1�

Strehl
Common

Strehl
Optimal

Ĵc / Ĵ0
Relative

.43 0.79 0.85 1.70

.1 0.57 0.85 4.66

.1 0.20 0.81 11.7

.3 0.12 0.78 19.3

ig. 7. (Color online) Normalized encircled energy at different
reenwood-to-sample frequency ratios.
isturbance model from open-loop WFS data. Data-driven
odeling has the advantage that it provides a good match
ith the prevalent turbulence conditions.
A second ingredient necessary for computing the opti-
al controller is the transfer function from control inputs

o WFS outputs. By analyzing the dynamic behavior of
he WFS, it has been shown that if the wavefront correc-
ion device can be considered to be static, the scalar dy-
amics of the discrete-time transfer function from actua-
or inputs to WFS output can always be modeled as an
nteger number of samples delay followed by a two-tap
mpulse response. This observation is particularly useful
s, together with the minimum-phase property of the
dentified atmospheric disturbance model, it allows the

2-optimal controller to be computed analytically as will
e shown in a forthcoming paper. A data-driven identifi-
ation approach has been developed to identify a transfer
unction of the desired structure from measurement data.

The data-driven H2-optimal control approach has been
alidated in an experimental setting by comparing it with
commonly applied AO control law. In this comparison

ifferent performance criteria based on measurements
rom both the science camera and the WFS have been
sed. The considered performance criteria include an es-
imate of the mean square residual wavefront error, the
eduction in cost function, the Strehl ratio, and the nor-
alized encircled energy. The experiments show that op-

imal control is able to achieve a performance improve-
ent with respect to each of these criteria, and that the

ain in performance increases with the Greenwood-to-
ample frequency ratio.

A careful analysis of the dominant error sources has
hown that the improved performance can be attributed
o a reduction in the temporal error. Since the temporal
rror is an exponentially increasing function of the
reenwood-to-sample frequency ratio, this also explains

hat a lot more can be gained at higher ratios than at
ower ratios where the fitting error becomes dominant.
ptimal control is able to reduce the temporal error by ex-
loiting the spatiotemporal correlation in the wavefront.
or a single layer of turbulence it is conceptually clear

hat the spatiotemporal correlation can be used to im-
rove the predictability of the wavefront. It is however
mportant to note that the proposed control strategy does
ot depend on this assumption. It is therefore to be ex-
ected that comparable or slightly lower performances
an be achieved in the multilayer case provided that the
FS has a sufficiently high spatial and temporal resolu-

ion to resolve the contributions of the individual layers.
he influence of multiple layers on the overall perfor-
ance remains a point of further investigation.
Another issue that deserves further attention is the ef-

ect of measurement noise. Since exploiting the spa-
iotemporal correlation is expected to reduce the effect of
easurement noise, optimal control may also be benefi-

ial in low signal-to-noise situations. This has already
een shown indirectly by the fact the optimal control is
ble to achieve the same performance at much lower
ample frequencies, enabling a longer integration time.

Finally it is important to note that a possible disadvan-
age of the proposed data-driven optimal control approach
s that it cannot actively control unseen modes. Unseen
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odes are wavefront modes that are in the null space of
he geometry matrix G. Since these modes do not influ-
nce the WFS output, they can never be modeled using
ata identification. This does not necessarily imply that
hese modes are unobservable when starting from an at-
ospheric disturbance model that directly models the

hase. The possibility of suppressing unseen modes has
een demonstrated in Ref. 13. From this perspective it
ay be rewarding to search for methods that can combine

he advantages of data-driven identification with the abil-
ty to suppress unseen modes.
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