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A recently proposed data-driven Hy-optimal control approach is demonstrated on a laboratory setup. Most
adaptive optics (AO) systems are based on a control law that neglects the temporal evolution of the wavefront.
The proposed control approach is able to exploit the spatiotemporal correlation in the wavefront without as-
suming any form of decoupling. By analyzing the dynamic behavior of the wavefront sensor (WFS), it is shown
that if the wavefront correction device can be considered static, the transfer function from control input to WFS
output reduces to a two-tap impulse response and an integer number of samples delay. Considering this model
structure, a data-driven identification procedure is developed to estimate the relevant parameters from mea-
surement data. The specific structure allows for an analytical expression of the optimal controller in terms of
the system matrices of the minimum-phase spectral factor of the atmospheric disturbance model. The perfor-
mance of the optimal controller is compared with that of the standard AO control law. An analysis of the domi-
nant error sources shows that optimal control may reduce the temporal error. © 2007 Optical Society of

America
OCIS codes: 010.1080, 010.1330.

1. INTRODUCTION

Adaptive optics™? (AO) is a well-established technique for
real-time compensation of the optical wavefront distor-
tions introduced by a turbulent medium. It has found
widespread application in ground-based astronomical im-
aging, where it is used to counteract the devastating ef-
fect of atmospheric turbulence on the angular resolution.
In this paper we concentrate on the control aspects of AO.
Most AO systems are based on a control strategy that is
not able to exploit the spatiotemporal correlation in the
wavefront. Usually, the control law (see, e.g., Ref. 3) con-
sists of a cascade of a static part, concerned with the prob-
lem of finding the actuator inputs that provide the best fit
to the wavefront, and a series of parallel feedback loops
responsible for stability and closed-loop performance. In
the simplest case, the static wavefront reconstruction and
fitting step is formulated as a matrix inversion problem.
To improve the accuracy, both maximum-likelihood and
maximum a posteriori techniques have been used to in-
clude prior knowledge of the spatial correlation of the
wavefront.>* Prior knowledge of the temporal evolution of
the wavefront is usually not included in the control de-
sign. Each of the parallel feedback loops typically consists
of a first-order lag filter or proportional-integral controller
of which the parameters are tuned to make a trade-off
among disturbance rejection, noise propagation, and
closed-loop stability. To relax the trade-off, modal control
optimization has been proposed.>® In this approach the
wavefront is decomposed into a set of modes of which the
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corresponding servo gains are optimized independently.

The separation of the control law into static wavefront
reconstruction and temporal compensation is based on
the assumption that the spatial and temporal dynamics
can be decoupled. The Taylor hypothesis,7’8 which states
that atmospheric turbulence evolves at a time scale that
is long compared with the time it takes for the wind-
blown inhomogeneities to cross the line of sight, shows
that the decoupling assumption will generally fail. When
the turbulence can be considered as a frozen layer, there
exists a strong correlation between the spatial and tem-
poral dynamics that may be used to the benefit of the con-
troller. By including a priori knowledge of the spatiotem-
poral correlation, wavefront sensor (WFS) measurements
from the past and from neighboring channels may be used
to predict future wavefront distortions. In this way, it
should be possible to reduce the temporal error due to sys-
tem delays. Also, the sensitivity to measurement noise
may be reduced. Since the temporal error is often one of
the major error sources in AO,® advanced control is ex-
pected to improve the overall system performance. This
may be an improvement in terms of the ability to sup-
press wavefront distortions or in terms of the limiting
magnitude of the guide star.

To exploit the spatiotemporal correlation in the wave-
front, we have recently proposed a data-driven
‘Ho-optimal control strategy (see Refs. 9 and 10). This con-
sists of a dedicated subspace-identification algorithm that
is used to identify a multivariable atmospheric distur-
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bance model on the basis of open-loop WFS data. Given a
model of the AO system, the identified model is used to
compute the controller by formulating the control prob-
lem in an Hy-optimal control framework. This approach is
closely related to the minimum-variance controller design
or linear quadratic Gaussian (LQG) formalism used in
Refs. 11-15. The main difference is hence not in the
framework of analysis, but in the data-driven modeling of
the atmosphere and in the way the minimum-variance
controller is computed. The subspace-identification algo-
rithm provides an efficient way of identifying an atmo-
spheric disturbance model without assuming any form of
decoupling or imposing a restriction on the length of the
impulse response. Since the identified disturbance model
is sufficiently general to capture the spatiotemporal cor-
relation in the wavefront, the proposed Hy-optimal con-
trol strategy should be able to benefit from the correlation
imposed by, for instance the Taylor hypothesis.

The existing LQG approaches, on the other hand, are
based on an atmospheric disturbance model that either
assumes modal decoupling'? or consists only of a first-
order autoregressive model.!*315 A consequence of this
restrictive structure is that the disturbance model is able
to describe only part of the spatiotemporal correlation in
the wavefront. This implies in turn that the LQG control-
ler computed on the basis of such a model is not able to
fully exploit the spatiotemporal correlation in the wave-
front.

Another advantage of the proposed control approach is
that the subspace-identification algorithm directly esti-
mates an atmospheric disturbance model that is
minimum-phase with respect to the WFS output. This
property can be used to derive an analytical expression
for the optimal controller in the case that the transfer
function from control input to WFS output consists of a
gain matrix and a sample delay. This results in a nonit-
erative way to go from open-loop WFS data to closed-loop
controller design. The relation between the minimum-
variance controller and the commonly applied control law
consisting of a static wavefront reconstructor followed by
a series of first-order parallel lag filters has been investi-
gated before. It has been shown that under nearly ideal
conditions of no loop and no deformable-mirror dynamics,
this type of control law is optimal for isotropic, first-order
atmospheric wavefront distortions (see, e.g., Refs. 14 and
15).

The goal of this paper is twofold. First, by analyzing the
dynamic behavior of an AO system it will be shown that if
the wavefront correction device can be considered static,
the transfer function from control input to WFS output
can be modeled as a two-tap impulse response and an in-
teger number of samples delay. Considering this model
structure is useful, as it allows the analytical expression
for the optimal controller to be extended. This will be
demonstrated in a forthcoming paper.'® After deriving the
model structure, a data-driven identification procedure is
developed to estimate the relevant model parameters
from measurement data. Together with the Hs-optimal
control strategy, this leads to a control design procedure
in which all control relevant models, except static optical
transformation from phase to slopes, are estimated from
data. The second goal of this paper is to demonstrate that
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Fig. 1. Schematic representation of AO test bench.

the data-driven H,-optimal control approach is able to re-
duce the temporal error caused by latencies and band-
width limitations. The validation is performed on an AO
laboratory setup. The remainder of this paper is orga-
nized as follows. Section 2 provides a brief description of
the AO setup used to validate the proposed optimal con-
trol approach, while Section 3 is focused on modeling of
the AO system. Section 4 summarizes the main steps of
the proposed control approach. The performance of the
optimal controller will be compared with that of a conven-
tional AO control law, which will be briefly reviewed in
Section 5. This section also provides an overview of the
dominant error sources and the criteria used for perfor-
mance evaluation. The outcome of the experiments is de-
scribed in Section 6. Section 7 concludes the paper.

2. EXPERIMENTAL SETUP

Figure 1 shows the layout of the AO system used to vali-
date the proposed control approach. In the setup, light
from a HeNe laser (\=633 nm) is focused on a 20 um pin-
hole P1 and is then collimated by the lens LL1 to mimic a
distant point source. The atmospheric turbulence is simu-
lated by a turbulence simulator T'S consisting of a circular
plane-parallel glass plate that is rotated through the col-
limated beam. One side of the glass plate has been ma-
chined in such a way that the resulting wavefront distor-
tions approximate a Kolmogorov distribution. The
distortions are characterized by a Fried parameter1 of ry
=2mm. With an entrance pupil of D=10 mm, this gives
rise to a D/ry of 5. By adjusting the rotational speed of the
glass plate it is possible to simulate different windspeeds
of a single layer of frozen turbulence.

The distorted light is directed to a tip—tilt mirror (T'T)
that is conjugated to the entrance pupil P2. Separate tip—
tilt compensation is important since compensation by the
deformable mirror (DM) would demand too much of its
dynamic range. Via the beam splitter BS1, the entrance
pupil is re-imaged on both the DM and the calibration
mirror M3. During normal operation the mirror M3 is
shielded—it is used only to calibrate the wavefront sensor
(WFS). The DM is a 37-channel electrostatic membrane
mirror provided by OKO Technolog.}:ies.17 The mirror has a
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clear aperture of 15 mm diameter and electrostatic actua-
tors arranged in a hexagonal grid with an interactuator
spacing of 1.8 mm.

A disadvantage of electrostatic actuation is that the ac-
tuators are able to apply only a pulling force on the mem-
brane. To allow bidirectional actuation, a bias is added to
the control input. This bias introduces additional focus
which is compensated by the negative lens L6. In the con-
trol design it is assumed that the transfer function from
control input to WF'S output can be described by a linear
time invariant (LTI) system. The DM movement, how-
ever, is proportional to the applied voltage squared and
therefore needs to be linearized. This is achieved by tak-
ing the DM actuator voltage equal to the square root of
the biased control input. This neutralizes the static non-
linearity.

The beam splitter BS2 divides the light into a science
path and a WFS path. The camera C1 in the science path
provides an enlarged image of the point source after
wavefront correction. In the WFS path a Shack—
Hartmann sensor is used to probe the residual phase er-
rors. This consists of a hexagonal array of 127 microlenses
with a focal distance of 15 mm and a pitch of 300 um
mounted on the digital camera C2. The beam size in the
WFS path is reduced to 3.3 mm and the WFS is conju-
gated to the entrance pupil. Figure 2 provides an impres-
sion of the sensor—actuator layout of the system. The fig-
ure shows a CCD image of the WFS spots in the case that
there are no atmospheric wavefront distortions. The
crosses on top of the image show the approximate posi-
tions of the DM actuators in the WFS image plane. The
control computer is a general purpose PC with a 3 GHz

Fig. 2. (Color online) Impression of the sensor—actuator layout.
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Intel Pentium IV processor running real-time LINUX.
While implementing the control algorithm, the control
computer is also responsible for processing the frames
from the WFS camera. Using a standard center-of-mass
type of algorithm with background compensation and an
adjustable threshold level,!® the control computer has to
estimate the deviation of the spots from their nominal po-
sition.

A second general-purpose PC is used for simultaneous
recording of the images from the cameras C1 and C2.
These images are used for performance evaluation. To
have a well-established time reference, the frame grab-
bers of both cameras are triggered by an external pulse
generator. Precise sampling and timing of the control ac-
tion is of utmost importance to demonstrate the optimal
control approach. Jitter on the sample frequency causes a
mismatch between the expected and actual time of com-
pensation, implying a loss in performance.

3. MODELING THE AO SYSTEM

Computing the Hy-optimal controller requires a control-
relevant model of both the AO system and the atmo-
spheric distortions. In this section we will consider the
problem of modeling the discrete-time transfer function
from control input to WF'S output. It will be assumed that
the wavefront distortions can be represented by a finite-
dimensional vector signal ¢(-) € R™¢. Whether the signal
¢(+) provides a zonal or modal representation of the wave-
front is irrelevant as long as its mean square error pro-
vides a good approximation of the mean square wavefront
over the aperture. A similar representation will be used
for the phase correction applied by the DM and TT mirror
¢p(-). Furthermore, we will use the argument of a signal
[e.g., &(-)] to distinguish between its continuous-time
[4(t),t eR] and discrete-time counterpart [¢(k),k e N].
The sampling time is denoted by 7.

A. Active Mirror and WFS Model Structure

In order to derive the model structure of the discrete-time
transfer function from control input to WFS output, con-
sider the block scheme of the Shack—Hartmann WFS in
Fig. 3. The WF'S is not able to directly measure the wave-
front phase ¢(¢), but provides a discrete-time signal s(k)
that is a filtered version of its slope. It will be assumed
that the optical transformation from phase ¢(¢) to slope
c(t) can be modeled by the static mapping c(t)=G(¢),
with G € R™<*™¢ the so-called geometry matrix. The ma-
trix G is determined by the WFS geometry and the basis
used to parametrize the phase (see, e.g., Refs. 1 and 2).
Since the phase cannot be measured, this relation is the
only part of an AO system model that cannot not be esti-
mated from data. The shaded block in Fig. 3 models the

¢(?) «(t)

It, + delay

Fig. 3. (Color online) Schematic representation of Shack—Hartmann WF'S.
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Fig. 4. (Color online) Schematic representation of AO system as seen from the controller.
dynamics introduced by the CCD camera. The spot posi- y(k) =3,0(k) +n(k). (3)

tions on the CCD camera cannot be observed instanta-
neously but the camera integrates the image over an ex-
posure time ¢,e R. At the end of the integration, the
image is read from the CCD camera, which is then again
reset to zero. Furthermore, the time required to read and
process the frames introduces a time delay ¢; € R. The en-
tire process is repeated with a sampling interval 7. With
the measurement noise represented by the additive zero-
mean white noise term #7(k), the WFS output at the
discrete-time instants t=kT, k € N can hence be expressed
as

s(k)=Ge(k) + n(k), (1)
where ¢(k) =% %7, ¢(7—t,)d7. Since the delay and the in-
tegrating action affect all channels in a similar way, the
WFS dynamics are fully decoupled. Furthermore, it is
clear that only the part of ¢(k) that is in the row space of
G is able to contribute to s(k). This observation can be
used to introduce a reduced basis that parametrizes only
the informative part of s(%2). The main advantage of such
a basis is that it reduces the effective number of WFS
channels that have to be modeled. Moreover, it improves
the numerical conditioning of the identification and con-
trol problem by removing the linear dependence between
the components of the signal G ¢(k). The reduced basis is
obtained by considering the singular value decomposition

(SVD),
olf vy
IRZE

where U and V are partitioned such that the matrix 3
contains all nonzero singular values. By substituting the
SVD into Eq. (1) and exploiting the orthogonality of U,
ie., U1U{+ U2U5=I, the signal s(k) can be decomposed as

s
G=UsV'=[U, U2]{ 01 (2)

s(k) = UsS1¢(k) + (ULU] + UsUp) k) = Uy (k)
+ U Uy n(k),

where @(k)inqﬁ(k), y(k)=Z21¢(k)+n(k), and n(k)
= U{n(k). Since the spaces spanned by U; and U, are or-
thogonal and 7(k) is a zero-mean white noise process un-
correlated to ¢(k), the second term is not related to the
turbulence process. For this reason, it is possible to re-
place the WF'S signal s(k) with the lower-dimensional sig-
nal y(k) without losing any relevant information. Further-
more, by multiplying Eq. (3) from the left by U{ it is clear
that the signal y(k) can be simply obtained as y(k)
= fs(k). Since the wavefront cannot be measured di-
rectly, the only way to relate ¢(k) to y(k) is via the re-
duced WFS model

Because of the orthogonality of V, ¢(k) can be decomposed
as ¢(k)=V,VI¢(k)+V,oTL (k). By substituting this in the
definition of ¢(k) it is clear that only the first term, i.e.,
V1V1T¢(k), can be reconstructed from the measurements.
Furthermore, since the signals V1V{¢(k) and ¢(k) have
the same 2-norm, the control problem can be reformu-
lated as finding the controller that minimizes the vari-
ance of ¢(k).

In accordance with the above definitions, the reduced
representation of the applied phase correction is defined
as ¢,(k) iV{ I ’,ﬁ;_t Gm(7—ty)d7, while the corresponding
residual phase error is e(k)=¢(k) - ¢,,(k). Since the WF'S
is linear in its input, the output corresponding to (k) can
be expressed as r(k)=y(k)-y,,(k), where y(k) and y,,(k)
denote the contributions due to ¢(k) and ¢,,(k), respec-
tively.

Figure 4 provides a schematic representation of the re-
lation between control input u(k) € R+ and WFS output
ym(k). The digital-to-analog (D/A) converter makes the
discrete-time signal u(k) into a continuous-time signal
u(t), which is the input to the DM and the TT mirror. As a
result, v,,(k) can be modeled as the output of the discrete-
time system formed by the cascade of the D/A converter,
active mirrors, and WFS.

In the proposed H,-optimal control approach there is
no separate loop for controlling the TT mirror. Controlling
the TT mirror is seen as an integral part of the control de-
sign. The DM and TT mirror are described by a single in-
tegrated model. The discrete-time transfer function from
u(k) to y,(k) is denoted by 2;H(z), where ¢,,(2)
=H(z)u(z) describes the mirror dynamics. It has been re-
cently shown!® that given a continuous-time mirror
model, the discrete-time transfer function form control in-
put to WEFS output can be computed using the step-
invariant transformation.??! Even though this could be
used to derive H(z), the analysis will be performed in the
time-domain as this provides more insight.

Since the active mirrors used in the experimental setup
have a time constant that is short compared with the
CCD exposure time, they can be considered static, and the
only dynamics results from the WFS sampling process.
The projected wavefront V{q&m(t) can hence be expressed

as V{q&m(t) =Hu(¢), with H e R™»*™y a static influence ma-
trix. By substituting this static mirror model in the defi-
nition of ¢,,(k), we can write

1 kT-ty
en(k) = —f

eJ kT—t,-ty

Hu(7)dr. (4)

The continuous-time actuator input u(¢) is obtained
from a zero-order hold type of D/A converter operated at
the same sample frequency as the camera, i.e.,
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ut)=u(k) for ET=t<(k+1T. (5)

Because of the physical limitations of the CCD camera,
the exposure time should always be in the range 0<¢,
=T. According to Eq. (4), this implies that ¢,,(k) depends
at most on two past samples of u(k). To elaborate the in-
tegral, divide the time delay ¢; into an integer number of
samples delay d e N with a remainder 7;e R as t;=dT
- 14, where d=1 and 0<7;=T. Furthermore, let us as-
sume for the moment that ¢,> 7;. Then by substituting
Eq. (5) in Eq. (4) ¢,,(k) can be expressed as

_ 1 74 1 T
<pm(k)=H(—f u(k —d)dr+ —f u(k—d—l)dr)
te 0 te T+74-t,
(6a)

=H(ayu(k-d) + agu(k —d - 1)), (6b)

with ay= Td/te and ag= (te_ Td)/te-

A similar analysis can be performed for ¢, < 7;; the WFS
output y,,(k) can still be expressed as in Eq. (6b), but with
a;=1 and ay=0. By introducing the definitions H= a;H
and a=ay/@; it is clear that the discrete-time-transfer
function from u(k) to ¢,,(k) can be expressed as

Hz) =z"%H + ez 'H). (7)

The above model structure with « € R will also hold when
the DM is not purely static but has a time constant that is
short compared with ¢,. This is nicely illustrated by the
simulation example in Ref. 21. If the time constant is too
large, the mirror model substituted into Eq. (4) should be
replaced by a dynamic one. Because of this, the WFS out-
put v,,(k) will depend on more than two samples of u(k),
and so the required number of finite impulse response
(FIR) taps for modeling g(z) will increase.

B. Data-Driven Modeling of the AO System

In this section we will develop a data-driven identification
procedure for estimating the model parameters a and H
in Eq. (7). For the time being, it will be assumed that both
parameters are unknown. This is for instance the case
when either 7; or ¢, is not known, or when the DM differs
from being purely static. The strategy of estimating the
model parameters from measurement data fits perfectly
with the philosophy of using data-driven identification. If
the parameter « is known in advance, the procedure for
estimating H reduces to a standard linear least-squares
problem.

The unknown model parameters are estimated on the
basis of the WF'S response y,,(k) measured by exciting the
DM and TT mirror with a zero-mean white noise se-
quence u(k). Given the measured response y,,(k), the goal
is to minimize in a prediction error sense®” the difference
between y,,(k) and y,,(k)=21H(z)u(k), i.e.,

N-1
min >, [ly,,(k) = 5.(8)|3. 8)

H(2) k=d+1

The main difficulty in solving the above optimization
problem is its nonconvexity due to the product of « and H
in Eq. (7). Hence, for numerical optimization it would be
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desirable to have an efficient way of initialization. To this
end, we consider the following more general FIR model
for H(z) that results in a convex optimization problem:

P2

H() = X 27 Hip i1, 9)

i=py

where p=py—p1+1 denotes the number of nonzero taps.
Indeed, substituting this expression into Eq. (8), via
ym(k), and adjusting the lower limit in the summation to
k=p;+1 results in a linear least-squares problem in the
parameters H;, i €{1,...,p}. The solution to this problem
can be computed analytically as

[ﬁp . HyHy]= EIIsz,N—l(UO,p,N—pZ)T} (10)
where
u,,(0) U(N-pg—1)
UopNp, = 3 h ‘ ,
u,(p-1) Up(N -p1)

and Y, N 1=[ym(P2) ...yn(N-1)]. By making a proper
choice for p; and ps, exploratory identification experi-
ments can be used both to obtain an initial estimate of «
and to determine delay d. Indeed, if p; and p, are such
that p;=d=py-1, and if the model structure Eq. (7) is
correct, the first j coefficient matrices Hy,...,H; have a
negligible norm, implying d=j+p;. Furthermore, it fol-
lows from the derivation of Eq. (7) that there are two
cases to be considered. First, if t, < 74, a is zero, which im-
plies that the exploratory experiments should give rise to
only one FIR coefficient significantly different from zero.
If this is the case, the problem of identifying H reduces to
a standard linear least-squares problem, and H can be es-
timated by setting p;=py=d in Eq. (10).

On the other hand, if ¢,> 7;, there should be precisely
two FIR coefficient matrices Hj,; and H,, with a norm
significantly different from zero. The ratio of these norms,
ie. |Hjolla/||Hjs1ll, provides an estimate of a. The so-
computed « is then used to initialize a numerical optimi-
zation procedure for solving Eq. (8). Even though this op-
timization problem is nonconvex, it can be efficiently
solved by using separable leas‘c-squares.23 To this end,
note that for a fixed value of a, Eq. (8) reduces to a stan-
dard least-squares problem in H that has the solution

H() =37'Y,, xal al)Ugn-g-1]"- (11)

By substituting this expression in Eq. (8) it is possible to
eliminate H, which gives rise to a scalar nonlinear opti-
mization problem over the parameter « only. Having a
good initial estimate, this optimization problem can be ef-
ficiently solved using a numerical algorithm based on,
e.g., Levenberg—Marquardt or Gauss—Newton iterations.
Given the optimal value for «, the corresponding H is
given by Eq. (11).

4. DATA-DRIVEN OPTIMAL CONTROL

This section provides a brief outline of the data-driven
‘Ho-optimal control design strategy validated in this pa-
per. The control approach is based on the work presented
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in Refs. 9 and 10 and departs from the generalized plan
depicted in Fig. 5. The main components, indicated by the
shaded boxes, are the AO system model H(z) and an at-
mospheric disturbance model S(z) describing the uncor-
rected wavefront distortions ¢(k) and corresponding WFS
output y(k). In this section we will restrict our attention
to the special case that the AO system model reduces to a
gain matrix and an integer number of samples delay, i.e.,
H(z)=2"%H, since this is the type of AO system considered
in the validation experiments. However, as will be shown
in a forthcoming paper,'® all results can be extended to an
AO system of the form of Eq. (7).

After identifying H(z), the first step of the control de-
sign strategy is to determine the disturbance model S(z).
Here, it is assumed that the second-order statistics of the
signal y(k) can be described as white noise filtered by a
LTT system. Without loss of generality, this shaping filter
is in innovation form with respect to y(k). This in combi-
nation with Eq. (3) gives rise to the following model struc-
ture:

x(k+1)=Aux(k) + Kyu(k)
Sy y(k)=21Cux(k) +v(k)
o(k) = Cyx(k) + {(k)

where (A;-K;3,C;) € R%*" and A, e R"4*"d are stable,
v(k) is a zero-mean white innovation sequence, and the
(k) iEil[v(k)—n(k)] is defined in such a way that ¢(k) is
independent from the measurement noise n(k). The sys-
tem matrices Ay, Ky, and C; are full and no additional
structure is imposed. Considering use of such a model is
reasonable if the statistical properties of the wavefront
change on a time scale that is long with respect to the
time scale of the fluctuations themselves. Indeed, valida-
tion experiments on open-loop WFS data from the Will-
iam Herschel Telescope have shown that a model of this
form can be used to predict future wavefront distortions.’
The system matrices of the atmospheric disturbance
model S(z) are identified on the basis of open-loop WFS

; (12)

Disturbance model
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data y(k). Data-driven modeling has the advantage that it
provides a good match with the prevalent turbulence con-
ditions. Moreover, since the disturbance model of Eq. (12)
does not assume any form of decoupling, it is sufficiently
general to capture the spatiotemporal correlation imposed
by a frozen flow. A consequence of this extensive descrip-
tion is that already relatively small AO systems give rise
to a sizeable identification problem. For this reason, a
dedicated subspace-identification algorithm has been pro-
posed in Ref. 9. Using an efficient implementation this
step can be performed on a general purpose PC for AO
systems with up to a few hundred WFS channels. For sig-
nificantly larger systems more efficient algorithms need
to be developed.

Given the identified atmospheric disturbance model
S(z) and the transfer function H(z), the final step of the
control design strategy is to compute the optimal control-
ler. The control objective is to find the controller that
minimizes the 2-norm of the performance output e(k). As
can be easily verified, this is equivalent to finding the con-
troller C(z) that minimizes the cost function

J = Ele"(R)e(k)} + Eu” (R)Qu(k)}, (13)

where £ denotes the conditional expectation, and the
regularization matrix @=QT=0 is typically chosen diag-
onal. The regularization makes a trade-off between the
objectives of minimizing the expected residual wavefront
error and minimizing the control effort.

By expressing the control problem in the generalized
plant framework, the problem of finding the optimal con-
troller C(z) was reduced to a standard Hg-optimal control
problem (see, e.g., Ref. 20). Computing the Hs-optimal
controller generally involves the numerical solution of
two algebraic Riccati equations. However, because of the
minimum-phase property of the atmospheric disturbance
model of Eq. (12) and the special structure of the AO sys-
tem model (i.e., H=z"%H), these Riccati equations can

(k)
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¢(k) 8(z)
- y(k)
i r(k)
Mirror & WFS %
i Y () “
u E
® X
‘pm(k) - e(k)
- Q1/2 >

Fig. 5.

(Color online) Schematic representation of the closed-loop AO system.
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both be avoided. This gives rise to the following state-
space expression for the optimal feedback controller C(z):

&Rk+1)
uk) |-

where A=A-K;3,Cy, F=H{C,A%"', and H},=H'H
+Q)~1HT. That the controller in Eq. (14) is indeed the op-
timal controller that is minimizing cost function (13) has
been proved9 for the case that d=1 and @ =pl, with p e R.
The proof for different d and @ can be performed in a com-
pletely analogous manner.

Having an analytical expression for the optimal con-
troller is useful as this leads to an efficient implementa-
tion. Together with the subspace-identification algorithm,
it gives rise to a noniterative way to go from open-loop
measurement data y(k) to closed-loop controller design.
By comparing the state-space equations of the optimal
and the atmospheric disturbance model, it can be shown
that u(k) can be expressed as

u(k) = H)o(k +d|k), (15)

A+z K S HF | K, {g(k)}

FA +274K,;5,HF) | FKq || (k)

(14)

where HTQ can be interpreted as a regularized inverse of
the DM influence matrix H, and $(k+d|k) denotes the
conditional estimate of ¢(k+d) given the past closed-loop
WEFS data r(j)=y(j)-¥,,(j), j=k. From this interpretation
it is clear that the optimal controller consists of a part
that is concerned with predicting future wavefront distor-
tions and a static mapping that projects the estimated
wavefront on the actuator space. Also the common AO
control approach, which will be briefly reviewed in Sec-
tion 5, decomposes into a wavefront reconstruction step
followed by a projection on the actuator space. The main
difference between both approaches, however, is that in
the optimal control approach the static wavefront recon-
struction is replaced by dynamic prediction.

5. VALIDATION PROCEDURE AND
PERFORMANCE MEASURES

This section focuses on the validation procedure used to
demonstrate the benefit of optimal control. Before going
into detail on this, it is important to highlight some of the
peculiarities of the setup. The setup has an unusual ge-
ometry with significantly more microlenses than actua-
tors (see Fig. 2). There are approximately 1.78 micro-
lenses per ry, whereas the number of actuators per r is
only 1.11. The relatively low number of actuators gives
rise to a considerable fitting error. In this paper we at-
tribute to the fitting error any error that is caused by the
difference between the estimated required phase correc-
tion [i.e., ¢(k+d|k) in the optimal control approach] and
the actual phase correction by the mirror. This includes
both errors due to the physical inability of DM to take an
arbitrary shape and errors caused by imperfections in the
projection on the actuator space. Since there are approxi-
mately 1.78 microlenses per ry the wavefront is still rea-
sonably sampled, which is attractive for performance
evaluation. A consequence of this is also that a consider-
able part of the fitting error can be actually observed.
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Another complication of the setup is that the DM has a
rather limited actuator range. The DM has a maximum
deflection of 9.0 um at the center of the mirror. The de-
flection at the edges is however much smaller since the
mirror membrane is clamped. The available actuator
range is insufficient for suppressing the peaks of the dis-
tortions. To avoid actuator saturation, we employ the pos-
sibility of penalizing the control input. Avoiding actuator
saturation is important as it leads to violation of the lin-
earity assumption and may destabilize the control loop.
In most AO systems, actuator saturation is not an issue.
When it is a problem, increasing the input regularization
is usually not the best option as it is overly conservative.
For this reason, actuator saturation should ideally be ac-
counted for in the control design. This is, however, beyond
the scope of this paper. Applying an input regularization
does not need to be a problem in demonstrating the pro-
posed control approach. From Eq. (15) it is clear that in-
creasing the input regularization will lead to a further in-
crease of the wavefront fitting error by perturbing the
projection on the actuator space. By a proper design of the
validation procedure it is possible to single out the contri-
bution of the fitting error.

The proposed data-driven Hs-optimal control approach
has been compared with a regularized version of a com-
monly applied AO control law.>? For conformity with the
rest of the paper, this control law will be reviewed in
terms of the reduced signal representation. The applied
AO control law decomposes into a static wavefront fitting
and reconstruction step and a temporal compensator.
Given a WFS measurement y(k), the static part is con-
cerned with finding the actuator input u(k) that would
provide the best fit to the wavefront. Let the static rela-
tion between u(k) and y(k) be given by u(k)=Ry(k) and let
the mirrors be modeled as ¢,,(k)=Hu(k). Then, with the
WEF'S model of Eq. (3), the problem of finding the control
matrix is formulated as

R =arg Hgn(f{[cp(k) - HRy(k)]"[¢(k) - HRy(k)]}

+ E{u(k)Qu(k)}). (16)

In comparison with the usual minimum-variance for-
mulation of the reconstruction problem, Eq. (16) includes
a penalty on the control effort. The additional regulariza-
tion is necessary both to avoid actuator saturation and to
enable a fair comparison with the optimal control ap-
proach. Under the assumption that wavefront ¢(%k) and
the measurement noise n(k) are uncorrelated, R is given

by
R=(HTH + @ 'HTC 3,(3:C 2, +C,) 7},
F E (17)

where C,=&{¢(k)¢(k)} and C,=E&{n(k)nT(k)}. In Eq. (17)
the control matrix R has been split into two parts. The es-
timation matrix E provides a minimum-variance estimate
of the wavefront [ $(k)=Ey(k)], while F can be interpreted
as a projection onto the actuator space. With F=H],, this
decomposition shows that the input regularization en-
ables a fair comparison with the optimal control approach
if the only dynamics in H(z) is an integer number of
samples delay. Since the AO system operates in closed
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loop, the static reconstruction Rr(k) can be interpreted as
an estimate of the increment needed to the current actua-
tor commands. In order to ensure closed-loop perfor-
mance, the temporal compensator has therefore to pos-
sess integrating action. The control law wused for
performance comparison is given by wu(k)=c{/(1
—coz V)Rr(k), with ¢; e R and ¢y e R as user-defined con-
trol parameters.

In evaluating the reconstruction matrix R, the covari-
ance matrix C,, is computed theoretically assuming a per-
fect Kolmogorov spatial distribution. Furthermore, it is
assumed that the measurement noise has a covariance
matrix of the form C,=02I, where the variance of the
noise 05 is estimated from open-loop WFS data y(k) for a
static distortion. Since the AO system is operated in
closed loop, the reconstruction matrix should actually be
computed using the closed-loop covariance matrix C,
=¢&le(k)eT(k)} rather than C, (see, e.g., Refs. 24 and 15).
This modification in wavefront statistics, however, is usu-
ally neglected.

Also in this paper we will simply use the open-loop co-
variance matrix C,. Note that since the measurement
noise in the setup is rather small, the effect of replacing
the closed-loop covariance with the open-loop covariance
is almost negligible. The choice of the control parameters
¢ and cg will be considered in Section 6.

In order to show that optimal control is indeed able to
achieve a performance improvement with respect to the
common approach, it is important to have a better insight
into the dominant error sources. In the experimental
setup, the wavefront error is dominated by the fitting er-
ror and the temporal error. From the above discussion it
is clear that if the only dynamics in H(z) is an integer
number of samples delay, the common and optimal control
approach use the same projection onto the actuator space.
This implies that both control approaches give rise to pre-
cisely the same fitting error. Any difference in perfor-
mance is hence caused by a difference in the ability to ac-
curately predict the wavefront at the time of correction.
The wavefront prediction accuracy in the validation ex-
periments is determined mainly by the temporal error.
Here, the temporal error refers to the error that is caused
by the dynamic mismatch between the moment of esti-
mating the wavefront and the actual correction. Both
bandwidth limitations and pure time delays may contrib-
ute to this error.

To better distinguish between the contributions of the
fitting and temporal error it is useful to study their de-
pendence on the sample frequency and the turbulence
conditions. Considering the static projection operator H (3,
it is clear that for a fixed DM the fitting error depends
only on the spatial distribution of the turbulence. Since
the Fried parameter r in the setup is fixed, the fitting er-
ror can also be considered constant. The temporal error
on the other hand depends on the temporal dynamics of
the controller and the atmosphere. Under the assumption
that the bandwidth of the temporal compensator in the
common control approach is proportional to the sample
frequency f, the temporal error for Kolmogorov turbulence
may be expressed as o2=«(fg/)??, where ke R is a scal-
ing constant and f; is known as the Greenwood
frequency.? The Greenwood frequency is a characteris-
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tic frequency of the turbulence and for a single frozen
layer with wind velocity v it is given by f5=0.427(v/r().
Since the fitting error and temporal error are uncorre-
lated the total wavefront error is obtained by summing
the variances, which forms the motivation to consider the
error model

0?2 = ag+a1(felf)™, (18)

where ag, a1, and ay;=0. For the common control law, the
constant ag should be close to 5/3. It will be assumed that
the residual wavefront error obtained with the optimal
control approach satisfies the same expression, possibly
with a different constant a,.

The performance of both controllers has been compared
at different Greenwood-to-sample frequency ratios. At
each Greenwood-to-sample frequency ratio, the mean
square residual wavefront error is estimated on the basis
of N;=5500 samples of WFS signal r(k). Given these data,
the sample estimate of the mean square residual wave-
front error is computed as

N,

1 s
2= ——— > 8(R)Te(k 19
: <Ns—1)m¢k§ (k)"8(R), (19)
with &(k) =EIlr(k). To verify if the error model (18) indeed
provides a good description of the residual wavefront er-
ror, it has been fitted to the observed values of 6% For a
fixed ag, the problem of estimating the coefficients a; and
ag boils down to fitting an exponential relation a(f/fg)*2
to the measurements (&g—ao). Such a fitting problem is
conveniently solved on a logarithmic scale, as this renders
the error model linear in the unknowns log;y(a;) and a,.
This forms the motivation for defining the following least-
squares problem to estimate a(, aq, and aq:

minHloglO(&f —ag) - 1logio(ay) —as 10g10(7) |§, (20)

aj,ag

where Ef and f are the vectors obtained by stacking the
different observations of af and the corresponding f;/f ra-
tios, respectively, and 1 is a vector of the same dimension

as (_rf and f with all elements equal to 1. Since the above
optimization problem is a linear least-squares problem for
fixed a, separable least-squares can be used to transform
into a single parameter optimization problem.

Besides 6%, a number of other criteria have been used
for characterizing the performance. Since the Hs-optimal
controller is designed to minimize the cost function (13),
an obvious choice is to look at the relative improvement of

this function. Let Jc and :]0 denote the sample estimates
of the cost function defined in accordance with Eq. (19).

Then the relative improvement is computed as JC/JD. Fur-
thermore, it is interesting to have performance measures
that directly relate to the quality of the corrected image.
For this reason, the Strehl ratio and the normalized en-
circled energy have also been computed. Both of these
performance measures are derived from the long-
exposure image mimicked by averaging N,=250 frames of
the science camera. The averaged image is background
compensated to account for the CCD dark pattern. Since
the science camera has a fixed exposure time of 5 ms, the
total recording time in each experiment is constant.
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The Strehl ratio is the most commonly used perfor-

mance metric in AO.%? Let I(p) denote the background-
compensated, long-exposure image, with p € N? the pixel
coordinate in the CCD frame, and let B.(pg)={p € Na||lp
—polle<r} denote all pixels p € N? in a circle with radius r
around the point p, € R2. Further, let ¢, denote the radius
of the theoretical diffraction-limited spot computed on the
basis of the aperture size. Then the first step in estimat-
ing the Strehl ratio is to extract a neighborhood with a ra-
dius 0.2g, around the pixel p,, e N with maximum inten-
sity. This neighborhood is used to obtain refined estimates
of the peak intensity I, and position p, by fitting a qua-
dratic form to the measured intensity I(p), p e Bo.2g 0(pm).
With the refined estimate of the peak position a larger
neighborhood By, (p,) is extracted over which the total
flux is computed as I,=2, Bogsto )f(p). Also the diffraction
limited total flux I; on this néighborhood is computed
from the theoretical diffraction pattern with unit peak in-
tensity by oversampling the pixels by a factor of 8.

In the final step, the Strehl ratio is computed by
weighting the estimated peak intensity by the ratio
of the measured and the theoretically computed total
flux, ie., S=(,/I,)I;. Using the same notation, the
normalized encircled energy is defined as E(r)

=max, (2,. Br(po)j (p)/=,I(p)). This provides a measure of
the fraction of the total incident energy that is contained
in the central core of the spot. The better the wavefront
correction, the more energy is concentrated in the central
core, and the faster E(r) increases with r.

6. EXPERIMENTAL RESULTS

Both the Hy-optimal control approach and the common
AO control law have been implemented on the experimen-
tal setup. After aligning the WF'S, only 69 of the 127 mi-
crolenses are illuminated sufficiently to be used for wave-
front sensing. This implies that the unreduced WFS
signal consists of m,=138 channels. The geometry matrix
G specifying the relation between slope measurements
and phase is defined by adapting the well-known Fried
configuration for a hexagonal grid. Just as for a rectangu-
lar grid, the position of the phase points is determined by
shifting the hexagonal grid over half the pitch size. The
reduced WF'S signal y(k), obtained by projecting out the
modes that cannot be related to the wavefront, consists of
m, =88 channels. During the experiments, the WFS expo-
sure time was adjusted to 5 ms. The WFS gain has been
calibrated using the TT mirror.

The exploratory identification experiments in the data-
driven identification procedure for estimating the model
parameters « and H in H(z) show that there is only one
FIR coefficient that differs significantly from zero. This is
in perfect agreement with the observation that the real-
time software is implemented in such a way that, for the
given exposure time and sample frequencies, the time de-
lay between control input and WFS output is always 2
samples, i.e., d=2 and 7;=T. From Subsection 3.A it is
clear that, for ¢{,=7; and «=0, H(z) reduces to H(z)
=2z"2H. An even more important argument for considering
this reduced model structure is the close agreement be-
tween measured and predicted WFS output. Validation
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experiments on a data set of N=1000 samples show a
mean variance accounted for?® of more than 99.2% over
the channels. This implies that more than 99.2% of the
variance y(k) can be explained by the identified model.
The identified transfer function therefore provides an ac-
curate description of the true system.

Both control algorithms have been tested for
Greenwood-to-sample frequency ratios in the range fg/f
€[0.015,0.43]. Realistic values for the Greenwood fre-
quency can range tens to hundreds of Hertz (see, e.g., Ref.
1). For an AO system with a sample frequency of f
=500 Hz, this gives rise to Greenwood-to-sample fre-
quency ratios that are roughly in the range fg/f
€[0.04,0.4]. Most AO systems, however, will probably be
designed to operate at the lower end of this range. The up-
per bound of f;/f=0.4 especially is rather large as it im-
plies a characteristic turbulence frequency close to the
Nyquist frequency. The reason for considering these high
Greenwood-to-sample frequency ratios is that the fitting
error in the experimental setup is relatively large. As a
result of this, it takes higher f;/f ratios for the temporal
error to become the dominant factor. Furthermore, com-
paring both control algorithms over a wide range of
Greenwood-to-sample frequency ratios is interesting as it
provides some insight into the possible increase in
Greenwood-to-sample frequency ratio while maintaining
a certain performance level.

To verify if the residual wavefront error indeed depends
only on the ratio of fz and f, and not on their respective
values, the f;/f ratios have been obtained by considering
different Greenwood and sample frequency combinations.
Some of these combinations give rise to the same or
approximately the same f/f; ratio. The sample rates used
to obtain the different f/fg ratios include
fe{4.44,6.44,8.33,10.41,12.5,14.29,16.67,20.0} Hz.

At each Greenwood-to-sample frequency ratio, the per-
formance of the common control approach is determined
using the same value for ¢; and cy. The control param-
eters were tuned to minimize 6'? at a fg/f ratio of 0.043.
This resulted in ¢;=0.48 and ¢,=0.98. These parameters
give rise to a reasonable performance over the entire
Greenwood-to-sample frequency range without loss of sta-
bility. In fact, the values are close to the ones found by re-
peating the tuning procedure at a number of test points
over the considered range. The reason for this weak de-
pendence on the Greenwood-to-sample frequency ratio is
that the setup uses a bright light source so that the mea-
surement noise contribution is rather small. As a result,
the problem of finding the optimal control parameters
turns into the one of maximizing the control bandwidth
without losing stability.

Since the only dynamic in the AO system is a two-
sample delay, i.e., H(z)=2z"2H, the control parameters for
which the system is still stable are independent of the
Greenwood-to-sample frequency ratio. For a fair compari-
son, the same input regularization matrix ¢ has been
used in both control approaches. The regularization ma-
trix is chosen diagonal, i.e., @ =diag{q;,qq, ... ,qmu}, and
the control effort weighting ¢; on each of the actuators is
tuned to avoid actuator saturation and to ensure that the
DM stays within a linear range. This results in an addi-
tional weight on the actuators with a small dynamic
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Fig. 6. (Color online) Mean square error as a function of the
Greenwood-to-sample frequency ratio.

range, like the actuators near the edge of the DM. The TT
mirror, on the other hand, does not require regulariza-
tion. In the optimal control approach, the atmospheric
disturbance model S(z) is identified on the basis of N,
=5500 samples of open-loop WFS data y(%). The model or-
der, i.e., the dimension of the state vector in all validation
experiments is chosen equal to ny;=256. The subspace-
identification algorithm is able to identify atmospheric
disturbance models of higher order (e.g., ny;=300, ny
=350) but this does not lead to any performance improve-
ment.

The estimated mean square residual phase error 6‘3 ob-
tained in the different experiments is depicted in Fig. 6.
Each circle and each cross is the result of an experiment
at a specified Greenwood-to-sample frequency ratio using
the optimal and common control approach, respectively.
As expected from the discussion in Section 5, the perfor-
mance improvement increases with Greenwood-to-sample
frequency ratio. Whereas the improvement is rather low
at low Greenwood-to-sample frequency ratios, a consider-
able improvement is observed at high ratios. The dashed
curve in Fig. 6 represents the fit of the error model of Eq.
(18) to the residual phase error 2 obtained with the com-
mon control approach. The corresponding fit for the opti-
mal control approach is depicted by the solid curve. Since
the residual phase error for the optimal control approach
shows a rather weak dependence on the Greenwood-to-
sample frequency ratio, the estimate of the parameters a,
and a, is quite sensitive to a slight variation in a(. For
this reason, optimization over a is omitted and its value
is fixed to the value of ay found for the common control
approach. This is a reasonable assumption, since the fit-
ting error in both approaches should be the same. The fit-
ted error models obtained in this way are given by

0%~ 0.1833 + 44.21(f /) 6516,

62~ 0.1833 + 0.3853(f /) 7642,

for the common and the optimal approach, respectively.
Figure 6 shows that the above relations provide an ac-
curate fit to the mean square residual phase error ob-
served in the experiments. Furthermore, the fitted expo-
nent ay for the common control approach is in close
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agreement with the theoretical value 5/3(=1.667). These
observations support the error model (18) and show that
optimal control is indeed effective in reducing the tempo-
ral error. Since at low Greenwood-to-sample frequency ra-
tios the fitting error becomes the limiting factor, only
little can be gained by optimal control in this regime.

To prove that the performance at low Greenwood-to-
sample frequency ratios is indeed limited by the fitting er-
ror, it is useful to estimate this error on the basis of the
available open-loop data y(%). This is achieved by first re-
constructing the uncorrected wavefront as &(k)=2{1y(k).
Since the operator H, 25 can be interpreted as the projection
of ¢(k) on the actuator space, the actuator commands can
be computed as i(k)=H, TQu(lze). The computed actuator
commands are then used to determine the wavefront cor-
rection ¢,,(k)=Hu(k). Neglecting all dynamics, the fitting
error can now be estimated as the mean square error of
&(k)=¢(k)—@,,(k). To demonstrate the effect of the regu-
larization, (k) has been computed both with and without
input regularization. Furthermore, the effect of actuator
saturation has been investigated by chopping off the sig-
nals that are out of range.

The averaged estimated mean square fitting error and
the standard deviation over the different data sets are
shown in Table 1. The table shows that when accounting
for both the input regularization and the actuator satura-
tion the estimated fitting error is in close agreement with
the constant a( obtained from the error model. The fitting
error estimated on the basis of the open-loop WFS data is
within 2 standard deviations of the estimated value of a,.
Furthermore, Table 1 shows that actuator saturation al-
most doubles the observed fitting error. The additional in-
crease of the fitting error by accounting for both regular-
ization and saturation is rather small since both error
contributions are strongly correlated, as the regulariza-
tion parameter @ has been tuned to avoid actuator satu-
ration.

As pointed out in Section 5, the relative improvement
in cost function and the Strehl ratio have been used as ad-
ditional measures of performance. They have been evalu-
ated at the Greenwood-to-sample frequency ratios indi-
cated by the vertical dashed lines in Fig. 6 and are
summarized in Table 2. The results in this table are con-
sistent with the previous observations. They show a con-
siderable performance improvement for large Greenwood-
to-sample frequency ratios, while the performance
improvement at low Greenwood-to-sample frequency ra-
tios is rather modest. The relative improvement in cost
function is especially large. This is to be expected as the
Ho-optimal controller is designed to minimize this crite-
rion. Moreover, this suggests that the performance gain
may be much larger if no input regularization is needed.

Table 2 shows that optimal control is also able to
achieve a performance improvement with respect to the

Table 1. Estimate of DM Fitting Error

Regularization Saturation 6? Std

no no 0.087 0.003
no yes 0.170 0.009
yes yes 0.197 0.007
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Table 2. Performance Comparison of Common and
Optimal Control Approach

folf Strehl Strehl J.1d,
(X107Y) Common Optimal Relative
0.43 0.79 0.85 1.70
11 0.57 0.85 4.66
2.1 0.20 0.81 11.7
4.3 0.12 0.78 19.3
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Fig. 7. (Color online) Normalized encircled energy at different

Greenwood-to-sample frequency ratios.

Strehl ratio. Especially at large Greenwood-to-sample fre-
quency ratios, optimal control gives rise to a considerably
higher Strehl ratio. Figure 7 shows the normalized en-
circled energy achieved with both the optimal and the
common AO control approach for different Greenwood-to-
sample frequency ratios. Also, this figure shows that opti-
mal control is able to improve the science image and that
the gain in performance increases with the Greenwood-to-
sample frequency ratio. Whereas the encircled energy
curves obtained with the common control approach indi-
cate a rather spread out intensity pattern, optimal control
gives rise to a science image in which a larger fraction of
the incident energy is concentrated in the central core.

Finally, note that optimal control significantly reduces
the sensitivity of the Strehl ratio and the normalized en-
ergy to variation in the Greenwood-to-sample frequency
ratio. This is in accordance with the observation that the
mean square residual phase error shows a weaker depen-
dence on the Greenwood-to-sample frequency ratio for the
optimal than for the common control approach. Optimal
control is therefore also attractive from the viewpoint of
performance robustness.

7. CONCLUSIONS

In this paper, we have demonstrated a recently proposed
data-driven Hs-optimal control approach on an experi-
mental setup. In contrast to existing AO control ap-
proaches, this approach does not assume any form of de-
coupling and has the potential to exploit the
spatiotemporal correlation imposed by the Taylor hypoth-
esis. In the first step a dedicated subspace-identification
algorithm is used to identify a multivariable atmospheric
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disturbance model from open-loop WF'S data. Data-driven
modeling has the advantage that it provides a good match
with the prevalent turbulence conditions.

A second ingredient necessary for computing the opti-
mal controller is the transfer function from control inputs
to WFS outputs. By analyzing the dynamic behavior of
the WFS, it has been shown that if the wavefront correc-
tion device can be considered to be static, the scalar dy-
namics of the discrete-time transfer function from actua-
tor inputs to WFS output can always be modeled as an
integer number of samples delay followed by a two-tap
impulse response. This observation is particularly useful
as, together with the minimum-phase property of the
identified atmospheric disturbance model, it allows the
‘Ho-optimal controller to be computed analytically as will
be shown in a forthcoming paper. A data-driven identifi-
cation approach has been developed to identify a transfer
function of the desired structure from measurement data.

The data-driven Hy-optimal control approach has been
validated in an experimental setting by comparing it with
a commonly applied AO control law. In this comparison
different performance criteria based on measurements
from both the science camera and the WFS have been
used. The considered performance criteria include an es-
timate of the mean square residual wavefront error, the
reduction in cost function, the Strehl ratio, and the nor-
malized encircled energy. The experiments show that op-
timal control is able to achieve a performance improve-
ment with respect to each of these criteria, and that the
gain in performance increases with the Greenwood-to-
sample frequency ratio.

A careful analysis of the dominant error sources has
shown that the improved performance can be attributed
to a reduction in the temporal error. Since the temporal
error is an exponentially increasing function of the
Greenwood-to-sample frequency ratio, this also explains
that a lot more can be gained at higher ratios than at
lower ratios where the fitting error becomes dominant.
Optimal control is able to reduce the temporal error by ex-
ploiting the spatiotemporal correlation in the wavefront.
For a single layer of turbulence it is conceptually clear
that the spatiotemporal correlation can be used to im-
prove the predictability of the wavefront. It is however
important to note that the proposed control strategy does
not depend on this assumption. It is therefore to be ex-
pected that comparable or slightly lower performances
can be achieved in the multilayer case provided that the
WFS has a sufficiently high spatial and temporal resolu-
tion to resolve the contributions of the individual layers.
The influence of multiple layers on the overall perfor-
mance remains a point of further investigation.

Another issue that deserves further attention is the ef-
fect of measurement noise. Since exploiting the spa-
tiotemporal correlation is expected to reduce the effect of
measurement noise, optimal control may also be benefi-
cial in low signal-to-noise situations. This has already
been shown indirectly by the fact the optimal control is
able to achieve the same performance at much lower
sample frequencies, enabling a longer integration time.

Finally it is important to note that a possible disadvan-
tage of the proposed data-driven optimal control approach
is that it cannot actively control unseen modes. Unseen
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modes are wavefront modes that are in the null space of
the geometry matrix G. Since these modes do not influ-
ence the WFS output, they can never be modeled using
data identification. This does not necessarily imply that
these modes are unobservable when starting from an at-
mospheric disturbance model that directly models the
phase. The possibility of suppressing unseen modes has
been demonstrated in Ref. 13. From this perspective it
may be rewarding to search for methods that can combine
the advantages of data-driven identification with the abil-
ity to suppress unseen modes.
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