
Research Article

Exploiting the Vulnerability of Flow
Table Overflow in Software-Defined Network:
Attack Model, Evaluation, and Defense

Yadong Zhou ,1 Kaiyue Chen,1 Junjie Zhang,2 Junyuan Leng,1 and Yazhe Tang1

1MOE Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an, China
2Department of Computer Science and Engineering, Wright State University, Fairborn, OH, USA

Correspondence should be addressed to Yadong Zhou; yadongzhou@gmail.com

Received 28 September 2017; Accepted 6 December 2017; Published 9 January 2018

Academic Editor: Zhiping Cai

Copyright © 2018 Yadong Zhou et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the most competitive solution for next-generation network, SDN and its dominant implementation OpenFlow are attracting
more and more interests. But besides convenience and 	exibility, SDN/OpenFlow also introduces new kinds of limitations and
security issues.Of these limitations, themost obvious andmaybe themost neglected one is the 	ow table capacity of SDN/OpenFlow
switches. In this paper, we proposed a novel inference attack targeting at SDN/OpenFlow network, which is motivated by the
limited 	ow table capacities of SDN/OpenFlow switches and the following measurable network performance decrease resulting
from frequent interactions between data and control plane when the 	ow table is full. To the best of our knowledge, this is the
rst
proposed inference attack model of this kind for SDN/OpenFlow. We implemented an inference attack framework according to
our model and examined its e�ciency and accuracy. �e evaluation results demonstrate that our framework can infer the network
parameters (ow table capacity and usage) with an accuracy of 80% or higher. We also proposed two possible defense strategies for
the discovered vulnerability, including routing aggregation algorithm and multilevel 	ow table architecture. �ese
ndings give us
a deeper understanding of SDN/OpenFlow limitations and serve as guidelines to future improvements of SDN/OpenFlow.

1. Introduction

By decoupling the control plane from the data plane,
So�ware-De
ned Network (SDN) makes programmability a
built-in feature for networks, thereby introducing automatic-
ity and 	exibility to the networking management. SDN has
therefore been foreseen as the key technology that enables the
next generation of networking paradigm.Despite its promise,
one of the most signi
cant barriers towards SDN’s wide
practical deployment resides in overwhelming security con-
cerns [1]. �erefore, proactively detecting, quantifying, and
mitigating its security vulnerabilities become of fundamental
importance.

In spite of its novelty, SDN indeed reuses various design
and implementation elements ranging from architectures
and protocols to systems from traditional network. It is
not surprising that SDN inheres the vulnerabilities intrinsic
to these elements. For example, similar to any networked
service, secure channels between controllers and switches

might be disrupted by DDoS attacks; like
rewall rules,
the 	ow entries may also con	ict with each other, leaking
unwanted tra�c; malicious arp spoo
ng generated by attack-
ers may poison the controller MAC table, disturbing the nor-
mal topology information gathering and packet forwarding;
untrusted applications may instrument SDN controller to
perform malicious behaviors without proper access control,
which is one of the design objectives for modern operating
systems. In response, existing research in the context of
SDN security mainly focuses on detecting and mitigating
these vulnerabilities. For example, [2] evaluates man-in-the-
middle attacks that target at SDN/OpenFlow secure channels;
FortNOX [3] brings security enforcement module into NOX
[4] and enables real-time 	ow entry con	ict check; VeriFlow
[5] detects network-wide invariant violations by acting as a
transparent layer between control plane and data plane.

In this paper, we introduce a novel SDN vulnerability.
�e novelty of this vulnerability stems from the feedback-
loop nature of SDN, a fundamental di�erence compared

Hindawi
Security and Communication Networks
Volume 2018, Article ID 4760632, 15 pages
https://doi.org/10.1155/2018/4760632

http://orcid.org/0000-0003-0345-3518
https://doi.org/10.1155/2018/4760632

2 Security and Communication Networks

with traditional networks. Particularly, this vulnerability can
be extremely severe in SDN-based networks where network
tra�c from di�erent sources shares the same SDN switch’s
	ow table, for example, di�erent tenants in a SDN-based
cloud computing network.

Speci
cally, most commercial SDN/OpenFlow switches
have limited 	ow table capacities, ranging from hundreds to
thousands [6]. Such capacity is usually insu�cient to handle
millions of 	ows that are typical for enterprise and data center
networks [7]. Nevertheless, the 	ow table capacity was just
considered as a potential bottleneck of resource consuming
attacks in the past, motivating researches on 	ow caching
systems like [8–10]. But according to our analysis, the 	ow
table capacity can lead to inference attack and privacy leakage
under certain circumstances.

As a consequence of 	ow table over	ow, the SDN
controller needs to dynamically maintain the 	ow table by
inserting and deleting 	ow entries. �e maintaining process
typically includes packet information transferring, routing
rule calculation, and 	ow entry deployment, which leads to
measurable network performance decrease.

Particularly, once the 	ow table is full, extra interactions
between controller and switch are needed to remove certain
existing 	ow entries to make room for newly generated 	ow
entries, resulting in further network performance decrease.
An attacker can therefore leverage the perceived performance
change to deduce the internal state of the SDN. To be more
speci
c, we consider the scenario that an attacker resides in
a network that is managed by a SDN. �e attacker can then
actively generate network tra�c, triggering the interactions
between the controller and switch with respect to 	ow entry
insertion and deletion. �e attacker can then measure the
change of the network performance to estimate the internal
state of the SDN including the 	ow table capacity and 	ow
table usage. We have designed innovative algorithms to
exploit this vulnerability and quantify their e�ectiveness on
exploiting this vulnerability based on extensive evaluation.

Additionally, to mitigate this vulnerability, we have pro-
posed two possible defense strategies. �e
rst strategy is
a new routing aggregation algorithm to compress the 	ow
entries so they will consume less 	ow table space.�e second
strategy is building a multilevel 	ow table architecture.
Multilevel 	ow table architecture can implement 	ow tables
with larger capacities without introducing additional power
assumption or charges.

To summarize, in this paper we made the following
contributions:

(i) We have identi
ed a novel vulnerability introduced
by the limited 	ow table capacities of SDN/OpenFlow
switches and formalized that threat.

(ii) We have designed e�ective algorithms that can suc-
cessfully exploit this vulnerability to accurately infer
the internal states of the SDN network including 	ow
table capacity and 	ow table usage.

(iii) We have performed extensive evaluation to quantify
the e�ectiveness of proposed algorithms. �e experi-
mental results have demonstrated that the discovered

vulnerability indeed leads to signi
cant security con-
cerns: our algorithm can infer the network parame-
ters with an accuracy of 80% or higher across various
network settings.

(iv) We have proposed two possible defense strategies
for the discovered vulnerability, including routing
aggregation algorithm to compress the 	ow entries,
and multilevel 	ow table architecture to implement
	ow tables with larger capacities.

�e rest of this paper is organized as follows. Section 2
gives an overall statement of the inference attack problem.
Section 3 gives detailed inference algorithms targeting at
FIFO and LRU replacement algorithms, respectively. Sec-
tion 4 gives a detailed evaluation of the simulation results.
Section 5 proposes two possible defense methods against this
kind of inference attack. Section 6 is a brief discussion about
our
ndings and future research. Section 7 describes some
related works in this area. Finally, Section 8 concludes this
paper.

2. Problem Statement

�e vulnerability of 	ow table over	ow in SDN potentially
exists in SDN-based cloud computing network and other
important SDN-based networking systems [11, 12].

A�er analyzing current structure and implementation of
SDN/OpenFlow, its decoupled nature gives us inspiration: the
interactions between control plane and data plane will lead
to network performance decrease, which can be measured
through performance parameters like round trip time (RTT).
If a 	ow matches one 	ow entry, the 	ow will be forwarded
directly according to the matched entry. �is process is fast
and will cost little time.When the 	ow table is full, some 	ow
entry will be removed, then the controller has to calculate
the rule and send a new 	ow entry to the switch, and this
process is more complex and has more interactions between
controller and switch than the previous case, which will cost
more time.

Figure 1 gives an overall 	owchart of packet processing
in an OpenFlow switch. �e three rectangular regions sur-
rounded by dotted line stand for three possible packet pro-
cessing branches, respectively. When the switch encounters
an incoming packet, it will parse it and send the parsed packet
into the subsequent processing pipeline.

�en as the
rst step of the pipeline, the switch will
look up its 	ow table to search 	ow entries matching the
packet. When there is a match, the switch will directly
forward the packet according to actions associated with the
corresponding 	ow entry. �is branch is illustrated in the
innermost rectangle of Figure 1.

When there is no corresponding 	ow entry in the 	ow
table, extra steps will be introduced into the procedure.
Additional interactions between the switch and the controller
will happen to acquire corresponding routing rules, including
packet information transferring, routing rule calculation, and
	ow entry deployment. �e middle rectangle of Figure 1
illustrates this process.

Security and Communication Networks 3

Packet
parsing

Flow table
lookup

Flow table
status check

Flow table
replacement

Insert new �ow
entry

Packet forward
Incoming

packet

Match

No match

Not full

Full

Outcoming
packet

Figure 1: OpenFlow packet processing 	owchart.

T3

T2

T1

Pkt1 Pkt1 Pkt1

RTT

Packet sequence

TS1

(a)

Pkt2 PktNPkt3 Pkt4

RTT

Packet sequence

TS3

TS2

(b)

Figure 2: RTT measurement of di�erent 	ow table state.

Before the switch inserts the newly generated 	ow entry,
it has to check the 	ow table status to make sure that there is
enough space in the 	ow table.When the 	ow table is full, the
controller has to perform 	ow table replacement operations
to make room for the upcoming 	ow entry. �ese operations
include deciding which old 	ow entry to delete according
to certain 	ow table replacement algorithm and 	ow entry
deletion. �e outermost rectangle in Figure 1 stands for this
branch.

�at is exactly where the vulnerability lies. In traditional
networks, the switches and routers are autonomous, which
means they can maintain their routing tables locally without
interacting with an external device. But due to the decoupled
nature of SDN/OpenFlow, maintaining switch 	ow tables
needs frequent interactions between switches and controllers,
making it possible for an attacker to leverage the perceived
performance change to deduce the internal state of the SDN
network.

As shown in Figure 1, the rectangular regions surrounded
by dotted line correspond to di�erent possible packet pro-
cessing branches. �e larger a rectangle is, the longer the
processing time of that branch will be because of the extra
steps that rectangle contains. When there is a match in the

	ow table, the processing time will be the shortest; when
there is no match in the 	ow table and the 	ow table is not
full, the processing time will be longer because of addition
routing calculation and 	ow entry deployment; when there
is no match in the 	ow table and the 	ow table is full,
the processing time will be the longest because a 	ow table
replacement operation has to be performed. So as a network
parameter directly in	uenced by the processing time, the
RTT of a packet can serve as an indicator of 	ow table state
and 	ow entry state.

�e process of deciding RTT thresholds for 	ow table
state detection is shown in Figure 2.

Figures 2(a) and 2(b) represent two cooperating threads,
the �-axis represents the packet sequence, and the �-axis
represents the recorded RTT of every packet. Firstly, in
the upper thread, we generate a packet with a speci
c
{src ip, dst ip, src mac, dst mac} combination, calling it Pkt1.
Send Pkt1 to the target OpenFlow switch and record the
corresponding RTT as �2. Currently there is no correspond-
ing 	ow entry in the OpenFlow switch because Pkt1 is a
new packet. A�er a time span TS1, send Pkt1 to the target
OpenFlow switch again and record the corresponding RTT
as �1. If TS1 is chosen properly, the newly installed 	ow

4 Security and Communication Networks

entry matching Pkt1 should still exist in the OpenFlow
switch. Next, in the lower thread, we continuously generate
packets Pkt2,Pkt3, . . . ,Pkt�, each with a di�erent combi-
nation of {src ip, dst ip, src mac, dst mac} and send these
packets to the target OpenFlow switch with the time span
of TS2. Because there are no 	ow entries matching their
packets in the OpenFlow switch, the recorded RTTs will be
approximately the same as �2. Keep generating and sending
packets until we observe a sudden increase of the RTT, which
indicates that the 	ow table is full. �en in the upper thread
we send Pkt1 again immediately and record the RTT as �3.
To achieve higher precision, we can repeat the process and
use average values of �1, �2, and �3 as
nal results.

From the process above we can see that �1, �2, and
�3 will serve as thresholds for 	ow table state detection:
when the measured RTT is around �1, we can infer that
there is corresponding 	ow entry in the 	ow table; when the
measured RTT is around �2, we can infer that there is no
corresponding 	ow entry in the 	ow table and the 	ow table
is not full; when themeasured RTT is around�3, we can infer
that there is no corresponding 	ow entry in the 	ow table and
the 	ow table is full.

We model the SDN/OpenFlow network as a black box
and observe its response (RTT) to di�erent input (network
packets), then we use the response to estimate the 	ow table
state and 	ow entry state and perform further inference. �e
whole process comes in three steps.

Firstly, we send probing packets into the network to
trigger the interaction. As there is still no mature routing
aggregation algorithm or hierarchical routing rule solution,
current SDN/OpenFlow switches typically use exact match
rules. �at means if we send � packets with di�erent faked
metainformation like src ip and dst ip, there will be � newly
generated 	ow entries inserted into the 	ow table. If we
send excessive probing packets in a short period of time, the
	ow table will over	ow and then the interaction process will
be triggered. Secondly, we measure RTTs of the responded
packets and infer the 	ow table state and 	ow entry state.
�irdly, we use observed 	ow table states and 	ow table states
as controlling signals in our inference algorithm and perform
	ow table capacity inference.

Having to achieve a hit rate as high as possible in a rather
limited space, 	ow table serves like a “cache” in operating
systems and web proxy servers. In this paper we choose FIFO
and LRU because they are common and popular [13].

3. Inference Algorithm

�e logical structure of our inference algorithm is shown
in Figure 3. �e inference algorithm consists of two main
part: 	ow table state detection and 	ow table state control.
For 	ow table state detection, we perform RTTmeasurement
to classify the di�erent states of 	ow table and speci
c
	ow entry. For 	ow table state control, we generate speci
c
sequence of attacking network packets to manipulate the
state of 	ow entries. For di�erent 	ow table replacement
algorithms, the relation betweennetwork tra�c sequence and
	ow entry state will be di�erent, so we will have di�erent

LRU

inference

algorithm

Strategy

for FIFO

Strategy

for LRU

Flow table state control

RTT measurement

FIFO

inference

algorithm Flow table state detection

tra�c generation strategy

Figure 3: Inference algorithm.

A

B

C

D

Figure 4: FIFO inference principle.

network tra�c generation strategy for di�erent 	ow table
replacement algorithms like FIFO and LRU. We will intro-
duce the inference algorithms for FIFO andLRU, respectively.

3.1. FIFO Inference Algorithm. Asmentioned in Section 2, the
inference process of FIFO algorithm will be as follows: we
generate and send a huge amount of probing packets each
with a di�erent combination of src ip, dst ip, src mac, and
dst mac, and the newly inserted 	ow entries matching the
generated packets will “push” the other users’ 	ow entries out
of the 	ow table. We can detect if the 	ow table is full and the
existence of our 	ow entries. Combined with the number of
inserted 	ow entries we recorded, we can infer the 	ow table
capacity and 	ow table usage. �e process of 	ow table state
transformation is shown in Figure 4.

We use �our to represent the number of our inserted 	ow
entries and use �other to represent the number of 	ow entries
from other users in the 	ow table. Both �our and �other are
functions of time.We use��,��,��, and�� to represent four
time points corresponding to four sub
gures, respectively,
and use � to represent the 	ow table capacity.

Figure 4 (�) shows the 	ow table and the 	ow entries
it contains just before the experiment starts. �e rectangle
items represent the 	ow entries from other users sharing the
OpenFlow switch. �e current number of other users’ 	ow
entries can be expressed as �other(��).

Figure 4 () illustrates the time when we start to send
generated packets, inserting new 	ow entries into the 	ow
table. �e grey rectangles represent the 	ow entries inserted
by us. As we can see, our 	ow entries keep pushing other
users’ 	ow entries to the front of the FIFO queue. During the
experiment, we should keep a record of the generated packets,
including their attributes and serial numbers.

Security and Communication Networks 5

Require:
(1) Packet-Sending Function:
���
�����();
(2) List of IP: �
;
Ensure:
(3) �e 	ow table capacity: �capacity;
(4) �e number of other users’ 	ow entries: �other;
(5) �capacity ← 0
(6) �other ← 0
(7) � ← 0
(8) �1 ← 0
(9) �2 ← 0
(10) while � < length(�
) do
(11) �� ← �
[�]
(12) SendPacket(��)
(13) � ← � + 1
(14) if Flow table is full then
(15) �1 ← �
(16) continue
(17) end if

(18) if One of our 	ow entries is deleted then
(19) �2 ← �
(20) break
(21) end if
(22) end while
(23) �capacity ← �2
(24) �other ← �2 − �1
(25) return �capacity, �other

Algorithm 1: FIFO inference algorithm.

Figure 4 (�) shows the timewhenwe detect the 	ow table
is full. At this point of time, 	ow entries from us and other
users add up to
ll the whole 	ow table precisely. We have

�our (��) + �other (��) = �. (1)

Figure 4 (�) shows the time when we detect that one of
our inserted 	ow entries has been deleted. �at means the
	ow table is now full of our 	ow entries, without any 	ow
entries from other users. We have

�our (��) = �. (2)

Combine the two equations above; we have

�other (��) = �other (��) = � − �our (��)

= �our (��) − �our (��) .
(3)

According to the analysis above, we describe the inference
process for FIFO algorithm as shown in Algorithm 1.

�e main error of the inference comes from the 	ow
entries inserted by other users when our insertion is in
progress.We assume that our 	ow entry insertion speed is fast
enough so that, during the period of experiment, the newly
inserted 	ow entries are all from us. But that is not always
the truth. Ignoring the possible 	ow entries inserted by other
users will make our inference result smaller than the actual
value.

Considering the 	ow entries inserted by other users, the
actual equations are listed below.

When we detect the 	ow table is full, if we use �(�,)
to represent the number of just inserted 	ow entries from
other users from time point � to time point 	, the equation
becomes

�our (��) + �other (��) + � (��, ��) = �. (4)

And when we detect that one of our inserted 	ow entries
is deleted, the equation becomes

�our (��) + � (��, ��) + � (��, ��) = �. (5)

Combine the two equations above; we have

�other (��) = �our (��) − �our (��) + � (��, ��) . (6)

So the actual equation considering 	ow entry insertions
during inference should be

� = �our (��) + � (��, ��) + � (��, ��)

�other (��) = �our (��) − �our (��) + � (��, ��) .
(7)

Compared with our former equation ignoring 	ow entry
insertions,

� = �our (��)

�other (��) = �our (��) − �our (��) .
(8)

We can see that the inferred 	ow table usage�other and the
inferred 	ow table capacity �capacity will both be smaller than
the actual value.

3.2. LRU Inference Algorithm. �e experiment principle of
LRU algorithm has something in common with that of FIFO
algorithm, because under these two circumstances we can
both keep our 	ow entries stay in the back of the cache queue
using certain operations. However, there are still di�erences
lies in the 	ow entry maintaining process.

�e nature of FIFO algorithm ensures that the position of
the 	ow entries only depends on the time they are inserted.
�e earlier inserted 	ow entries are sure to be nearer to the
front of the cache queue comparedwith the later inserted 	ow
entries. But in LRUalgorithm, the positions of the 	ow entries
depend not only on the time they are inserted, but also on the
last time they are accessed. In order to keep our 	ow entries
stay in the back of the cache queue, we need to continuously
access the previously inserted 	ow entries.

During the maintain process, every time we insert a
new 	ow entry, we need to access all previously inserted
	ow entries for one time to “li�” them to the back
of the cache queue. �e access history may be like
{
1}, {
1,
2}, {
1,
2,
3}, {
1,
2,
3,
4}, . . ., and we call it a
“rolling” maintaining process. �e maintaining algorithm is
shown in Algorithm 2. According to the analysis above, we
describe the inference process for LRU in Algorithm 3.

�e feasibility and error analysis of LRU algorithm is
similar to that of FIFO algorithm. �e inferred 	ow table
usage �other and the inferred 	ow table capacity �capacity will
both be smaller than the actual value because of ignoring the
	ow entries inserted by other users during the experiment.

6 Security and Communication Networks

Require
(1) Packet-Sending Function:
���
�����();
(2) List of Inserted IP: �
inserted;
(3) function RollingPacketSender(�
inserted)
(4) � ← 1
(5) while � < length(�
inserted) do
(6) for � ← 0; � < �; � + + do
(7) �� ← �
inserted[�]
(8) SendPacket(��)
(9) end for
(10) � ← � + 1
(11) end while
(12) end function

Algorithm 2: Rolling maintaining algorithm.

Require:
(1) Packet-Sending Function:
���
�����();
(2) List of IP: �
;
Ensure:
(3) �e 	ow table capacity: �capacity;
(4) �e number of other users’ 	ow entries: �other;
(5) �capacity ← 0
(6) �other ← 0
(7) � ← 0
(8) �1 ← 0
(9) �2 ← 0
(10) �
inserted ← []
(11) while � < length(�
) do
(12) �� ← �
[�]
(13) �
inserted ← �
inserted + ��
(14) RollingPacketSender(�
inserted)
(15) � ← � + 1
(16) if Flow table is full then
(17) �1 ← �
(18) continue
(19) end if

(20) if One of our 	ow entries is deleted then
(21) �2 ← �
(22) break
(23) end if

(24) end while
(25) �capacity ← �2
(26) �other ← �2 − �1
(27) return �capacity, �other

Algorithm 3: LRU inference algorithm.

4. Evaluation

4.1. Implementation. �e emulation environment of our
experiment consists of three parts: a network prototyping
system used to emulate host and switch, a network controller,
and our inference attack toolkit.

We choose Mininet [14] as the network prototyping
system because it encapsulates host and switch emulation
and thus easy to use. Our emulated network prototype

for evaluation uses a star topology, consisting of 20 hosts
connected to a single OpenFlow switch. We build FIFO and
LRUcontroller applications using Python on the basis of POX
[15] OpenFlow controller. As for the inference attack toolkit,
we use libnet [16] to generate probing packets, and libpcap
[17] to capture replied packets. To simulate the background
tra�c in real network, we built a SDN testbed using Mininet
and POX. On the SDN testbed, we performed a series of
basic SDN operations. �ese operations include building
a customized SDN network topology, setting up the link
between SDN switches and performing the ping test between
all SDN nodes. We captured the network tra�c generated
during these operations and use them as the background
network tra�c sample.

4.2. RTT Measurement. As we have mentioned in Sec-
tion 2, the di�erence between traditional network and
SDN/OpenFlow network in handling previously unseen
packets gives us a possible indicator of the 	ow table state
and the 	ow entry living state, RTT. When there is not
corresponding 	ow entry existing in the 	ow table, the RTT
of a packet will signi
cantly increase due to the interactions
between controller and switch in order to acquire new 	ow
entries. �at is the case when there is still space in the 	ow
table. Once the 	ow table is full, the RTT of a packet will
further increase as a result of extra 	ow table replacement
operations. To prove the e�ectiveness of using RTT as the
	ow table state and 	ow entry state indicator, we measured
packet RTTs corresponding to di�erent 	ow table state and
	ow entry state.

Figure 5 gives the RTT measurement result showing the
di�erence. �e points with di�erent symbols represent the
total 300 times of RTTmeasurements we have conducted, 100
times ofmeasurement for each combination of 	ow table state
and 	ow entry state. �e square points stand for RTTs when
	ow entry exists in 	ow table. �e circle points and triangle
points both stand for RTTs when 	ow entry does not exist in
	ow table; the circle points are measured when the 	ow table
is full, and the triangle points are measured when the 	ow
table is not full.

As can be seen from the
gure, when 	ow entry exists
in 	ow table, the packet RTTs are highly concentrated in the

Security and Communication Networks 7

50 100

Group

8

7

6

5

4

3

2

1

0
0

R
T

T
 (

m
s)

Flow entry exists in �ow table

Flow entry does not exist and �ow table is not full

Flow entry does not exist and �ow table is full

Figure 5: RTT measurement.

Table 1: Default timeout values.

Controller Hard timeout Idle timeout

Ryu 0 0

Beacon 0 5 s

Floodlight 0 5 s

NOX 0 5 s

POX 30 s 10 s

Trema 0 60 s

Maestro 180 s 30 s

range of 0.2∼0.3ms; when 	ow entry does not exist in 	ow
table and 	ow table is not full, the packet RTTswill increase to
about 3∼5ms; when 	ow entry does not exist in 	ow table and
	ow table is full, the packet RTTs will be the highest, ranging
from 6ms to 8ms. �ese three groups of RTTs all distribute
intensively in a small rangewithout overlapping other groups,
showing the excellent discrimination of using RTT as a 	ow
table state and 	ow entry state indicator.

4.3. Timeout

4.3.1. Default Timeout Values. According to our previous
analysis, the feasibility of our inference attack depends on
whether we can generate enough 	ow entries to ful
ll the
	ow table within a single timeout cycle. �at means we
must have the ability to generate as many 	ow entries as the
	ow entry can hold during a timeout period. So we analyze
several popular open-source controllers and search for their
default timeout values in the built-in applications. �e result
is presented in Table 1. �e zero values in the table mean the
corresponding timeout will not take e�ect, or in other words
the timeout value is “permanent.” As can be seen from the
table, most available controllers have timeout values in the
range of 5 s to 30 s.

If we take the 	ow table capacity of 2000 	ow entries as
an example, the minimum packet generating speed required
will be 2000/5 = 400 packets per second, while libnet can

generate tens of thousand packets per second. So the default
timeout values ensure the feasibility of our inference attack.

4.3.2. Timeout Measurement. �ough default timeout values
of mainstream OpenFlow controllers can be read from their
source codes, it is still possible for SDN network administra-
tors to manually change the default timeout values. In order
to handle nondefault timeout values and provide basis for
adjusting packet generating speed, it is essential to examine
the accuracy of passive timeout measurement.

Figure 6 illustrates relative errors (see equation (9)) of
hard timeout and idle timeout measurement, respectively.
Wemanuallymodify hard timeout and idle timeout values of
POX OpenFlow controller to 5 s, 10 s, 15 s, 20 s, 25 s, and 30 s,
and then we use timeout measurement algorithmmentioned
in Section 2 to measure these timeout values and calculate
relative errors:

relative error =
����valuedetected − valuetrue

����
valuetrue

∗ 100%. (9)

Every line in Figures 6(a) and 6(b) corresponds to 10
times of repeated measurements conducted under a certain
timeout setting from 5 s to 30 s.�emargin stays in the range
of plus-or-minus 10 percent, showing the e�ectiveness and
high accuracy of our timeout measurement algorithm.

4.4. Flow Table Capacity. Flow capacity is the primary target
of our inference attack. It re	ects the hardware speci
cation
of an OpenFlow switch. Figure 7 illustrates the 	ow table
capacity measurement result when controller adopts FIFO
replacement algorithm. We manually limited the switch 	ow
table capacity to 10 di�erent values from 100 	ow entries to
1000 	ow entries and used our framework to perform the
inference.

�e dark bars represent the manually set 	ow table
capacities or real capacities. �e light bars represent the
measured 	ow table capacities. For every manually set 	ow
table capacity, we conduct 10 times of repeatedmeasurements
and take their mean value as the
nal result. From the

gure we can see that the measured capacities are quite close
to the real capacities, indicating the high accuracy of our
inference framework. For example, when the real capacity is
400 	ow entries, our measured capacity is 408 	ow entries
with an error of only 8 	ow entries. As the real capacity
grows, the packet generating speed required becomes faster,
placing higher requirements on packet sending, receiving
synchronization and accurate timing. But our inference
algorithm shows unbelievable stability and accuracy: when
the real capacity is 1000 	ow entries, our measured capacity
is 973 	ow entries with an error of just 27 	ow entries.

Like Figure 7, Figure 8 also illustrates the 	ow table
capacity measurement results, with the only di�erence of
being performed under LRU replacement algorithm instead
of FIFO.

According to our previous analysis, the inference princi-
ple of LRU replacement algorithm is more complex because
of the unavoidable mixed nature of 	ow entries in the 	ow
table and the rolling maintaining process. But our inference

8 Security and Communication Networks

Hard timeout = 30

Hard timeout = 25

Hard timeout = 20

Hard timeout = 15

Hard timeout = 10

Hard timeout = 5

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

2 4 6 8 10

Group

Hard timeout relative error

(a)

Idle timeout = 30

Idle timeout = 25

Idle timeout = 20

Idle timeout = 15

Idle timeout = 10

Idle timeout = 5

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

2 4 6 8 10

Group

Idle timeout relative error

(b)

Figure 6: Timeout relative error.

100 95

200 192

300 315

400 408

500 486

600
619

700
666

800
831

900 883

1000
973

0

200

400

600

800

1000

C
ap

ac
it

y

10 3 6 5 8 9 4 7 2 1

Group

Real capacity

Measured capacity

Figure 7: FIFO 	ow table capacity.

framework still shows high accuracy and reliability. Even
when the real 	ow table capacities are set to be rather large
values like 900 and 1000, the errors of our measure capacities
are just around 20 	ow entries.

Only illustrating the mean value of measured 	ow table
capacities may not be enough: the mean value may be
the result of error compensations and hide the detailed

0

200

400

600

800

1000

C
ap

ac
it

y

10 3 6 5 8 9 4 7 2 1

Group

Real capacity

Measured capacity

100
120

200
180

350

300

400
422

500
475

600
630

700

788 800
828

900
880

1000
1021

Figure 8: LRU 	ow table capacity.

measurement errors of every separate experiment. So in
Figure 9 we illustrate the relative error of every single 	ow
table capacity measurement.

We choose 5 groups of di�erent 	ow table capacities
from 200 	ow entries to 1000 	ow entries and perform 10
times of measurements under every single 	ow table capacity
value. Figure 9(a) stands for relative error of 	ow table
capacity measurements conducted under FIFO replacement

Security and Communication Networks 9

Capacity = 1000

Capacity = 800

Capacity = 600

Capacity = 400

Capacity = 200

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

2 4 6 8 10

Group

FIFO capacity relative error

(a)

Capacity = 1000

Capacity = 800

Capacity = 600

Capacity = 400

Capacity = 200

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

2 4 6 8 10

Group

LRU capacity relative error

(b)

Figure 9: Flow table capacity relative error.

algorithm, showing that the margin is no larger than plus-
or-minus 10 percent. Figure 9(b) stands for relative error
of 	ow table capacity measurements conducted under LRU
replacement algorithm. Due to the more complex inference
principle and the rolling maintaining process, the margin
becomes larger but still has not exceeded 15 percent even in
the worst case.

�e above inference attacks are performed without any
background network tra�c. When performing inference
attack in real networks, the impact of background network
tra�c cannot be ignored. So it is necessary to examine the e�-
ciency of our inference algorithm under these circumstances.

In this evaluation, we choose the background network
tra�c dataset from a SDN testbed. Figures 10 and 11 have
the same experiment setting with Figures 7 and 8, with the
only di�erence of replaying background tra�c captured from
SDN testbed during the inference attack process. Even with
the impact of background tra�c, our inference algorithm still
shows high accuracy.

4.5. Flow Table Usage. In this section we evaluated our
framework’s e�ciency of inferring the number of 	ow entries
from other users sharing the same 	ow table or the 	ow table
usage. Flow table usage is our secondary inference target, and
it re	ects the network resource consuming condition of other
tenants in the same SDN network. Figures 12 and 13 illustrate
the 	ow table usage measurement results conducted under
FIFO and LRU replacement algorithm, respectively.

100
81

200
174

300 295

1000

931
900

852

800 805

700

641
600 595

500
463

400
385

0

200

400

600

800

1000

C
ap

ac
it

y

10 3 6 5 8 9 4 7 2 1

Group

Real capacity

Measured capacity

Figure 10: FIFO 	ow table capacity with testbed background tra�c.

Again wemanually set 10 di�erent 	ow table usage values
from 100 to 1000 	ow entries by manually generating and
inserting corresponding number of 	ow entries into the 	ow
table beforehand. �en we use our inference algorithm to
infer the 	ow table usage and take mean values of every 10
times of measurements as the
nal results. �e errors of all
these measurements show the high accuracy, stability and
reliability of our inference algorithm.

10 Security and Communication Networks

0

200

400

600

800

1000

C
ap

ac
it

y

10 3 6 5 8 9 4 7 2 1

Group

Real capacity

Measured capacity

100 99

200
158

300
328

400 399

500

447

600 595

700

752

800 790

900

841

1000
978

Figure 11: LRU 	ow table capacity with testbed background tra�c.

10 3 6 5 8 9 4 7 2 1

Group

Real usage

Measured usage

0

200

400

600

800

1000

U
sa

ge

100
120

200 184

300
322

400
378

500 492

600 617

700
723

800

900 895

1000
976

809

Figure 12: FIFO 	ow table usage.

We also conducted the 	ow table usage inference attack
with background tra�c. Experiment results with testbed
background tra�c are shown in Figures 14 and 15. Our
inference algorithm can smoothly handle the impact of
background tra�c, which ensures the stability and robustness
demonstrated in the experiment results.

�e relative errors are shown in Figure 16. We emulate
5 groups of di�erent 	ow table usage values and conducted
10 times of 	ow table usage inference for every single value.
For both FIFO and LRU replacement algorithm, the relative
errors of 	ow table usage inference stay in a quite small range.
�e results prove that our algorithm can infer other tenants’
	ow table usage condition in high accuracy.

5. Defense

From the previous sections we can conclude that the infer-
ence attack is rooted in the 	ow table over	ow. To defend
that kind of inference attack, we have to prevent 	ow table
over	ow in two aspects: one aspect is to compress the 	ow

10 3 6 5 8 9 4 7 2 1

Group

Real usage

Measured usage

0

200

400

600

800

1000

U
sa

ge

100
80

200 195

300
278

400

500
466

600 602

700
731

800 783

900 882

1000
976

378

Figure 13: LRU 	ow table usage.

10 3 6 5 8 9 4 7 2 1

Group

Real usage

Measured usage

0

200

400

600

800

1000

U
sa

ge

100 107

200
163

300 301

400
357

500
468

600 590

700 694

800
780

900
865

1000

935

Figure 14: FIFO 	ow table usage with testbed background tra�c.

entries to save 	ow table space, and the other one is to
implement a larger 	ow table to store more 	ow entries.

5.1. Routing Aggregation. Routing aggregation is to combine
multiple entries in the 	ow table without changing the next
hops for packet forwarding. �is approach is particularly
appealing because it can be done by a so�ware upgrade at the
OpenFlow switch and its impact is limited within that switch.
Routing aggregation has already been used in traditional
networks, but it has not been deployed in SDN/OpenFlow
networks. To fully utilize the 	exibility of SDN/OpenFlow
network under certain scenarios like load balancing, we pro-
posed a global routing schedule using packing optimization
algorithms.

Traditional routing aggregation algorithms [18] can be
used to compress the 	ow table, but their e�ectiveness cannot
be ensured. If thematching
elds and next hops are dispersed
enough, chances are that we may not be able to perform
any routing aggregation because we cannot
nd 	ow entries
sharing commonmatching
elds and next hops.�is is o�en

Security and Communication Networks 11

10 3 6 5 8 9 4 7 2 1

Group

Real usage

Measured usage

0

200

400

600

800

1000

U
sa

ge
100

200
168

300

251

400

346

500

433

600
566

700

57

693

800

745

900

842

1000

935

Figure 15: LRU 	ow table usage with testbed background tra�c.

Capacity = 1000

Capacity = 800

Capacity = 600

Capacity = 400

Capacity = 200

Capacity = 1000

Capacity = 800

Capacity = 600

Capacity = 400

Capacity = 200

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

−10

0

10

20

30

R
el

at
iv

e
er

ro
r

2 4 6 8 10

Group

2 4 6 8 10

Group

FIFO usage relative error LRU usage relative error

Figure 16: Flow table usage relative error.

the case when dealing with web tra�c, for example, load bal-
ancing services. For that reason, we introduced an extra stage
of routing aggregation: global routing schedule optimization.
First we model this routing aggregation problem as a packing
optimization problem and solve it, then we perform global
routing reschedule by rewriting the 	ow entries according
to the optimization result, and
nally we perform another
time of traditional routing aggregation on these new 	ow
entries. A�er the global routing reschedule, there will be

much more aggregatable 	ow entries, so the e�ectiveness of
routing aggregation is ensured.

5.2. Multilevel Flow Table Architecture. It is important to note
that routing aggregation is not a replacement for the long-
term architectural solutions because it does not address the
root causes of the 	ow table scalability problem and the
following inference attack. To eliminate the inference attack
vulnerability, a 	ow table architecture with larger capacity is

12 Security and Communication Networks

Table

0

Table

1

Table

m

Execute

action

set

Packet
in

Packet
out

TCAM

Figure 17: Single-level 	ow table architecture.

Table

0

Table

1

Table

m

Execute

action

set

Packet

in

Packet

out

TCAM

Match

Table

0

Table

1

Table

n

SRAM

Match

Table miss

Execute

action

set

Packet

out

Flow table

replacement

Figure 18: Multilevel 	ow table architecture.

required, which can be achieved throughmultilevel 	ow table
consisting of both TCAM and SRAM.

�e original single-level 	ow table architecture is shown
in Figure 17. In this architecture, the 	ow table is completely
implemented using TCAM. An input packet will traverse
from table 0 to table� and add corresponding actions to the
action set. �en all actions in the action set are executed and
the packet is forwarded according to these actions.

Our proposed multilevel 	ow table architecture is shown
in Figure 18. Besides 	ow table implemented using TCAM,
we add another 	ow table implemented using SRAM, which
is cheaper and can provide larger 	ow table space. Under
this multilevel 	ow table architecture, the packet processing
pipeline will be di�erent:
rst an input packet will
nd
matching 	ow entries in TCAM 	ow table, just like in the
original single-level 	ow table architecture. If there is amatch,
the packet will execute the corresponding actions and get
forwarded. If there is no match, the packet will continue
its lookup in the SRAM 	ow table. If there is a match in
the SRAM 	ow table, the packet can then be forwarded;
otherwise it will be sent to the controller.

From the process above, we can see that if the capacity
of TCAM 	ow table is �, the capacity of SRAM 	ow table is
�, and then the multilevel 	ow table will have a capacity of
� + �. Actually � is far more larger than �, so this approach
can greatly increase the 	ow table capacity, thus preventing
	ow table over	ow.

6. Discussion

SDN/OpenFlow has become a competitive solution for next-
generation network and is being more and more widely
used in modern datacenters. But considering its key role as
the fundamental infrastructure, we have to admit that the
security issues of SDN/OpenFlow have not been explored
to a large extent. Particularly, the 	ow table capacity of
SDN/OpenFlow switch is only considered as a vulnerable part
for DDoS and 	ooding attacks in published researches. But
according to our analysis in previous sections, the 	ow table
capacity can lead to potential inference attack if combined
with reasonable assumptions and RTT measurements.

Firstly, we found in Section 2 that exactmatch 	ow entries
as well as the lack of route aggregation would consume a lot

Security and Communication Networks 13

of 	ow table space, making it impossible to process millions
of 	ows per seconding using SDN/OpenFlow. Secondly, we
found in Section 4 that assigning the decision making job
of 	ow table replacement to the controller would lead to
signi
cant network performance decrease, which had to be
changed in time. �irdly, there is currently no mature attack
detection mechanism for SDN/OpenFlow network, so it is
quite easy for criminals to exploit system vulnerabilities or
invoke DDoS attacks.

�e inference method proposed in this paper just uses
some basic elements and parameters of OpenFlow, such as
idle timeout and hard timeout, which are signi
cant for the
implementation of SDN. �ese features will not be removed
except very huge changes made. On the other hand, although
some security frameworks [3] were proposed to detect the
malicious insertion of 	ow rules, attackers can also bypass the
detection by some well-designed insertion strategies.

All these security issues call for improvements to current
OpenFlow switch and 	ow table design. �e improvements
should at least contain the following aspects: (1) New Open-
Flow switch architecture, like embedding local caches in
the switch or implementing multilevel 	ow table to achieve
a much larger 	ow table capacity. With larger 	ow table
capacity, the switch will not have to query the controller for
	ow entries, which will reduce the interaction latency to a
large extent. (2) New 	ow table maintaining mechanism, like
transferring the 	ow entry deleting workload from controller
to switch. Switch itself can decide which 	ow entry to delete
and then sync state with controller, and during the 	ow
entry deleting process, the controller’s intervention is not
needed. In the widely used OpenFlow Switch Speci
cation
1.4.0 [19], this mechanism has been added as an optional
feature, but without any mature implementation so far. (3)
Routing aggregation. Routing aggregation canmatch a group
of 	ows using one 	ow entry, which will reduce the 	ow
table consuming signi
cantly comparedwith exactmatch. (4)
Inference attack detection. Administrators can develop infer-
ence attack detecting applications and then perform defenses
like portspeed limiting or network address validation.

From the discussion above, we can see that there is still
a long road to go before SDN/OpenFlow becomes a truly
mature and reliable network paradigm. �ere are still urgent
and severe issues to solve, which have been neglected in the
past. Only by solving these security issues and architectural
vulnerabilities can SDN/OpenFlow be widely deployed in
real-world commercial datacenters and fully demonstrate its
revolutionary 	exibility and intelligence.

7. Related Work

�e inference attack proposed in this paper is motivated by
the limited 	ow table capacity of SDN/OpenFlow switches.
�e 	ow table capacity issue has been presented in many
previous works like [20–24]. �ey all point out the limitation
of switch 	ow table memory and potential scalability and
security issue. However, these works do not give further
analysis on the inference attack and information leakage
caused by the limited 	ow table capacity.

Klöti et al. [25] present potentially problematic issues in
SDN/OpenFlow including information disclosure through
timing analysis. However, this information disclosure
requires disclosing existing 	ows with side channel attack,
which is hard to perform in real world. Compared with their
approach, our inference attack is self-contained and requires
no prior knowledge.

Gong et al. [26] present a kind of inference attack
using RTT measurement to infer which website the victim
is browsing. �ey recover victims’ network tra�c patterns
based on the queuing side channel happened at the Internet
router. However, the scenario of their work is in the public
Internet, while our approach focuses on SDN/OpenFlow
infrastructures in cloud computing network. Compared with
public Internet and website inference, the inference attack
and information leakage in modern data centers are more
sensitive and valuable.

Shin and Gu [27] demonstrate a novel attack targeting
at SDN networks. �is attack includes
ngerprinting SDN
networks and further 	ooding the data plane 	ow table by
sending speci
cally cra�ed fake 	ow requests in high speed.
In the
ngerprinting phase, header
eld change scanning is
used to collect the di�erent response time (RTT) for new 	ow
and existing 	ow. �e
ngerprinting result is then analyzed
to estimate if the target network used SDN technology. �e
RTT measurement and analysis they used in
ngerprinting
are similar to our approach. But they just perform DoS
attacks to the SDN network, without performing any further
information leakage or network parameter inference.

As for 	ow table over	ow defending strategy, Shelly et
al. [28] and Katta et al. [29] introduce 	ow entry caching
mechanism into SDN/Open	ow network by inserting a
transparent intermediate layer between controller and switch.
Yan et al. [9] use CAB to generate wildcard 	ow entries
dynamically and reactively to handle bursting network tra�c.
Kannan and Banerjee [30] present a 	ow entry compaction
algorithm to saveTCAM	ow table space.�is algorithmuses
	ow entry tags instead of matching
elds as forwarding rules.
Kim et al. [31] develop a new 	ow entry management scheme
to reduce the controller overhead.

8. Conclusion

In this paper, we have explored the structure of SDN/
OpenFlow network and some of the possible security issues it
brings. A�er our detailed analysis of the SDN/OpenFlow net-
work, we proposed a novel inference attack model targeting
at the SDN/OpenFlow network, which is the
rst proposed
inference attack model of this kind in the SDN/OpenFlow
area. �is inference attack is introduced by the OpenFlow
switch, especially by its limited 	ow table capacity. �e infer-
ence attack can be done in a completely passive way,making it
hard to detect and defend.We also implemented the inference
attack framework and examined the e�ciency and accuracy
of it using network tra�c data from di�erent sources. �e
simulation results show that the inference attack framework
can infer the network parameter (ow table capacity and 	ow
table usage) with an accuracy of up to 80% or higher. We also
proposed two possible defense strategies for the discovered

14 Security and Communication Networks

vulnerability, including routing aggregation algorithm and
multilevel 	ow table architecture.

Conflicts of Interest

�e authors declare that they have no con	icts of interest.

Acknowledgments

�e research presented in this paper is supported in part
by the National Key Research and Development Program of
China (no. 2016YFB0800100), the Fund of China National
Aeronautical Radio Electronics Research Institute (PM-
12210-2016-001), the National Natural Science Foundation
(61572397, U1766215, U1736205, 61502383, 61672425, and
61702407), and State Grid Corporation of China (DZ71-16-
030).

References

[1] W. Li, W. Meng, and L. F. Kwok, “A survey on OpenFlow-based
So�ware De
ned Networks: Security challenges and counter-
measures,” Journal of Network and Computer Applications, vol.
68, pp. 126–139, 2016.

[2] M. Brooks and B. Yang, “A Man-in-the-Middle attack against
OpenDayLight SDN controller,” in Proceedings of the 4th
Annual Conference on Research in Information Technology,
Association for Computing Machinery, Chicago, IL, USA,
September 2015.

[3] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G.
Gu, “A security enforcement kernel for OpenFlow networks,”
in Proceedings of the 1st ACM International Workshop on Hot
Topics in So�ware De�ned Networks, HotSDN 2012, pp. 121–
126, Association for Computing Machinery, Helsinki, Finland,
August 2012.

[4] N. Gude, T. Koponen, and J. Pettit, “NOX: towards an operating
system for networks,”ACM SIGCOMMComputer Communica-
tion Review, vol. 38, no. 3, pp. 105–110, 2008.

[5] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veri	ow:
Verifying network-wide invariants in real time,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, ACM
SIGCOMM 2012, pp. 467–472, Finland, August 2012.

[6] G. Zhao, L. Huang, Z. Yu, H. Xu, and P. Wang, “On the e�ect
of 	ow table size and controller capacity on SDN network
throughput,” in Proceedings of the 2017 IEEE International
Conference on Communications (ICC), pp. 1–6, Paris, France,
May 2017.

[7] A. Roy,H. Zengy, J. Baggay,G. Porter, andA.C. Snoeren, “Inside
the social network’s (Datacenter) network,” in Proceedings of the
ACM Conference on Special Interest Group on Data Communi-
cation, SIGCOMM 2015, pp. 123–137, UK, August 2015.

[8] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and J.
Rajahalme, “Flow caching for high entropy packet
elds,” in
Proceedings of the 3rd ACM SIGCOMM 2014 Workshop on Hot
Topics in So�ware De�ned Networking, HotSDN 2014, pp. 151–
156, Chicago, Illinois, USA, August 2014.

[9] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “CAB: A reactive
wildcard rule caching system for so�ware-de
ned networks,” in
Proceedings of the 3rd ACM SIGCOMM 2014 Workshop on Hot

Topics in So�ware De�ned Networking, HotSDN 2014, pp. 163–
168, Chicago, Illinois, USA, August 2014.

[10] Katta Naga, Jennifer Rexford, and David Walker, “In
nite
cache	ow in so�ware-de
ned networks,” Princeton School of
Engineering and Applied Science, 2013.

[11] Yanwen Wang, Hainan Chen, Hainan Chen, and Lei Shu,
“An energy-e�cient SDN based sleep scheduling algorithm for
WSNs,” Journal of Network and Computer Applications, vol. 59,
pp. 39–45, 2016, http://dx.doi.org/10.1016/j.jnca.2015.05.002.

[12] S.-N. Yang, S.-W. Ho, Y.-B. Lin, and C.-H. Gan, “A multi-RAT
bandwidth aggregation mechanism with so�ware-de
ned net-
working,” Journal ofNetwork andComputerApplications, vol. 61,
pp. 189–198, 2016, http://dx.doi.org/10.1016/j.jnca.2015.11.003.

[13] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and
Y. C. Tay, “A utility optimization approach to network cache
design,” in Proceedings of the 35th Annual IEEE International
Conference on Computer Communications, IEEE INFOCOM
2016, San Francisco, CA, USA, April 2016.

[14] “Mininet” http://mininet.org/.

[15] “POX Controller” http://www.noxrepo.org/pox/about-pox/.

[16] “libnet-dev” https://github.com/sam-github/libnet.

[17] “libpcap” http://www.tcpdump.org/.

[18] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability
of router forwarding tables,” in Proceedings of IEEE INFOCOM
2010, Institute of Electrical and Electronics Engineers, San
Diego, CA, USA, March 2010.

[19] “OpenFlow Switch Speci
cation 1.4.0” https://www.opennet-
working.org/images/stories/downloads/sdn-resources/onf-spec-
i
cations/open	ow/open	ow-spec-v1.4.0.pdf.

[20] S. Sezer, S. Scott-Hayward, P. Chouhan et al., “Are we ready
for SDN? Implementation challenges for so�ware-de
ned net-
works,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–
43, 2013.

[21] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “So�ware-de
ned networking: a
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, 2015.

[22] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security:
A survey,” in Proceedings of the 2013 Workshop on So�ware
De�ned Networks for Future Networks and Services, SDN4FNS
2013, Trento, Italy, November 2013.

[23] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and
S. Guizani, “Securing so�ware de
ned networks: Taxonomy,
requirements, and open issues,” IEEE Communications Maga-
zine, vol. 53, no. 4, pp. 36–44, 2015.

[24] M. Tsugawa, A. Matsunaga, and J. A. B. Fortes, “Cloud comput-
ing security:What changes with so�ware-de
ned networking?”
Secure Cloud Computing, pp. 77–93, 2014.

[25] R. Klöti, V. Kotronis, and P. Smith, “OpenFlow: A security
analysis,” in Proceedings of the 2013 21st IEEE International Con-
ference on Network Protocols, ICNP 2013, Institute of Electrical
andElectronics Engineers,Goettingen,Germany,October 2013.

[26] X. Gong, N. Borisov, N. Kiyavash, and N. Schear, “Website
Detection Using Remote Tra�c Analysis,” in Privacy Enhancing
Technologies, vol. 7384 of Lecture Notes in Computer Science, pp.
58–78, Springer, Berlin, Heidelberg, 2012.

[27] S. Shin and G. Gu, “Attacking so�ware-de
ned networks: a

rst feasibility study,” in Proceedings of the 2nd ACM SIG-
COMMWorkshop onHot Topics in So�wareDe�nedNetworking
(HotSDN ’13), pp. 165-166, Association for Computing Machin-
ery, Hong Kong, China, August 2013.

http://dx.doi.org/10.1016/j.jnca.2015.05.002
http://dx.doi.org/10.1016/j.jnca.2015.11.003
http://mininet.org/
http://www.noxrepo.org/pox/about-pox/
https://github.com/sam-github/libnet
http://www.tcpdump.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

Security and Communication Networks 15

[28] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and J.
Rajahalme, “Flow caching for high entropy packet
elds,” ACM
SIGCOMMComputer CommunicationReview, vol. 44, no. 4, pp.
663–668, 2014.

[29] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “In
nite
CacheFlow in so�ware-de
ned networks,” in Proceedings of the
3rd ACM SIGCOMM 2014 Workshop on Hot Topics in So�ware
De�ned Networking, HotSDN 2014, pp. 175–180, Association for
Computing Machinery, Chicago, Illinois, USA, August 2014.

[30] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry
compaction in TCAM for power aware SDN,” in Proceedings of
the 14th International Conference on Distributed Computing and
Networking, vol. 7730 of Lecture Notes in Computer Science, pp.
439–444, Springer, Mumbai, India, 2013.

[31] E.-D. Kim, S.-I. Lee, Y. Choi, M.-K. Shin, and H.-J. Kim,
“A 	ow entry management scheme for reducing controller
overhead,” in Proceedings of the 16th International Conference on
Advanced Communication Technology: Content Centric Network
Innovation!, ICACT 2014, pp. 754–757, Institute of Electrical and
Electronics Engineers, Pyeongchang, South Korea, February
2014.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

