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Abstract
Purpose of Review  Triple-negative breast cancer (TNBC) is notoriously difficult to treat. Recent technological advances 
have led to the identification of novel targets and new approaches to treat this devastating disease. The aim of this review 
is to highlight therapeutic vulnerabilities of TNBC and discuss novel therapeutic strategies.
Recent Findings  Interrogating the inherent heterogeneity and rich cellular and transcriptional diversity within TNBC 
has led to the discovery of vulnerabilities and actionable targets for therapeutic development. Characterization of the 
tumor immune environment, discovery of novel molecular targets, and identification of somatic alterations which confer 
sensitivity to DNA repair inhibitors are just a few examples.
Summary  The key to developing effective strategies to treat TNBC is to exploit vulnerabilities using a multifaceted approach. 
The identification of actionable targets has led to numerous therapeutic advances for TNBC, resulting in substantial improve-
ments in patient outcomes and quality of life.

Keywords  Triple-negative breast cancer · Targeted therapy · Immunotherapy · DNA repair · Androgen receptor · Tumor 
microenvironment

Introduction

Triple-negative breast cancer (TNBC) refers to a het-
erogeneous group of breast tumors which lack expres-
sion of the estrogen receptor (ER), progesterone receptor 
(PR), and HER2/neu (HER2) receptors [1]. Historically, 
treatment has been limited to chemotherapy; however, 
advances in technology have facilitated the discovery of 
molecular targets as well as vulnerabilities within the 
tumor microenvironment, ushering in an era of novel 
therapies and improved patient outcomes [2] (Fig. 1). 
Notably, the application of omics-based analyses 

facilitated development of clinically relevant biomarkers 
and therapeutic targets [3, 4, 5••]; single-cell profiling 
provided further characterization and contextualization 
of intrinsic heterogeneity [3, 4, 6].

TNBC heterogeneity occurs within tumor cell populations, 
the tumor immune microenvironment, and the composition 
of the extracellular matrix. This heterogeneity contributes to 
numerous therapeutic obstacles, including the identification of 
targetable mutations and a variable response to treatment [7–9, 
10•, 11].

Enhancing the Immune Response

The emergence of immune checkpoint inhibitors (ICI) has 
dramatically enhanced treatment outcomes for a variety of 
malignancies, including TNBC. Continued investigation 
to maximize the immune response in TNBC is an area of 
active research [12–14]. Compared to other breast cancer 
subtypes, TNBCs tend to have a higher tumor mutational 
burden (TMB), number of tumor-infiltrating lymphocytes 
(TILs), PD-L1 expression, and neo-antigen burden [9, 15]. 
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The efficacy of immunotherapy in TNBC has been dem-
onstrated in multiple studies. While ICI monotherapy had 
limited efficacy in TNBC, a subset of patients maintained a 
durable response, demonstrating the relevance of immune 
pathways in some TNBCs [16–19]. In an effort to increase 
response rates, combination strategies with chemotherapy 
and other agents have been studied (Fig. 2).

Chemoimmunotherapy Combinations in Advanced 
TNBC

KEYNOTE-355 was a randomized phase III trial which 
investigated the addition of pembrolizumab to first-line 
chemotherapy of physician’s choice (nab-paclitaxel, pacli-
taxel, or carboplatin/gemcitabine) in patients with advanced 
TNBC [20]. In this study, the addition of the anti-PD-1 
therapy pembrolizumab to chemotherapy demonstrated a 
statistically significant improvement in both progression 
free survival (PFS; 9.7 vs 5.5 months, p = 0.001) and over-
all survival (OS; 23.0 vs 16.1 months, p = 0.018) as com-
pared to chemotherapy alone in those with PD-L1 positive 
advanced TNBC defined as a combined positive score > 10 
via the 22C3 assay. The results of this trial led to the full 
regulatory approval of pembrolizumab plus chemotherapy 
for PD-L1 positive advanced TNBC. The randomized phase 
III IMpassion130 trial demonstrated a modest but statisti-
cally significant improvement in PFS with the addition of 
atezolizumab to first-line nab-paclitaxel in those with PD-L1 
positive advanced TNBC defined as PD-L1 > 1% via SP142 
assay [21]; based on this result, the combination was granted 
accelerated approval by the US FDA. While IMpassion130 
did demonstrate a numerical improvement in OS favoring 
the chemoimmunotherapy arm, this improvement was not 
assessable for significance due to the hierarchical statisti-
cal design [21]. The IMpassion131 phase III trial assessed 
the benefit of adding atezolizumab to paclitaxel in the same 
TNBC population and failed to demonstrate a PFS or OS 
advantage [22]. Based on the negative results of this trial 

Fig. 1   Overview of current therapeutic strategies for triple-
negative breast cancer. Current and emerging therapeutic targets in 
TNBC include molecular alterations, the immune microenvironment, 
hypoxia/metabolism, epigenetic modifications, androgen receptor 
signaling, and DNA repair. Created with BioRender.com

Fig. 2   Immunosurveillance 
targets in early-stage clinical 
trials for TNBC. Overview of 
the diverse immunosurveillance 
targets for TNBC in clinical 
investigation. Created with 
BioRender.com
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and the failure of IMpassion130 to demonstrate an overall 
survival advantage, the approval of atezolizumab for TNBC 
was withdrawn in 2021.

Chemoimmunotherapy Combinations in Early‑Stage 
TNBC

Given its success in advanced TNBC, a number of trails 
have explored ICI in the early-stage, neoadjuvant TNBC 
setting. The first trial to demonstrate an improvement in 
response and long-term outcomes in those with early-
stage TNBC was the I-SPY2 adaptively randomized 
phase II trial. One of the arms of this trial investigated 
the addition of four cycles of pembrolizumab to pacli-
taxel followed by four cycles of doxorubicin plus cyclo-
phosphamide (pembro-4) [23]. The primary endpoint 
from I-SPY2 is the likelihood that an investigational arm 
will have a significantly higher pathological complete 
response (pCR) rate as compared to the control arm in a 
randomized phase III trial. The pembro-4 arm of I-SPY2 
“graduated” for efficacy.

Subsequently, the industry-sponsored, phase III KEY-
NOTE-522 trial randomized patients with stage II and 
III TNBC to chemotherapy (paclitaxel plus carboplatin 
followed by doxorubicin plus cyclophosphamide) and a 
year of pembrolizumab vs placebo [24, 25••]. This trial 
demonstrated that the addition of pembrolizumab sig-
nificantly improved pCR and event-free survival (EFS) 
and led to the regulatory approval of pembrolizumab in 
the early-stage TNBC setting [25••]. Unlike in advanced 
disease, PD-L1 expression was not predictive of response 
to ICI [24]. Even in patients without a pCR, the addi-
tion of pembrolizumab down-staged residual cancer bur-
den, improving event-free survival overall [24]. In the 
GeparNuevo trial, the addition of durvalumab to anthra-
cycline and taxane–based neoadjuvant therapy modestly 
improved pCR rates, but significantly improved EFS, 
even in the absence of adjuvant durvalumab, raising the 
question of whether adjuvant ICI therapy is needed [26].

A number of randomized phase III trials are evaluating 
the optimization of ICI-based therapy in the early-stage 
TNBC setting. The Optimice-pCR (NCT04266249) trial will 
randomize TNBC patients who achieve a pCR after neoad-
juvant therapy to adjuvant pembrolizumab vs observation, 
to evaluate if adjuvant ICI therapy is necessary. The SWOG 
S2212 SCARLET study will evaluate the non-inferiority of 
an anthracycline-free chemoimmunotherapy regimen to the 
KEYNOTE-522 regimen, to see if similar outcomes can be 
attained with less chemotherapy. And the ongoing I-SPY2.2 
adaptively randomized platform trial is concurrently evaluat-
ing a number of investigational anthracycline-free regimens, 
with the option for patients to go to surgery early should 
imaging reveal a complete clinical response.

Immune Modulation Beyond Anti‑PD‑1/PD‑L1

Many other immunotherapies have been studied in TNBC 
in an effort to enhance efficacy of approved agents or iden-
tify novel therapeutic regimens. T-lymphocytes are regu-
lated by activation of co-stimulatory (CD28, OX40, CD40) 
and co-inhibitory receptors (CTLA-4, PD-1, TIM-3, LAG-
3) [27]. The anti-CTLA-4 agent ipilimumab has demon-
strated efficacy in a number of tumor types. The efficacy of 
dual ipilimumab and nivolumab in mTNBC patients with 
TMB > 14 mutations/Mb was evaluated. This combination 
demonstrated an ORR of 60%, compared to ORR 4% with 
TMB between 9 and 14 suggesting a role for dual checkpoint 
blockade in high TMB TNBC tumors [28]. The DART trial 
investigated dual CTLA4 and PD-L1 blockade in metaplastic 
breast cancer and noted durable responses in 18% of patients 
in this refractory population [29]. LAG-3, a co-inhibitory 
receptor, activation leads to cytotoxic T-cell exhaustion and 
decreases anti-tumor activity and is also found on regula-
tory T-cells where it inhibits the cytotoxic T-cell response 
[30]. The ISPY-2 trial revealed dual immune modulation 
with a LAG-3 inhibitor and anti-PD-1 therapy revealed high 
pCR rates in TNBC, however at the cost of an increase in 
immune-related adverse events (irAEs), including high rates 
of adrenal insufficiency and diabetes mellitus, precluding 
further development for early breast cancer at this time [31].

CD47, an inhibitory signal of phagocytosis by mac-
rophages, is a novel immunotherapy target [32]. A trial 
investigating the combination of the anti-CD47 agent mag-
rolimab with paclitaxel or nab-paclitaxel (NCT04958785) 
is currently ongoing. Another anti-CD47 agent, ALX148, 
is being evaluated in the I-SPY Phase I platform trial 
in combination with trastuzumab deruxtecan (T-DXd) 
(NCT04602117) for HER2-low advanced breast cancer.

Combining Immunotherapy with DNA Repair 
Inhibition

PARP inhibition (PARPi) can synergize with ICI by sensi-
tizing the tumor microenvironment to immunomodulatory 
therapy [33, 34]. PARPi enhances immune activation by 
upregulating type I interferon activation through the STING 
pathway, cell-death mediated inflammation, and increased 
neoantigen load [15, 35, 36]. These observations led to trials 
testing the combination of PARPi and ICI. In the TOPA-
CIO trial, the combination of niraparib and pembrolizumab 
achieved an objective response rate (ORR) of 21% and dis-
ease control rate (DCR) of 49% in mTNBC [37], including 
responses observed in those without germline BRCA1/2 
(gBRCA) mutations. In the MEDIOLA trial, the DCR with 
Olaparib plus durvalumab at 12 weeks was 80% in partici-
pants with gBRCA1/2 and advanced HER2 negative breast 
cancer [38]. These non-randomized trials demonstrated the 
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safety of this combinatorial approach, although it remains to 
be seen if there is synergy between ICIs and PARPi in either 
those who harbor deleterious gBRCA1/2 mutations or the 
overall TNBC population.

Vaccines

While neoantigen vaccine therapy is a promising approach 
to induce an immune response and enhance cytotoxic T-cell 
activity, several large randomized phase II or III clinical 
trials using vaccines as a monotherapy did not meet the 
efficacy endpoints of demonstrating improvements in PFS 
or OS [39•]. However, a number of vaccines are currently 
under investigation in combination with ICI, chemotherapy, 
and/or radiation [38]. Vaccines, including PVX-410 and 
mRNA-2752 are under clinical investigation as monotherapy 
and in combination with ICI in both early and advanced 
TNBCs [40–42]. PVX-410 is a tetra-peptide vaccine with 3 
antigens overexpressed in TNBC including 2 splice variants 
of XBP1 and CD138 (NCT04634747). mRNA-2752 con-
sists of three mRNAS that encode for OX-40 ligand, IL-23, 
IL-36γ (NCT03739931).

Cellular Therapy

Employing chimeric antigen receptor T-cell (CART) ther-
apy in TNBC also takes advantage of robust TNBC neo-
antigens [43, 44]. CART therapies are in early phase trials 
for TNBC. Preliminary safety data testing CAR-T therapy 
targeting cMET in TNBC patients with advanced TNBC and 
melanoma patients who had received prior lines of therapy 
revealed that five out of seven patients experienced grade 1 
or 2 toxicities, an no grade > 3 toxicities or cytokine release 
syndrome were observed [45]. Other CAR-T directed thera-
pies are also in early stages of clinical trials in both TNBC 
and other aggressive solid tumors (ROR1-targeted CART: 
NCT05274451; mesothelin-targeted: NCT02792114; 
TnMUC1 targeted: NCT04025216). Furthermore, the T-cell 
receptor gene therapy targeting KK-LL-C1 is also in safety 
clinical trials (NCT05035407). Newer T-cell directed thera-
pies target two different antigens (often with one includ-
ing the CD3 + antigen), called bispecific antibody (bsAb) 
or bispecific T-cell engager (BiTe) [46] and are in phase I 
or II clinical trials alone (NCT03219268, NCT04424641, 
NCT05585034, NCT03517488) or in combination with 
ICI pembrolizumab (NCT03849469) or ipilimumab 
(NCT03752398) in TNBC and other advanced solid tumors. 
With the success of CAR-T therapy in hematologic malig-
nancies, CAR-NK and CAR-M (macrophage) therapy are 
novel concepts to harness immune system vulnerabilities. 
While only preclinical studies exist now that test CAR-NK 
and CAR-M efficacy with various targets in TNBC [47–50], 

clinical trials are planned to test the utility of this strategy 
for TNBC.

The Tumor Immune Microenvironment

Hijacking the innate immune response triggered by oncolytic 
viral (OV) infections is another novel technique to enhance 
chemotherapy efficacy in TNBC by inciting an immune 
response [39•, 51]. Talimogene laherparepvec (T-VEC) is 
a modified herpes simplex virus that can generate a local 
and systemic anti-tumor immune response. A small study 
enrolling patients with non-operable local recurrence receiv-
ing T-VEC did not demonstrate any partial or complete 
responses [52]. However, a study in the early-stage dem-
onstrated encouraging results. Patients received T-VEC in 
addition to standard of care taxane and anthracycline-based 
chemotherapy and 45.9% of patients had a pCR at time of 
surgery, supporting further investigation in the neoadjuvant 
setting [53]. Furthermore, because OV therapies enhance 
immune reactivity, they have been proposed to have more 
robust effects in combination with ICI [54, 55]. Directly 
injecting immune modulating agents into the TME is also 
being tested, using a plasmid for IL-12 tavokinogene telse-
plasmid (NCT03567720).

Targeting Tumor‑Associated Antigens

Targeting cell surface glycoproteins expressed on epithelial 
cancer cells provides the basis of novel antibody-drug con-
jugate therapies (ADCs) [56, 57]. The discovery of a novel 
target in epithelial malignancies including TNBC, tropho-
blast cell-surface antigen (Trop-2), led to the development 
of the antibody drug conjugate Sacituzumab govitecan (SG). 
Trop-2 and topoisomerase-1 (TOPO1) expression is present 
in 56–80% of primary and metastatic TNBC tumors [58, 
59]. An antibody targeting Trop-2 is conjugated to an active 
metabolite of irinotecan, SN-38, and inhibits topoisomerase 
activity and affects DNA repair. The ASCENT randomized 
phase III trial compared SG to single-agent chemotherapy of 
physician’s choice (TPC; eribulin, vinorelbine, capecitabine, 
or gemcitabine) in mTNBC. PFS and OS were significantly 
improved with SG compared to TPC (5.6 vs 1.7 months, 
p < 0.001, and 12.1 vs 6.7 months, p < 001, respectively), 
with chemotherapy and median OS 12.1 compared to 6.7 
[60, 61••]. Active areas of research interrogate resistance 
mechanisms from Trop2-targeted therapies and have identi-
fied acquired SG resistance that involves direct antibody and 
drug payload targets including defective plasma membrane 
localization and reduced cells-surface binding within meta-
static subclones of individual TNBC patients [62]. Further-
more, not all Trop-2 positive tumors are TOPO1 positive, 
suggesting a separation in the expressed enzyme and cell 
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surface marker, which may have treatment implications with 
acquisition of ADC-therapy resistance [58]. The investiga-
tional ADC, datopotamab deruxtecan (Dato-DXd) targets 
a similar vulnerability in TNBC and contains a humanized 
anti-TROP2 IgG1 monoclonal antibody conjugated to a 
topoisomerase I inhibitor payload. Dato-DXd has a longer 
half-life than SG and is currently in clinical development for 
both advanced and early stage TNBC. Results of the TRO-
PION-01 study showed that amongst the 43 patients with 
mTNBC who received > 2 prior lines of therapy (including 
immunotherapy or SG), ORR was 39% and DCR 84%, over-
all revealing promising anti-tumor activity with adequate 
safety profile [63]. Dato-DXd is currently being investi-
gated in the I-SPY2.2 neoadjuvant trial with and without 
durvalumab in HER2-negative stage II/III breast cancer.

Trastuzumab deruxtecan is another ADC approved in 
HER2-low advanced breast cancer based on the DESTINY-
Breast04 trial with significantly improved PFS and OS com-
pared to standard chemotherapy, demonstrating a unique role 
for HER2-targeted therapies in HER2-low breast cancer. 
As approximately one-third of hormone receptor-negative 
tumors have HER2-low expression, subsets of patients with 
TNBC can derive substantial benefit from this therapy [56]. 
Within the BEGONIA trial, amongst HER2-low expressing 
mTNBC patients who received anti-PD1 (durvalumab) with 
T-DXd, 56.9% of patients had a response to therapy, includ-
ing one complete response and 32 partial responses, with no 
concerning safety signals [64–66]. Preliminary results from 
the Dato-DXd plus durvalumab arm also exhibited antican-
cer activity in advanced TNBC, with an ORR of 73.6% and 
an adequate safety profile [64].

Numerous ADCs targeting novel antigens in TNBC are 
in various phases of clinical development. Ladiratuzumab 
vedotin (LV) targets LIV-1A, a transmembrane protein 
with zinc transporter and metalloproteinase activity [56, 
67, 68]. The payload of LV is monomethyl-auristatin-E 
(MMAE), an inhibitor of tubulin polymerization [67]. LV 
has demonstrated efficacy in advanced TNBC, with an ORR 
of 25% in heavily pretreated patients; combination stud-
ies with pembrolizumab in the frontline advanced TNBC 
setting are ongoing (NCT03310957). Enfortumab vedotin 
targets nectin-4 with MMAE as payload and is in clinical 
trials for TNBC as well as a number of other malignan-
cies (NCT04225117). Another novel ADC target is the 
folate receptor alpha (FR-α). Mirvetuximab soravtansine 
(IMGN853) is an ADC which targets FR-α for tumor-
directed delivery of maytansinoid DM4, a compound which 
induces mitotic arrest by inhibiting microtubules [56, 69]. 
While a trial of IMGN853 was aborted early due to the low 
percentage of FR-α positivity in TNBC samples, identifying 
a unique subset of patients who could potentially respond to 
this therapy is worthy of additional study. A similar ADC, 
AMT-151, also uses FR-α as the target, and is in early phase 

trials [56]. ROR-1 is an attractive novel target that is highly 
expressed on TNBC and is minimally present or absent on 
healthy tissues. A new ADC targeting ROR1, NBE-002, 
uses the anthracycline-derivative PNU-159682 modified 
to a humanized recombinant IgG1 monoclonal anti-human 
ROR1 antibody, XBR1-402. In preclinical trials with PDX 
models, NBE-002 had dramatic anti-tumor effect in TNBC 
and is now in early stage clinical trials (NCT04441099) [70]. 
XB002, an ADC targeting tissue factor is currently being 
investigated in phase I trial alone and in combination with 
nivolumab or bevacizumab for TNBC, in addition to other 
aggressive cancers (NCT04925284) [56].

Exploiting Molecular Aberrations

Classification of TNBC was developed based on intrinsic 
molecular characteristics identified through gene expression 
analyses and biological signatures [71, 72]. TNBC subsets 
include basal-like 1 (BL1), basal-like 2 (BL2), mesenchy-
mal-like (M), and luminal androgen receptor (LAR). The 
classification precipitated discovery of novel anticancer 
agents in TNBC [5••, 73, 74•]. The subtypes have distinct 
susceptibilities to various targeted inhibitors; however, 
these patterns of sensitivity are not restricted to one subset. 
TNBC has the highest mutation rate compared to other BC 
subtypes, with EGFR, FGFR2 and MYC amplifications as 
well as PTEN loss more frequent, although other mutations 
including TP53 exist [3]. While the concept of employing 
multi-receptor tyrosine kinase inhibitors in TNBC is attrac-
tive, the cross-talk and side effects of these therapies have 
prevented clinical success of receptor tyrosine kinase (RTK) 
inhibitors in TNBC [75]. One approach to targeting molecu-
lar diversity and preventing cross-talk is to generate multi-
drug regimens that target various molecular tumor drivers 
in TNBC [9, 76] although clinical studies are required to 
determine the utility of these approaches.

DNA Repair

DNA repair is crucial for maintaining cell survival. Poly 
(ADP-ribose) polymerase (PARP) is an integral enzyme in 
DNA repair and other cellular processes; PARP plays an 
important role in base-excision repair and nucleotide exci-
sion repair. Tumors arising in patients with gBRCA1/2 
mutations have limitations in DNA repair, and treatment 
with PARPi induces synthetic lethality [77]. Numerous 
PARP inhibitors have been evaluated in TNBC. Olaparib 
and talazoparib are both approved for advanced TNBC in 
individuals with gBRCA1/2 mutations after randomized 
phase III trials, OlympiAD and EMBRACA, respectively, 
demonstrated that these PARPi were associated with sig-
nificant improvements in PFS as compared to TPC [78••, 
79]. Olaparib has also demonstrated efficacy in patients with 
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gPALB2 and somatic BRCA1/2 mutations, and larger stud-
ies are ongoing in patients with these other alterations in 
DNA repair pathway [80, 81].

The PARPi veliparib was evaluated in gBRCA1/2 patients 
in combination with platinum-based doublet chemotherapy 
in the BROCADE-3 randomized phase II trial and demon-
strated a significant but modest improvement in PFS com-
pared to chemotherapy alone [82]; however, this study failed 
to demonstrate an overall survival advantage. As PARPi 
monotherapy was associated with a significantly better qual-
ity of life (QoL) as compared to TPC in the OlympiAD and 
EMBRACA trials, it is unclear if these is a role for this 
combination of PARPi and chemotherapy, given the failure 
of this approach to yield a survival advantage.

Veliparib plus carboplatin and paclitaxel (T) followed by 
dose dense doxorubicin and cyclophosphamide (AC) was also 
investigated in the neoadjuvant ISPY-2 platform trial; this 
investigational arm demonstrated a significant improvement 
in pCR in patients with early-stage TNBC and graduated for 
efficacy. The subsequent randomized phase III BrighTNess 
trial compared this combination to taxane and anthracycline-
based neoadjuvant chemotherapy (T-AC) with and without 
carboplatin. BrighTNess found that the addition of carbopl-
atin to T-AC significantly improved pCR rates and long-term 
outcome but adding veliparib only served to increase toxicity 
without any additional therapeutic benefit [83].

PI3K/AKT/PTEN/mTOR

A quarter of TNBC patients will have activating mutations 
in the PI3K/AKT/PTEN/mTOR pathway which drives tumor 
progression and promotes survival [84]. The basal-like molec-
ular subtype has high rates of PI3K/AKT/mTOR pathway 
mutations [84, 85]. Oral PI3K and AKT inhibitors have been 
studied in TNBC. Patients with advanced TNBC were treated 
with paclitaxel with or without capivasertib, and in a rand-
omized phase II trial, the combination significantly improved 
both PFS and OS, most notably in patients with PI3KCA/
AKT1/PTEN mutations [86]. In the phase II LOTUS trial, 
ipataserib and paclitaxel also demonstrated improved PFS 
compared to paclitaxel alone [87]. However, the follow-up 
randomized phase III Ipatunity130 trial failed to demonstrate 
a significant improvement in PFS and OS [88], and in the 
FAIRLANE neoadjuvant trial, ipataserib plus paclitaxel did 
not improve the rate of pCR in comparison to paclitaxel alone 
[89]. The pan-PI3K inhibitor buparlisib did not improve PFS 
nor OS in advanced, PI3K-activated, HER2-negative tumors 
[90]. Downstream targeting of mTOR has also had limited 
success in advanced stage TNBC, and the role of therapies 
targeting PI3K/AKT/PTEN/mTOR pathway alterations in 
TNBC remains unclear.

Cell Cycle

Dysregulation of cyclin-dependent kinases (CDK) that 
regulate cell cycle transitions are highly relevant in BC. 
While CDK-targeted agents are first-line therapy in hor-
mone receptor positive cancers, TNBCs initially exhibited 
resistance. The CDK4/6 inhibitor trilaciclib in combina-
tion with chemotherapy-enhanced OS in a randomized 
phase II trial in patients with TNBC (19.8 vs 12.6 months, 
p < 0.001) [91]; a follow-up randomized phase III trial is 
ongoing [92]. Synergistic activity of PI3K and CDK4/6 
inhibitors in PIK3CA mutant TNBC has been documented 
and are partially due to enhanced tumor immune cell 
infiltration [93]. These findings have led to ongoing ran-
domized trials of CDK4/6 inhibitors in combination with 
ICIs, androgen receptors (NCT02605486) and other targeted 
therapies (NCT02978716; NCT03805399; NCT02978716; 
NCT03756090).

Androgen Receptor

Recognition that the androgen receptor (AR) is expressed in a 
subset of TNBC tumors has opened the door to a new avenue 
of clinical research, and a number of studies have explored 
repurposing the anti-androgens used for the treatment of pros-
tate cancer for this form of breast cancer. Enzalutamide and 
bicalutamide exhibited 33% and 19% of clinical benefit rates 
(CBR) in AR-positive TNBC at 16 weeks [94, 95]. Abirater-
one and steroid combination resulted in a 16-week CBR of 
20% [96]. In a recently completed randomized phase II trial, 
darolutamide was compared to capecitabine in patients with 
AR-positive TNBC; while capecitabine was found to have a 
higher 16-week CBR than darolutamide (59.4 vs 29.3%) [97], 
there is clearly a subset of patients with advanced AR-positive 
TNBC who benefit from anti-AR therapy, and the develop-
ment of a better predictive biomarker is crucial.

Epidermal Growth Factor Receptor (EGFR)

Growth factors drive diverse signaling pathways in cancer 
development and many TNBC have EGFR over-expression 
[74•]. Cetuximab, a monoclonal antibody targeting EGFR, 
used in combination with cisplatin did modestly improve 
ORR compared to cisplatin alone (20% vs 10%) and median 
PFS (3.7 vs 1.5 months) [98]. However, in TBCRC 011, 
cetuximab alone or in combination with carboplatin had very 
low clinical activity, and correlative studies demonstrated 
that while most TNBCs in the study had EGFR pathway 
activation, cetuximab only blocked activation in a minority 
of tumors [99]. Overall, EGFR inhibitors have not had sig-
nificant success in clinical trials compared to chemotherapy, 
and while the EGFR pathway appears to be activated in a 
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number of TNBCs, currently available EGFR inhibitors do 
not appear to adequately modulate this activity to elicit a 
clinical benefit.

Other Signaling Pathways

While targeting the RAS/MAPK signaling pathway with 
MEK inhibitors as monotherapy has not been successful 
in TNBC [100], the COLET study explored the combina-
tion of cobimetinib with immunotherapy and chemotherapy 
in untreated mTNBC. Cobimetinib with paclitaxel did not 
increase PFS or ORR, and cobimetinib added to atezoli-
zumab and taxane did not increase ORR [101].

The Wnt signaling pathways drive cell survival, prolifera-
tion, differentiation, cell migration and polarity [102]. Sev-
eral inhibitors that target the Wnt pathway are in early phase 
clinical trials [103]. Gedatolisib (dual PI3K/mTOR inhibi-
tor) plus cofetuzumab (an ADC against PTK7) in phase I 
clinical trial revealed promising results [104], and planning 
of later phase studies is underway.

TGF-β has crucial functions in many central signal-
ing pathways of TNBC [105]. Using anti-TGF-β agents to 
enhance activity of other investigative drugs is of current 
interest. Targeting TGF-β with fresolimumab improved 
effects of radiotherapy with respect to median overall sur-
vival and enhanced systemic immune response [106]. Cur-
rent trials are evaluating effects of the neutralizing antibody 
NIS793 with the PD-1 inhibitor spartalizumab, as well as the 
combination of anti-TGF-β plus eribulin in mTNBC [107].

Cancer Cell Metabolism

TNBC takes advantage of metabolic reprogramming to fuel 
tumor progression. Identifying therapeutic vulnerabilities 
within cell metabolism that are unique to cancer cells facili-
tates new targetable opportunities.

TNBC tumors are characterized by states of high glyco-
lytic flux and low mitochondrial-driven oxidative phospho-
rylation activity, and enhanced glycolysis is noted in hypoxic 
environments [108–110]. Genome-wide screens have iden-
tified glycolytic and oxidative phosphorylation genes that 
are crucial to survival of TNBC cells [111]. In TNBC there 
is added metabolic heterogeneity, suggesting unique thera-
peutic regimens catering to these distinct profiles will be 
required to harness such vulnerabilities [112]. In a subset of 
TNBC tumors with enhanced glycolysis and carbohydrate 
nucleotide metabolism, it has been proposed that inhibition 
of lactate dehydrogenase could enhance tumor response to 
anti-PD-1 by inhibiting tumor immunosurveillance by T- 
and NK cells [112]. FASN produces long-chain saturated 
fatty acids de novo in growing cells, and a FASN inhibitor, 
TVB-2640 is in early-stage clinical trials for advanced breast 

cancer [112, 113]. Additional promising metabolic targets 
for TNBC in preclinical development include the glucose 
transporter 1 (GLUT1), glutaminase GLS2 (induced by 
p53), and pyruvate kinase isozymes M2 (PKM2) [114, 115].

Vulnerabilities in Epigenetics Regulation

While genetics play a large role in breast cancer development 
and risk, epigenetic processes including DNA methylation, 
histone modification, and microRNAs (miRNAs) also dra-
matically alter the tumor microenviroment, affecting tumor 
progression and therapeutic response. Epigenetic events 
result in aberrant overactivation of downstream signaling 
pathways and epigenetic targets have emerged in TNBC 
[116]. While epigenetic biomarkers have been implicated in 
breast cancer as prognostic and diagnostic markers [117], the 
role of epigenetics in identifying therapeutic vulnerabilities 
in TNBC is still under investigation. Unfortunately, previous 
clinical trials in TNBC involving HDAC inhibitors or other 
inhibitors of epigenetic processes have not had success with 
toxic adverse effects and nonspecific pharmacodynamics as 
the major challenges [118]. Future investigations are war-
ranted to determine the therapeutic potential of combination 
strategies.

DNA Methylation

Methylation of DNA is a mechanism by which gene expres-
sion is regulated. Generally, hypomethylation causes activa-
tion of genes that can regulate metastasis and chemoresistance, 
while hypermethylation supports uncontrolled proliferation 
[118]. Compared to other subtypes, TNBC is characterized 
by genome-wide hypomethylation, thereby activating genes 
regulating metastasis and chemoresistance [117]. Targeting 
epigenetic pathways can alter gene expression and the tumor 
microenvironment. Low expression of superoxide dismutatase 3 
(SOD3) is common in TNBC; epigenetic silencing of SOD3 via 
methylation represents a novel therapeutic target in TNBC [119]. 
DNA methylation has also been linked to cancer stemness, and 
dysregulated methylation binding sites of canonical genes pro-
mote a stem cell phenotype [117, 120, 121]. DNMT inhibitors 
can activate expression of endogenous retroviral double stranded 
RNAs which in turn stimulate an interferon-1 response, suggest-
ing that DNMT inhibition may enhance immunotherapy efficacy 
in breast cancer [122].

Histone Modification

Histone modification encompasses acetylation, deacetylation 
and methylation events. Histone methyltransferases (HMT) 
and histone demethylases (HDM) mediate this delicate bal-
ance [123]. Balances between H3K9ac accumulation and 
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H3K17me3 dysregulation have been observed to affect tum-
origenesis, oncogenic signaling pathways, metastasis [116].

Histone deacetylase (HDAC) inhibitors have had lim-
ited success in TNBC. With the emergence and success of 
immunotherapy in TNBC, the HDAC inhibitor romidep-
sin has re-emerged in active trials for locally recurrent or 
metastatic TNBC with systemic chemotherapy (cisplatin) 
and immunotherapy (nivolumab) (NCT02393794). More 
recently, HDAC inhibitors have been tested in combination 
with immunotherapy (NCT02708680), and CDK4/6 inhibi-
tors (NCT04315233). Furthermore, HDAC inhibitors have 
had promising results in attenuation of drug resistance in BC 
cells by targeting efflux transporters multidrug resistance 
protein, MDR-1, and breast cancer resistance protein, BCRP 
[124]. In addition to DNA methylation aberration, histone 
modification events also drive stemness and metastasis in 
breast cancer [123, 125–129].

Non‑coding RNAs

Epigenetic dysregulation of non-coding RNAs (ncRNAs) 
has also been associated with enhanced metastasis and 
stemness features [117, 130–132]. Select long-noncoding 
RNAs (lncRNAs) are under pre-clinical investigation as 
potential therapeutic targets that drive tumorigenesis and 
tumor invasiveness, namely FLVCR1-AS1 and HOTAIR 
[133, 134]. The lncRNA DANCR has been associated with 
cancer stemness in late-stage TNBC by downregulating 
SOCS3 [135] and another lncRNA associated gene, cancer 
susceptibility candidate 9 (CASC-9) promotes doxorubicin 
resistance [136].

Targeting Hypoxia and the Stress Response

Approximately 25–40% of invasive breast cancers contain 
focal areas of hypoxia, often associated with abnormal 
angiogenesis [137]. Under hypoxia, cancer cells hijack 
stress pathways to overcome hostile microenvironments 
and survive [138]. In solid tumors, hypoxia drives cancer 
cell programming, stem cell signaling pathways, angiogen-
esis, extracellular matrix regulation, and development of 
metastasis [137, 138]. Because hypoxia has an expansive 
signaling network and is influenced by stress-induced envi-
ronments, the key to targeting hypoxia and assessing prog-
nostic implications of a hypoxic environment is to identify 
hypoxia-inducible molecular markers and specific targets 
[115]. Targeting hypoxia-inducible factors (HIFs) has proven 
to be difficult due to the diverse function of HIFs, and in fact 
two major clinical trials with HIF inhibitors tirapazamine 
and evofosfamide failed [115, 137, 139]. Carbonic anhydrase 

IX, a hypoxia inducible factor, is a novel prognostic marker 
for hypoxia in breast cancer [140].

Adenosine triphosphate (ATP) conversion to ADP and 
AMP is exacerbated in hypoxia, and AMP is metabolized 
to adenosine by CD73 on tumor cells. Adenosine interacts 
with ADA-2 adenosine receptor (A2AR) which has pivotal 
effects in the immune response. In addition to limiting natu-
ral killer cell maturation [141], A2AR enhances cytotoxic 
T-cell activity suggesting its role as a promising anti-cancer 
target. Early-stage clinical trials in TNBC, as well as mul-
tiple other malignancies, aim to evaluate the dual effect of 
targeting hypoxia and the immune response in TNBC.

Tumors take advantage of physiologic stress responses 
and hijack regulatory pathways and stress signaling, to pro-
mote cancer cell survival. Hypoxia contributes to tumor 
escape from immune surveillance and immunotherapy, and 
resistance to immunotherapy [142–145]. Hypoxia has been 
shown to induce T and NK effector cell dysfunction through 
a HIF1α-mediated mechanism [142], suggesting that target-
ing HIF1α pathway is a possible method to enhance effector 
cell function and response to anti-PD1 immunotherapy.

Conclusions

TNBC is characterized by marked heterogeneity, and no “one 
size fits all” therapeutic strategy will work for this collection of 
diverse tumors. A better understanding of the underlying mech-
anisms driving aggressive clinical behavior through technologi-
cal advances has led to various innovative and novel strategies 
to treat TNBC. Advances in drug development, recognition that 
a subset of TNBCs are immunogenically active, and identifica-
tion of novel targets have led to improved outcomes for patients 
with early and advanced TNBC alike (Fig. 1).

Further technological advances to aid in the identification 
of therapeutic vulnerabilities coupled with novel treatments 
will enable the continued realization of precision medicine 
for TNBC.
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