
Exploiting Unintended Feature Leakage

in Collaborative Learning

Luca Melis∗

UCL

luca.melis.14@alumni.ucl.ac.uk

Congzheng Song∗

Cornell University

cs2296@cornell.edu

Emiliano De Cristofaro

UCL & Alan Turing Institute

e.decristofaro@ucl.ac.uk

Vitaly Shmatikov

Cornell Tech

shmat@cs.cornell.edu

Abstract—Collaborative machine learning and related tech-
niques such as federated learning allow multiple participants,
each with his own training dataset, to build a joint model by
training locally and periodically exchanging model updates.

We demonstrate that these updates leak unintended informa-
tion about participants’ training data and develop passive and
active inference attacks to exploit this leakage. First, we show that
an adversarial participant can infer the presence of exact data
points—for example, specific locations—in others’ training data
(i.e., membership inference). Then, we show how this adversary
can infer properties that hold only for a subset of the training
data and are independent of the properties that the joint model
aims to capture. For example, he can infer when a specific person
first appears in the photos used to train a binary gender classifier.

We evaluate our attacks on a variety of tasks, datasets, and
learning configurations, analyze their limitations, and discuss
possible defenses.

I. INTRODUCTION

Collaborative machine learning (ML) has recently emerged

as an alternative to conventional ML methodologies where

all training data is pooled and the model is trained on this

joint pool. It allows two or more participants, each with his

own training dataset, to construct a joint model. Each partic-

ipant trains a local model on his own data and periodically

exchanges model parameters, updates to these parameters, or

partially constructed models with the other participants.

Several architectures have been proposed for distributed,

collaborative, and federated learning [9, 11, 33, 38, 62, 68]:

with and without a central server, with different ways of

aggregating models, etc. The main goal is to improve the

training speed and reduce overheads, but protecting privacy of

the participants’ training data is also an important motivation

for several recently proposed techniques [35, 52]. Because

the training data never leave the participants’ machines, col-

laborative learning may be a good match for the scenarios

where this data is sensitive (e.g., health-care records, private

images, personally identifiable information, etc.). Compelling

applications include training of predictive keyboards on char-

acter sequences that users type on their smartphones [35],

or using data from multiple hospitals to develop predictive

models for patient survival [29] and side effects of medical

treatments [30].

Collaborative training, however, does disclose information

via model updates that are based on the training data. The

key question we investigate in this paper is: what can be

inferred about a participant’s training dataset from the

model updates revealed during collaborative model training?

Of course, the purpose of ML is to discover new information

about the data. Any useful ML model reveals something

about the population from which the training data was drawn.

For example, in addition to accurately classifying its inputs,

a classifier model may reveal the features that characterize

a given class or help construct data points that belong to

this class. In this paper, we focus on inferring “unintended”

features, i.e., properties that hold for certain subsets of the

training data, but not generically for all class members.

The basic privacy violation in this setting is membership

inference: given an exact data point, determine if it was used

to train the model. Prior work described passive and active

membership inference attacks against ML models [24, 53],

but collaborative learning presents interesting new avenues for

such inferences. For example, we show that an adversarial

participant can infer whether a specific location profile was

used to train a gender classifier on the FourSquare location

dataset [64] with 0.99 precision and perfect recall.

We then investigate passive and active property inference

attacks that allow an adversarial participant in collaborative

learning to infer properties of other participants’ training data

that are not true of the class as a whole, or even independent of

the features that characterize the classes of the joint model. We

also study variations such as inferring when a property appears

and disappears in the data during training—for example,

identifying when a certain person first appears in the photos

used to train a generic gender classifier.

For a variety of datasets and ML tasks, we demonstrate

successful inference attacks against two-party and multi-party

collaborative learning based on [52] and multi-party federated

learning based on [35]. For example, when the model is trained

on the LFW dataset [28] to recognize gender or race, we infer

whether people in the training photos wear glasses—a property

that is uncorrelated with the main task. By contrast, prior

property inference attacks [2, 25] infer only properties that

characterize an entire class. We discuss this critical distinction

in detail in Section III.

Our key observation, concretely illustrated by our exper-

iments, is that modern deep-learning models come up with

separate internal representations of all kinds of features, some

of which are independent of the task being learned. These

“unintended” features leak information about participants’

691

2019 IEEE Symposium on Security and Privacy

© 2019, Luca Melis. Under license to IEEE.
DOI 10.1109/SP.2019.00029



training data. We also demonstrate that an active adversary can

use multi-task learning to trick the joint model into learning

a better internal separation of the features that are of interest

to him and thus extract even more information.

Some of our inference attacks have direct privacy implica-

tions. For example, when training a binary gender classifier on

the FaceScrub [40] dataset, we infer with high accuracy (0.9

AUC score) that a certain person appears in a single training

batch even if half of the photos in the batch depict other

people. When training a generic sentiment analysis model on

Yelp healthcare-related reviews, we infer the specialty of the

doctor being reviewed with perfect accuracy. On another set

of Yelp reviews, we identify the author even if their reviews

account for less than a third of the batch.

We also measure the performance of our attacks vis-à-

vis the number of participants (see Section VII). On the

image-classification tasks, AUC degrades once the number of

participants exceeds a dozen or so. On sentiment-analysis tasks

with Yelp reviews, AUC of author identification remains high

for many authors even with 30 participants.

Federated learning with model averaging [35] does not

reveal individual gradient updates, greatly reducing the infor-

mation available to the adversary. We demonstrate successful

attacks even in this setting, e.g., inferring that photos of a

certain person appear in the training data.

Finally, we evaluate possible defenses—sharing fewer

gradients, reducing the dimensionality of the input space,

dropout—and find that they do not effectively thwart our

attacks. We also attempt to use participant-level different

privacy [36], which, however, is geared to work with thousands

of users, and the joint model fails to converge in our setting.

II. BACKGROUND

A. Machine learning (ML)

An ML model is a function fθ : X 7→ Y parameterized by

a set of parameters θ, where X denotes the input (or feature)

space, and Y the output space.

In this paper, we focus on the supervised learning of

classification tasks. The training data is a set of data points

labeled with their correct classes. We work with models that

take as input images or text (i.e., sequences of words) and

output a class label. To find the optimal set of parameters

that fits the training data, the training algorithm optimizes the

objective (loss) function, which penalizes the model when it

outputs a wrong label on a data point. We use L(x, y; θ) to

denote the loss computed on a data point (x, y) given the

model parameters θ, and L(b; θ) to denote the average loss

computed on a batch b of data points.

Stochastic Gradient Descent (SGD). There are many methods

to optimize the objective function. Stochastic gradient descent

(SGD) and its variants are commonly used to train artificial

neural networks, but our inference methodology is not specific

to SGD. SGD is an iterative method where at each step the

optimizer receives a small batch of the training data and

updates the model parameters θ according to the direction of

Algorithm 1 Parameter server with synchronized SGD

Server executes:
Initialize θ0
for t = 1 to T do

for each client k do
gkt ←ClientUpdate(θt−1)

end for
θt ← θt−1 − η

∑
k
gkt ⊲ synchronized gradient updates

end for

ClientUpdate(θ):

Select batch b from client’s data
return local gradients ∇L(b; θ)

the negative gradient of the objective function with respect to

θ and scaled by the learning rate η. Training finishes when the

model has converged to a local minimum, where the gradient

is close to zero. The trained model is tested using held-out

data, which was not used during training. A standard metric

is test accuracy, i.e., the percentage of held-out data points

that are classified correctly.

Hyperparameters. Most modern ML algorithms have a set of

tunable hyperparameters, distinct from the model parameters.

They control the number of training iterations, the ratio of

the regularization term in the loss function (its purpose is to

prevent overfitting, i.e., a modeling error that occurs when a

function is too closely fitted to a limited set of data points),

the size of the training batches, etc.

Deep learning (DL). A family of ML models known as

deep learning recently became very popular for many ML

tasks, especially related to computer vision and image recog-

nition [32, 51]. DL models are made of layers of non-linear

mappings from input to intermediate hidden states and then

to output. Each connection between layers has a floating-point

weight matrix as parameters. These weights are updated during

training. The topology of the connections between layers is

task-dependent and important for the accuracy of the model.

B. Collaborative learning

Training a deep neural network on a large dataset can be

time- and resource-consuming. A common scaling approach

is to partition the training dataset, concurrently train separate

models on each subset, and exchange parameters via a param-

eter server [9, 11]. During training, each local model pulls the

parameters from this server, calculates the updates based on

its current batch of training data, then pushes these updates

back to the server, which updates the global parameters.

Collaborative learning may also involve participants who

want to hide their training data from each other. We review

two architectures for privacy-preserving collaborative learning

based on, respectively, [52] and [35].

Collaborative learning with synchronized gradient

updates. Algorithm 1 shows collaborative learning with

synchronized gradient updates [52]. In every iteration of

training, each participant downloads the global model from

the parameter server, locally computes gradient updates based
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Algorithm 2 Federated learning with model averaging

Server executes:
Initialize θ0
m← max(C ·K, 1)
for t = 1 to T do

St ← (random set of m clients)
for each client k ∈ St do

θkt ←ClientUpdate(θt−1)
end for
θt ←

∑
k

n
k

n
θkt ⊲ averaging local models

end for

ClientUpdate(θ):

for each local iteration do
for each batch b in client’s split do

θ ← θ − η∇L(b; θ)
end for

end for
return local model θ

on one batch of his training data, and sends the updates to

the server. The server waits for the gradient updates from all

participants and then applies the aggregated updates to the

global model using stochastic gradient descent (SGD).

In [52], each client may share only a fraction of his

gradients. We evaluate if this mitigates our attacks in Sec-

tion VIII-A. Furthermore, [52] suggests differential privacy to

protect gradient updates. We do not include differential privacy

in our experiments. By definition, record-level differential

privacy bounds the success of membership inference, but does

not prevent property inference that applies to a group of

training records. Participant-level differential privacy, on the

other hand, bounds the success of all attacks considered in this

paper, but we are not aware of any participant-level differential

privacy mechanism that enables collaborative learning of an

accurate model with a small number of participants. We

discuss this further in Section VIII-D.

Federated learning with model averaging. Algorithm 2

shows the federated learning algorithm [35]. We set C, the

fraction of the participants who update the model in each

round, to 1 (i.e., the server takes updates from all partici-

pants), to simplify our experiments and because we ignore the

efficiency of the learning protocol when analyzing the leakage.

In each round, the k-th participant locally takes several steps

of SGD on the current model using his entire training dataset

of size nk (i.e., the globally visible updates are based not on

batches but on participants’ entire datasets). In Algorithm 2,

n is the total size of the training data, i.e., the sum of all

nk. Each participant submits the resulting model to the server,

which computes a weighted average. The server evaluates the

resulting joint model on a held-out dataset and stops training

when performance stops improving.

The convergence rate of both collaborative learning ap-

proaches heavily depends on the learning task and the hy-

perparameters (e.g., number of participants and batch size).

III. REASONING ABOUT PRIVACY IN MACHINE LEARNING

If a machine learning (ML) model is useful, it must reveal

information about the data on which it was trained [13]. To

argue that the training process and/or the resulting model

violate “privacy,” it is not enough to show that the adversary

learns something new about the training inputs. At the very

least, the adversary must learn more about the training inputs

than about other members of their respective classes. To

position our contributions in the context of related work

(surveyed in Section X) and motivate the need to study unin-

tended feature leakage, we discuss several types of adversarial

inference previously considered in the research literature.

A. Inferring class representatives

Given black-box access to a classifier model, model inver-

sion attacks [16] infer features that characterize each class,

making it possible to construct representatives of these classes.

In the special case—and only in this special case—where all

class members are similar, the results of model inversion are

similar to the training data. For example, in a facial recognition

model where each class corresponds to a single individual, all

class members depict the same person. Therefore, the outputs

of model inversion are visually similar to any image of that

person, including the training photos. If the class members are

not all visually similar, the results of model inversion do not

look like the training data [53].

If the adversary actively participates in training the model

(as in the collaborative and federated learning scenarios con-

sidered in this paper), he can use GANs [22] to construct class

representatives, as done by Hitaj et al. [25]. Only in the special

case where all class members are similar, GAN-constructed

representatives are similar to the training data. For example,

all handwritten images of the digit ‘9’ are visually similar.

Therefore, a GAN-constructed image for the ‘9’ class looks

similar to any image of digit 9, including the training images.

In a facial recognition model, too, all class members depict the

same person. Hence, a GAN-constructed face looks similar to

any image of that person, including the training photos.

Note that neither technique reconstructs actual training

inputs. In fact, there is no evidence that GANs, as used in [25],

can even distinguish between a training input and a random

member of the same class.

Data points produced by model inversion and GANs are

similar to the training inputs only if all class members are

similar, as is the case for MNIST (the dataset of handwritten

digits used in [25]) and facial recognition. This simply shows

that ML works as it should. A trained classifier reveals the

input features characteristic of each class, thus enabling the

adversary to sample from the class population. For instance,

Figure 1 shows GAN-constructed images for the gender clas-

sification task on the LFW dataset, which we use in our

experiments (see Section VI). These images show a generic

female face, but there is no way to tell from them whether an

image of a specific female was used in training or not.

Finally, the active attack in [25] works by overfitting the

joint model’s representation of a class to a single participant’s
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Fig. 1: Samples from a GAN attack on a gender classification model
where the class is “female.”

training data. This assumes that the entire training corpus for

a given class belongs to that participant. We are not aware

of any deployment scenario for collaborative learning where

this is the case. By contrast, we focus on a more realistic

scenario where the training data for each class are distributed

across multiple participants, although there may be significant

differences between their datasets.

B. Inferring membership in training data

The (arguably) simplest privacy breach is, given a model and

an exact data point, inferring whether this point was used to

train the model or not. Membership inference attacks against

aggregate statistics are well-known [14, 27, 50], and recent

work demonstrated black-box membership inference against

ML models [24, 34, 53, 58], as discussed in Section X.

The ability of an adversary to infer the presence of a specific

data point in a training dataset constitutes an immediate

privacy threat if the dataset is in itself sensitive. For example,

if a model was trained on the records of patients with a

certain disease, learning that an individual’s record was among

them directly affects his or her privacy. Membership inference

can also help demonstrate inappropriate uses of data (e.g.,

using health-care records to train ML models for unauthorized

purposes [4]), enforce individual rights such as the “right

to be forgotten,” and/or detect violations of data-protection

regulations such as the GDPR [19]. Collaborative learning

presents interesting new avenues for such inferences.

C. Inferring properties of training data

In collaborative and federated learning, participants’ training

data may not be identically distributed. Federated learning

is explicitly designed to take advantage of the fact that

participants may have private training data that are different

from the publicly available data for the same class [35].

Prior work [2, 16, 25] aimed to infer properties that char-

acterize an entire class: for example, given a face recognition

model where one of the classes is Bob, infer what Bob looks

like (e.g., Bob wears glasses). It is not clear that hiding this

information in a good classifier is possible or desirable.

By contrast, we aim to infer properties that are true of

a subset of the training inputs but not of the class as a

whole. For instance, when Bob’s photos are used to train

a gender classifier, we infer that Alice appears in some of

the photos. We especially focus on the properties that are

independent of the class’s characteristic features. In contrast

to the face recognition example, where “Bob wears glasses”

is a characteristic feature of an entire class, in our gender

classifier study we infer whether people in Bob’s photos wear

glasses—even though wearing glasses has no correlation with

gender. There is no legitimate reason for a model to leak this

information; it is purely an artifact of the learning process.

A participant’s contribution to each iteration of collaborative

learning is based on a batch of his training data. We infer

single-batch properties, i.e., detect that the data in a given

batch has the property but other batches do not. We also infer

when a property appears in the training data. This has serious

privacy implications. For instance, we can infer when a certain

person starts appearing in a participant’s photos or when the

participant starts visiting a certain type of doctors. Finally, we

infer properties that characterize a participant’s entire dataset

(but not the entire class), e.g., authorship of the texts used to

train a sentiment-analysis model.

IV. INFERENCE ATTACKS

A. Threat model

We assume that K participants (where K ≥ 2) jointly

train an ML model using one of the collaborative learning

algorithms described in Section II-B. One of the participants

is the adversary. His goal is to infer information about

the training data of another, target participant by analyzing

periodic updates to the joint model during training. Multi-

party (K > 2) collaborative learning also involves honest

participants who are neither the adversary, nor the target. In

the multi-party case, the identities of the participants may not

be known to the adversary. Even if the identities are known but

the models are aggregated, the adversary may infer something

about the training data but not trace it to a specific participant;

we discuss this further in Section IX-D.

The updates that adversary observes and uses for inference

depend on both K and how collaborative training is done.

As inputs to his inference algorithms, the adversary uses the

model updates revealed in each round of collaborative training.

For synchronized SGD [52] with K = 2, the adversary

observes gradient updates computed on a single batch of the

target’s data. If K > 2, he observes an aggregation of gradient

updates from all other participants (each computed on a

single batch of the respective participant’s data). For federated

learning with model averaging [35], the observed updates

are the result of two-step aggregation: (1) every participant

aggregates the gradients computed on each local batch, and

(2) the server aggregates the updates from all participants.

For property inference, the adversary needs auxiliary train-

ing data correctly labeled with the property he wants to infer

(e.g., faces labeled with ages if the goal is to infer ages).

For active property inference (Section IV-E), these auxiliary

data points must also be labeled for the main task (e.g., faces

labeled with identities for a facial recognition model).

B. Overview of the attacks

Figure 2 provides a high-level overview of our inference

attacks. At each iteration t of training, the adversary down-

loads the current joint model, calculates gradient updates as

prescribed by the collaborative learning algorithm, and sends
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Fig. 2: Overview of inference attacks against collaborative learning.

his own updates to the server. The adversary saves the snapshot

of the joint model parameters θt. The difference between

the consecutive snapshots ∆θt = θt − θt−1 =
∑

k ∆θkt is

equal to the aggregated updates from all participants, hence

∆θt −∆θadv
t are the aggregated updates from all participants

other than the adversary.

Leakage from the embedding layer. All deep learning models

operating on non-numeric data where the input space is

discrete and sparse (e.g., natural-language text or locations)

first use an embedding layer to transform inputs into a lower-

dimensional vector representation. For convenience, we use

word to denote discrete tokens, i.e., actual words or specific

locations. Let vocabulary V be the set of all words. Each word

in the training data is mapped to a word-embedding vector via

an embedding matrix Wemb ∈ R
|V |×d, where |V | is the size of

the vocabulary and d is the dimensionality of the embedding.

During training, the embedding matrix is treated as a

parameter of the model and optimized collaboratively. The

gradient of the embedding layer is sparse with respect to the

input words: given a batch of text, the embedding is updated

only with the words that appear in the batch. The gradients

of the other words are zeros. This difference directly reveals

which words occur in the training batches used by the honest

participants during collaborative learning.

Leakage from the gradients. In deep learning models, gra-

dients are computed by back-propagating the loss through the

entire network from the last to the first layer. Gradients of a

given layer are computed using this layer’s features and the

error from the layer above. In the case of sequential fully

connected layers hl, hl+1 (hl+1 = Wl · hl, where Wl is the

weight matrix), the gradient of error E with respect to Wl is

computed as ∂E
∂Wl

= ∂E
∂hl+1

· hl. The gradients of Wl are inner

products of the error from the layer above and the features

hl. Similarly, for a convolutional layer, the gradients of the

weights are convolutions of the error from the layer above

and the features hl. Observations of gradient updates can thus

be used to infer feature values, which are in turn based on the

participants’ private training data.

C. Membership inference

As explained above, the non-zero gradients of the embed-

ding layer reveal which words appear in a batch. This helps

infer whether a given text or location appears in the training

dataset or not. Let Vt be the words included in the updates ∆θt.
During training, the attacker collects a vocabulary sequence

[V1, . . . , VT ]. Given a text record r, with words Vr, he can

test if Vr ⊆ Vt, for some t in the vocabulary sequence. If r
is in target’s dataset, then Vr will be included in at least one

vocabulary from the sequence. The adversary can use this to

decide whether r was a member or not.

D. Passive property inference

We assume that the adversary has auxiliary data consisting

of the data points that have the property of interest (Dadv
prop) and

data points that do not have the property (Dadv
nonprop). These data

points need to be sampled from the same class as the target

participant’s data, but otherwise can be unrelated.

The intuition behind our attack is that the adversary can

leverage the snapshots of the global model to generate aggre-

gated updates based on the data with the property and updates

based on the data without the property. This produces labeled

examples, which enable the adversary to train a binary batch

property classifier that determines if the observed updates are

based on the data with or without the property. This attack is

passive, i.e., the adversary observes the updates and performs

inference without changing anything in the local or global

collaborative training procedure.

Batch property classifier. Algorithm 3 shows how to build a

batch property classifier during collaborative training. Given a

model snapshot θt, calculate gradients gprop based on a batch

with the property badv
prop ⊂ Dadv

prop and gnonprop based on a batch

without the property badv
nonprop ⊂ Dadv

nonprop. Once enough labeled

gradients have been collected, train a binary classifier fprop.

For the property inference attacks that exploit the

embedding-layer gradients (e.g., the attack on the Yelp dataset

in Section VI-B), we use a logistic regression classifier. For all

other property inference attacks, we experimented with logistic

regression, gradient boosting, and random forests. Random

forests with 50 trees performed the best. The input features

in this case correspond to the observed gradient updates.

The number of the features is thus equal to the model’s

parameters, which can be very large for a realistic model.

To downsample the features representation, we apply the

max pooling operator [21] on the observed gradient updates.

More specifically, max pooling performs a max filter to non-
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Algorithm 3 Batch Property Classifier

Inputs: Attacker’s auxiliary data Dadv
prop, D

adv
nonprop

Outputs: Batch property classifier fprop

Gprop ← ∅ ⊲ Positive training data for property inference
Gnonprop ← ∅ ⊲ Negative training data for property inference
for i = 1 to T do

Receive θt from server
Run ClientUpdate(θt)
Sample badv

prop ⊂ Dadv
prop, b

adv
nonprop ⊂ Dadv

nonprop

Calculate gprop = ∇L(badv
prop; θt), gnonprop = ∇L(badv

nonprop; θt)
Gprop ← Gprop ∪ {gprop}
Gnonprop ← Gnonprop ∪ {gnonprop}

end for
Label Gprop as positive and Gnonprop as negative
Train a binary classifier fprop given Gprop, Gnonprop

overlapping subregions of the initial features representation,

thus reducing the computational cost of the attack.

Inference algorithm. As collaborative training progresses, the

adversary observes gradient updates gobs = ∆θt − ∆θadv
t .

For single-batch inference, the adversary simply feeds the

observed gradient updates to the batch property classifier fprop.

This attack can be extended from single-batch properties to

the target’s entire training dataset. The batch property classifier

fprop outputs a score in [0,1], indicating the probability that

a batch has the property. The adversary can use the average

score across all iterations to decide whether the target’s entire

dataset has the property in question.

E. Active property inference

An active adversary can perform a more powerful attack

by using multi-task learning. The adversary extends his local

copy of the collaboratively trained model with an augmented

property classifier connected to the last layer. He trains this

model to simultaneously perform well on the main task and

recognize batch properties. On the training data where each

record has a main label y and a property label p, the model’s

joint loss is calculated as:

Lmt = α · L(x, y; θ) + (1− α) · L(x, p; θ)

During collaborative training, the adversary uploads the up-

dates ∇θLmt based on this joint loss, causing the joint model

to learn separable representations for the data with and without

the property. As a result, the gradients will be separable too

(e.g., see Figure 7 in Section VI-E), enabling the adversary to

tell if the training data has the property.

This adversary is still “honest-but-curious” in the cryp-

tographic parlance. He faithfully follows the collaborative

learning protocol and does not submit any malformed mes-

sages. The only difference with the passive attack is that this

adversary performs additional local computations and submits

the resulting values into the collaborative learning protocol.

Note that the “honest-but-curious” model does not constrain

the parties’ input values, only their messages.

V. DATASETS AND MODEL ARCHITECTURES

The datasets, collaborative learning tasks, and adversarial

inference tasks used in our experiments are reported in Table I.

Dataset #Records Main tasks Inference tasks

LFW 13.2k Gender/Smile/Age Race/Eyewear
Eyewear/Race/Hair

FaceScrub 18.8k Gender Identity

PIPA 18.0k Age Gender

CSI 1.4k Sentiment Membership,
Region/Gender/Veracity

FourSquare 15.5k Gender Membership

Yelp-health 17.9k Review score Membership,
Doctor specialty

Yelp-author 16.2K Review score Author

TABLE I: Datasets and tasks used in our experiments.

Our choices of hyperparameters are based on the standard

models from the ML literature.

Labeled Faces In the Wild (LFW). LFW [28] contains 13,233

62x47 RGB face images for 5,749 individuals with labels such

as gender, race, age, hair color, and eyewear.

FaceScrub. FaceScrub [40] contains 76,541 50x50 RGB

images for 530 individuals with the gender label: 52.5% are

labeled as male, the rest as female. For our experiments, we

selected a subset of 100 individuals with the most images, for

a total of 18,809 images.

On both LFW and FaceScrub, the collaborative models are

convolutional neural networks (CNN) with three spatial con-

volution layers with 32, 64, and 128 filters, kernel size set

to (3, 3), and max pooling layers with pooling size set to 2,

followed by two fully connected layers of size 256 and 2. We

use rectified linear unit (ReLU) as the activation function for

all layers. Batch size is 32 (except in the experiments where

we vary it), SGD learning rate is 0.01.

People in Photo Album (PIPA). PIPA [67] contains over

60,000 photos of 2,000 individuals collected from public

Flickr photo albums. Each image includes one or more people

and is labeled with the number of people and their gender,

age, and race. For our experiments, we selected a subset of

18,000 images with three or fewer people and scaled the raw

images to 128x128.

The collaborative model for PIPA is a VGG-style [54]

10-layer CNN with two convolution blocks consisting of

one convolutional layer and max pooling, followed by three

convolution blocks consisting of two convolutional layers and

max pooling, followed by two fully connected layers. Batch

size is 32, SGD learning rate is 0.01.

Yelp-health. We extracted health care-related reviews from the

Yelp dataset1 of 5 million reviews of businesses tagged with

numeric ratings (1-5) and attributes such as business type and

location. Our subset contains 17,938 reviews for 10 types of

medical specialists (see the leftmost column of Table IV).

Yelp-author. We also extracted a Yelp subset with the reviews

of the top 10 most prolific reviewers, 16,207 in total.

On both Yelp datasets, the model is a recurrent neural net-

work with a word-embedding layer of dimension 100. Words

in a review are mapped to a sequence of word-embedding

vectors, which is fed to a gated recurrent unit (GRU [10])

1https://www.yelp.com/dataset
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layer that maps it to a sequence of hidden vectors. We add a

fully connected classification layer to the last hidden vector of

the sequence. SGD learning rate is 0.05.

FourSquare. In [63, 64], Yang et al. collected a global

dataset of FourSquare location “check-ins” (userID, time,

location, activity) from April 2012 to September 2013. For

our experiments, we selected a subset of 15,548 users who

checked in at least 10 different locations in New York City

and for whom we know their gender [65]. This yields 528,878

check-ins. The model is a gender classifier, a task previously

studied by Pang et al. [44] on similar datasets.

CLiPS Stylometry Investigation (CSI) Corpus. This annually

expanded dataset [60] contains student-written essays and

reviews. We obtained 1,412 reviews, equally split between

Truthful/Deceptive or Positive/Negative and labeled with at-

tributes of the author (gender, age, sexual orientation, region

of origin, personality profile) and the document (timestamp,

genre, topic, veracity, sentiment). 80% of the reviews are

written by females, 66% by authors from Antwerpen, the rest

from other parts of Belgium and the Netherlands.

On both the FourSquare and CSI datasets, the model, which

is based on [31], first uses an embedding layer to turn non-

negative integers (locations indices and word tokens) into

dense vectors of dimension 320, then applies three spatial con-

volutional layers with 100 filters and variable kernel windows

of size (3, 320), (4, 320) and (5, 320) and max pooling layers

with pooling size set to (l−3, 1), (l−4, 1), and (l−5, 1) where

l is the fixed length to which input sequences are padded. The

hyperparameter l is 300 on CSI and 100 on FourSquare. After

this, the model has two fully connected layers of size 128 and

2 for FourSquare and one fully connected layer of size 2 for

CSI. We use RELU as the activation function. Batch size is

100 for FourSquare, 12 for CSI. SGD learning rate is 0.01.

VI. TWO-PARTY EXPERIMENTS

All experiments were performed on a workstation running

Ubuntu Server 16.04 LTS equipped with a 3.4GHz CPU i7-

6800K, 32GB RAM, and an NVIDIA TitanX GPU card.

We use MxNet [8] and Lasagne [12] to implement deep

neural networks and Scikit-learn [48] for conventional ML

models. The source code is available upon request. Training

our inference models takes less than 60 seconds on average

and does not require a GPU.

We use AUC scores to evaluate the performance of both

the collaborative model and our property inference attacks.

For membership inference, we report only precision because

our decision rule from Section IV-C is binary and does not

produce a probability score.

A. Membership inference

The adversary first builds a Bag of Words (BoW) represen-

tation for the input whose membership in the target’s training

data he aims to infer. We denote this as the test BoW. During

training, as explained in Section IV-C, the non-zero gradients

of the embedding layer reveal which “words” are present in

Yelp-health FourSquare

Batch Size Precision Batch Size Precision

32 0.92 100 0.99
64 0.84 200 0.98

128 0.75 500 0.91
256 0.66 1,000 0.76
512 0.62 2,000 0.62

TABLE II: Precision of membership inference (recall is 1).

Main T. Infer T. Corr. AUC Main T. Infer T. Corr. AUC

Gender Black -0.005 1.0 Gender Sunglasses -0.025 1.0
Gender Asian -0.018 0.93 Gender Eyeglasses 0.157 0.94

Smile Black 0.062 1.0 Smile Sunglasses -0.016 1.0
Smile Asian 0.047 0.93 Smile Eyeglasses -0.083 0.97

Age Black -0.084 1.0 Race Sunglasses 0.026 1.0
Age Asian -0.078 0.97 Race Eyeglasses -0.116 0.96

Eyewear Black 0.034 1.0 Hair Sunglasses -0.013 1.0
Eyewear Asian -0.119 0.91 Hair Eyeglasses 0.139 0.96

TABLE III: AUC score of single-batch property inference on LFW.
We also report the Pearson correlation between the main task label
and the property label.

each batch of the target’s data, enabling the adversary to build

a batch BoW. If the test BoW is a subset of the batch BoW, the

adversary infers that the input of interest occurs in the batch.

We evaluate membership inference on the Yelp-health and

FourSquare datasets with the vocabulary of 5,000 most fre-

quent words and 30,000 most popular locations, respectively.

We split the data evenly between the target and the adversary

and train a collaborative model for 3,000 iterations.

Table II shows the precision of membership inference for

different batch sizes. As batch size increases, the adversary

observes more words in each batch BoW and the attack

produces more false positives. Recall is always perfect (i.e., no

false negatives) because any true test BoW must be contained

in at least one of the batch BoWs observed by the adversary.

B. Single-batch property inference

We call a training batch bnonprop if none of the inputs in

it have the property, bprop otherwise. The adversary aims to

identify which of the batches are bprop. We split the training

data evenly between the target and the adversary and assume

that the same fraction of inputs in both subsets have the

property. During training, 1

m
of the target’s batches include

only inputs with the property (m = 2 in the following).

LFW. Table III reports the results of single-batch property

inference on the LFW dataset. We chose properties that

are uncorrelated with the main classification label that the

collaborative model is trying to learn. The attack has perfect

AUC when the main task is gender classification and the

inference task is “race:black” (the Pearson correlation between

these labels is -0.005). The attack also achieves almost perfect

AUC when the main task is “race: black” and the inference

task is “eyewear: sunglasses.” It also performs well on several

other properties, including “eyewear: glasses” when the main

task is “race: Asian.”

These results demonstrate that gradients observed during

training leak more than the characteristic features of each

class. In fact, collaborative learning leaks properties of the
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(a) pool1 (b) pool2 (c) pool3 (d) fc

Fig. 3: t-SNE projection of the features from different layers of the joint model on LFW gender classification; hollow circle point is female,
solid triangle point is male, blue point is the property “race: black” and red point is data without the property.

(a) FaceScrub (b) Yelp-author

Fig. 4: AUC vs. the fraction of the batch that has the property on FaceScrub and Yelp-author.

Health Service Top Words in Positive Class

Obstetricians pregnancy, delivery, women, birth, ultrasound
Pediatricians pediatrics, sick, parents, kid, newborn
Cosmetic Surgeons augmentation, plastic, breast, facial, implants
Cardiologists cardiologist, monitor, bed, heart, ER
Dermatologists acne, dermatologists, mole, cancer, spots
Ophthalmologists vision, LASIK, contacts, lenses, frames
Orthopedists knee, orthopedic, shoulder, injury, therapy
Radiologists imaging, SimonMed, mammogram, CT, MRI
Psychiatrists psychiatrist, mental, Zedek, depression, sessions
Urologists Edgepark, pump, supplies, urologist, kidney

TABLE IV: Words with the largest positive coefficients in the
property classifier for Yelp-health.

training data that are uncorrelated with class membership.

To understand why, we plot the t-SNE projection [59] of the

features from different layers of the joint model in Figure 3.

Observe that the feature vectors are grouped by property in

the lower layers pool1, pool2 and pool3, and by class label

in the higher layer. Intuitively, the model did not just learn

to separate inputs by class. The lower layers of the model

also learned to separate inputs by various properties that are

uncorrelated with the model’s designated task. Our inference

attack exploits this unintended extra functionality.

Yelp-health. On this dataset, we use review-score classifica-

tion as the main task and the specialty of the doctor being

reviewed as the property inference task. Obviously, the latter

is more sensitive from the privacy perspective.

We use 3,000 most frequent words in the corpus as the

vocabulary and train for 3,000 iterations. Using BoWs from

the embedding-layer gradients, the attack achieves almost

perfect AUC. Table IV shows the words that have the highest

predictive power in our logistic regression.

Fractional properties. We now attempt to infer that some of

the inputs in a batch have the property. For these experiments,

we use FaceScrub’s top 5 face IDs and Yelp-author (the latter

with the 3,000 most frequent words as the vocabulary). The

model is trained for 3,000 iterations. As before, 1/2 of the

target’s batches include inputs with the property, but here we

vary the fraction of inputs with the property within each such

batch among 0.1, 0.3, 0.5, 0.7, and 0.9.

Figure 4 reports the results. On FaceScrub for IDs 0, 1, and

3, AUC scores are above 0.8 even if only 50% of the batch

contain that face, i.e., the adversary can successfully infer that

photos of a particular person appear in a batch even though

(a) the model is trained for generic gender classification, and

(b) half of the photos in the batch are of other people. If the

fraction is higher, AUC approaches 1.

On Yelp-author, AUC scores are above 0.95 for all identities

even when the fraction is 0.3, i.e., the attack successfully infers

the authors of reviews even though (a) the model is trained

for generic sentiment analysis, and (b) more than two thirds

of the reviews in the batch are from other authors.

C. Inferring when a property occurs

Continuous training, when new training data is added

to the process as it becomes available, presents interesting

opportunities for inference attacks. If the occurrences of a

property in the training data can be linked to events outside the

training process, privacy violation is exacerbated. For example,
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(a) PIPA (b) FaceScrub

Fig. 5: Inferring occurrence of a single-batch property.

suppose a model leaks that a certain third person started

appearing in another participant’s training data immediately

after that participant uploaded his photos from a trip.

PIPA. Images in the PIPA dataset have between 1 to 3

faces. We train the collaborative model to detect if there is

a young adult in the image; the adversary’s inference task is

to determine if people in the image are of the same gender.

The latter property is a stepping stone to inferring social

relationships and thus sensitive. We train the model for 2,500

iterations and let the batches with the “same gender” property

appear in iterations 500 to 1500.

Figure 5a shows, for each iteration, the probability output by

the adversary’s classifier that the batch in that iteration has the

property. The appearance and disappearance of the property in

the training data are clearly visible in the plot.

FaceScrub. For the gender classification model on FaceScrub,

the adversary’s objective is to infer whether and when a certain

person appears in the other participant’s photos. The joint

model is trained for 2,500 iterations. We arrange the target’s

training data so that two specific identities appear during

certain iterations: ID 0 in iterations 0 to 500 and 1500 to 2000,

ID 1 in iterations 500 to 1000 and 2000 to 2500. The rest of the

batches are mixtures of other identities. The adversary trains

three property classifiers, for ID 0, ID 1, and also for ID 2

which does not appear in the target’s dataset.

Figure 5b reports the scores of all three classifiers. ID 0

and 1 receive the highest scores in the iterations where they

appear, whereas ID 2, which never appears in the training data,

receives very low scores in all iterations.

These experiments show that our attacks can successfully

infer dynamic properties of the training dataset as collaborative

learning progresses.

D. Inference against well-generalized models

To show that our attacks work with (1) relatively few ob-

served model updates and (2) against well-generalized models,

we experiment with the CSI corpus. Figure 6 reports the

accuracy of inferring the author’s gender. The attack reaches

0.98 AUC after only 2 epochs and improves as the training

progresses and the adversary collects more updates.

Figure 6 also shows that the model is not overfitted. Its

test accuracy on the main sentiment-analysis task is high and

improves with the number of the epochs.

Fig. 6: Attack performance with respect to the number of collabora-
tive learning epochs.

E. Active property inference

To show the additional power of the active attack from Sec-

tion IV-E, we use FaceScrub. The main task is gender classi-

fication, the adversary’s task is to infer the presence of ID 4

in the training data. We assume that this ID occurs in a single

batch, where it constitutes 50% of the photos. We evaluate the

attack with different choices of α, which controls the balance

between the main-task loss and the property-classification loss

in the adversary’s objective function.

Figure 7a shows that AUC increases as we increase α.

Figure 7b and Figure 7c show the t-SNE projection of the final

fully connected layer, with α = 0 and α = 0.7, respectively.

Observe that the data with the property (blue points) is grouped

tighter when α = 0.7 than in the model trained under a passive

attack (α = 0). This illustrates that as a result of the active

attack, the joint model learns a better separation for data with

and without the property.

VII. MULTI-PARTY EXPERIMENTS

In the multi-party setting, we only consider passive prop-

erty inference attacks. We vary the number of participants

between 4 and 30 to match the deployment scenarios and

applications proposed for collaborative learning, e.g., hospitals

or biomedical research institutions training on private medical

data [29, 30]. This is similar to prior work [25], which was

evaluated on MNIST with 2 participants and face recognition

on the AT&T dataset with 41 participants.

699



(a) ROC for different α (b) t-SNE of the final layer for α = 0 (c) t-SNE of the final layer for α = 0.7.

Fig. 7: Active property inference attack on FaceScrub. For (b) and (c), hollow circle point is female, solid triangle point is male, blue point
is the property “ID 4” and red point is data without the property.

(a) LFW (b) Yelp-author

Fig. 8: Multi-party learning with synchronized SGD: attack AUC score vs. the number of participants.

A. Synchronized SGD

As the number of honest participants in collaborative learn-

ing increases, the adversary’s task becomes harder because

the observed gradient updates are aggregated across multiple

participants. Furthermore, the inferred information may not

directly reveal the identity of the participant to whom the data

belongs (see Section IX-D).

In the following experiments, we split the training data

evenly across all participants, but so that only the target

and the adversary have the data with the property. The joint

model is trained with the same hyperparameters as in the two-

party case. Similar to Section VI-B, the adversary’s goal is

to identify which aggregated gradient updates are based on

batches bprop with the property.

LFW. We experiment with (1) gender classification as the

main task and “race: black” as the inference task, and (2)

smile classification as the main task and “eyewear: sunglasses”

as the inference task. Figure 8a shows that the attack still

achieves reasonably high performance, with AUC score around

0.8, when the number of participants is 12. Performance then

degrades for both tasks.

Yelp-author. The inference task is again author identification.

In the multi-party case, the gradients of the embedding layer

leak the batch BoWs of all honest participants, not just

the target. Figure 8b reports the results. For some authors,

AUC scores do not degrade significantly even with many

participants. This is likely due to some unique combinations

of words used by these authors, which identify them even in

multi-party settings.

B. Model averaging

In every round t of federated learning with model averaging

(see Algorithm 2), the adversary observes θt − θt−1 =
∑

k
nk

n
θkt −

∑
k

nk

n
θkt−1 =

∑
k

nk

n
(θkt −θkt−1), where θkt −θkt−1

are the aggregated gradients computed on the k-th participant’s

local dataset.

In our experiments, we split the training data evenly among

honest participants but ensure that in the target participant’s

subset, p̂% of the inputs have the property, while none of the

other honest participants’ data have it. During each epoch of

local training, every honest participant splits his local training

data into 10 batches and performs one round of training.

We assume that the adversary has the same number of inputs

with the property as the target. As before, when the adversary

trains his binary classifier, he needs to locally “emulate” the

collaborative training process, i.e., sample data from his local

dataset, compute aggregated updates, and learn to distinguish

between the aggregates based on the data without the property

and aggregates where one of the underlying updates was based

on the data with the property.

We perform 8 trials where a subset of the training data has

the property and 8 control trials where there are no training

inputs with the property.

Inferring presence of a face. We use FaceScrub and select

two face IDs (1 and 3) whose presence we want to infer.
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(a) Face ID 1, K = 3 (b) Face ID 1, K = 5 (c) Face ID 3, K = 3 (d) Face ID 3, K = 5

Fig. 9: Multi-party learning with model averaging. Box plots show the distribution of the adversary’s scores in each trial: in the 8 trials on
the left, one participant’s data has the property; in the 8 trials on the right, none of the honest participants have the data with the property.

Fig. 10: Inferring that a participant whose local data has the property
of interest has joined the training. K = 2 for rounds 0 to 250, K = 3
for rounds 250 to 500.

Property / % parameters update 10% 50% 100%

Top region (Antwerpen) 0.84 0.86 0.93
Gender 0.90 0.91 0.93
Veracity 0.94 0.99 0.99

TABLE V: Inference attacks against the CSI Corpus for different
fractions of gradients shared during training.

In the “property” case, p̂ = 80%, i.e., 80% of one honest

participant’s training data consist of the photos that depict

the person in question. In the control case, p̂ = 0%, i.e., the

photos of this person do not occur in the training data. Figure 9

shows the scores assigned by the adversary’s classifier to the

aggregated updates with 3 and 5 total participants. When the

face in question is present in the training dataset, the scores

are much higher than when it is absent.

Success of the attack depends on the property being in-

ferred, distribution of the data across participants, and other

factors. For example, the classifiers for Face IDs 2 and 4,

which were trained in the same fashion as the classifiers

for Face IDs 1 and 3, failed to infer the presence of the

corresponding faces in the training data.

Inferring when a face occurs. In this experiment, we aim to

infer when a participant whose local data has a certain property

joined collaborative training. We first let the adversary and

the rest of the honest participants train the joint model for

250 rounds. The target participant then joins the training at

round t = 250 with the local data that consists of photos

depicting ID 1. Figure 10 reports the results of the experiment:

the adversary’s AUC scores are around 0 when face ID 1 is not

present and then increase almost to 1.0 right after the target

participant joins the training.

Fig. 11: Uniqueness of user profiles with respect to the number of
top locations.

VIII. DEFENSES

A. Sharing fewer gradients

As suggested in [52], participants in collaborative learning

could share only a fraction of their gradients during each

update. This reduces communication overhead and, potentially,

leakage, since the adversary observes fewer gradients.

To evaluate this defense, we measure the performance of

single-batch inference against a sentiment classifier collabora-

tively trained on the CSI Corpus by two parties who exchange

only a fraction of their gradients. Table V shows the resulting

AUC scores: when inferring the region of the texts’ authors,

our attack still achieves 0.84 AUC when only 10% of the

updates are shared during each iteration, compared to 0.93

AUC when all updates are shared.

B. Dimensionality reduction

As discussed in Section IV-B, if the input space of the

model is sparse and inputs must be embedded into a lower-

dimensional space, non-zero gradient updates in the embed-

ding layer reveal which inputs are present in the training batch.

One plausible defense is to only use inputs that occur many

times in the training data. This does not work in general, e.g.,

Figure 11 shows that restricting inputs to the top locations in

the FourSquare dataset eliminates most of the training data.

A smarter defense is to restrict the model so that it only uses

“words” from a pre-defined vocabulary of common words. For

example, Google’s federated learning for predictive keyboards

uses a fixed vocabulary of 5,000 words [35]. In Table VI,

we report the accuracy of our membership inference attack
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CSI FourSquare

Top N Attack Model Top N Attack Model
words Precision AUC locations Precision AUC

4,000 0.94 0.91 30,000 0.91 0.64
2,000 0.92 0.87 10,000 0.86 0.59
1,000 0.92 0.85 3,000 0.65 0.51

500 0.82 0.84 1,000 0.52 0.50

TABLE VI: Membership inference against the CSI Corpus and
FourSquare for different vocabulary sizes.

Dropout Prob. Attack AUC Model AUC

0.1 0.94 0.87
0.3 0.97 0.87
0.5 0.98 0.87
0.7 0.99 0.86
0.9 0.99 0.84

TABLE VII: Inference of the top region (Antwerpen) on the CSI
Corpus for different values of dropout probability.

and the accuracy of the joint model on its main task—gender

classification for the FourSquare dataset, sentiment analysis for

the CSI Corpus—for different sizes of the common vocabulary

(locations and words, respectively). This approach partially

mitigates our attacks but also has a significant negative impact

on the quality of the collaboratively trained models.

C. Dropout

Another possible defense is to employ dropout [56], a

popular regularization technique used to mitigate overfitting

in neural networks. Dropout randomly deactivates activations

between neurons, with probability pdrop ∈ [0, 1]. Random

deactivations may weaken our attacks because the adversary

observes fewer gradients corresponding to the active neurons.

To evaluate this approach, we add dropout after the max

pool layers in the joint model. Table VII reports the accuracy

of inferring the region of the reviews in the CSI Corpus, for

different values of pdrop. Increasing the randomness of dropout

makes our attacks stronger while slightly decreasing the

accuracy of the joint model. Dropout stochastically removes

features at every collaborative training step, thus yielding more

informative features (similar to feature bagging [7, 26]) and

increasing variance between participants’ updates.

D. Participant-level differential privacy

As discussed in Section II-B, record-level ε-differential

privacy, by definition, bounds the success of membership

inference but does not prevent property inference. Any applica-

tion of differential privacy entails application-specific tradeoffs

between privacy of the training data and accuracy of the

resulting model. The participants must also somehow choose

the parameters (e.g., ε) that control this tradeoff.

In theory, participant-level differential privacy bounds the

success of inference attacks described in this paper. We im-

plemented the participant-level differentially private federated

learning algorithm by McMahan et al. [36] and attempted

to train a gender classifier on LFW, but the model did

not converge for any number of participants (we tried at

most 30). This is due to the magnitude of noise needed

to achieve differential privacy with the moments accountant

bound [1], which is inversely proportional to the number

of users (the model in [36] was trained on thousands of

users). Another participant-level differential privacy mecha-

nism, presented in [20], also requires a very large number of

participants. Moreover, these two mechanisms have been used,

respectively, for language modeling [36] and handwritten digit

recognition [20]. Adapting them to the specific models and

tasks considered in this paper may not be straightforward.

Following [20, 36], we believe that participant-level dif-

ferential privacy provide reasonable accuracy only in settings

involving at least thousands of participants. We believe that

further work is needed to investigate whether participant-level

differential privacy can be adapted to prevent our inference

attacks and obtain high-quality models in settings that do not

involve thousands of users.

IX. LIMITATIONS OF THE ATTACKS

A. Auxiliary data

Our property inference attacks assume that the adversary

has auxiliary training data correctly labeled with the property

he wants to infer. For generic properties, such data is easy to

find. For example, the auxiliary data for inferring the number

and genders of people can be any large dataset of images

with males and females, single and in groups, where each

image is labeled with the number of people in it and their

genders. Similarly, the auxiliary data for inferring the medical

specialty of doctors can consist of any texts that include words

characteristic of different specialties (see Table IV).

More targeted inference attacks require specialized auxiliary

data that may not be available to the adversary. For example,

to infer that photos of a certain person occurs in another

participant’s dataset, the adversary needs (possibly different)

photos of that person to train on. To infer the authorship of

training texts, the adversary needs a sufficiently large sample

of texts known to be written by a particular author.

B. Number of participants

In our experiments, the number of participants in collab-

orative training is relatively small (ranging from 2 to 30),

while some federated-learning applications involve thousands

or millions of users [35, 36]. As discussed in Section VII-A,

performance of our attacks drops significantly as the number

of participants increases.

C. Undetectable properties

It may not be possible to infer some properties from model

updates. For example, our attack did not detect the presence

of some face identities in the multi-party model averaging

experiments (Section VII-B). If for whatever reason the model

does not internally separate the features associated with the

target property, inference will fail.

D. Attribution of inferred properties

In the two-party scenarios considered in Section VI, attri-

bution of the inferred properties is trivial because there is only

one honest participant. In the multi-party scenarios considered
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in Section VII, model updates are aggregated. Therefore, even

if the adversary successfully infers the presence of inputs with

a certain property in the training data, he may not be able to

attribute these inputs to a specific participant. Furthermore, he

may not be able to tell if all inputs with the property belong to

one participant or are distributed across multiple participants.

In general, attribution requires auxiliary information specific

to the leakage. For example, consider face identification. In

some applications of collaborative learning, the identities of

all participants are known because they need to communicate

with each other. If collaborative learning leaks that a particular

person appears in the training images, auxiliary information

about the participants (e.g., their social networks) can reveal

which of them knows the person in question. Similarly, if

collaborative learning leaks the authorship of the training texts,

auxiliary information can help infer which participant is likely

to train on texts written by this author.

Another example of attribution based on auxiliary infor-

mation is described in Section VI-C. If photos of a certain

person first appear in the training data after a new participant

has joined collaborative training, the adversary may attribute

these photos to the new participant.

Note that leakage of medical conditions, locations, images

of individuals, or texts written by known authors is a privacy

breach even if it cannot be traced to a specific participant or

multiple participants. Leaking that a certain person appears

in the photos or just the number of people in the photos

reveals intimate relationships between people. Locations can

reveal people’s addresses, religion, sexual orientation, and

relationships with other people.

X. RELATED WORK

Privacy-preserving distributed learning. Transfer learning

in combination with differentially private (DP) techniques

tailored for deep learning [1] has been used in [45, 46]. These

techniques privately train a “student” model by transferring,

through noisy aggregation, the knowledge of an ensemble of

“teachers” trained on the disjoint subsets of training data.

These are centralized, record-level DP mechanisms with a

trusted aggregator and do not apply to federated or collab-

orative learning. In particular, [45, 46] assume that the adver-

sary cannot see the individual models, only the final model

trained by the trusted aggregator. Moreover, record-level DP

by definition does not prevent property inference. Finally, their

effectiveness has been demonstrated only on a few specific

tasks (MNIST, SVHN, OCR), which are substantially different

from the tasks considered in this paper.

Shokri and Shmatikov [52] propose making gradient up-

dates differentially private to protect the training data. Their

approach requires extremely large values of the ε parameter

(and consequently little privacy protection) to produce an

accurate joint model. More recently, participant-level differ-

entially private federated learning methods [20, 36] showed

how to protect participants’ training data by adding Gaussian

noise to local updates. As discussed in Section VIII-D, these

approaches require a large number of users (on the order

of thousands) for the training to converge and achieve an

acceptable trade-off between privacy and model performance.

Furthermore, the results in [36] are reported for a specific

language model and use AccuracyTop1 as the proxy, not the

actual accuracy of the non-private model.

Pathak et al. [47] present a differentially private global

classifier hosted by a trusted third-party and based on locally

trained classifiers held by separate, mutually distrusting par-

ties. Hamm et al. [23] use knowledge transfer to combine a

collection of models trained on individual devices into a single

model, with differential privacy guarantees.

Secure multi-party computation (MPC) has also been used

to build privacy-preserving neural networks in a distributed

fashion. For example, SecureML [37] starts with the data

owners (clients) distributing their private training inputs among

two non-colluding servers during the setup phase; the two

servers then use MPC to train a global model on the clients’

encrypted joint data. Bonawitz et al. [5] use secure multi-party

aggregation techniques, tailored for federated learning, to let

participants encrypt their updates so that the central parameter

server only recovers the sum of the updates. In Section VII-B,

we showed that inference attacks can be successful even if the

adversary only observes aggregated updates.

Membership inference. Prior work demonstrated the feasi-

bility of membership inference from aggregate statistics, e.g.,

in the context of genomic studies [3, 27], location time-

series [50], or noisy statistics in general [14].

Membership inference against black-box ML models has

also been studied extensively in recent work. Shokri et al. [53]

demonstrate membership inference against black-box super-

vised models, exploiting the differences in the models’ outputs

on training and non-training inputs. Hayes et al. [24] focus

on generative models in machine-learning-as-a-service appli-

cations and train GANs [22] to detect overfitting and recognize

training inputs. Long et al. [34] and Yeom et al. [66] study

the relationship between overfitting and information leakage.

Truex et al. [58] extend [53] to a more general setting and

show how membership inference attacks are data-driven and

largely transferable. They also show that an adversary who

participates in collaborative learning, with access to individual

model updates from all honest participants, can boost the

performance of membership inference vs. a centralized model.

Nasr et al. [39] design a privacy mechanism to adversarially

train centralized machine learning models with provable pro-

tections against membership inference.

Other attacks on machine learning models. Several tech-

niques infer class features and/or construct class represen-

tatives if the adversary has black-box [16, 17] or white-

box [2] access to a classifier model. As discussed in detail

in Section III, these techniques infer features that characterize

an entire class and not specifically the training data, except in

the cases of pathological overfitting where the training sample

constitutes the entire membership of the class.

Hitaj et al. [25] show that a participant in collaborative deep

learning can use GANs to construct class representatives. Their

703



technique was evaluated only on models where all members

of the same class are visually similar (handwritten digits and

faces). As discussed in Section III-A, there is no evidence that

it produces actual training images or can distinguish a training

image and another image from the same class.

The informal property violated by the attacks of [2, 16, 17,

25] is: “a classifier should prevent users from generating an

input that belongs to a particular class or even learning what

such an input looks like.” It is not clear to us why this property

is desirable, or whether it is even achievable.

Aono et al. [49] show that, in the collaborative deep learning

protocol of [52], an honest-but-curious server can partially

recover participants’ training inputs from their gradient up-

dates under the (greatly simplified) assumption that the batch

consists of a single input. Furthermore, the technique is

evaluated only on MNIST where all class members are visually

similar. It is not clear if it can distinguish a training image and

another image from the same MNIST class.

Song et al. [55] engineer an ML model that memorizes

the training data, which can then be extracted with black-

box access to the model. Carlini et al. [6] show that deep

learning-based generative sequence models trained on text data

can unintentionally memorize training inputs, which can then

be extracted with black-box access. They demonstrate this

for sequences of digits artificially introduced into the text,

which are not affected by the relative word frequencies in

the language model.

Training data that is explicitly incorporated or otherwise

memorized in the model can also be leaked by model stealing

attacks [41, 57, 61].

Concurrently with this work, Ganju et al. [18] developed

property inference attacks against fully connected, relatively

shallow neural networks. They focus on the post-training,

white-box release of models trained on sensitive data, as

opposed to collaborative training. In contrast to our attacks,

the properties inferred in [18] may be correlated with the main

task. Evaluation is limited to simple datasets and tasks such as

MNIST, U.S. Census tabular data, and hardware performance

counters with short features.

XI. CONCLUSION

In this paper, we proposed and evaluated several inference

attacks against collaborative learning. These attacks enable a

malicious participant to infer not only membership, i.e., the

presence of exact data points in other participants’ training

data, but also properties that characterize subsets of the

training data and are independent of the properties that the

joint model aims to capture.

Deep learning models appear to internally recognize many

features of the data that are uncorrelated with the tasks they

are being trained for. Consequently, model updates during

collaborative learning leak information about these “unin-

tended” features to adversarial participants. Active attacks are

potentially very powerful in this setting because they enable

the adversary to trick the joint model into learning features of

the adversary’s choosing without a significant impact on the

model’s performance on its main task.

Our results suggest that leakage of unintended features

exposes collaborative learning to powerful inference attacks.

We also showed that defenses such as selective gradient

sharing, reducing dimensionality, and dropout are not effective.

This should motivate future work on better defenses. For

instance, techniques that learn only the features relevant to

a given task [15, 42, 43] can potentially serve as the basis

for “least-privilege” collaboratively trained models. Further, it

may be possible to detect active attacks that manipulate the

model into learning extra features. Finally, it remains an open

question if participant-level differential privacy mechanisms

can produce accurate models when collaborative learning

involves relatively few participants.
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