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Popularity of mobile apps is traditionally measured by metrics such as the number of downloads, installations, or

user ratings. A problem with these measures is that they reflect usage only indirectly. Indeed, retention rates, i.e.,

the number of days users continue to interact with an installed app, have been suggested to predict successful

app life-cycles. We conduct the first independent and large-scale study of retention rates and usage trends on a

dataset of app-usage data from a community of 339,842 users and more than 213, 667 apps. Our analysis shows

that, on average, applications lose 65% of their users in the first week, while very popular applications (top 100)

lose only 35%. It also reveals, however, that many applications have more complex usage behaviour patterns due

to seasonality, marketing, or other factors. To capture such effects, we develop a novel app-usage trend measure

which provides instantaneous information about the popularity of an application. Analysis of our data using

this trend filter shows that roughly 40% of all apps never gain more than a handful of users (Marginal apps).

Less than 0.1% of the remaining 60% are constantly popular (Dominant apps), 1% have a quick drain of usage

after an initial steep rise (Expired apps), and 6% continuously rise in popularity (Hot apps). From these, we can

distinguish, for instance, trendsetters from copycat apps. We conclude by demonstrating that usage behaviour

trend information can be used to develop better mobile app recommendations.
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1 INTRODUCTION

With the popularity of mobile apps continuing rapid growth, judging on the potential of an individual

app has become far from straightforward. Studies on app marketplaces have shown that overall

rating and the nature of user reviews are key drivers in application download decisions [20, 25].

Recommendations, though, are biased towards apps with a large user base. High-potential successful
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apps with a smaller community of users, have a higher risk to vanish in this digital cornucopia. Indeed,

rating systems in current app stores have been shown to foster an effect of accumulated advantage

( so-called Matthew effect) whereby popular apps increase in popularity while less popular ones

dwindle [45]. Furthermore, ratings are vulnerable to spam and rating fraud [11, 22] and downloads

can be misleading since users install apps simply to try them out [3, 6] and rate apps negatively for a

wide range of reasons, such as technical problems or lack of features [24].

Retention rate has been proposed as a usage-based metric to measure the success of mobile apps1.

Retention rate reflects the number of days that users continue to interact with an application after

installing it. Reports2 suggest that retention rates of most applications are low, i.e. actual usage of

apps differs considerably from installations and download counts. However, thus far no independent

information about retention rates of mobile apps has been published.

As our first contribution, we present results from the first independent study of retention rates

in the wild. Previous reports on retention rates have solely been published by analytics companies,

which may bias the reported values towards the (commercial) interests of these companies. Verifying

the accuracy and generality of these reports through an independent source is thus essential for

characterising and understanding retention patterns of mobile apps1,2. We perform our analysis on

usage data recorded in the frame of the Carat project [33] from 339,842 Android devices over a period

of three years (June 2012 – July 2015). Our results indeed confirm that, on average, applications

lose 70% of their users within a week from first use. However, these effects are mediated by the

number of users an application has. For applications with 10 or more users, first day retention rates

below 30% are rare, and retention rates increase with better known apps. However, we also show that

retention rates alone are not a sufficient measure of an application’s success as they ignore fluctuation

in instantaneous usage, effects of seasonality, external factors, and other long-term usage behaviour

trends.

As our second contribution, we present a novel app-usage trend filter which can capture and

quantify these effects. It describes the relative popularity of apps based on daily use, indicates

behaviour trends regardless of absolute volume and categorises apps into App trend patterns that

predict the relevance of an app. This type of fine-grained trend information can provide developers

feedback about instantaneous popularity of their application, so that they can apply timely changes as

countermeasure. Trend information can also be used for marketplace analytics to support advertising,

or, on the other hand, trend status can be used as an additional metric to clean the store of irrelevant

copycat apps.

We validate our app-usage filter through a large-scale analysis of mobile app usage trends. Our

results show that 40% of all apps never ever acquire more than a handful of users (Marginal apps),

and in the remaining 60%, only 0.1% are popular over a continuous period (Dominant), 1% are

drastically drained in their usage after an initial steep rise (Expired), and 6% are continuously rising in

popularity (Hot). The remaining applications showed only weak correlation with the most distinctive

trend patterns and hence were not associated with any specific pattern.

As a practical use case, we further analyse the performance of a state-of-the-art mobile app

recommender [48] with respect to trends. Our analysis shows that only 3.6% of the recommendations

are for apps which are currently rising in popularity, and that overall recommendations have low

novelty and temporal diversity. We also demonstrate that the accuracy of the recommendations can

be improved by considering trend information.

1http://info.localytics.com/blog/the-8-mobile-app-metrics-that-matter
2http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-\
is-normal-and-that-the-best-apps-do-much-better/
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2012/01/01;com.ceruleanstudios.trillian.android;48;2

2012/01/01;com.comodo.pimsecure;30;2

2012/01/01;com.contapps.android;55;4

2012/01/01;com.cumberland.tutarifa;87;4

2012/01/01;com.diggreader;7;1

2012/01/01;com.diune.pictures;18;1

timestamp app name installations usage

Fig. 1. App-usage data from Android: process name, installation count, and daily usage.

2 DATASET

Our work considers data recorded with Carat [33]3, a stock Android and iOS mobile app designed to

offer personalised recommendations to improve a device’s battery life. Carat uses energy-efficient and

non-invasive instrumentation to record the state of the device, including the process list, and active

apps. Carat has been deployed on over 800, 000 smartphones, roughly half of which are Android

devices. The community of users that contribute data to Carat is spread all over the world, with users

in roughly 200 countries, and a strong presence in USA, most of Europe, India, and Japan.

For this paper, we consider a subset of the data covering a period of three years (June 2nd, 2012 –

July 14th, 2015) that contains measurements from 339, 842 Android devices4. We limit our analysis

to Android devices as the data obtained on Android devices can be uniquely mapped into individual

applications [42], whereas data obtained on iOS devices requires more complicated processing since

the app names obtained from iOS in Carat are presented by IDs only, which differ for distinct versions

of the same app. As part of our analysis, we assess the popularity of apps within categories. To

carry out this analysis, we combine the crowdsourced data with category information from Google

Play. The resulting dataset includes a total of 13, 779, 666 app usage records from 213, 667 apps in

47 categories. We only use the leaf categories of Google Play, such as Games: Racing and Family:

Action. The scale of the dataset we consider in our analysis is an order of magnitude larger than in

previous works. For example, Harman et al. [20] considered a dataset containing reviews from 30, 000

apps, whereas Böhmer et al. [5] considered measurements from 4, 125 users and 22, 626 applications.

Our proposed approach estimates the popularity of apps with respect to a given period (June 2nd,

2012 – July 14th, 2015). Results achieved for other measurement periods might differ as a result of

different life-cycle states of an app.

Figure 1 details a small sample of the data we utilised for our study on usage trends. Note that

only anonymized data is exploited (e.g. timestamp, app name, usage) and that the installation count

was necessary only for our comparison to a state-of-the-art recommendation system in Section 6. For

the calculation of retention rates in Section 3.1, anonymized user IDs have been exploited in addition.

Consequently, in contrast to other methods exploiting personal information and usage information, our

approach is applicable at large scale. Usage frequency data is potentially discontinuous (especially

for apps resembling the Marginal pattern, introduced in Section 4), and absolute values of different

apps vary. To meaningfully compare app usage trends, normalisation with respect to the total usage

count (relative popularity over time) and within maximum usage of the app (popularity within a

particular day) is therefore necessary. For apps with low user base, intermediate zero-usage days

occur (discontinuous usage patterns). These events are interpolated during data pre-processing.

We identified the following potential limitations due to the particular data set utilised. First, data

was collected using a custom mobile application, which itself is prone to the studied usage trends

and retention. As the Carat application has been designed to support energy-awareness, there is

an inherent bias towards users interested in their smartphones’ energy consumption. Carat is only

3carat.cs.helsinki.fi
4the dataset is available via 5. For further support, please contact carat@cs.helsinki.fi

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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available in three languages (Finnish, English, Italian), and hence the sample is likely biased to people

with sufficient knowledge of one of these languages. Furthermore, Carat collects measurements

continuously in the background of the mobile device, but only sends the data when launched.

Therefore, we obtain ample data to carry out our analysis as long as the user launches the application

once after a sufficiently long period from initial use. To minimise this effect, for our results on general

properties of the dataset, we considered all uploads in the period (June 2nd, 2012 – July 14th, 2015)

made until June 2nd 2017. To further limit potential biases caused by users stopping to use Carat, we

only considered users who had used Carat over a sufficiently long period, i.e., a month.

While comparing the popularity of apps within a category, we relied on category information

extracted directly from Google Play. On Google Play, the categorisation of an app is the responsibility

of the developer, and consequently similar apps are likely to contain variations in their categorisations.

An alternative would be to rely on topic models to derive a categorisation of the apps. For instance,

Gorla et al. [17] have demonstrated the use of Latent Dirichlet Allocation (LDA) for mining categories

from app store data.

Ethical Considerations: We analyse aggregate-level data which contains no personally identifiable

information. The privacy protection mechanisms of Carat are detailed in [33]. Data collection by

Carat is subject to the IRB process of University of California, Berkeley. Users of Carat are informed

about the collected data and give their consent to use data from their devices.

3 ANALYSIS OF RETENTION RATES

Existing academic studies on mobile app usage have characterised factors that drive download

decisions [20, 25, 35] without being able to determine what happens once the app has been installed

on the device. While some studies have relied on measurements taken on the handsets, they have

focused on overall usage and how that is influenced by contextual factors [5, 14, 39], leaving

commercial reports by mobile analytics companies the only source of information about what

happens once the app has been downloaded. These reports suggest that usage dwindles significantly

after installation (i.e., low retention), and losing even 75% of users after one day is common6.

Typically, retention suffers the most on the first few days. Retention loss is slower after this. In the

2016 mobile customer retention report6, 25% of users are lost on day 1, only about 12% are lost by

day 7, and this drops to about 7% by day 30. However, to date, no independent research has verified

these findings. In this section we present the first independent and large-scale study to investigate

whether high retention loss in the first few days is indeed the case in the wild.

3.1 Retention Rate

Retention rate on day d is defined as the percentage of users that continue using an application d

days after first usage. To estimate retention rates, we identify for each user and application the first

and last time the user launched the application. To ensure usage behaviour is correctly captured for

retention rate of up to d, for each app we only consider those users who had not been using the app

within d days of the last measurement day (July 14th 2015).

The retention rates of mobile apps in our dataset are illustrated in Figure 2a. From the figure we

can observe that, while retention rates of many applications indeed are low, there are several apps

with a healthier usage life-cycle. Overall, for all apps, the first day retention is as low as 36% with 7

day retention falling below 30%. However, our results also suggest that this effect is mainly due to

many apps receiving only few users. Indeed, retention rates for apps with at least 10 users until the

last measurement day show much healthier behaviour, with first day retention being close to 50%. For

6https://www.braze.com/blog/app-customer-retention-spring-2016-report/
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Fig. 2. Retention rates and their distribution.

apps with at least 1000 users the same figure rises to 62%. For the most popular 100 apps, first day

retention is even as high as 68% and after 7 days the retention remains higher than 50%. In summary,

our analysis supports the view that retention rates of apps tend to be low, with the usage witnessing a

steep decline particularly after the first use. However, our analysis also calls into contention some of

the claims made by analytics companies, indicating that the number of users mediates the retention

of applications. We note that for apps with small user base (e.g., only 10− 15 users), some fraction of

the retention could be potentially explained by developers of the apps continuing to test and use their

app. Unfortunately, identifying these users from the Carat data is not possible.

To further shed light on retention patterns, Figure 2b illustrates the empirical cumulative distribu-

tion function of retention rates for apps with at least 1, 000 users. In the plot we separately consider

the retention rates of day 1, day 3 and 7. These days were chosen for our results to be comparable

with results published1. From the plot we can see that high retention rates are rare. Indeed, only

10 − 35% of the apps have retention rates of 70%, and a mere 3% is able to achieve 75% retention rate

on day 7. However, from the figure we also observe that extreme drops are rare, with less than 5% of

applications having retention rates below 30%, i.e., the 80% drop reported by analytics companies is

not common for apps that have been able to attract a sufficient user base (10 or more).

We observed similar patterns for apps with less than 1, 000 users. However, since there are orders

of magnitude more apps with only a handful of users, as opposed to, for instance, hundreds of users,

the retention rate of the entire data is then biased. Apps with 100 users or less are very volatile in

terms of retention rate, since a drop of a single user already decreases retention by 1% or more. The

plot for apps with at least 10 users within the whole measurement period follows a similar, but more

jagged pattern, and rises much faster with retention rates around 10% lower than in Figure 2b.

This also further supports our earlier finding of retention being mediated by the size of the user

base and confirms reports by others2. To verify this, we used Spearman correlation to assess the

statistical dependency between usage counts and retention rates. To limit potential biases and noise

in the retention rate estimates, we only considered apps with at least 10 users within the complete

measurement period. The resulting analysis revealed the correlation to be statistically significant

for all days (d = 1, ρ = 0.199,p < .001;d = 3, ρ = 0.185,p < .001;d = 7, ρ = 0.165,p < 0.001). For

applications with higher usage count, correlations were slightly lower, but remained consistently

significant.

We conclude that retention is indeed an indicator of the overall usage trend an application might

experience over its lifetime. However, as we next demonstrate, it does not provide a full picture of

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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Fig. 3. App usage patterns do not always follow a simple falloff graph as suggested by retention rate.

app usage. In particular, we propose the use of trend filters that are able to compare apps regardless

of their user base or absolute usage count, but instead to account for instantaneous trend patterns and

seasonal effects.

3.2 Beyond Retention Rates

While retention is able to indicate the long-term usage trend of an app, it does not cover instantaneous

popularity, trends or seasonal patterns. Furthermore, since app-usage is also conditioned on external

context and occasion [5], apps with seasonal usage patterns, such as recommendation of lunch places,

nearby gas stations or vacation-related are unfairly treated by retention rates. This is in particular true

when the time window is short, such as the often cited 1-day/3-day/7-day retention characteristics.

For instance, Figure 3 depicts usage patterns of exemplary applications from first day of usage until

100 days of usage. The selection of applications was done automatically using a peak detection

algorithm that identifies significant peaks in usage after the initial slide in usage.

In the figure, GasBuddy is a representative example of an app with clear seasonal pattern. It

compares fuel prices at nearby gas stations. The use of the application dwindles after day 1, but

has recurrent spikes at biweekly and monthly intervals. Other examples include the Adobe Air

game store/platform (regular peaks), or Angry Birds (many small peaks). Utilities, such as the

music identifying SoundHound, Google Translate, and Google Earth (both irregular peaks) are used

on-demand as their importance to users is situational.

To capture these effects and to provide a more accurate view of the usage of an application, in

the next section, we propose a novel trend mining approach that captures application life-cycles and

characterises the current stage of the app within its life-cycle.

3.3 Archetypical Trend Patterns

We focus on four archetypical trend patterns that are motivated by trend-decomposition models [32].

The choice of patterns is based on possible direction of the slope of the trend. The patterns Hot and

Expired reflect rising and decreasing usage, whereas Dominant corresponds to only small change in

constantly high popularity. The Marginal7 pattern functions as a filter and covers those patterns that

7Apps with very low usage (Marginal pattern) closely resemble a straight line with constant value ’1’. This is due to our

pre-processing of applications to make them comparable: Normalisation with respect to the highest observed daily use

followed by the interpolation of missing values (cf. Section 4).

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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(a) Archetypical patterns (b) Example Hot apps

(c) Example Expired apps (d) Example Dominant apps

Fig. 4. Archetypical trend patterns and example applications following these patterns.

are effectively non-existent as their usage features only few occasional individual usages on selected

days (cf. Figure 4). Examples of their corresponding usage patterns are illustrated in Figure 4a.

Figure 4b, 4c and 4d depict exemplary app usage evolutions for specific apps following one of these

archetypical trend patterns.

4 MINING REAL-TIME TRENDS

We propose instantaneous application usage as a novel metric to accurately characterise the momen-

tary popularity of mobile apps. Existing metrics, such as aggregated installation counts, co-installed

apps and user reviews, often contain noise and biases making them an unreliable measure of an

application’s success or failure. Moreover, as shown in the previous section, these measures ignore

effects of temporal and other seasonal or external factors.

Our trend filter abstracts away the user count or absolute usage, instead comparing applications

solely based on their momentary trend potential. In this way, also apps with a small user base remain

competitive in app recommendation systems.

4.1 Pre-processing and Data Preparation

The trend filter takes as input a usage time series U (A) = uA,1, ...,uA,n for any specific application

A. The usage data garnered from Carat sometimes contains missing values. To cope with these, as an

initial pre-processing step, we fill in missing values uA, j using linear interpolation:

uA, j = uA,i + (j − i)⋅
uA,k −uA,i

k − i
; i < j < k ∈ N. (1)

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:8 S. Sigg et al.

The trend filter then operates on the normalised absolute usage

Û (A) = ûA,1, . . . , ûA,n (2)

ûA,i =
uA,i

max
j
(uA, j)

, i = 1..n (3)

Note that while linear interpolation may not provide an accurate view of actual usage, it is sufficient

for our trend filter since the key requirement is to preserve the sign of the usage time series’ slope. In

the following, we describe different trend operations that can be computed by our trend filter.

4.2 Trend Operation: Grouping Apps with Respect to a Specific Trend Pattern

To identify apps that follow specific archetype trend patterns (see Section 3.3 and Figure 4), a set

of apps is clustered according to their similarity (Euclidean distance in the feature space) to these

archetypes. Clusters are achieved with k-means clustering according to the input pattern’s similarity

to specific archetypical patterns. We utilise k-means since it allows to specify a fixed but arbitrary

number of cluster heads. For instance, in our case we interpret the cluster heads as the four respective

archetypical trend patterns Hot, Expired, Dominant, and Marginal. To compare normalised usage

patterns via k-means, we measure similarity via their Euclidean distance in a feature space spanned

by features capturing characteristics of the trend curve: Area Under the Curve (AUC), Relative Peak

location (PEAK), Slope (SLOPE), and Variance (VAR) [8, 47]

AUC (Û (A)) =
n

∑
i=1

ûA,i (4)

PEAK (Û (A)) = argmax
j

(ûA, j) (5)

SLOPE (Û (A)) =
ûA,n − ûA,1

n − 1
(6)

VAR (Û (A)) =
1

n

n

∑
i=1

(ûA,i − µ̂A)
2

(7)

where µ̂A describes the arithmetic mean of Û (A).
The choice of these features is motivated by the nature of the trend patterns to distinguish. PEAK

and SLOPE are able to distinguish Hot or Expired patterns, whereas the AUC distinguishes those

from the other two constant patterns which have a much larger AUC. Finally, VAR and AUC are able

to distinguish between Dominant and Marginal as the latter will have low VAR and high AUC.

Let N be the number of points, D the number of dimensions, and K the number of cluster heads.

Based on the number of distance calculations, the time complexity of k-means is O(NKD). The

space complexity of k-means clustering is then O (N (D +K))[21]. We note that variants of k-means

exist with a tight asymptotic bound on the expected run-time complexity of O(logK) [43].

4.3 Trend Operation: Extracting Representative Patterns

In order to identify a single representative usage trend pattern for a group of apps clustered to

C = {Û (A), . . . ,Û (Z)}, this trend operation allows us to calculate a consensus Ĉ(C) from all apps

in the cluster. We exploit this trend operation, for instance, to identify a representative pattern of a

Google Play category by computing the consensus for all apps in the category. It can also be applied

to arbitrary groups of apps, for instance, to compare their average popularity (e.g. different groups of

games or applications from a specific developer)

A challenge we address with this trend operation is that app life-cycles are not synchronised with

respect to their absolute occurrence time. For instance, for the Expired pattern, the peak point for

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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each app in a respective cluster might be different and arbitrarily distributed over time. We therefore

first synchronise all apps with respect to their peak as

ūA,l = ûA,i (8)

l = i − argmax
j

(ûA, j) (9)

From all usage timeseries Û (A), ...,Û (Z) in one cluster C = {Û (A), . . . ,Û (Z)}, a consensus

timeseries C(C) is constructed as the mean over all time series in that cluster as

C(C) = ĉ1, . . . , ĉn (10)

ĉi =
∑Û (I)∈C ûI,i

∣C∣
; i ∈ [1,n]. (11)

Let Û (I) ≤ Û (J ),∀Û (J ) ∈ C be the longest usage time series in the cluster C with ∣C∣ =m and

∣Û (I)∣ = n. Then, the time and space complexity of this trend operation is O (m ⋅ n).

4.4 Trend Operation: Determining the App Life-cycle

Many applications have not completed their life-cycle instead reflecting an intermediate point of their

respective life-cycle. For instance, an app might be in the beginning (initial stage), middle (rising) or

end (past the peak) of a life-cycle. In order to find the stage of an app within a particular life-cycle, we

apply alignment approaches [36]. In particular, the trend operation aligns representative trend patterns

for archetypical life-cycles L = l1, . . . , lo to the normalised observed app usage history patterns

Û (A)= ûA,1, . . . , ûA,n . The alignment found constitutes a sequence L̃ = l̃i , . . . , l̃j that originates from

L and is similar to the usage pattern Û (A). L̃ possibly omits leading and trailing samples of L and

may feature additional gap-symbols which are inserted via integer programming to minimise the

difference between L̃ and Û (A). In particular, a n × o cost matrix M , spanned by Û (A) and L is

generated by calculating all possible matchings between the li and ûA, j with respect to a distance

cost function c(li , ûA, j)→ R and a gap cost d:

Mi, j = min (Mi−1, j−1 + c(li , ûA, j),Mi−1, j +d,Mi, j−1 +d) (12)

The Mi j constitute the minimum cost to align l1 . . . li with ûA,1 . . . ûA, j . The optimal alignment L̃ is

then found by traversing the minimum-cost path through M . Note that we set M1j = 0 to allow L̃ to

start at any position within L. Assuming a maximum sequence length of n, time and space complexity

of this trend operation are O(n2).

4.5 Trend Operation: Identifying Apps that Drive the Trend

Some groups of apps, for instance, specific Google Play categories, are dominated by individual

highly popular apps. This may happen when users of popular apps try other, similar apps in the

same category. Due to this, the observed usage of several apps in a category might be affected by

individual popular apps so that multiple apps in that category rise or fall in popularity together. We

are then interested in the usage trend normalised by the overall trend of the category or group of apps.

In this way we are able to distinguish those apps, that drive and indeed exceed the category’s trend

performance from others that deviate with respect to the trend performance of the overall category.

This is achieved by normalising the performance of individual apps against the performance of the

category. In particular, given a group of apps or category C, we first compute the consensus C(C)
of C (cf. Section 4.3). Then, for each app A, we normalise its usage pattern Û (A)= ûA,1, . . . , ûA,n
with respect to C(C)= ĉ1, . . . , ĉn as

ûA,i = ûA,i − ĉi , i = 1..n (13)
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The resulting pattern Û (A) displays the performance of the app with respect to all other apps in the

same category. A positive slope in Û (A) indicates that the app is performing better than its category

while a negative slope indicates under-performance.

Assuming a total of ∣C∣ =m apps within the group of apps or category C with maximum pattern

length ∣Û (A)∣ = n;A = argmax
B∈C

(∣Û (B)∣), the time complexity of this trend operation is O(n ⋅m +

n +m). The space complexity is O(n ⋅m).

5 EMPIRICAL EVALUATION

To demonstrate the value of the trend filter, we carried out experiments using the Carat dataset (cf.

Section 2). We first show that our trend filter is capable of identifying known success and failure

stories. Afterwards, we analyse the accuracy of our approach for the prediction of the respective

trends by computing the distance of the predicted archetypical trend pattern to the actual trend in

usage data for that app. Next, we investigate the frequency in which trends occur within different

application categories and finally, we discuss the impact individual apps can have on the usage

performance of similar apps.

5.1 Validation with Well Known Apps

We begin our evaluation by demonstrating that the trend filter can correctly categorise the life-

cycle state of apps. We consider eight apps whose usage patterns are well known and reported.

Table 1 summarises the expectations for these apps. These apps also serve as representative examples

of different types of trend patterns encountered in the data. Four of the eight apps demonstrated

increasing popularity during the data collection period (June 2012 - July 2015), whereas the remaining

four were popular early on but dwindled since. We stress that our aim is not to determine whether

these apps were success or failure stories, but to highlight the stage of their popularity life-cycle.

Table 2 illustrates for each of these apps the distance to the nearest of the four representative

archetypical patterns, and the corresponding trend prediction. In particular, this is the cluster to which

the k-means groups these apps according to the Euclidean distance in the feature space between

their observed usage pattern and the respective trend pattern. This Euclidean distance expresses the

confidence of our trend filter on the respective categorisation. In each of the four dimensions AUC,

PEAK, SLOPE and VAR (cf. Section 4.2), the Euclidean distance ranges from 0 to 1. Consequently,

the overall Euclidean distance ranges from 0 to 2 with an average of 1.0. As further detailed in

Section 5.2, we apply a confidence threshold of 0.4. For apps with a confidence value smaller than

the confidence threshold, our trend filter predicts the respective trend. If the Euclidean distance to the

closest trend exceeds the confidence threshold, no trend estimation is made.

From the apps with increasing popularity, Evernote is correctly predicted as Hot and WhatsApp

is identified as Dominant. Among the apps with decreasing popularity, the trends of Flappy Bird,

Weibo and QQ are identified as Expired.

For the remaining apps (Vine, Snapchat, Path), the trend filter has low confidence and therefore

does not suggest a trend. The low confidence for assigning a trend to Snapchat can be attributed to the

fact that the app only started to emerge during the data collection period, and was yet to experience

an exponential rise in popularity. Therefore, even though the Hot archetypical pattern was the closest

trend pattern found, it is not predicted as such due to its larger Euclidean distance of 0.4220 in the

feature space. The low confidence for the Path app indicates that it is still in the transition between

life-cycle states. As seen from Figure 5, the popularity of Path is at its peak, which explains the

dominant pattern being the closest one. However, we can also see how the trend curve is starting to

decrease, suggesting that Path would later enter the Expired state.
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Table 1. Representative examples of popular apps whose changes in popularity patterns are well

documented, and which were considered in our evaluation.

Apps expected to exceed expectation Once popular apps, trailing expectations

Vine has been one of the hottest video sharing apps on
Google Play between 2012 and 2016. It was particu-
larly popular among young performers and musicians.
While the app was withdrawn from the marketplaces

in 2016, it was popular during the period of investigation
considered in this paper (e.g., https://www.theverge.com/
2016/10/28/13456208/why-vine-died-twitter-shutdown).

Path is a social networking app that struggled to gain
significant momentum until it was taken over in 2015
by the company behind Kakao Talk. The takeover
briefly resulted in a surge of popularity, even if the app

has since seen its popularity dwindle. Hence, Path is an example
of an app that goes through multiple trend cycles, including
Dominant and Expired within the data collection period.

Evernote is an app that focuses on taking, sharing and
managing notes. Compared to other social media apps,
it has more professional reputation and rates 4.6 in
Google Play and 4.5 in AppStore. The popularity of

Evernote increased steadily during the data collection period until
late 2015. Thus, Evernote mostly reflects the Hot archetype, but
also reaches Dominant stage within the data collection period.

FlappyBird is an arcade-style side-scroller game,
which became a viral hit before taken down by the cre-
ator. After taken down, it’s popularity quickly started
to dwindle, making Flappy Bird a clear example of

an app with an Expired trend pattern (see, e.g.,
https://mashable.com/ 2014/02/10/flappy-bird-story)

Snapchat is a chat application based on short video
clips. The app is rated 3.9 in Google Play (3 in App-
Store). Snapchat has steadily increased in popularity
since 2012, starting to reach peak popularity in 2015.

Snapchat initially does not have a clear trend pattern, only reaching
Hot stage toward the end of the data collection period.

Weibo is a popular Chinese social media and mi-
croblogging app. It has been the most popular social
media platform in China, but has since lost its posi-
tion to WeChat. While the number of users for Weibo

remains high, they are dwindling. It is a representative example of
a popular application with an Expired trend.

WhatsApp is currently the most popular messen-
ger in over 100 countries (excluding USA and
China) and the most popular worldwide (https://www.
statista.com/statistics/258749/most–popular–global–

mobile-messenger-apps/), allowing calls, group messages, and
picture sharing. WhatsApp received high ratings, with an average
score of 4.4 on Google Play and 4.5 on AppStore. Its consistent
high popularity is representative for the Dominant trend.

QQ is a popular Chinese instant messenger. Similarly
to Weibo, it has been among the most popular messag-
ing apps in China, but has seen its popularity growth
stall with WeChat becoming the most popular app.

Hence, QQ is another example of an app that has reached the end
of its popularity growth and is currently in the Expired state.

Table 2. Categorisation of example applications.

App Category Closest Pattern Distance Trend Expected Trend

Vine Entertainment Hot 0.4220 – Hot

Evernote Productivity Hot 0.3956 Hot Hot, Dominant

Snapchat Social Hot 0.5399 – Hot

WhatsApp Communication Dominant 0.1186 Dominant Dominant

Path Social Dominant 0.4467 – Dominant, Expired

Flappy Bird Game - Arcade Expired 0.0575 Expired Expired

Weibo Social Expired 0.2343 Expired Dominant, Expired

QQ Social Expired 0.2854 Expired Dominant, Expired

We stress that the Expired pattern should not be interpreted as overly negative. On the contrary, it

indicates that the app was successful in gathering a significant usage, but has experienced significant

loss in usage thereafter. As discussed in Section 3.1, it is a natural matter of retention that the

usage drain is significant, and Expired simply means that the app has surpassed its popularity peak.

Consider, for instance, the Angry Birds series of apps. As indicated in Figure 6, the patterns of most

Angry Birds apps closely resemble the Expired pattern (shifted by their respective release date) even

if most of them can be considered to be exceptionally successful. However, we can also observe from

the figure that apps in the same theme or product family have potential to benefit from each other

as a compounding effect. For instance, the popularity of older Angry Birds apps increases when a

new version is released, so that the apps re-enter the Hot state for a period of time. Indeed, we see in
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(a) Trend evolution of Snapchat (b) Trend evolution of Path (c) Trend evolution of Flappybird

Fig. 5. Trend evolution, cumulative mean closest archetype trend pattern for example apps. The

timeline is normalised for comparison between the first and last usage data for each respective app

in our dataset (Snapchat: November 15th, 2012 – July 13th, 2015; Path: July 7th, 2012 – July 13th,

2015; Flappybird: February 10th, 2014 – July 13th, 2015).

(a) Trend of Angry Birds Rio (b) Trend of Angry Birds Friends (c) Trend of Angry Birds Go

Fig. 6. Trend evolution, cumulative mean closest archetype trend pattern for example Angry Birds

apps correlated in their usage performance. The timeline is normalised for comparison between the

first and last usage data for each respective app in our dataset (Angry Birds Rio: July 7th, 2012 – July

12th, 2015; Angry Birds Friends: May 21st, 2013 – July 13th, 2015; Angry Birds Go: December 28th,

2013 – July 12th, 2015).

Figure 6a and Figure 6b how the much older Angry Birds Rio also experiences a rise in popularity at

the time the Angry Birds Friends and Angry Birds Go are released. These peaks can also be observed

at very similar times for the original Angry Birds and the older Angry Birds Seasons.

5.2 Evaluation of the Quality of the Trend Prediction

We next analysed the quality of the trend prediction with regard to the distance to the respective trend

pattern (Figure 4a). Table 3 summarises the frequency of the four trend patterns in exemplary Google

Play categories.

Of the apps associated with one of the four archetypical trend patterns, less than 0.1% gather a

constantly high user base (Dominant apps). Fewer than 1% are Expired, and apps associated to the

Hot category account for about 2 to 7% of all relevant apps (6% across all categories). The mean

Euclidean distance of all individual apps to the associated (i.e. closest) trend pattern is in the order of

0.95, with a variance of 0.2 as detailed in the table.

These results are conditioned on the confidence associated with such prediction. With low confi-

dence, the algorithm does not predict a trend for a usage pattern but only predicts a particular trend

pattern, when it has the closest Euclidean distance of all trend patterns and when this distance to the

respective cluster centroid (Hot, Expired, Marginal, or Dominant) falls below 0.4.
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Table 3. Percentage of Marginal, Expired, Dominant, and Hot apps for 17 exemplary categories.
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Marginal apps(%) 43.28 38.16 31.94 41.2 38.78 38.63 49.81 47.2 38.62 42.54 40.3 46.1 41.35 40.15 44.78 43.97 39.62
From the rest:

Hot apps(%) 1.33 2.65 4 7.44 .81 2.33 4.65 4.4 1.73 3.92 3.17 6.5 4.74 2.25 6.78 5.98 2.95
Dominant apps(%) .04 .06 0 .14 0 .03 0 .03 0 0 .07 .11 .07 .02 .06 .07 0

Expired apps(%) .25 .74 .8 1.91 .03 .52 .9 .63 .52 .36 .37 0 .95 .74 2 1.51 .64
Mean Eucl. Dist. .974 .967 .914 .906 .996 .958 .921 .961 .938 .967 .957 .947 .926 .961 .926 .925 .958

Variance .010 .012 .018 .027 .008 .013 .020 .016 .016 .013 .014 .018 .023 .015 .023 .024 .012

The value of 0.4 was chosen empirically as (1) a sphere of radius 0.4 covers approximately8 10%

of the total volume in a 4D unit space (spanned by the four feature values, each in [0,1]) and (2)

since it was able to clearly separate the apps belonging to one of the four patterns from those that

do not belong to it (cf. Figure 7). Note that it is challenging to define an absolute threshold, as the

boundary between apps that still belong to one specific trend pattern and those that do not is floating.

In the figure, we have calculated the mean Euclidean distance for groups of apps clustered to the

same of the four respective trend patterns to their nearest cluster centroid. The figure separates apps

with a Euclidean distance greater than 0.4 from those with a smaller Euclidean distance.

For the apps associated with one of the trend patterns (i.e. Euclidean distance smaller than 0.4),

the Marginal apps are most similar to their respective trend pattern and the mean Euclidean distance

for Hot, Dominant, and Expired apps is for all categories sharply concentrated around 0.3. As we

have seen in Table 3, the distance of the remaining apps to their nearest trend pattern is significantly

higher. This means that they might follow other, more random usage evolution or experience constant

fluctuation. For example, the application may be in an early stage of its life-cycle, or transitioning

between trend patterns. While we focus in this study on Hot, Dominant, Expired, and Marginal

patterns, our approach can be generalised to other types of patterns in the data. See also Section 8 for

a discussion on further pattern types.

5.3 Distribution of Distinct Trend Patterns

We have investigated the count and frequency of diverse patterns in the Carat data. In particular,

we are concerned with the number of different relevant trend patterns that can be found since the

Hot, Dominant, Expired, and Marginal patterns constitute only part of the patterns present. To better

understand this, we clustered the life-cycle patterns found for all apps in the carat dataset with

k-means clustering and larger values of k. In all cases, as discussed in Section 5.2 and visible from

Table 3, an overwhelming share of apps follow the Marginal cluster. For the remaining clusters

observed, we found that few prominent clusters dominate. For instance, Table 4 displays for k = 20

the sorted arithmetic mean of the non-Marginal clusters9 found among the apps in the carat dataset.

In particular, Figure 8 depicts the distribution of mean cluster sizes we found after 10 runs of k-means

with k = 20.10 The Marginal pattern was constantly found by about one order of magnitude more

often than all other patterns (not shown in the figure). The Hot, Expired, and Dominant trend have

8A more exact approximation would be 0.377, which we rounded up to 0.4 to achieve a slightly larger noise tolerance. Results

achieved for 0.4 and 0.377 are nearly identical
9The Marginal cluster is not included in the table as it is uninformative due to the small number of samples for each of the

Marginal patterns.
10k = 20 was chosen empirically by gradually increasing k until no clusters with significantly new patterns were found.
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Fig. 7. Mean Euclidean distance to the respective cluster centroid (Hot, Dominant, Expired, Marginal)

for apps associated with the respective trend pattern (low Euclidean distance) compared to those not

associated with it (high Euclidean distance).

Table 4. Distribution of the arithmetic mean of clusters found (rounded to 1000 for space constraints).

C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C [103] 629 820 952 1079 1163 1285 1342 1385 1474 1550 1707 1857 2023 2180 2302 2608 3159 3566 4482
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Fig. 8. Distribution of cluster sizes and consensus of the clusters found grouped with respect to their

closest archetypical pattern.

been prominently found among the clusters computed in all runs of the k-means algorithm. Moreover,

we can observe many of the smaller clusters to correspond to slightly modified variants of the

four archetypes considered in our work. Note from the figure, that the three largest clusters jointly

represent about a third of the apps with a long tail of small clusters. This shows that, although more

than the Hot, Expired, and Dominant (and Marginal) patterns can be found in the data, the relevance

of these four clusters is significant.

5.4 Impact of Popular Apps within a Category

We are further interested in the popularity of specific apps with respect to others. However, apps can

fall into various categories and might not be comparable, such as, for instance, categories Game and

Business. In particular, in the Google Play Store, some categories might increase in popularity while

others decrease. As detailed in Section 4, such overall trend of the category might affect other apps

within the category, so that an unbiased comparison across categories requires prior normalisation

(cf. Section 4.5).

Highly successful apps have a significant impact on the trend of their category11. For instance, the

Facebook mobile app dominates its category. Compared to the consensus of all apps in this category,

com.facebook.katana features with 0.2105 the smallest Euclidean distance in the feature space to that

categories’ consensus pattern. Smaller apps might then appear to follow a rising trend while in reality

they have merely been benefiting from the overall popularity of the category. For a fair comparison

of apps that belong to different categories, the overall trend of the categories should therefore be

subtracted.

For recommendation or analysis purposes, apps that drive the trend are especially interesting over

copycat-apps which are worse than the trend. To objectively measure the performance of an app, free

of the influence of its category, we calculate its performance relative to the performance of its category

(cf. Section 4.5). To illustrate that normalisation against the overall trend in a category is beneficial

to identify the actual instantaneous performance of an app, consider Figure 9 for three exemplary

apps in one category. Figure 9a plots the consensus of the app category. Looking at an individual

application’s performance (Figure 9b), their trend is hardly visible. However, after normalisation

with the cluster’s consensus pattern in Figure 9c, the app represented with ● is over-performing

as it regularly scores above the cluster’s performance while the app labelled ∎ is constantly under-

performing. Finally, the third app (labelled▲) is dominating in the beginning while then constantly

decreasing in popularity. Observe that, in contrast to this normalised evolution, considering the apps

individually, as in Figure 9b, the under-performing app actually appears to be rising in popularity

while the app with decreasing popularity appears to remain stable.

11e.g. users trying out other similar apps and thereby boosting the popularity of copycat apps.
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(a) Consensus of the cluster, de-

scribing the average popularity

of apps in this cluster

(b) Normalised performance of

three individual apps from this

cluster

(c) Relative performance of the

apps with respect to the cluster

Fig. 9. Performance of individual apps relative to the performance in their cluster.

6 PRACTICAL USAGE OF APP TRENDS

To demonstrate the practical value of our work, we now consider how trend information can affect

app recommendations. We have implemented AppJoy [48] as a representative example of current

state-of-the-art mobile app recommenders, and compared the recommendations provided by AppJoy

against respective trend patterns of the recommended apps. AppJoy operates on so-called usage

scores, which are constructed by aggregating (i) the time elapsed since the last interaction with

an app (vR), (ii) the number of times the user interacted with an app (vF ), and (iii) total duration

of interaction time (vD ). Accordingly, AppJoy bases its recommendations on information sources

that correspond to metrics which are used by handset-based mobile analytics tools, such as Google

Mobile Analytics12 and Countly13.

AppJoy uses a prediction model that compares a user U’s profile to other users with similar

application usage history. Let S(U) be the set of applications used by U. Given an application A and

U, we define RU,B as the set of relevant applications B used by other users together with A, so that

RU,B = {A∣A ∈ S(U),B ∉ S(U), size(SA,B) > 0} (14)

where SA,B is the set of users who have used both A and B. The relevance or occurrence probability

of B for U is then given by:

P(UB) =
1

size(RU,B)
∑

A∈RU,B

(devA,B +UA). (15)

In the above equation, devA,B denotes the average of the usage scores between users who have used

both A and B:

devA,B = ∑
O∈SA,B

υO⊢B −υO⊢A

size(SA,B)
. (16)

Here, υO⊢B defines the usage score for application B used by user O:

υO⊢B = ωRvR +ωFvF +ωDvD , (17)

weighted by ωR ,ωF and ωD . Given P(UB), AppJoy returns the apps with highest score as recom-

mendation Φ.

To illustrate the value of trend and life-cycle information, we ran the AppJoy recommender

and our trend analysis for a subset of the data containing 4, 500 users and 1, 000 most frequently

used applications in the dataset. As our test period we selected October 2014, because it does not

12http://www.google.com/analytics/mobile
13http://www.count.ly
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Table 5. Statistics of the best 20 recommendations for the top 1000 applications during October 2014.

Apps predicted as Hot and Expired closely resemble the archetypes described in Figure 4a.

Week Rec. Hot Rec. Expired Total Hot Total Expired Div. Nov. Acc. Div. w/o expired Nov. w/o expired Acc. w/o expired

1 8 5 219 163 - - 0.02 - - 0.02
2 7 6 229 158 0.80 0.98 0.03 0.90 0.90 0.12
3 8 7 232 154 0.62 0.81 0 0.54 0.73 0.10
4 10 9 225 150 0.56 0.75 0.11 0.50 0.68 0.11

feature any major European or international events that might cause seasonal fluctuation, e.g., mobile

Christmas calendars or Eurovision song contest voting apps. As training data we selected all data

accumulated between January 2014 and September 2014. Given the test data, we used AppJoy to

generate recommendations in an incremental fashion for each week. In particular, we generated

recommendations for the first week, then included the data from this period in the training data and

generated recommendations for the second week, and so on. We also generated trends for every week,

taking into account the life-cycles of the past year, starting from January 1st 2014. We counted (i) how

many recommended applications are grouped as Expired or Hot apps, and (ii) how these compare

with the total number of Expired and Hot apps in the top 1000 applications. We also calculated

temporal diversity, novelty, and accuracy for the recommendation lists [27]. Diversity represents how

the recommendations change over time, whereas novelty describes how many new recommendations

are seen compared to the later ones. Novelty of the recommendations relates closely to the trends,

because changes in trends should affect new recommendations. Given two sets A and B of apps and

the set Φ of all recommended apps, as well as depth N , these metrics are defined as

diversity(A,B,N ) =
∣B ∖A∣

N
(18)

novelty(A,N ) =
∣A ∖ Φ∣

N
(19)

accuracy(A,Φ) =
size(A ∩ Φ)
size(Φ)

. (20)

Results of our analysis are shown in Table 5 for the top-20 recommendations given to all users. The

results indicate that the number of Hot apps recommended for each week is small and comparable to

the number of Expired apps recommended in the same time. Given that we have generated in total

90, 000 recommendations for 4, 500 users each week, the amount of Hot recommended corresponds

to a very small percentage of the entire set of recommendations. Within the top 1000 apps, more

than 200 applications each week can be classified as Hot, and about 160 applications as Expired.

On average, only 3.6% Hot apps are recommended, compared to 4.3% Expired apps. When Expired

apps are removed from the recommendations, both novelty and diversity decrease, but accuracy

increases slightly. The main reason for this behaviour is that the metrics used by AppJoy to generate

recommendations require sufficient amount of usage before an app is recommended. However,

once sufficient usage has been observed, the app can already be past its "best before" date as the

recommendation model does not separate between Hot and Expired apps. Integrating usage trend

information as part of the recommendation process can help to overcome this issue and improve the

overall quality of recommendations.

Our results highlight how AppJoy requires apps to have sufficient popularity before they are

recommended, and that both trend and dynamics of app usage are disregarded in the recommendation

process. Indeed, apps tend to remain in the recommendation list until another app reaches the same

level of popularity. As such, AppJoy suffers from poor recommendation diversity, and thus further
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enforces the Matthew effect that popular apps are becoming more popular at the expense of new,

emerging, and potentially interesting apps.

7 RELATED WORK

In this section we discuss recent advances in trend mining and trend detection as well as mobile app

recommendation systems and how our proposed technique exceeds this state-of-the art.

Trend Prediction in numerical timeseries data is an important and well studied field in timeseries

forecasting [19]. A time series is a series of, often real-valued numbers that occur over a discrete

time. The analysis of timeseries traditionally assumes a time-invariant generation function so that

the timeseries shows a stationary behaviour. To arrive at such behaviour, a typical approach is to

detect and remove trend and seasonal components from the timeseries [7]. Typical methods stem,

for instance, from linear regression in order to model linear or polynomial trend behaviour [9]. In

addition, also statistical methods, such as moving average or splines techniques are employed [1].

However, the performance of prediction approaches (measured by the RMSE), does not translate

into improvement in accuracy for the top-N task [13, 40]. In addition, and in contrast to these

approaches for predicting app performance, the assumption of an underlying time-invariant generation

function does not hold in our case as app popularity is conditioned on external factors and is also

subject to aging. In addition, trend in timeseries analysis describes a linear, polynomial or exponential

behaviour whereas we are interested to describe the trend as a life-cycle of an app, potentially also

reflecting past behaviour, such as a steep rise followed by a drastic loss in popularity (Expired pattern).

Therefore, we instead propose VAR, AUC, PEAK and SLOPE features to describe the shape of a

usage or trend pattern.

Commercial Trend Mining systems include Google Trends14, which monitors the frequency of

words in search queries related to real-world events, and the trending topics list of Twitter, which uses

the frequency of hashtags and noun expressions to determine popular topics. Related academic works

include detecting emerging trends in real-time from Twitter [4, 10, 31], mining of news discussions

or other text documents for trends [37, 41], and analysis of web behaviour dynamics [38], which are

all indirect and subjective measures that might suffer from fraud. Our work is capable of operating

solely on app usage information whereas these works operate on co-frequency patterns between

words or n-grams.

By exploiting actual usage (in contrast to downloads, likes, ratings, and similar measures), our

approach can identify and compare trends of apps regardless of their absolute user count, downloads,

or installations. In this way, well-known apps can be compared to less well-known newcomers, and

may show an inferior trend performance. Hence, exploiting our trend filter, promising future stars are

potentially spotted earlier.

Mobile App Recommendation systems utilise a multitude of features to rate the relevance or popu-

larity of a respective app. Among these, user reviews are a prominent source for app recommendation

systems [15]. However, empirical studies have shown that reviews typically contain several topics,

which are seldom reflected by the overall rating [24, 34]. Motivated by these studies, several works on

using sentiment analysis and summarization techniques for mining app reviews have been proposed.

Chen et al. [12] identify reviews that are most informative to developers, whereas Guzman and

Maalej [18] use sentiment analysis and language processing to extract user opinions for different

features in a mobile app. Recommendations, however, are in general prone to fraud and are inaccurate

and noisy as they are based on free-form textual descriptions. Our trend filter is not affected by such

subjective and biased information as recommendations, since it is conditioned on actual usage trend.

14google.com/trends
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Jovian et al. [29] point out that version information should further impact the recommendation score

as the popularity of an app might be affected by the change in version. We remark that the function of

popularity conditioned on the version number is not necessarily monotonic or even increasing. Our

trend detection approach, however, is able to detect such changes implicitly whenever alterations in

the usage trend result from a version update. In addition, Lim et al. [28] point out that user behaviour

is country specific, so that recommendation systems should adapt to such properties. Our proposed

trend filter is also able to filter usage trends in a specific population, such as geospatial, age, or

gender.

In order to improve the above mentioned global solutions in which recommendations are identical

for all users, individual preferences are considered. Peifeng et al. [49] argue that an app recommenda-

tion system has to take into account also the set of already installed apps. They compare a ’tempting’

value of a new application to a ’satisfactory’ value of already installed applications of the same type.

Another example is AppJoy [48], which employs item-based collaborative filtering to recommend

apps based on personalised usage patterns. AppBrain15 compares recommendations within the same

category by monitoring the installation history of apps. Also, AppAware [16] provides recommenda-

tions by integrating the context information of mobile devices. Such personalised recommendations

are also possible exploiting our trend filter by applying it to a personalised subset of apps. Moreover,

users often use several apps within the same category [50] and the overall usage session times tend

to be short, and depend on a wide range of contextual factors [5, 14]. Other approaches consider, for

instance, the user’s privacy expectations on a given app-type for recommendation [30]. In addition,

co-usage of apps can be exploited for app recommendation as detailed in [44]. Responding to this

observation, the AppTrends approach was proposed to base the recommendation on frequency of

co-usage of apps [2]. In contrast to our work, AppTrends does not exploit usage trends of individual

apps but instead co-usage with other installed apps. Our trend filter could be applied in addition to

further improve app recommendations. Indeed, combinations of these individual recommendation

systems to form multi-objective app recommendations have the potential to further improve accuracy

in the recommendations [46].

Also, Petsas et al. [35] demonstrated that user preferences tend to be highly clustered and following

various trends over time, with users showing interest in a small set of app categories at a time. Our

work complements existing solutions by providing mechanisms for analysing and understanding

application usage relative to the dynamics of the app’s instantaneous popularity in a marketplace.

Temporal Recommendations in app recommender systems has been addressed in the literature

to overcome the problem that existing recommender systems merely recommend apps that users

have experienced (rated, commented, or downloaded) since this type of information indicates user

preference. As a result, apps which are relevant but never experienced by users are not featured in the

recommendation lists. To mitigate this problem, Bhandari et al. propose to recommend serendipitous

apps using graph-based techniques [52]. While this approach is able to avoid over-personalisation, the

recommendations are not correlated with popularity of apps since usage count is disregarded. Another

approach is to utilise usage behaviour in apps to impact temporal recommendations, as e.g. suggested

by Zhung-Xun et al. [53]. In contrast to our approach, the authors investigate individual usage traces

to build up personalised recommendations. As described in their work, this approach necessarily

suffers from retention effects as all usage patterns have a tendency to decline and furthermore,

since the sample points are small because only a single users data is considered. Consequently, this

approach suffers from both these biases. This shows that temporal recommendation is a challenging

task and only access to usage behaviour of a large crowd of users mitigates the described biases. Our

approach is a potential tool to tackle these challenges. Only when the crowd of users providing usage

15http://www.appbrain.com
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information is sufficiently large, biases due to individual behaviour and noise diminish and crowd

usage behaviour surfaces.

Some commercial app analytics tools, such as Google Mobile Analytics and Countly’s Mobile

Analytics, follow a similar path by focusing on monitoring statistics of individual apps, covering

information about usage session frequencies, lengths of usage sessions, extent of in-app purchases,

and so forth. In contrast to our work, these solutions do not consider popularity of apps conditioned on

whether they follow specific trend patterns. The importance of app popularity has also recently been

reported [51]. The authors proposed a HMM-structure in order to model and predict app popularity.

In contrast to our work, the authors exploit temporal observations of rankings, user ratings and user

reviews, rather than actual app-usage statistics and thereby directly accesses app popularity.

8 DISCUSSION

Representativeness of Carat Data Our analysis considered data collected through the Carat applica-

tion, which has been originally designed for energy management. As a result, the sample population

is likely biased towards people who either have battery issues or are interested in monitoring the

performance of their device. This may result in our retention estimates being lower for some applica-

tions than what they would be for the entire smartphone user community. Our results thus should

be interpreted as conservative lower bounds, particularly for apps with high energy consumption.

Compared to reports by commercial analytics companies, our retention estimates were generally

slightly higher, suggesting that retention patterns may not be as dire as analytics companies would

lead to believe. Given the scale (339, 842 users and 213, 667 apps) and duration (approx. 36 months)

of our analysis, the results in this paper serve as starting point for obtaining a better understanding of

mobile app usage patterns in the wild.

Trend Archetypes We considered four trend archetypes, which were motivated by the most common

slopes of the popularity graph (increasing, decreasing, constant with high popularity, and constant

with low popularity). While these are the most prominent patterns in our data, also other types of

patterns are possible. For example, popularity increases seen for older versions of Angry Birds apps

whenever a new version is launched (see Fig. 6). Note that many of these patterns can be captured

with a short-term variant of our life-cycle model. For example, the popularity boosts correspond to a

model where an app re-enters the Hot phase temporarily, before progressing into Expired states. A

modified model focusing on shorter duration trend patterns can extend the prediction to better cover

also shorter-term fluctuation and temporal trend behaviour.

Temporal Recommendations and Trends Analysis of recommendations produced by AppJoy

indicated that these do not reflect dynamics in actual application usage. Other state-of-the-art mobile

app recommenders, such as Djinn [23] and GetJar [40], also include usage data, but do not model

this as trend information. In particular, Djinn considers triples of item (e.g. app), usage, and user,

but does not consider the time dimension, which is important to extract trend information. Similarly,

although GetJar recorded the number of days the app was used (similar to retention rate), the time

dimension was otherwise ignored as binary daily usage information is not combined to app-trends.

To facilitate users to discover up and coming applications, and to help them avoid apps that are long

past their popularity peak, the trend information could be integrated as part of the recommendation

process, for instance, by considering it as part of the usage scores used by AppJoy or considering

more complex dynamics models, for example, as part of latent factor models [26].

Application Potential We have demonstrated the benefits of considering app trend information for

mobile analytics and app recommender systems. Another use for trend information is providing

developers early feedback about the current popularity of their applications, which they can then
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use to take countermeasures against negative popularity fluctuations. Trend state can further be

correlated with other factors, such as usability gathered through interaction metrics [39], to provide

more detailed feedback of the possible reasons in popularity fluctuations.

Beyond providing app developers with tools to understand the state of their app, trend can also be

used for marketplace analytics to support advertising strategies. On the device side, trend status can

be used as an additional metric to identify the most redundant applications for removal to reduce

clutter on the user interface. The app-filter also enables detecting apps that are rapidly gaining in

popularity, which could be used, for instance, by in-app advertisers to entice new app developers as

customers or for dynamic pricing models.

Application trends are also potentially a powerful source of information for characterising and

understanding user interactions, and trend information can be used to support user modelling. For

example, users with consistently many Hot applications are continually shifting their application

usage, whereas those with many Expired or Marginal apps are likely to remain faithful to the apps

they originally chose.

Android vs iPhone The Carat app is available for Android and iPhone. In this work we focus on

Android devices due to their application naming policy described previously in this work. With

more controlled access to the app market, iPhone population could potentially demonstrate different

retention patterns, trends, and trend patterns.

Implications The analysis has shed light on the complexity of application usage patterns and

suggests that the trend life-cycle stage of an app together with its retention should be considered

when analysing success and failure of mobile apps. For example, apps that currently have a large

number of users but already show signs of losing that popularity can be recognised and classified

earlier. Trend information can also be given to developers to help them reacting to changes, for

example, by adding new functionality into the app when the popularity is starting to dwindle.

Similarly, app recommendation systems could take trend information into account, for example, by

highlighting some applications in the Hot stage and assigning less weight to apps in the Expired state.

This could potentially increase diversity and serendipity of the recommendations without affecting

their relevance.

9 SUMMARY AND CONCLUSION

We have presented the first ever independent study of retention rates in the wild. Our analysis shows

that, on average, applications lose 65% of their users in the first week, but the effect is mediated

by overall user count as applications with over 1, 000 users show much higher retention rates. We

also demonstrated that, contrary to reports in the literature, severe losses in usage are rare, with less

than 10% of apps losing over 80% of users in the first week. We demonstrate that retention rates are

an insufficient metric of an application’s success as they ignore effects of seasonality and external

factors. In particular, we demonstrated that applications follow different trend patterns which are not

captured by retention.

As second contribution, we proposed a novel app-filter that categorises applications according

to their currently followed usage trend. We focused on four characteristic trends: Marginal apps

with only few users, Dominant applications of permanent high popularity, Hot apps with rapidly

increasing popularity, and Expired apps which experience a drastic drop of the usage. We observed

that about 40% of the apps are Marginal. We analysed application categories from Google Play and

show that, for example, during the year 2014, 7.5% of communication apps have been Hot, only

0.1% were Dominant, and almost 2% were Expired apps. This kind of analysis can, in the future,

lead application developers to follow needs and desires of the users in faster pace.
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As a practical use case of our work, we considered how our trend-filter can benefit mobile app

recommenders by enabling recommendations to focus on those apps that are rising in popularity.

Trend pattern analysis can be used to strengthen existing heuristics such as interaction rate, download

counts, and reviews, and even give a more direct way to produce in-the-wild recommendations taking

into account the usage history and trend-pattern of the application. Our analysis shows that only

3.6% of the recommendations are for apps which are currently rising in popularity, and that overall

recommendations have low novelty and temporal diversity. We also demonstrate that the accuracy of

the recommendations can be improved by considering trend information.

Another prominent issue in recommender systems is the cold start problem when insufficient data

has been collected on a new user. The trend filter is not affected by this problem with regard to new

users as usage trends are build by other users. However, we remark that for a new application, trend

estimation is volatile over the first days as usage data has to be collected first. Although exploiting

trend filters, apps of smaller user base are empowered to content with highly popular apps, note

that the potential risk of recommending badly maintained apps is low as such apps likely boast a

less satisfied user population and hence feature an inferior usage trend pattern compared to well

maintained apps with a satisfied user population. Summarising, using our proposed trend filter has

the potential to increase the success probability in finding good and reliable apps and that poorly

maintained apps will not feature a positive trend for long.
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