
#Exploration: A Study of Count-Based Exploration

for Deep Reinforcement Learning

Haoran Tang1∗ , Rein Houthooft34∗ , Davis Foote2, Adam Stooke2, Xi Chen2† ,

Yan Duan2†, John Schulman4, Filip De Turck3, Pieter Abbeel 2†

1 UC Berkeley, Department of Mathematics
2 UC Berkeley, Department of Electrical Engineering and Computer Sciences

3 Ghent University – imec, Department of Information Technology
4 OpenAI

Abstract

Count-based exploration algorithms are known to perform near-optimally when
used in conjunction with tabular reinforcement learning (RL) methods for solving
small discrete Markov decision processes (MDPs). It is generally thought that
count-based methods cannot be applied in high-dimensional state spaces, since
most states will only occur once. Recent deep RL exploration strategies are able to
deal with high-dimensional continuous state spaces through complex heuristics,
often relying on optimism in the face of uncertainty or intrinsic motivation. In
this work, we describe a surprising finding: a simple generalization of the classic
count-based approach can reach near state-of-the-art performance on various high-
dimensional and/or continuous deep RL benchmarks. States are mapped to hash
codes, which allows to count their occurrences with a hash table. These counts
are then used to compute a reward bonus according to the classic count-based
exploration theory. We find that simple hash functions can achieve surprisingly
good results on many challenging tasks. Furthermore, we show that a domain-
dependent learned hash code may further improve these results. Detailed analysis
reveals important aspects of a good hash function: 1) having appropriate granularity
and 2) encoding information relevant to solving the MDP. This exploration strategy
achieves near state-of-the-art performance on both continuous control tasks and
Atari 2600 games, hence providing a simple yet powerful baseline for solving
MDPs that require considerable exploration.

1 Introduction

Reinforcement learning (RL) studies an agent acting in an initially unknown environment, learning
through trial and error to maximize rewards. It is impossible for the agent to act near-optimally until
it has sufficiently explored the environment and identified all of the opportunities for high reward, in
all scenarios. A core challenge in RL is how to balance exploration—actively seeking out novel states
and actions that might yield high rewards and lead to long-term gains; and exploitation—maximizing
short-term rewards using the agent’s current knowledge. While there are exploration techniques
for finite MDPs that enjoy theoretical guarantees, there are no fully satisfying techniques for high-
dimensional state spaces; therefore, developing more general and robust exploration techniques is an
active area of research.

∗These authors contributed equally. Correspondence to: Haoran Tang <hrtang@math.berkeley.edu>, Rein
Houthooft <rein.houthooft@openai.com>

†Work done at OpenAI

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Most of the recent state-of-the-art RL results have been obtained using simple exploration strategies
such as uniform sampling [21] and i.i.d./correlated Gaussian noise [19, 30]. Although these heuristics
are sufficient in tasks with well-shaped rewards, the sample complexity can grow exponentially (with
state space size) in tasks with sparse rewards [25]. Recently developed exploration strategies for
deep RL have led to significantly improved performance on environments with sparse rewards. Boot-
strapped DQN [24] led to faster learning in a range of Atari 2600 games by training an ensemble of
Q-functions. Intrinsic motivation methods using pseudo-counts achieve state-of-the-art performance
on Montezuma’s Revenge, an extremely challenging Atari 2600 game [4]. Variational Information
Maximizing Exploration (VIME, [13]) encourages the agent to explore by acquiring information
about environment dynamics, and performs well on various robotic locomotion problems with sparse
rewards. However, we have not seen a very simple and fast method that can work across different
domains.

Some of the classic, theoretically-justified exploration methods are based on counting state-action
visitations, and turning this count into a bonus reward. In the bandit setting, the well-known UCB

algorithm of [18] chooses the action at at time t that maximizes r̂(at) +
√

2 log t
n(at)

where r̂(at) is

the estimated reward, and n(at) is the number of times action at was previously chosen. In the
MDP setting, some of the algorithms have similar structure, for example, Model Based Interval
Estimation–Exploration Bonus (MBIE-EB) of [34] counts state-action pairs with a table n(s, a) and

adding a bonus reward of the form β√
n(s,a)

to encourage exploring less visited pairs. [16] show

that the inverse-square-root dependence is optimal. MBIE and related algorithms assume that the
augmented MDP is solved analytically at each timestep, which is only practical for small finite state
spaces.

This paper presents a simple approach for exploration, which extends classic counting-based methods
to high-dimensional, continuous state spaces. We discretize the state space with a hash function and
apply a bonus based on the state-visitation count. The hash function can be chosen to appropriately
balance generalization across states, and distinguishing between states. We select problems from rllab
[8] and Atari 2600 [3] featuring sparse rewards, and demonstrate near state-of-the-art performance on
several games known to be hard for naïve exploration strategies. The main strength of the presented
approach is that it is fast, flexible and complementary to most existing RL algorithms.

In summary, this paper proposes a generalization of classic count-based exploration to high-
dimensional spaces through hashing (Section 2); demonstrates its effectiveness on challenging deep
RL benchmark problems and analyzes key components of well-designed hash functions (Section 4).

2 Methodology

2.1 Notation

This paper assumes a finite-horizon discounted Markov decision process (MDP), defined by
(S,A,P, r, ρ0, γ, T), in which S is the state space, A the action space, P a transition probabil-
ity distribution, r : S × A → R a reward function, ρ0 an initial state distribution, γ ∈ (0, 1] a
discount factor, and T the horizon. The goal of RL is to maximize the total expected discounted

reward Eπ,P

[

∑T

t=0 γ
tr(st, at)

]

over a policy π, which outputs a distribution over actions given a

state.

2.2 Count-Based Exploration via Static Hashing

Our approach discretizes the state space with a hash function φ : S → Z. An exploration bonus
r+ : S → R is added to the reward function, defined as

r+(s) =
β

√

n(φ(s))
, (1)

where β ∈ R≥0 is the bonus coefficient. Initially the counts n(·) are set to zero for the whole range
of φ. For every state st encountered at time step t, n(φ(st)) is increased by one. The agent is trained
with rewards (r + r+), while performance is evaluated as the sum of rewards without bonuses.

2

Algorithm 1: Count-based exploration through static hashing, using SimHash

1 Define state preprocessor g : S → R
D

2 (In case of SimHash) Initialize A ∈ R
k×D with entries drawn i.i.d. from the standard Gaussian

distribution N (0, 1)
3 Initialize a hash table with values n(·) ≡ 0
4 for each iteration j do

5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy π
6 Compute hash codes through any LSH method, e.g., for SimHash, φ(sm) = sgn(Ag(sm))
7 Update the hash table counts ∀m : 0 ≤ m ≤M as n(φ(sm))← n(φ(sm)) + 1

8 Update the policy π using rewards

{

r(sm, am) + β√
n(φ(sm))

}M

m=0

with any RL algorithm

Note that our approach is a departure from count-based exploration methods such as MBIE-EB
since we use a state-space count n(s) rather than a state-action count n(s, a). State-action counts
n(s, a) are investigated in the Supplementary Material, but no significant performance gains over
state counting could be witnessed. A possible reason is that the policy itself is sufficiently random to
try most actions at a novel state.

Clearly the performance of this method will strongly depend on the choice of hash function φ. One
important choice we can make regards the granularity of the discretization: we would like for “distant”
states to be be counted separately while “similar” states are merged. If desired, we can incorporate
prior knowledge into the choice of φ, if there would be a set of salient state features which are known
to be relevant. A short discussion on this matter is given in the Supplementary Material.

Algorithm 1 summarizes our method. The main idea is to use locality-sensitive hashing (LSH) to
convert continuous, high-dimensional data to discrete hash codes. LSH is a popular class of hash
functions for querying nearest neighbors based on certain similarity metrics [2]. A computationally
efficient type of LSH is SimHash [6], which measures similarity by angular distance. SimHash
retrieves a binary code of state s ∈ S as

φ(s) = sgn(Ag(s)) ∈ {−1, 1}k, (2)

where g : S → R
D is an optional preprocessing function and A is a k ×D matrix with i.i.d. entries

drawn from a standard Gaussian distributionN (0, 1). The value for k controls the granularity: higher
values lead to fewer collisions and are thus more likely to distinguish states.

2.3 Count-Based Exploration via Learned Hashing

When the MDP states have a complex structure, as is the case with image observations, measuring
their similarity directly in pixel space fails to provide the semantic similarity measure one would desire.
Previous work in computer vision [7, 20, 36] introduce manually designed feature representations
of images that are suitable for semantic tasks including detection and classification. More recent
methods learn complex features directly from data by training convolutional neural networks [12,
17, 31]. Considering these results, it may be difficult for a method such as SimHash to cluster states
appropriately using only raw pixels.

Therefore, rather than using SimHash, we propose to use an autoencoder (AE) to learn meaningful
hash codes in one of its hidden layers as a more advanced LSH method. This AE takes as input
states s and contains one special dense layer comprised of D sigmoid functions. By rounding the
sigmoid activations b(s) of this layer to their closest binary number ⌊b(s)⌉ ∈ {0, 1}D, any state s
can be binarized. This is illustrated in Figure 1 for a convolutional AE.

A problem with this architecture is that dissimilar inputs si, sj can map to identical hash codes
⌊b(si)⌉ = ⌊b(sj)⌉, but the AE still reconstructs them perfectly. For example, if b(si) and b(sj) have
values 0.6 and 0.7 at a particular dimension, the difference can be exploited by deconvolutional
layers in order to reconstruct si and sj perfectly, although that dimension rounds to the same binary
value. One can imagine replacing the bottleneck layer b(s) with the hash codes ⌊b(s)⌉, but then
gradients cannot be back-propagated through the rounding function. A solution is proposed by Gregor
et al. [10] and Salakhutdinov & Hinton [28] is to inject uniform noise U(−a, a) into the sigmoid

3

6× 6 6× 6 6× 6 6× 6 6× 66× 6

⌊·⌉code

downsample

softmaxlinear

64× 52× 521× 52× 52

96× 24× 24

96× 10× 10

96× 5× 5

2400

b(·)
512

1024

96× 5× 5

96× 11× 11

96× 24× 24

1× 52× 52

Figure 1: The autoencoder (AE) architecture for ALE; the solid block represents the dense sigmoidal
binary code layer, after which noise U(−a, a) is injected.

Algorithm 2: Count-based exploration using learned hash codes

1 Define state preprocessor g : S → {0, 1}D as the binary code resulting from the autoencoder
(AE)

2 Initialize A ∈ R
k×D with entries drawn i.i.d. from the standard Gaussian distribution N (0, 1)

3 Initialize a hash table with values n(·) ≡ 0
4 for each iteration j do

5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy π

6 Add the state samples {sm}Mm=0 to a FIFO replay poolR
7 if j mod jupdate = 0 then
8 Update the AE loss function in Eq. (3) using samples drawn from the replay pool

{sn}Nn=1 ∼ R, for example using stochastic gradient descent

9 Compute g(sm) = ⌊b(sm)⌉, the D-dim rounded hash code for sm learned by the AE
10 Project g(sm) to a lower dimension k via SimHash as φ(sm) = sgn(Ag(sm))
11 Update the hash table counts ∀m : 0 ≤ m ≤M as n(φ(sm))← n(φ(sm)) + 1

12 Update the policy π using rewards

{

r(sm, am) + β√
n(φ(sm))

}M

m=0

with any RL algorithm

activations. By choosing uniform noise with a > 1
4 , the AE is only capable of (always) reconstructing

distinct state inputs si 6= sj , if it has learned to spread the sigmoid outputs sufficiently far apart,
|b(si)− b(sj)| > ǫ, in order to counteract the injected noise.

As such, the loss function over a set of collected states {si}Ni=1 is defined as

L
(

{sn}Nn=1

)

= − 1

N

N
∑

n=1

[

log p(sn)− λ
K

∑D

i=1 min
{

(1− bi(sn))
2
, bi(sn)

2
}]

, (3)

with p(sn) the AE output. This objective function consists of a negative log-likelihood term and a
term that pressures the binary code layer to take on binary values, scaled by λ ∈ R≥0. The reasoning
behind this latter term is that it might happen that for particular states, a certain sigmoid unit is never
used. Therefore, its value might fluctuate around 1

2 , causing the corresponding bit in binary code
⌊b(s)⌉ to flip over the agent lifetime. Adding this second loss term ensures that an unused bit takes
on an arbitrary binary value.

For Atari 2600 image inputs, since the pixel intensities are discrete values in the range [0, 255],
we make use of a pixel-wise softmax output layer [37] that shares weights between all pixels. The
architectural details are described in the Supplementary Material and are depicted in Figure 1. Because
the code dimension often needs to be large in order to correctly reconstruct the input, we apply a
downsampling procedure to the resulting binary code ⌊b(s)⌉, which can be done through random
projection to a lower-dimensional space via SimHash as in Eq. (2).

On the one hand, it is important that the mapping from state to code needs to remain relatively
consistent over time, which is nontrivial as the AE is constantly updated according to the latest data
(Algorithm 2 line 8). A solution is to downsample the binary code to a very low dimension, or by
slowing down the training process. On the other hand, the code has to remain relatively unique

4

for states that are both distinct and close together on the image manifold. This is tackled both by
the second term in Eq. (3) and by the saturating behavior of the sigmoid units. States already well
represented by the AE tend to saturate the sigmoid activations, causing the resulting loss gradients to
be close to zero, making the code less prone to change.

3 Related Work

Classic count-based methods such as MBIE [33], MBIE-EB and [16] solve an approximate Bellman
equation as an inner loop before the agent takes an action [34]. As such, bonus rewards are propagated
immediately throughout the state-action space. In contrast, contemporary deep RL algorithms
propagate the bonus signal based on rollouts collected from interacting with environments, with
value-based [21] or policy gradient-based [22, 30] methods, at limited speed. In addition, our
proposed method is intended to work with contemporary deep RL algorithms, it differs from classical
count-based method in that our method relies on visiting unseen states first, before the bonus reward
can be assigned, making uninformed exploration strategies still a necessity at the beginning. Filling
the gaps between our method and classic theories is an important direction of future research.

A related line of classical exploration methods is based on the idea of optimism in the face of
uncertainty [5] but not restricted to using counting to implement “optimism”, e.g., R-Max [5], UCRL
[14], and E3 [15]. These methods, similar to MBIE and MBIE-EB, have theoretical guarantees in
tabular settings.

Bayesian RL methods [9, 11, 16, 35], which keep track of a distribution over MDPs, are an alternative
to optimism-based methods. Extensions to continuous state space have been proposed by [27] and
[25].

Another type of exploration is curiosity-based exploration. These methods try to capture the agent’s
surprise about transition dynamics. As the agent tries to optimize for surprise, it naturally discovers
novel states. We refer the reader to [29] and [26] for an extensive review on curiosity and intrinsic
rewards.

Several exploration strategies for deep RL have been proposed to handle high-dimensional state
space recently. [13] propose VIME, in which information gain is measured in Bayesian neural
networks modeling the MDP dynamics, which is used an exploration bonus. [32] propose to use the
prediction error of a learned dynamics model as an exploration bonus. Thompson sampling through
bootstrapping is proposed by [24], using bootstrapped Q-functions.

The most related exploration strategy is proposed by [4], in which an exploration bonus is added
inversely proportional to the square root of a pseudo-count quantity. A state pseudo-count is derived
from its log-probability improvement according to a density model over the state space, which in the
limit converges to the empirical count. Our method is similar to pseudo-count approach in the sense
that both methods are performing approximate counting to have the necessary generalization over
unseen states. The difference is that a density model has to be designed and learned to achieve good
generalization for pseudo-count whereas in our case generalization is obtained by a wide range of
simple hash functions (not necessarily SimHash). Another interesting connection is that our method

also implies a density model ρ(s) = n(φ(s))
N

over all visited states, where N is the total number of
states visited. Another method similar to hashing is proposed by [1], which clusters states and counts
cluster centers instead of the true states, but this method has yet to be tested on standard exploration
benchmark problems.

4 Experiments

Experiments were designed to investigate and answer the following research questions:

1. Can count-based exploration through hashing improve performance significantly across
different domains? How does the proposed method compare to the current state of the art in
exploration for deep RL?

2. What is the impact of learned or static state preprocessing on the overall performance when
image observations are used?

5

To answer question 1, we run the proposed method on deep RL benchmarks (rllab and ALE) that
feature sparse rewards, and compare it to other state-of-the-art algorithms. Question 2 is answered by
trying out different image preprocessors on Atari 2600 games. Trust Region Policy Optimization
(TRPO, [30]) is chosen as the RL algorithm for all experiments, because it can handle both discrete
and continuous action spaces, can conveniently ensure stable improvement in the policy performance,
and is relatively insensitive to hyperparameter changes. The hyperparameters settings are reported in
the Supplementary Material.

4.1 Continuous Control

The rllab benchmark [8] consists of various control tasks to test deep RL algorithms. We selected
several variants of the basic and locomotion tasks that use sparse rewards, as shown in Figure 2, and
adopt the experimental setup as defined in [13]—a description can be found in the Supplementary
Material. These tasks are all highly difficult to solve with naïve exploration strategies, such as adding
Gaussian noise to the actions.

Figure 2: Illustrations of the rllab tasks used in the continuous control experiments, namely Moun-
tainCar, CartPoleSwingup, SimmerGather, and HalfCheetah; taken from [8].

(a) MountainCar (b) CartPoleSwingup (c) SwimmerGather (d) HalfCheetah

Figure 3: Mean average return of different algorithms on rllab tasks with sparse rewards. The solid
line represents the mean average return, while the shaded area represents one standard deviation, over
5 seeds for the baseline and SimHash (the baseline curves happen to overlap with the axis).

Figure 3 shows the results of TRPO (baseline), TRPO-SimHash, and VIME [13] on the classic tasks
MountainCar and CartPoleSwingup, the locomotion task HalfCheetah, and the hierarchical task
SwimmerGather. Using count-based exploration with hashing is capable of reaching the goal in all
environments (which corresponds to a nonzero return), while baseline TRPO with Gaussia n control
noise fails completely. Although TRPO-SimHash picks up the sparse reward on HalfCheetah, it does
not perform as well as VIME. In contrast, the performance of SimHash is comparable with VIME on
MountainCar, while it outperforms VIME on SwimmerGather.

4.2 Arcade Learning Environment

The Arcade Learning Environment (ALE, [3]), which consists of Atari 2600 video games, is an
important benchmark for deep RL due to its high-dimensional state space and wide variety of
games. In order to demonstrate the effectiveness of the proposed exploration strategy, six games are
selected featuring long horizons while requiring significant exploration: Freeway, Frostbite, Gravitar,
Montezuma’s Revenge, Solaris, and Venture. The agent is trained for 500 iterations in all experiments,
with each iteration consisting of 0.1M steps (the TRPO batch size, corresponds to 0.4M frames).
Policies and value functions are neural networks with identical architectures to [22]. Although the
policy and baseline take into account the previous four frames, the counting algorithm only looks at
the latest frame.

6

Table 1: Atari 2600: average total reward after training for 50M time steps. Boldface numbers
indicate best results. Italic numbers are the best among our methods.

Freeway Frostbite Gravitar Montezuma Solaris Venture

TRPO (baseline) 16.5 2869 486 0 2758 121

TRPO-pixel-SimHash 31.6 4683 468 0 2897 263

TRPO-BASS-SimHash 28.4 3150 604 238 1201 616

TRPO-AE-SimHash 33.5 5214 482 75 4467 445

Double-DQN 33.3 1683 412 0 3068 98.0

Dueling network 0.0 4672 588 0 2251 497

Gorila 11.7 605 1054 4 N/A 1245

DQN Pop-Art 33.4 3469 483 0 4544 1172

A3C+ 27.3 507 246 142 2175 0

pseudo-count 29.2 1450 – 3439 – 369

BASS To compare with the autoencoder-based learned hash code, we propose using Basic Ab-
straction of the ScreenShots (BASS, also called Basic; see [3]) as a static preprocessing function g.
BASS is a hand-designed feature transformation for images in Atari 2600 games. BASS builds on the
following observations specific to Atari: 1) the game screen has a low resolution, 2) most objects are
large and monochrome, and 3) winning depends mostly on knowing object locations and motions.
We designed an adapted version of BASS3, that divides the RGB screen into square cells, computes
the average intensity of each color channel inside a cell, and assigns the resulting values to bins that
uniformly partition the intensity range [0, 255]. Mathematically, let C be the cell size (width and
height), B the number of bins, (i, j) cell location, (x, y) pixel location, and z the channel, then

feature(i, j, z) =
⌊

B
255C2

∑

(x,y)∈ cell(i,j) I(x, y, z)
⌋

. (4)

Afterwards, the resulting integer-valued feature tensor is converted to an integer hash code (φ(st) in
Line 6 of Algorithm 1). A BASS feature can be regarded as a miniature that efficiently encodes object
locations, but remains invariant to negligible object motions. It is easy to implement and introduces
little computation overhead. However, it is designed for generic Atari game images and may not
capture the structure of each specific game very well.

We compare our results to double DQN [39], dueling network [40], A3C+ [4], double DQN with
pseudo-counts [4], Gorila [23], and DQN Pop-Art [38] on the “null op” metric4. We show training
curves in Figure 4 and summarize all results in Table 1. Surprisingly, TRPO-pixel-SimHash already
outperforms the baseline by a large margin and beats the previous best result on Frostbite. TRPO-
BASS-SimHash achieves significant improvement over TRPO-pixel-SimHash on Montezuma’s
Revenge and Venture, where it captures object locations better than other methods.5 TRPO-AE-
SimHash achieves near state-of-the-art performance on Freeway, Frostbite and Solaris.

As observed in Table 1, preprocessing images with BASS or using a learned hash code through the
AE leads to much better performance on Gravitar, Montezuma’s Revenge and Venture. Therefore, a
static or adaptive preprocessing step can be important for a good hash function.

In conclusion, our count-based exploration method is able to achieve remarkable performance gains
even with simple hash functions like SimHash on the raw pixel space. If coupled with domain-
dependent state preprocessing techniques, it can sometimes achieve far better results.

A reason why our proposed method does not achieve state-of-the-art performance on all games is that
TRPO does not reuse off-policy experience, in contrast to DQN-based algorithms [4, 23, 38]), and is

3The original BASS exploits the fact that at most 128 colors can appear on the screen. Our adapted version
does not make this assumption.

4The agent takes no action for a random number (within 30) of frames at the beginning of each episode.
5We provide videos of example game play and visualizations of the difference bewteen Pixel-SimHash and

BASS-SimHash at https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

7

https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

0 100 200 300 400 500
−5

0

5

10

15

20

25

30

35

(a) Freeway

0 100 200 300 400 500

0

2000

4000

6000

8000

10000

(b) Frostbite

0 100 200 300 400 500
100

200

300

400

500

600

700

800

900

1000

TRPO-AE-SimHash

TRPO

TRPO-BASS-SimHash

TRPO-pixel-SimHash

(c) Gravitar

0 100 200 300 400 500

0

100

200

300

400

500

(d) Montezuma’s Revenge

0 100 200 300 400 500
−1000

0

1000

2000

3000

4000

5000

6000

7000

(e) Solaris

0 100 200 300 400 500
−200

0

200

400

600

800

1000

1200

(f) Venture

Figure 4: Atari 2600 games: the solid line is the mean average undiscounted return per iteration,
while the shaded areas represent the one standard deviation, over 5 seeds for the baseline, TRPO-
pixel-SimHash, and TRPO-BASS-SimHash, while over 3 seeds for TRPO-AE-SimHash.

hence less efficient in harnessing extremely sparse rewards. This explanation is corroborated by the
experiments done in [4], in which A3C+ (an on-policy algorithm) scores much lower than DQN (an
off-policy algorithm), while using the exact same exploration bonus.

5 Conclusions

This paper demonstrates that a generalization of classical counting techniques through hashing is able
to provide an appropriate signal for exploration, even in continuous and/or high-dimensional MDPs
using function approximators, resulting in near state-of-the-art performance across benchmarks. It
provides a simple yet powerful baseline for solving MDPs that require informed exploration.

Acknowledgments

We would like to thank our colleagues at Berkeley and OpenAI for insightful discussions. This
research was funded in part by ONR through a PECASE award. Yan Duan was also supported by a
Berkeley AI Research lab Fellowship and a Huawei Fellowship. Xi Chen was also supported by a
Berkeley AI Research lab Fellowship. We gratefully acknowledge the support of the NSF through
grant IIS-1619362 and of the ARC through a Laureate Fellowship (FL110100281) and through
the ARC Centre of Excellence for Mathematical and Statistical Frontiers. Adam Stooke gratefully
acknowledges funding from a Fannie and John Hertz Foundation fellowship. Rein Houthooft was
supported by a Ph.D. Fellowship of the Research Foundation - Flanders (FWO).

References

[1] Abel, David, Agarwal, Alekh, Diaz, Fernando, Krishnamurthy, Akshay, and Schapire, Robert E.
Exploratory gradient boosting for reinforcement learning in complex domains. arXiv preprint
arXiv:1603.04119, 2016.

[2] Andoni, Alexandr and Indyk, Piotr. Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 459–468, 2006.

[3] Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowling, Michael. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 06 2013.

8

[4] Bellemare, Marc G, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David, and
Munos, Remi. Unifying count-based exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems 29 (NIPS), pp. 1471–1479, 2016.

[5] Brafman, Ronen I and Tennenholtz, Moshe. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

[6] Charikar, Moses S. Similarity estimation techniques from rounding algorithms. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 380–388, 2002.

[7] Dalal, Navneet and Triggs, Bill. Histograms of oriented gradients for human detection. In
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 886–893, 2005.

[8] Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John, and Abbeel, Pieter. Benchmarking
deep reinforcement learning for continous control. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), pp. 1329–1338, 2016.

[9] Ghavamzadeh, Mohammad, Mannor, Shie, Pineau, Joelle, and Tamar, Aviv. Bayesian rein-
forcement learning: A survey. Foundations and Trends in Machine Learning, 8(5-6):359–483,
2015.

[10] Gregor, Karol, Besse, Frederic, Jimenez Rezende, Danilo, Danihelka, Ivo, and Wierstra, Daan.
Towards conceptual compression. In Advances in Neural Information Processing Systems 29
(NIPS), pp. 3549–3557. 2016.

[11] Guez, Arthur, Heess, Nicolas, Silver, David, and Dayan, Peter. Bayes-adaptive simulation-based
search with value function approximation. In Advances in Neural Information Processing
Systems (Advances in Neural Information Processing Systems (NIPS)), pp. 451–459, 2014.

[12] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image
recognition. 2015.

[13] Houthooft, Rein, Chen, Xi, Duan, Yan, Schulman, John, De Turck, Filip, and Abbeel, Pieter.
VIME: Variational information maximizing exploration. In Advances in Neural Information
Processing Systems 29 (NIPS), pp. 1109–1117, 2016.

[14] Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

[15] Kearns, Michael and Singh, Satinder. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

[16] Kolter, J Zico and Ng, Andrew Y. Near-bayesian exploration in polynomial time. In Proceedings
of the 26th International Conference on Machine Learning (ICML), pp. 513–520, 2009.

[17] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25
(NIPS), pp. 1097–1105, 2012.

[18] Lai, Tze Leung and Robbins, Herbert. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22, 1985.

[19] Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa,
Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[20] Lowe, David G. Object recognition from local scale-invariant features. In Proceedings of the
7th IEEE International Conference on Computer Vision (ICCV), pp. 1150–1157, 1999.

[21] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

9

[22] Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timo-
thy P, Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep
reinforcement learning. arXiv preprint arXiv:1602.01783, 2016.

[23] Nair, Arun, Srinivasan, Praveen, Blackwell, Sam, Alcicek, Cagdas, Fearon, Rory, De Maria,
Alessandro, Panneershelvam, Vedavyas, Suleyman, Mustafa, Beattie, Charles, Petersen,
Stig, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.

[24] Osband, Ian, Blundell, Charles, Pritzel, Alexander, and Van Roy, Benjamin. Deep exploration
via bootstrapped DQN. In Advances in Neural Information Processing Systems 29 (NIPS), pp.
4026–4034, 2016.

[25] Osband, Ian, Van Roy, Benjamin, and Wen, Zheng. Generalization and exploration via random-
ized value functions. In Proceedings of the 33rd International Conference on Machine Learning
(ICML), pp. 2377–2386, 2016.

[26] Oudeyer, Pierre-Yves and Kaplan, Frederic. What is intrinsic motivation? A typology of
computational approaches. Frontiers in Neurorobotics, 1:6, 2007.

[27] Pazis, Jason and Parr, Ronald. PAC optimal exploration in continuous space Markov decision
processes. In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), 2013.

[28] Salakhutdinov, Ruslan and Hinton, Geoffrey. Semantic hashing. International Journal of
Approximate Reasoning, 50(7):969 – 978, 2009.

[29] Schmidhuber, Jürgen. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

[30] Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael I, and Abbeel, Pieter. Trust
region policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

[31] Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[32] Stadie, Bradly C, Levine, Sergey, and Abbeel, Pieter. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[33] Strehl, Alexander L and Littman, Michael L. A theoretical analysis of model-based interval
estimation. In Proceedings of the 21st International Conference on Machine Learning (ICML),
pp. 856–863, 2005.

[34] Strehl, Alexander L and Littman, Michael L. An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[35] Sun, Yi, Gomez, Faustino, and Schmidhuber, Jürgen. Planning to be surprised: Optimal
Bayesian exploration in dynamic environments. In Proceedings of the 4th International Confer-
ence on Artificial General Intelligence (AGI), pp. 41–51. 2011.

[36] Tola, Engin, Lepetit, Vincent, and Fua, Pascal. DAISY: An efficient dense descriptor applied to
wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):
815–830, 2010.

[37] van den Oord, Aaron, Kalchbrenner, Nal, and Kavukcuoglu, Koray. Pixel recurrent neural
networks. In Proceedings of the 33rd International Conference on Machine Learning (ICML),
pp. 1747–1756, 2016.

[38] van Hasselt, Hado, Guez, Arthur, Hessel, Matteo, and Silver, David. Learning functions across
many orders of magnitudes. arXiv preprint arXiv:1602.07714, 2016.

[39] van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep reinforcement learning with double
Q-learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 2016.

[40] Wang, Ziyu, de Freitas, Nando, and Lanctot, Marc. Dueling network architectures for deep
reinforcement learning. In Proceedings of the 33rd International Conference on Machine
Learning (ICML), pp. 1995–2003, 2016.

10

