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Abstract

This paper reviews exploration techniques in deep reinforcement learning. Ex-
ploration techniques are of primary importance when solving sparse reward
problems. In sparse reward problems, the reward is rare, which means that the
agent will not find the reward often by acting randomly. In such a scenario, it
is challenging for reinforcement learning to learn rewards and actions associa-
tion. Thus more sophisticated exploration methods need to be devised. This
review provides a comprehensive overview of existing exploration approaches,
which are categorized based on the key contributions as follows reward novel
states, reward diverse behaviours, goal-based methods, probabilistic methods,
imitation-based methods, safe exploration and random-based methods. Then,
the unsolved challenges are discussed to provide valuable future research direc-
tions. Finally, the approaches of different categories are compared in terms of
complexity, computational effort and overall performance.

Keywords: Deep reinforcement learning, Exploration, Intrinsic motivation,
Sparse reward problems

1. Introduction

In numerous real-world problems, the outcomes of a certain event are only
visible after a significant number of other events have occurred. These types
of problems are called sparse reward problems since the reward is rare and
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without a clear link to previous actions. We note that sparse reward problems
are common in a real world. For example, during search and rescue missions,
the reward is only given when an object is found, or during delivery, the reward
is only given when an object is delivered. In sparse reward problems, thousands
of decisions might need to be made before the outcomes are visible. Here, we
present a review on a group of techniques that can solve this issue, namely
exploration in reinforcement learning.

In reinforcement learning, an agent is given a state and a reward from the
environment. The task of the agent is to determine an appropriate action. In
reinforcement learning, the appropriate action is such that it maximises the
reward, or it could be said that the action is exploitative. However, solving
problems with just exploitation may not be feasible owing to reward sparseness.
With reward sparseness, the agent is unlikely to find a reward quickly, and thus,
it has nothing to exploit. Thus, an exploration algorithm is required to solve
sparse reward problems.

The most common technique for exploration in reinforcement learning is
random exploration [1]. In this type of approach, the agent decides what to
do randomly regardless of its progress. The most commonly-used technique of
this type, called ε-greedy, uses the time decaying parameter ε to reduce explo-
ration over time. This can theoretically solve the sparse reward problem given
a sufficient amount of time. However, this is often impractical in real-world
applications because learning times can be very large. However, we note that
even just with random exploration, deep reinforcement learning has shown some
impressive performance in Atari games [2], Mujoco simulator [3], controllers tun-
ing [4], autonomous landing [5], self-driving cars [6] and healthcare [7].

Another solution for exploration could be reward shaping. In reward shap-
ing, the designer ’artificially’ imposes a reward more often. For example, for
search and rescue missions, agents can be given a negative reward every time
they do not find the victim. However, reward shaping is a challenging problem
that is heavily dependent on the experience of the designer. Punishing the agent
too much could lead to the agent not moving at all [8], while rewarding it too
much may cause the agent to repeat certain actions infinitely [9]. Thus, with
the issues of random exploration and reward shaping, there is a need for more
sophisticated exploration algorithms.

While exploration in reinforcement learning was considered as early as 1991
[10, 11], it is still under development. Recently, exploration has shown a signifi-
cant gain in performance compared to non-exploratory algorithms: Diversity is
all you need (DIYAN) [12] improved on MuJoCo benchmarks; random network
distillation (RND) [13] and pseudocounts [14] were the first to score on difficult
Montezuma’s Revenge problem; and Agent57 [15] is the first to beat humans in
all 57 Atari games.

This review focuses on exploratory approaches which fulfil at least one of the
following criteria: (i) determines the exploration degree based on the agent’s
learning, (ii) actively decides to take certain actions in hopes of finding new
outcomes, and (iii) motivates itself to continue exploring despite a lack of en-
vironmental rewards. In addition, this review focuses on approaches that have
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been applied to deep reinforcement learning. Note that this review is intended
for beginners in exploration for deep reinforcement learning; thus, the focus is
on the breadth of approaches and their relatively simplified description. Note
also that, throughout the paper, we will use ’reinforcement learning’ as it is a
more general term rather than ’deep reinforcement learning’.

Several review articles exist in the field of reinforcement learning. Aubert
et al. [16] presented an overview of intrinsic motivation in reinforcement learn-
ing, Li [17] presented a comprehensive overview of techniques and applications,
Nguyen et al. [18] considered an application to multi-agent problems, Levine [19]
provided a tutorial and extensive comparison with probabilistic inference meth-
ods and [20] provided an extensive description of the key breakthrough methods
in reinforcement learning, including ones in exploration. However, none of the
aforementioned reviews focused on exploration or considered it in great detail.
The only other review focused on exploration is from 1999 and is now outdated
and inaccurate [21].

The contributions of this study are as follows. First, the systematic overview
of exploration in deep reinforcement learning is presented. As mentioned above,
no other modern review exists with this focus. Second, a categorization of ex-
ploration in reinforcement learning is provided. The categorization is devised to
provide a good way of comparing different approaches. Finally, future challenges
are identified and discussed.

2. Preliminaries

2.1. Introduction to Reinforcement Learning

2.1.1. Markov Decision Process

We consider a standard reinforcement setting in which an agent interacts
with a stochastic and fully observable environment by sequentially choosing
actions in a discrete time step to maximise cumulative rewards. This series of
processes is called Markov decision process (MDP). An MDP has a tuple of
(S,A, P,R, γ), where S is a set of states, A is a set of actions the agent can
select, P is a transition probability that satisfies the Markov property given as:

p(st+1|s1, a1, s2, a2, · · · , st, at) = p(st+1|st, at), (1)

R is a set of rewards, and γ ∈ (0, 1] is a discount factor. At each time step
t, an agent receives states st ∈ S from the environment and selects the best
possible actions at ∈ A according to policy π(at|st), which maps from states
st to actions at. The agent receives a reward rt ∈ R from the environment to
take an action at. The goal of the agent is to maximise the discounted expected
reward Gt =

∑∞
k=0 γ

krk+t from each state st.

2.1.2. Value-Based Methods

Given that the agent follows policy π, a state-value function is defined as
V π(st) = Eπ[Gt|St = s]. Similarly, the action-value function, Qπ(st, at) =
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Eπ[Gt|St = s,At = a], is an expected estimate value for a given state st for tak-
ing an action at. Q-learning is a typical type of off-policy learning that updates
a target policy π using samples generated by any stochastic behaviour policy in
an environment. Following the Bellman equation and temporal difference (TD)
for the action-value function, the Q-learning algorithm is recursively updated
using the following equation:

Q(st, at) = Q(st, at) + α[rt + γmax
a′∈A

Q(st+1, a
′)−Q(st, at)], (2)

where a′ follows the target policy a′ ∼ π(·|st) and α is the learning rate. While
updating Q-learning, the next actions at+1 are sampled from the behaviour
policy which follows an ε-greedy exploration strategy, and among them, the
action that makes the largest Q-value, a′, is selected.

2.1.3. Policy-Based Methods

In contrast to value-based methods, policy-based methods directly update
the policy parameterized by θ. In reinforcement learning, because the goal is
to maximise the expected return throughout states, the objective function for
the policy is defined as J(θ) = Eπθ

[Gt]. Williams et al. [22] suggested the
REINFORCE algorithm which updates the policy network by taking a gradient
ascent in the direction of ∇θJ(θ). The gradient of the objective function is
expressed as:

∇θJ(θ) = Es∼pπ,a∼πθ
[∇θ log πθ(a|s)Gt], (3)

where pπ denotes the state distribution. A general overview of reinforcement
learning can be found in [23].

2.2. Exploration

Exploration can be defined as the activity of searching and finding out about
something [24]. In the context of reinforcement learning, ”something” is a re-
ward function and the ”searching and finding” is an agent’s attempt to try to
maximise the reward function. Exploration in reinforcement learning is of par-
ticular importance because a reward function is often complex and agents are
expected to improve over their lifetime. Exploration can take various forms
such as randomly taking certain actions and seeing the output, following the
best known solution, or actively considering moves that are good for novel dis-
coveries.

Problems that can be solved by exploration are common in nature. Ex-
ploration is the act of searching for a solution to a problem. We note that
exploration is the most useful in problems in which a route to the actual solu-
tion (i.e. reward) is obstructed by the local minima (maxima) or areas of flat
rewards. These conditions mean that discovering the true nature of rewards is
challenging. The following examples are intuitive illustrations of those prob-
lems: (i) search and rescue–the agent needs to explore to find a target (victim);
the agent is only rewarded when it finds the victim; otherwise, the reward is 0;
and (ii) delivery–trying to deliver an object in the unknown areas; the agent is
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only rewarded when the appropriate drop-off point has been found; otherwise,
the reward is 0. Exploration could be considered as a ubiquitous problem that
is highly relevant to many domains with ongoing research.

2.3. Challenging Problems

In this section, some of the challenging problems for exploration in reinforce-
ment learning are described, namely noisy-TV and sparse reward problems.

2.3.1. Noisy-TV

In a noisy-TV [13] problem, the agent is stuck in exploring an infinite number
of states which lead to no reward. This phenomenon can be easily explained
with an example. Imagine a state consisting of a virtual TV where the agent
can operate the remote, but operating the remote controller leads to no reward.
A new random image is generated on the TV every time a remote is operated.
Thus, the agent will experience novelty all the time. This keeps the agent’s
attention high infinitely but clearly leads to no meaningful progress. This kind
of behaviour can also be described as a couch potato problem.

2.3.2. Sparse Reward Problems

Sparse rewards are a classical problem in exploration. In the sparse reward
problem, the reward is relatively rare. In other words, there is a long gap
between an action and a reward. This is problematic for reinforcement learning
because for a long time (or at all times) it has no reward to learn from. The
agent cannot learn any useful behaviours and eventually converges to a trivial
solution. As an example, consider a maze where the agent has to complete
numerous steps before reaching the end and being rewarded. The larger the
maze is, the less likely it is for the agent to see the reward. Eventually, the
maze will be so large that the agent will never see the reward; thus, it will have
no opportunity to learn.

2.4. Benchmarks

In this section, the most commonly used benchmarks for reinforcement learn-
ing are briefly introduced and described. We highlight four benchmarks: Atari
Games, VizDoom, Minecraft, and Mujoco.

2.4.1. Atari Games

The Atari games benchmark are a set of 57 Atari games combined under
the Atari Learning Environment (ALE) [25]. In Atari games, the state space
is normally either images or random-access memory (RAM) snapshots. The
action space consists of five joystick actions (up, down, left, right, and action
button). Atari games can be largely split into two groups: easy (54 games) and
difficult exploration (3 games) [26]. In the easy exploration problem, the reward
is relatively easy to find. In hard exploration problems, the reward is not often
given, and the association between states and rewards is complex.
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2.4.2. VizDoom

VizDoom [27] is a benchmark based on the Doom game. The game has a
first-person perspective (i.e., view from characters’ eyes), and the image seen
by the character is normally used as a state space. The action space is nor-
mally eight directional control and two action buttons (picking up key cards
and opening doors). Note that more actions can be added, if needed. One of
the key advantages of VizDoom is the availability of easy-to-use tools for editing
scenarios and low computational burden.

2.4.3. Malmo

Malmo [28] is a benchmark based on the game Minecraft. In Minecraft,
environments are built using same-shaped blocks, similar to how Lego bricks
are used for building. Similar to VizDoom, it is also from the first-person
perspective, and the image is the state space. The key advantage of Malmo is
its flexibility in terms of the environment structure, domain size, custom scripts,
and reward functions.

2.4.4. Mujoco

MuJoCo [29] represents multi-joint dynamics with contact. Mujoco is a pop-
ular benchmark used for physics-based simulations. In reinforcement learning,
Mujoco is typically used to simulate walking robots. These are typically cheetah,
ant, humanoids, and their derivatives. The task of reinforcement learning is to
control various joint angles and forces to develop walking behaviour. Normally,
the task is to walk as far as possible or to reach a specific goal.

3. Exploration in Reinforcement Learning

Exploration in reinforcement learning can be split into two main streams: ef-
ficiency and safe exploration. In efficiency, the idea is to make exploration more
sample efficient so that the agent can explore in as few steps as possible. In
safe exploration, the focus is on ensuring safety during exploration. We suggest
splitting efficiency-based methods further into imitation-based and self-taught
methods. In imitation-based learning, the agent learns how to utilise a policy
from an expert to improve exploration. In self-taught methods, learning is per-
formed from scratch. Self-taught methods can be further divided into planning,
intrinsic rewards, and random methods. In planning methods, the agent plans
its next action to gain a better understanding of the environment. In random
methods, the agent does not make conscious plans; rather, it explores and then
sees a consequence of this exploration. We distinguish intrinsic reward meth-
ods into two categories: (i) reward novel states–reward agents for visiting novel
states; and (ii) reward diverse behaviours-reward agents for discovering novel
behaviours. Note that intrinsic rewards are a part of a larger notion of intrinsic
motivation. For an extensive review of intrinsic motivation, see [16] and [30]. In
planning methods, two distinguished categories are considered: (i) goal-based:
an agent is given an exploratory goal to reach; and (ii) probability- probabilistic
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Figure 1: Overview of exploration in reinforcement learning.
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models are used for an environment. Review of the entire categorizations is
represented in Fig. 1. From the following, each category is described in detail.
The main objective of the categorization is to highlight the key contribution of
each approach. Note that a certain approach could be a combination of various
techniques. For example, Go-explore [31] utilizes reward novel states methods,
but the main contribution is best described by goal-based methods.

3.1. Reward Novel States

Figure 2: Overview of the reward novel state methods. In general, in reward novel states,
the agent is given additional reward rint for discovering novelty. This additional reward is
generated from intrinsic reward module rext.

In this section, approaches on reward novel state are discussed and com-
pared. Reward novel state approaches give agents a reward for discovering new
states. This reward is called an intrinsic reward. As can be observed in Fig. 2,
the intrinsic reward (rint) supplements rewards given by the environment (rext
called an extrinsic reward). By rewarding novel states, agents will incorporate
exploration into their behaviours [30].

These approaches were generalised in [30]. In general, there are two necessary
components: ”an adaptive predictor or compressor or model of the growing data
history as the agent is interacting with its environment to provide an intrinsic
reward, and a general reinforcement learner to learn behaviours” [30]. In this
division, the reinforcement learner is asked to invent things which predictor does
not know yet. In our review, the former is simply referred to as an intrinsic
reward module, and the latter is referred to as an agent.

There are different ways of classifying intrinsic rewards [32, 16]. Here, we
largely follow the classification of [16] with the following categories: (i) predic-
tion error methods, (ii) count-based methods and (iii) memory methods.

3.1.1. Prediction Error Methods

In prediction error methods, the error of a prediction model when predicting
a previously visited state is used to compute the intrinsic reward. For a certain
state, if a model’s prediction is inaccurate, it means that a given state has not
been seen often and the intrinsic reward is high. One of the key questions that
needs to be addressed is how to use the model’s error to compute the intrinsic
reward. To this end, Achiam et al. [33] compared two intrinsic reward functions:
(i) how big the error is in a prediction model and (ii) the learning progress. The
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first method has shown better performance and is therefore recommended, which
can be formalised as:

rint = f(z(st+1)−M(z(st, at))) (4)

where s represents a state, M is an environmental model, t and t + 1 are two
consecutive time steps, z is an optional model for state representation, and f is
an optional reward scaling function.

The simplest method of this type was described in [10, 11]. The intrinsic
reward is measured as the Euclidean distance between the prediction of a state
from a model and that state. This simple idea was revisited in [34]. Gener-
ative adversarial networks (GAN [35]), distinguishing real from fake states as
a prediction error method, were proposed in [36]. Since then many other ap-
proaches were devised which can be further divided into (i) state representation
prediction, (ii) a priori knowledge and (iii) uncertainty about the environment.

State representation prediction methods. In state representation prediction meth-
ods, the state is represented in a higher-dimensional space. Then, a model is
tasked with predicting the next state representation given the previous state
representation. The larger the error is in the prediction, the larger the intrinsic
reward is. One way of providing state representation is using an autoencoder
[37]. Both pre-trained and online trained autoencoders were considered and
showed similar performance. Improvements to autoencoder-based approaches
were proposed in [38, 39], where a slow-trained autoencoder was added. Thus,
the intrinsic reward decays slower and the agent explores for longer while in-
creasing the chance of finding the optimal reward.

Another method of providing state representation involves utilising fixed
networks with random weights. Then, another network is used to predict the
outputs of randomly initialised networks as shown in Fig. 3. The most popular
approach of this type is called random network distillation (RND) [13]. A similar
approach was considered in [40].

Figure 3: RND overview. The predictor is trying to predict output of a randomly parameter-
ized target.

A state representation method derived from inverse dynamic features (IDF)
was used in [41]. In IDF, the representation comes from forcing an agent to
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predict the action as illustrated in Fig. 4. IDF was compared against the state
prediction method and random representation in [42] with the following con-
clusions: IDF had the best performance and it scales the best to the unseen
environments. IDF was utilised in [43], where the Euclidean distance between
two consecutive state representations was used as an intrinsic reward, as shown
in Fig. 4. Intuitively, the more significant the transition is, the larger the change
is in IDF’s state representation. In another study, RND and IDF were combined
into a single intrinsic reward [44].

Figure 4: IDF and rewarding impact driven exploration (RIDE) overview. In IDF, the features
are extracted based on the network predicting the next action. In RIDE, the intrinsic reward
is based on the difference in state representation. (adapted from [45])

A compact representation using information theory was proposed in [46].
Information theory is used to represent states that are close to the representa-
tion space in the environment space. Information theory can also be used to
create a bottleneck latent representation [47]. Bottleneck latent representation
occurs when mutual information between the input to the network and latent
representation is minimised.

A priori knowledge methods. In some types of problems, it makes sense to use
certain parts of the state space as an error and use it for computing the intrinsic
reward. Those parts could be depth point cloud, position, and sound, and they
rely on a priori knowledge from the designer.

Depth point cloud prediction error was used in [48]. The scalability of this
approach was analysed by [49]. It was found that the performance was good in
the same environment with different starting positions, but it did not scale to a
new scenario. Positions in a 3D space can also be used [50]. An approach using
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the position was proposed in [51]. The environment is split into the x-y grid
where each node’s intrinsic reward is placed. When the episode terminates, the
rewards are restored to a default value.

Sound as a source of intrinsic reward was used in [52]. To model sounds,
the model is trained to recognise when the sound and the corresponding frame
match. If the model indicates misalignment between frames and sounds, it
means that the state is novel.

Uncertainty about the environment methods. In these methods, the intrinsic
reward is based on the uncertainty the agent has. If the agent is exploring
highly uncertain areas of the environment, the reward is high. Uncertainty can
be utilized using the following techniques Bayesian, ensembles of models and
information-theoretic.

Bayesian approaches are generally intractable for large problem spaces; thus,
approximations are used. Kotler et al. [53] presented a close to optimal approx-
imation method using the Dirichlet probability distribution over state, action,
and next state triplet. Another approximation could be to use ensembles of
models as proposed in [45]. The intrinsic reward is given based on model dis-
agreement as shown in Fig. 5. The models were initialised with different random
weights and were trained on different mini-batches to maintain diversity.

In information-theoretic approaches, the intrinsic reward is computed using
the information gained from agent actions. The higher the gain is, the more the
agent learns, and the higher the intrinsic reward is. The general framework for
these types of approaches was presented in [54, 55]. One of the most popular
information-theoretic approach is called variational information maximization
exploration (VIME) [56]. In this approach, the information gain is approxi-
mated as a Kullback–Leibler (KL) divergence between the weight distribution
of the Bayesian neural network, before and after seeing new observations. In
[57], maximising mutual information between a sequence of actions leads to a
state that is rewarded. Rewarding this mutual information gain means max-
imising the information contained in the action sequence about a state. Mutual
information gain was combined with the state prediction error into a single
intrinsic reward in [58, 59].

Discussion. The key advantages of prediction error methods are that they rely
only on a model of the environment. Thus, there is no need for buffers or com-
plex approximation methods. Each of the four different categories of methods
has unique advantages and challenges.

While predicting the state directly requires little to no a priori knowledge,
the model needs to learn how to recognise different states. Additionally, they
struggle when many states are present in the environment. State representa-
tion methods can cope with large state spaces at the cost of increased designer
burden and reduced accuracy. Moreover, in a state representation method, the
agent cannot affect the state representation, which can often lead to different
states being represented similarly. Utilising a priori knowledge relies on defining
a special element of the state space as a source of an error for computing the
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Figure 5: Overview of self-supervised exploration via the disagreement method. The intrinsic
reward is based on disagreement between models. (adapted from [45])

intrinsic reward. These methods do not suffer from problems with the speed
of prediction and state recognition. However, they rely on the designer expe-
rience to define parts of the state space appropriately. Finally, in uncertainty
about the environmental approaches, the agent’s uncertainty is used to generate
the intrinsic reward. The key advantage of this approach is its high scalability
and automatic transition between exploration and exploitation. Prediction er-
ror methods have also shown the ability to solve the couch-potato (noisy-TV)
problem by storing observations in a memory buffer [60]. An intrinsic reward is
given only when observation is sufficiently far away (in terms of time steps) from
the observations stored in the buffer. This mitigates the couch potato problem
since repeatedly visiting states close to each other is not rewarded.

3.1.2. Count-Based Methods

In count-based methods, each state is associated with the visitation count
number N(s). If the state has a low count, the agent will be given a high intrinsic
reward to encourage revisiting. The method of computing the reward based on
the count was discussed in [61]. It has been shown that 1/N(s) guarantees a
faster convergence rate than the commonly used 1/

√
N(s).

In problems with large number of states, counting visits to states is difficult
because it requires saving the count for each state. To solve this problem, count
is normally done on a reduced-size state representation.

Count on state representation methods. In count on state representation meth-
ods, the states are represented in a reduced form to alleviate memory require-
ments. This allows storing the count and a state with minimal memory in a
table, even in the case of a large state space.

One of the popular methods of this type was proposed in [62], where static
hashing was used. Here, a technique called SimHash [63] was used, which rep-
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resents images as a set of numbers called a hash. To generate an even more
compact representation, in [64], the state was represented as the learned x-
y position of an agent. This was achieved using an attentive dynamic model
(ADM). Successor state representation (SSR) [65] is a method which combines
count and representation. The SSR is based on the count and order between
the states. Intuitively, the SSR can be used as a count replacement.

It is also possible to approximate count on state representation by using
a function. For example, Bellemare et al. [14] proposed an approximation
based on a density model. The density models include context tree switching
(CTS) [14], Gaussian mixture models [66] or PixelCNN [67]. Martin et al. [68]
proposed an improvement in the approximate count by making counts on the
feature space rather than raw inputs.

Discussion. Count-based methods approximate the intrinsic reward by count-
ing the number of times a given state has been visited. To reduce computational
efforts of count-based methods, usually counts are associated with state repre-
sentations rather than states. This, however, relies on being able to efficiently
represent states. State representations can still require a lot of memory and
careful design.

3.1.3. Memory Methods

In these methods, an intrinsic reward is given on how easy it is to distinguish
a state from all others. The easier it is to distinguish from the others, the more
novel the given state is. As comparing states directly is computationally ex-
pensive, several approximation methods have been devised. Here, we categorize
them into comparison models and experience replay.

Models can be trained for comparing state-to-state to reduce the compu-
tational load. One example method is to use exemplar model [69] developed
in [70]. Exemplar models are a set of n classifiers, each of which is trained
to distinguish a specific state from the others. Training multiple classifiers is
generally computationally expensive. To further reduce the computational cost,
the following two strategies are proposed: updating a single exemplar with a
each new data point and sampling k exemplars from a buffer.

Instead of developing models for comparison, a limited size of experience
replay was combined with prediction error methods in [71]. To devise intrin-
sic rewards, two rewards are combined: (i) intrinsic episodic experience replay
is used to store states and compare them to others; and (ii) intrinsic motiva-
tion RND [13] is used to determine the state’s long-term novelty. Additionally,
multiple policies are trained, each with a different ratio between the extrinsic
and intrinsic reward. A meta learner to automatically choose different ratios of
extrinsic and intrinsic rewards at each step was proposed in [15].

Discussion. In memory-based approaches, the agent derives an intrinsic reward
by comparing its current state with states stored in the memory. The com-
parison model method has the advantage of small memory requirements, but
requires careful model parameter tuning. On the other hand, using a limited
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experience buffer does not suffer from model inaccuracies and has shown a great
performance in difficult exploratory Atari games.

3.1.4. Summary

The reward novel state-based approaches are summarised in Table 1. The
table utilizes the following legend: Legend: A - action space, Ac - action, R -
reference, MB - model based, MF - model free, D - discrete, C - continuous, Q -
Q values, V - values, P - policy, O - output, S - state space, U - underlying algo-
rithm and Top score on a key benchmark explanation - [benchmark]:[scenario]
[score] ([baseline approach] [score]). Prediction error methods are the most
commonly-used methods. In general, they have shown very good performance
(for example, RND [13] with 6,500 in Montezuma’s Revenge). However, they
normally require a hand-designed state representation method for computa-
tional efficiency. This requires problem-specific adaptations, thus reducing the
applicability of those approaches. Count-based methods are computationally
efficient but they can either require memory to store counts or complex mod-
els [14]. Also, counting states in continuous-state domains is challenging and
requires combining continuous states into discontinuous chunks. Recently, mem-
ory methods have shown good performance in games such as Montezuma Re-
venge, scoring as much as 11,000 [71]. Memory methods require a careful bal-
ance of how much data to remember for comparison. Otherwise computing the
comparison can take a long time.

Table 1: Comparison of reward novel state approaches

R Prior
Knowl-
edge

U Method Top score on a
key benchmark

Input
Types

O
MB/
MF

A/
S

Pathak
et al. [41]

A3C Pre-
diction
error

Vizdoom: very
sparse 0.6 (A3C
0)

Viz-
doom
image

P
MB D/

D
Stadie
et al. [37]

autoen-
coder

DQN Pre-
diction
error

Atari: Alien
1436 (DQN 300)

Atari
images

Q
MB D/

D
Savinov
et al. [60]

pretrained
discrim-
nator
(non-
online)

PPO Pre-
diction
error

Vizdoom: very
sparse 1 (PPO
0); Dmlab:
very sparse 30
(PPO+ICM 0)

Viz-
doom
images/
Mujoco
joints
angles

Ac MB C/
C

Burda
et al. [13]

PPO Pre-
diction
error

Atari: Mon-
tezuma Revenge
7500 (PPO
2500)

Atari
images

P
MB D/

D

Bougie
and Ichise
[38]

PPO Pre-
diction
error

Atari: Mon-
tezuma Revenge
20 rooms found
(RND 14)

images
Ac MB D/

D

Hong
et al. [36]

DQN Pre-
diction
error

Atari: Mon-
tezuma Revenge
200 (DQN 0)

Enu-
marated
state
id/
Atari
Image

Q
MB D/

D

Kim et al.
[46]

TRPO Pre-
diction
error

Atari: Frost-
bite 6000 (ICM
3000)

Atari
Images Ac MB D/

D
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Stanton
and Clune
[51]

agent
position,
reward
grid

A2C Pre-
diction
error

Atari: Mon-
tezuma Revenge
3200 (A2C 0)

Atari
images Ac MB D/

D

Achiam
and Sas-
try [33]

TRPO Pre-
diction
error

Mujoco:
halfcheetah
80 (VIME 40);
Atari: Venture
400 (VIME 0)

Atari
RAM
states/
Mujoco
joints
angles

Ac MB C/
C

Li et al.
[44]

A2C Pre-
diction
error

Atari: Asterix
500000 (RND
10000)

Atari
images Ac MB D/

D
Kim et al.
[47]

PPO Pre-
diction
error

Atari: Mon-
tezuma Revenge
with distraction
1500 (RND 0)

Atari
images Ac MB D/

D

Chien and
Hsu [59]

DQN Pre-
diction
error

PyDial: 85
(CME 80); Ope-
nAI: Mario 0.8
(CME 0.8)

Images Q
MB D/

D

Li et al.
[34]

DDPG Pre-
diction
error

Robot: Fetch-
Push 1 (DDPG
0)

Robot
joints
angles

Ac MB C/
C

Raileanu
and
Rocktäschel
[43]

IM-
PALA

Pre-
diction
error

Vizdoom: 0.95
(ICM 0.95)

Viz-
doom
Images

Ac MB D/
D

Mirowski
et al. [48]

A3C Pre-
diction
error

DM Lab: Ran-
dom Goal 96
(LSTM-A3C 65)

DM
Lab
images

Ac MB C/
C

Tang
et al. [62]

TRPO Count-
based

Atari: Mon-
tezuma Revenge
238 (TRPO 0);
Mujoco: swim-
mergather 0.3
(VIME 0.15)

Atari
images/
Mujoco
joints
angles

P
MF C/

C

Martin
et al. [68]

Blob-
PROST
features

SARSA-
e

Count-
based

Atari: Mon-
tezuma Revenge
2000 (SARSA
200)

Blob-
PROST
features

Q
MB D/

D

Machado
et al. [65]

DQN Count-
based

Atari: Mon-
tezuma Revenge
1396 (Psuedo
counts 1671)

Atari
images

Q
MF D/

D

Ostrovski
et al. [67]

DQN
and
Reac-
tor

Count-
based

Atari: Gravitar
1500 (Reactor
1000)

Atari
images Ac MB D/

D

Badia
et al. [71]

R2D2 Memory Atari: Pitfal
15000 (R2D2
-0.5)

Atari
images

P
MB D/

D
Badia
et al. [15]

R2D2 Memory Beat humans
in all 57 atari
games

Atari
images

P
MB D/

D
Fu et al.
[70]

state
encoder

TRPO Memory Mujoco: Sparse-
HalfCheetah
173.2 (VIME
98); Atari:
Frostbite 4901
(TRPO 2869);
Doom: MyWay-
Home 0.788
(VIME 0.443)

Atari
images/
Mujoco
joints
angles

Ac MB C/
C
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Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

3.2. Reward Diverse Behaviours

In reward diverse behaviours, the agent collects as many different experiences
as possible, as shown in Fig. 6. This makes exploration an objective rather than
a reward finding. These types of approaches can also be called diversity and
can be split into evolution strategies and policy learning.

Figure 6: Overview of reward diverse behaviour-based methods. The key idea is for the agent
to experience as many things as possible, in which either evolution or policy learning can be
used to generate a set of diverse experiences

3.2.1. Evolution Strategies

Reward diverse behaviours were initially used with an evolutionary-based
approach. In evolutionary approaches, a group of sample solutions (population)
is tested and evolves over time to get closer to the optimal solution. Note that
evolutionary approaches are generally not considered as the part of reinforce-
ment learning but can be used to solve the same type of problems [72, 73].

One of the earliest methods called novelty search was devised in [74] and [75].
In novelty search, the agent is encouraged to generate numerous different be-
haviours using a metric called diversity measure. The diversity measure must be
hand-designed for each environment, limiting transferability between different
domains. Recently, novelty search has been combined with other approaches,
such as reward maximization [76] and reward novel state method [77]. In Conti
et al. [76], the novelty-search policy is combined with a reward maximisation
policy to encourage diverse behaviours and search for the reward. Gravina et al.
[77] compared three ways of combining novelty search and reward novel state:
(i) novelty search, (ii) sum of reward novel state and novelty search, and (iii)
sequential optimisation where the second one performed the best in a simulated
robot environment. More detailed reviews of exploration in evolution strategies
can be found in [78] and [79].
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Discussion. Initially, novelty search was used as a stand-alone technique; how-
ever, recently, combining it with other techniques [77, 76] has shown more
promise. Such a combination is more beneficial (in terms of reward) as diverse
behaviours are more directed toward highly scoring ones.

3.2.2. Policy Learning

Recently, diversity measures have been applied in policy learning approaches.
The diversity among policies was measured in [80]. Diversity is computed by
measuring the distance between policies (either KL divergence or simple mean
squared error). Very promising results for diversity are presented in [12], as
shown in Fig. 7. To generate diverse policies, the objective function consists of
(i) maximising the entropy of skills, (ii) inferring behaviours from the current
state, and (iii) maximising randomness within a skill. A similar approach was
proposed in [81] with a new entropy-based objective function. A combination
of diversity with a goal-based approach was proposed in [82]. In this study, the
agent learns diverse goals and goals useful for rewards using the skew-fit algo-
rithm. In the skew-fit algorithm, the agent skews the empirical goal distribution
so that rarely visited states can be visited more frequently. The algorithm was
tested using both simulations and real robots.

Figure 7: An overview of Diversity is all you need (DIAYN), where the agent is encouraged
to have as many diverse policies as possible. (adapted from [45])

In [83], the agent stores a set of successful policies in an experience replay and
then minimises the difference between the current policy and the best policies
from storage. To allow exploration at the same time, the entropy of parameters
between policies is maximised. The results show an advantage over evolution
strategies and PPO in sparse reward Mujoco problems.
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Discussion. Diversity in policy-based approaches is a relatively new concept
that is still being developed. Careful design of a diversity criterion shows very
promising performance, beating standard reinforcement learning with significant
margins [12].

3.2.3. Summary

Reward diverse behaviour methods are summarised in Table 2. In evolution
strategies approaches, a diverse population is used, whereas in policy learning,
a diverse policy is found. Evolution strategies have the potential to find solu-
tions that are not envisioned by designers as they search for the neural network
structure as well as diversity. Evolution strategies suffer from the low sample
efficiency, making the training either computationally expensive or slow. Policy
learning is not able to go beyond pre-specified structures but can also show
some remarkable results [12]. Another advantage of the policy learning method
is suitability to both continuous and discrete state-space problems.

Table 2: Comparison of reward diverse behaviour-based approaches

R Prior
Knowl-
edge

U Method Top score on a
key benchmark

Input
Types

O
MB/
MF

A/
S

Conti
et al.
[76]

domain
spe-
cific be-
haviours

Rein-
force

Evo-
lution
strate-
gies

Atari: Frostbite
3785 (DQN
1000)

Atari
RAM
state/
Mujoco
joints
angles

Ac MF C/
C

Gravina
et al.
[77]

NS
popu-
lation
based

Evo-
lution
strate-
gies

Robotic nav-
igation: 400
successes

six range
finders,
pie-slice
goal-
direction
sensor

Ac MB C/
C

Lehman
and
Stanley
[74]

measure
of policies
distance

NEAT Evo-
lution
strate-
gies

maze: 295
(maximum
achievable)

six range
finders,
pie-slice
goal-
direction
sensor

Ac MF D/
D

Risi
et al.
[75]

measure
of policies
distance

NEAT Evo-
lution
strate-
gies

T-maze: solved
after 50,000
evaluations

enu-
marated
state id

Ac MF D/
D

Cohen
et al.
[81]

SAC Policy
learning

Mujoco: Hopper
3155 (DIAYN
3120)

Mujoco
joint
angles

Ac MB C/
C

Pong
et al.
[82]

RIG Policy
learning

Door Opening
(distance to
the objective):
0.02 (RIG +
DISCERN-g
0.04)

Robots
joint
angles

Ac MB C/
C

Eysen-
bach
et al.
[12]

SAC Policy
learning

Mujoco: half
cheetah 4.5
(TRPO 2)

Mujoco
joints
angles

Ac MF C/
C

18



Hong
et al.
[80]

DQN,
DDPG,
A2C

Policy
learning

Atari: Venture
900 (others 0);
Mujoco: Sparse-
HalfCheetah 80
(Noisy-DDPG
5)

Atari
images/
Mujoco
joints
angles

Ac/
Q

MB C/
C

Gang-
wani
et al.
[83]

Itself Policy
learning

Mujoco: Sparse-
HalfCheetah
1000 (PPO 0)

Robot
joints
angles

Ac MF C/
C

Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

3.3. Goal-Based Methods

Figure 8: Illustration of goal-based methods. In goal-based methods, the agent’s task is to
reach a specific goal (or state). Then, this goal is explored using another exploration method
(left) or to generate an exploratory target goal (right). The key concept is to guide agents
directly to unexplored areas.

In goal-based methods, the states of interest for exploration are used to guide
the agent’s exploration. In this way, the exploration can immediately focus on
largely unknown areas. In those types of methods, the agent requires a goal
generator, a policy to find a goal, and an exploration strategy (see Fig. 8). The
goal generator is responsible for creating goals for the agent. The policy is used
to achieve the desired goals. An exploration strategy is used to explore once a
goal has been achieved or while trying to achieve goals.

Here, we split goal-based methods into two categories: goals to explore from
and exploratory goal methods.

3.3.1. Goals to Explore from Methods

The main technique used for these methods are (i) memorize visited states
and trajectories - storing the past states in a buffer and choosing an exploratory
goal from the buffer; and (ii) learn from the goal - assuming the goal state is
known but a path to it is unknown.

One of the most famous approach when goal is chosen from a buffer of this
type is called the go-explore [31]. The states and trajectories are saved in a
buffer and are selected probabilistically. Once the state to explore from has
been found, the agent is teleported there and explores it randomly. In [84],
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teleportation was replaced with policy learning. Go-exploration was extended
to continuous domains in [85]. Concurrently, similar concepts were developed
in [86, 87, 88, 89]. In these approaches, a trajectory from the past is selected
as an agent to exploit or explore randomly. If exploration is selected, a sample
state from the trajectory is selected as a goal to explore based on the visitation
count.

Another goal method was proposed in [90], where the least visited state
was selected as a goal from the x-y grid on an Atari game. This reduces the
computational effort of remembering where the agent has been significantly.

Learn from goal methods assume that the agent knows how the state with
maximum reward looks like, but does not know how to get there. In this case, it
is plausible to utilise this knowledge, as described in [91, 92]. In [91], the model
was trained to predict the backward steps in reinforcement learning. With such
a model, the agent can ’imagine’ states before the goal and thus can explore
from the goal state. Similarly, another scenario, in which the agent can start
at the reward position, can be conceived; then, it can also explore the starting
position from the goal [92].

Discussion. Memorise visited states and trajectories methods have shown some
remarkable results in hard exploration benchmarks such as Montezuma’s revenge
and pitfall. By utilising a reward state as a goal, as outlined in learn from the
goal methods, the exploration problem can be mitigated, as the agent knows
where to look for the reward.

3.3.2. Exploratory Goal Methods

In this subsection, an exploratory goal is given to the agent to try to reach.
Exploration occurs when the agent attempts to reach the goal. The following
techniques are considered: (i) meta-controllers, (ii) goals in the region of the
highest uncertainty, and (iii) sub-goal methods.

Meta-controllers. In meta-controllers, the algorithm consists of two parts: a
controller and a worker. The controller has a high-level overview and provides
goals that the worker is trying to find.

One of the simple approaches is to generate and sample goals randomly [93].
The random goal selection mechanism was refined in [94] with goal selection
based on the learning progress. A similar approach in two phases was proposed
by Pere et al. [95]. First, the agent explores randomly to learn the environ-
ment representation. Second, the goals are randomly sampled from the learned
representation. An approach in which both goal creation and selection mech-
anisms are devised by a meta-controller was proposed in [96]. In this work, a
meta-controller proposes goals within a certain horizon for a worker to find.

In [97], a multi-arm bandit-based method to choose one strategy from a
group of hand-designed strategies was proposed. At each episode, every ten
steps, the agent chooses a strategy based on its performance. The goal selection
mechanism from a group of hand-designed goals is also discussed in Kulkarni
et al. [98]. The low-level controller is trained on a state-action space, and the
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meta-controller is trained on a goal-state space. An approach in which each
subtask is learned by one learner was proposed in [99]. To allow any sub-task
learner to perform its task from all states, the starting points for learning are
shared between sub-task learners.

Sub-goals. In sub-goal methods, the algorithms find the sub-goals for the agent
to reach. In general, sub-goal methods can be split into: (i) bottleneck states
which lead to many others as exploratory goals, (ii) progress towards the main
goal which is likely to lead to the reward and (iii) uncertainty based sub-goals.

One of the early methods of discovering bottleneck states was described in
[100] using an ant colony optimisation method. Bottleneck states are said to
be the states often visited by ants when exploring (by measuring pheromone
levels). To discover bottleneck states, [101] proposed the use of proto-value
functions based on the eigenvalue of representations. This allows the computa-
tion of eigenvector centrality [102], which has a high value if the node has many
connections. This was later improved in [103] by replacing the handcrafted
adjacency matrix with successor representations.

To design sub-goals which lead to a reward, Fang et al. [104] proposed pro-
gressively generating sub-tasks that are closer to the main task. To this end,
two components are used: the learning progress estimator and task generator.
The learning progress estimator determines the learning progress on the main
task. The task generator then uses the learning progress to generate sub-tasks
closer to the main tasks.

In uncertainty based methods, sub-goals the goals for the agent are posi-
tioned at the most uncertain states. One of the earliest attempts of this type
was proposed by Guestrin et al. [105]. Here, the upper and lower bounds of
the reward are estimated. Then, states with high uncertainty regarding the re-
ward are used as exploratory goals. Clustering states using k-means and visiting
least-visited clusters were proposed in [106]. Clustering can also help to solve
the couch potato problem, as described in [107]. In this approach, the states are
clustered using Gaussian mixture models. The agent avoids the couch potato
problem by clustering all states from a TV into a single avoidable cluster.

Discussion. There are two main categories of exploratory goal methods: meta-
controllers, and sub-goals. The key advantage of meta-controllers is that they
allow the agent to set its own goals without excessively rewarding itself. How-
ever, training the controller is a challenge, which was not fully solved yet. In
sub-goals methods, what constitutes a goal is defined by human designers. This
puts a significant burden on the designer to provide suitable and meaningful
goals.

3.3.3. Summary

The goal-based methods are summarised in Table 3. Goals to explore from
methods have shown very good performance recently [84, 89] in difficult ex-
ploratory games such as Montezuma’s Revenge. The key challenges of these
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methods are the need to store states and trajectories as well as how to navi-
gate to the goal. This issue is partially mitigated in [89] by using the agent’s
position as the state representation, however, this is highly problem-specific.
Exploratory goal methods are limited as devising an exploratory goal becomes
more challenging with increasing sparsity of the reward. This is somewhat mit-
igated in [94] or [104], but these approaches rely on the ability to parametrize
the task.

Table 3: Comparison of Goal-based approaches

R Prior
Knowl-
edge

U Method Top score on a
key benchmark

Input
Types

O
MB/
MF

A/
S

Guo
et al.
[87]

A2C
and
PPO

Goals to
Explore
from

Atari: Mon-
tezume Reve-
nage 20158
(A2C+CoEX
6600)

Atari
images

P
MF C/

C

Guo
and
Brun-
skill
[86]

DQN,
DDPG

Goals to
Explore
from

Mujoco: Fetch
Push 0.9 af-
ter 400 epoch
(DDPG 0.5)

Mujoco
joints
angles

Q
MB C/

C

Flo-
rensa
et al.
[92]

goal posi-
tion

TRPO Goals to
Explore
from

Mujoco: Key
Insertion 0.55
(TRPO 0.01)

Mujoco
joints
angles

Ac MF C/
C

Ed-
wards
et al.
[91]

goal state
informa-
tion

DDQN Goals to
Explore
from

Gridworld 0
(DDQN -1)

Enu-
marated
state id

Q
MF D/

D

Math-
eron
et al.
[85]

state
storage
method

DDPG Goals to
Explore
from

Maze: reach re-
ward after 146k
(TD3 never)

x-y posi-
tion Ac MB C/

C

Oh
et al.
[88]

A2C Goals to
Explore
from

Atari: Mon-
tezuma Revenge
2500 (A2C 0)

Atari
images Ac MF D/

D
Guo
et al.
[89]

access
to agent
position

Itself Goals to
Explore
from

Atari: Pitfall
11,000 (PPO 0);
Robot manipu-
lation task: 40
(PPO 0)

Atari
images/
agent po-
sitions/
robotics
joint an-
gles

Ac MF C/
C

Ecoffet
et al.
[31]

telepor-
tation
ability

itself Goals to
Explore
from

Atari: Mon-
tezuma Revenge
46000 (RND
11000)

Atari
images Ac MB D/

D

Ecoffet
et al.
[84]

access
to agent
position

itself Goals to
Explore
from

Atari: Mon-
tezuma Revenge
46000 (RND
11000)

Atari
images Ac MB D/

D

Hester
and
Stone
[97]

Strategies
set

texpl-
ore-
vanir

Ex-
ploratory
Goal

Sensor Goal: -53
(greedy -54)

Enu-
marated
state id

Ac MB D/
D

Machado
et al.
[101]

had-
crafted
features

itself Ex-
ploratory
Goal

4-room domain:
1

Enu-
marated
state id

Ac MB D/
D
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Machado
et al.
[103]

itself Ex-
ploratory
Goal

4-room domain:
1

Enu-
marated
state id

Ac MB D/
D

Abel
et al.
[106]

DQN Ex-
ploratory
Goal

Malmo: Vi-
sual Hill
Climbing 170
(DQN+boosted
60)

Image/
Vehicle
positions

Q
MB C/

C

Forestier
et al.
[93]

randomly
generated
goals

Itself Ex-
ploratory
Goal

Minecraft:
mountain car
84% explored
(ε-greedy 3%)

State Id
Ac MB C/

C

Colas
et al.
[94]

M-
UVFA

Ex-
ploratory
Goal

OpenAI: Goal
Fetch Arm 0.8
(M-UVFA 0.78)

Robot
joints
angles

Ac MB C/
C

Péré
et al.
[95]

IMGEP
Ex-
ploratory
Goal

Mujoco (KLC):
ArmArrow 7.4
(IMGEP with
handcrafted
features 7.7)

Mujoco
joints
angles

Ac MF C/
C

Ghafoo-
rian
et al.
[100]

Q-
learning

Ex-
ploratory
Goal

Taxi Driver:
Found goal after
50 episodes (Q-
learning after
200)

State Id Q
MF D/

D

Ried-
miller
et al.
[99]

rewards
for axuil-
lary tasks

Itself Ex-
ploratory
Goal

Block stacking:
140 (DDPG 0)

Robot
joints
angles

Ac MB C/
C

Fang
et al.
[104]

tasks
parame-
terization

itself Ex-
ploratory
Goal

GirdWorld: 1
(GoalGAN 0.6)

Robot
joints
angles,
images

Ac MB C/
C

Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

3.4. Probabilistic Methods

In probabilistic approaches, the agent holds a probability over states, ac-
tions, values, rewards or their combination and chooses the next action based
on that probability. Probabilistic methods can be split into optimistic and un-
certain methods [108]. The main difference between them is how they model a
probability and how the agent utilises the probability, as shown in Fig. 9. In
optimistic methods, the estimation needs to depend on a reward, either implic-
itly or explicitly. Then, the upper bound of the estimate is used to make the
action. In uncertainty-based methods, the estimate is the uncertainty about the
environment, such as the value function and state prediction. In the uncertainty-
based method, the agent takes actions that minimise environmental uncertainty.
Note that uncertainty methods can use estimations from optimistic methods but
they utilise them differently.

3.4.1. Optimistic Methods

In optimistic approaches, the agent follows optimism under the uncertainty
principle. In other words, the agent follows the upper confidence bound of the
reward estimate. The use of Gaussian process (GP) as a reward model was
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Figure 9: Overview of probabilistic methods. The agent uses uncertainty over the environment
model to either behave optimistically (left) or follow the most uncertain solution (right). Both
should lead to a reduction in the uncertainty of the agent.

presented in [109]. The GP readily provides uncertainty, which can be used for
reward estimation. The linear Gaussian algorithm can also be used as a model of
the reward [110]. Bootstrapped deep-Q networks (DQN) and Thomson sampling
were utilised in [111]. Bootstrapped DQNs naturally provide a distribution over
rewards and values so that optimistic decisions can be taken.

It is also possible to hold a set of value functions and samples during explo-
ration [112, 113]. The most optimistic value function is used by the agent for
an episode. At the end of the episode, the distribution of the value functions
was updated.

Discussion. In optimistic approaches, the agent attempts to utilise optimism
under the uncertainty principle. To utilize this principle the agent needs to be
able to model the reward. It is possible to do this modeling by either modelling
reward directly or by approximating value functions. Value function approxima-
tion can be advantageous as reward sparsity increases. With increased reward
sparsity, the agent can utilize the partial reward from value functions for learn-
ing.

3.4.2. Uncertainty Methods

In uncertainty-based methods, the agent holds a probability distribution over
actions and/or states which represent the uncertainty of the environment. Then,
it chooses an action that minimises the uncertainty. Here, five subcategories are
distinguished: parameter uncertainty, value uncertainty, network ensemble, and
information-theoretic.

Parameter uncertainty. In parameter uncertainty, the agent holds uncertainty
over the parameters defining a policy. Then, the agent samples from those and
follows this policy for a certain time and updates the parameters based on the
performance. One of the simplest approaches is to hold a distribution over the
parameters of the network [114]. Here, the network parameters were sampled
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from the weight distribution. Colas et al. [115] split the exploration into two
phases: (i) explore randomly and (ii) compare experiences to an expert-created
imitation to determine the good behavior.

In [116], the successor state representation was utilised as a model of the
environment. The exploration was performed by sampling parameters from the
Bayesian linear regression model which predicts successor representation.

Policy and Q-value uncertainty. In policy and Q-value uncertainty, the agent
holds uncertainty over Q-values/actions and samples the appropriate action.
Some of the simplest approaches rely on optimisation to determine the distri-
bution parameters. For example, in [117], the cross-entropy method (CEM)
was used to control the variance of a Gaussian distribution from which actions
were drawn. Alternatively, policies can be sampled [118]. In this study, a set
of sampling policies sampled from a base policy were used. At the end of the
episode, the best policy was chosen as an update to the base policy.

The most prevalent approach of this type is to use the Bayesian framework.
In [119], the hypothesis is generated once and then followed for a certain number
of steps, which saves computational time. This idea was further developed in
[120], where Bayesian sampling was combined with a tree-based state represen-
tation for further efficiency gains. To enable Bayesian uncertainty approaches to
deep learning, O’Donoghue et al. [121] derived Bayesian uncertainty such that
it can be computed using the Bellman principle and the output of the neural
network.

To minimize the uncertainty about policy and/or Q-values, information-
theoretic approaches can be used. Agents choose actions that will result in
maximal information gain, thus reducing uncertainty about the environment.
An example of this approach, called information-directed sampling (IDS), is
discussed in [122]. In IDS, the information gain function is expressed as a ratio
between regret and how informative the action is.

Network ensembles. In the network ensemble method, the agent uses several
models (initialised with different parameters) to approximate the distribution.
Sampling one model from the ensemble to follow was discussed in [123]. In this
study, a DQN with multiple heads, each estimating Q-value, was proposed. At
each episode, one head was chosen randomly for use.

It is difficult to determine the model convergence by sampling one model at
a time. Therefore, multiple models to approximate the distribution over states
were devised in [124]. In this approach, Q-values estimated by different models
were computed and fitted into a Gaussian distribution. A similar approach was
developed in [125], using the information gain among the environmental models
to decide where to go. Another ensemble model was presented in [126]. Explo-
ration is achieved by finding a policy which results in the highest disagreement
among the environmental models.

Discussion. In parameter sampling, the policy is parameterized (i.e. repre-
sented by the neural network), and the probability over parameters is devised.
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The agent samples the parameters and continues the update-exploitation cycle.
In contrast, in policy and Q-value sampling methods, the probability distri-
bution is not based on policy parameters but on actions and Q-values. The
advantage of doing this over parameter sampling is faster updates because the
policy can be adjusted dynamically. The disadvantage is that estimating the
exact probability is intractable, and thus, simplifications need to be made. An-
other method is to use network ensembles to approximate the distribution over
the action/states. This agent can either sample from the distribution or choose
one model to follow. While more computationally intensive, this approach can
also be updated instantaneously.

3.4.3. Summary

Tabular summary of optimistic and uncertainty approaches is shown in Ta-
ble 4 and have been extensively compared in [108]. The article concludes that
the biggest issue for optimistic exploration is that the confidence sets are built
independent of each other. Thus, an agent can have multiple states with high
confidence. This results in unnecessary exploration as the agent visits states
which do not lead to the reward. Remedying this issue would be computa-
tionally intractable. In uncertainty methods, the confidence bounds are built
depending on each other; thus, it does not have this problem.

Table 4: Comparison of probabilistic approaches

R Prior
Knowl-
edge

U Method Top score on a
key benchmark

Input
Types

O
MB/
MF

A/
S

D’Eramo
et al. [111]

bDQN,
SARSA

Opti-
mistic

Mujoco: acrobot
-100 (Thomson
-120)

Mujoco
joints
angles

Q
MF C/

C
Osband
et al. [112]

LSVI Opti-
mistic

Tetris: 5000
(LSVI 4000)

Hand
tuned
22
features

Ac MF D/
D

Jung and
Stone
[109]

Opti-
mistic

Mujoco: In-
verted Pendu-
lum 0 (SARSA
-10)

State
Id Ac MB D/

C

Xie et al.
[110]

MPC Opti-
mistic

Robotics hand
simulation:
complete each of
10 poses

joints
angles Ac MB C/

C

Osband
et al. [113]

LSVI Opti-
mistic

Cartpole Swing
up: 600 (DQN
0)

State
Id Ac MF D/

D
Nikolov
et al. [122]

bDQN
and
C51

Uncer-
tainty

55 atari games:
1058% of ref-
erence human
performance

Atari
images

Q
MB D/

D

Colas
et al. [115]

a set
of goal
policies O

DDPG Uncer-
tainty

Mujoco: Half
Cheetah 6000
(DDP 5445)

Mujoco
joints
angles

P
MF C/

C
Osband
et al. [123]

DQN Uncer-
tainty

Atari: James
Bond 1000
(DQN 600)

Atari
imgaes

Q
MB D/

D
Tang and
Agrawal
[114]

DDPG Uncer-
tainty

Mujoco: sparse
mountaincar 0.2
(NoisyNet 0)

Mujoco
joints
angles

Ac MF D/
C
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Strens
[119]

Dy-
namic
Pro-
gram-
ming

Uncer-
tainty

Maze: 1864
(QL SEMI-
UNIFORM
1147)

Enu-
marated
state id

Ac MB D/
D

Akiyama
et al. [118]

initial
policy
guess

LSPI Uncer-
tainty

Ball bating 2-
DoF simulation:
67 (Passive
learning:61)

Robot
angles Ac MB D/

C

Henaff
[126]

DQN Uncer-
tainty

Maze: -4 (UE2
-14)

Enu-
marated
state id

Q
MB D/

D
Guez
et al. [120]

guess of a
prior

Policy
learn-
ing

Uncer-
tainty

Dearden Maze:
965.2 (SBOSS
671.3)

Enu-
marated
state id

Ac MB D/
D

Pearce
et al. [124]

guess of a
prior

DQN Uncer-
tainty

Cart pole: 200 Enu-
marated
state id

Q
MB C/

C

O’Donoghue
et al. [121]

prior dis-
tribution

DQN Uncer-
tainty

Atari: Mon-
tezuma Revenge
3000 (DQN 0)

Atari
images

Q
MB D/

D
Shyam
et al. [125]

SAC Uncer-
tainty

Chain: 100%
explored
(bootstrapped-
DQN 30%)

Enu-
marated
state
id/
Mujoco
joints
angles

Ac MB C/
C

Stulp [117] PI2 Uncer-
tainty

Ball batting:
learned after 20
steps

Robot
joints
angles

Ac MB C/
C

Janz et al.
[116]

DQN Uncer-
tainty

49 Atari games:
77.55% super-
human (Boot-
strapped DQN
67.35%)

Atari
images

Q
MB D/

D

Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

3.5. Imitation-Based Methods

In imitation learning, the exploration is ’kick-started’ with demonstrations
from different sources (usually humans). This is similar to how humans learn
because we are initially guided in what to do by society and teachers. Thus, it
is plausible to see imitation learning as a supplement to standard reinforcement
learning. Note that demonstrations do not have to be perfect; rather, they
just need to be a good starting point. Imitation learning can be categorized
to imitation in experience replay and imitation with exploration strategy as
illustrated in Fig. 10.

3.5.1. Imitations in Experience Replay Methods

One of the most common techniques is combining samples from demonstra-
tions with samples collected by an agent in a single experience replay. This
guarantees that imitations can be used throughout the learning process while
using new experiences.

In [127], the demonstrations were stored in a prioritised experience replay
alongside the agent’s experience. The transitions from demonstrations have
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Figure 10: Overview of imitation-based methods. In imitation-based methods, the agent
receives demonstrations from expert on how to behave. These are then used in two ways: (i)
directly learning on demonstrations or (ii) using demonstrations as a start for other exploration
techniques.

a higher probability of being selected. Deep Q learning from demonstration
(DQfD) [128] differs in two aspects from [127]. First, the agent was pre-trained
on demonstrations only. Second, the ratio between the samples from the agent’s
run and demonstrations was controlled by a parameter. A similar work with
R2D2 was reported in [129]. Storing states in two different replays was presented
in [130]. Every time the agent samples for learning, it samples a certain amount
from each buffer.

Discussion. Using one or two experience replays seems to have negligible impact
on performance. However, storing in one experience replay is conceptually and
implementation-wise easier. Moreover, it allows agents to stop using imitation
experiences when they are not needed anymore.

3.5.2. Imitation with Exploration Strategy Methods

Instead of using experience replays, imitations and exploration strategies can
be combined directly. In such an approach, imitations are used as a ’kick-start’
for exploration.

A single demonstration was used as a starting point for exploration in [131].
The agent randomly explores from a state alongside a single demonstration run.
The agent trained from a mediocre demonstration can score highly in Mon-
tezuma’s Revenge. The auxiliary reward approach was proposed in Aytar et al.
[26]. The architecture can combine several YouTube videos into a single embed-
ding space for training. The auxiliary reward is added to every N frame from
the demonstration video. The agent that can ask for help from the demonstra-
tor was proposed in [132]. If the agent detects an unknown environment, the
human demonstrator is asked to show the agent how to navigate.

Discussion. Using imitations as a starting point for exploration has shown im-
pressive performance in difficult exploratory games. In particular, [26] and [131]
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scored highly in Montezuma’s Revenge. This is the effect of overcoming the ini-
tial burden of exploration through demonstrations. Approach from [26] can
score highly in Montezuma’s revenge with just a single demonstration, mak-
ing it very sample efficient. Meanwhile, the approach from [26] can combine
data from multiple sources, making it more suitable for problems with many
demonstrations.

3.5.3. Summary

A comparison of the imitation methods is presented in Table 5. Imita-
tions in experience replay allow the agent to seamlessly and continuously learn
from demonstration experiences. However, imitations with exploration strate-
gies have the potential to find good novel strategies around existing ones. Im-
itations with exploration strategies have shown a great capability to overcome
initial exploration difficulty. Imitations with exploration strategies achieve bet-
ter performance than using imitations in experience replay only.

Table 5: Comparison of imitation-based approaches

R Prior
Knowl-
edge

U Method Top score on a
key benchmark

Input
Types

O
MB/
MF

A/
S

Hes-
ter
et al.
[128]

imitation
trained
policy

DQN Imitations
in Ex-
perience
Replay

Atari: Pitfall
50.8 (Baseline 0)

Atari
Images

Q
MF D/

D

Ve-
cerik
et al.
[127]

demon-
strations

DDPG Imitations
in Ex-
perience
Replay

Peg insertion: 5
( DDPG -15)

Robot
joints
angles

Ac MF C/
C

Nair
et al.
[130]

demon-
strations

DDPG Imitations
in Ex-
perience
Replay

Brick stacking:
Pick and Place
0.9 (Behaviour
cloning 0.8)

Robot
joints
angles

Ac MF C/
C

Gul-
cehr
et al.
[129]

demon-
strations

R2D2 Imitations
in Ex-
perience
Replay

Hard-eight:
Drawbridge 12.5
(R2D2:0)

Vizdoom
Images Ac MF D/

D

Aytar
et al.
[26]

youtube
embbed-
ing

IM-
PALA

Imitation
with Ex-
ploration
Strategy

Atari: Mon-
tezuma’s Re-
venge 80k
(DqfD 4k)

Atari
Images Ac MF D/

D

Sali-
mans
and
Chen
[131]

single
demon-
stration

PPO Imitation
with Ex-
ploration
Strategy

Atari: Mon-
tezuma Revenge
with distraction
74500 (Play-
ing by youtube
41098)

Atari
images Ac MF D/

D

Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

3.6. Safe Exploration

In safe exploration, the problem of preventing agents from unsafe behaviours
is considered. This is an important aspect of exploration research, as the agent’s
safety needs to be ensured. Safe exploration can be split into three categories:
(i) human designer knowledge, (ii) prediction model, and (iii) auxiliary reward
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Figure 11: Illustration of safe exploration methods. In safe exploration methods, attempts
are made to prevent unsafe behaviours during exploration. Here, three techniques are high-
lighted: (i) human designer knowledge–the agent’s behaviours are limited by human-designed
boundaries; (ii) prediction models–the agent learns unsafe behaviours and how to avoid them;
and (iii) auxiliary rewards–agents are punished in dangerous states.

as illustrated in Fig. 11. For more details about safe exploration in reinforcement
learning, the reader is invited to read [133].

3.6.1. Human Designer Knowledge Methods

Human-designated safety boundaries are used in human designer knowledge
methods. Knowledge from the human designer can be split into baseline be-
haviours, direct human intervention and prediction models.

Baseline behaviours impose an impassable safety baseline. Garcia et al. [134]
proposed the addition of a risk function (which determines unsafe states) and
baseline behaviour (which decides what to do in unsafe states). In [135], the
agent was constrained by an additional pre-trained module to prevent unsafe
actions as shown in Fig. 12, while in [136], agents are expected to perform no
worse than the a priori known baseline. Classifying which object is dangerous
and how to avoid them before the training of an agent was proposed in [137].
The agent learns how to avoid certain objects rather than states; thus, this
approach can be generalised to new scenarios.

Figure 12: Overview of safe exploration in continuous action spaces [135]. The additional
model is modifying the actions of the original policy.

The human intervention approach was discussed in [138]. During the initial
phases of exploration, humans in the loop stop disasters. Then, a supervised
trained network of data collected from humans is used as a replacement for
humans.

In the prediction model, the human designed safety model determines if the
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agent’s next action leads to an unsafe position and avoids it. In [139], a rover
traversing a terrain of different heights was considered. The Gaussian process
model provides estimates of the height at a given location. If the height is
lower than the safe behaviour limit, the robot can explore safely. A heuristic
safety model using a priori knowledge was proposed in [140]. To this end,
they proposed an algorithm called action pruning, which uses the heuristics to
prevent agent from committing to unsafe actions.

Discussion. In human designer knowledge methods, the barriers to unsafe be-
haviours are placed by a human designer. Baseline behaviours and human inter-
vention methods guarantee certain performance in certain situations but they
will only work in pre-defined situations. Prediction model methods require a
model of the environment. This can be either in the form of a mathematical
model [139] or heuristic rules [140]. Prediction models have a higher chance of
working on previously unseen environments and have a higher chance of adapt-
ability than baseline behaviours and human intervention methods.

3.6.2. Auxiliary Reward Methods

In auxiliary rewards, the agent is punished for putting itself into a dangerous
situation. This approach requires the least human intervention, but it generates
the weakest safety behaviours.

One of the methods is to find states in which an episode terminates and dis-
courages an agent from approaching using an intrinsic fear [141]. The approach
counts back a certain number of states from death and applies the distance-to-
death penalty. Additionally, they made a simple environment in which a highest
positive reward was next to the negative reward. The DQN eventually jumps
to the negative rewards. The authors state ”We might critically ask, in what
real-world scenario, we could depend upon a system [DQN] that cannot solve
[these kinds of problems]”. A similar approach, but with more stochasticity,
was later proposed in [142].

Allowing the agent to learn undesirable states from previous experiences
autonomously was discussed in [143]. The states and their advantage values
were stored in a common buffer. Then, frequently visited states with the lowest
advantage have additional negative rewards associated with them.

Discussion. Auxiliary rewards can be an effective method of discouraging agents
from unsafe behaviours. For example, in [141], half of the agent’s death was
prevented. Moreover, some approaches, such as Karimpanal et al. [143], have
shown the ability to fully automatically determine undesirable states and avoid
them. This, however, assumes that when the agent perishes, it has a low score;
this may not always be the case.

3.6.3. Summary

An overview of the safety approaches is shown in Table 6. Safety is a
vital aspect of reinforcement learning for practical applications in many do-
mains. There are three general approaches: human designer knowledge, pre-
diction models, and auxiliary rewards. Human designer knowledge guarantees
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safe behaviour in certain states. However, the agent struggles to learn new safe
behaviours. Auxiliary reward approaches can adjust to new scenarios, but they
require time to train and design of the negative reward.

Table 6: Comparison of Safe approaches

R Prior
Knowl-
edge

U Method Top score on
a key bench-
mark

Input
Types

O
MB/
MF

A/
S

Garcelon
et al.
[136]

Baseline
safe pol-
icy

Policy-
based
UCRL2

Human
Designer
Knowl-
edge

stochastic
inventory
control: never
breaching the
safety baseline

amount
of prod-
ucts in
inventory

P
MB D/

D

Garcia
and Fer-
nandez
[134]

baseline
behaviour

Human
Designer
Knowl-
edge

car parking
problem 6.5

angles
and po-
sitions of
respec-
tive con-
trollable
vehicles

Ac MB D/
D

Hunt
et al.
[137]

pretrained
safety
network

PPO Human
Designer
Knowl-
edge

Point mass en-
vironment: 0
unsafe actions
(PPO 3000)

bird’s
eye view
of the
problem

Ac MB D/
D

Saunders
et al.
[138]

human in-
tervention
data

DQN Human
Designer
Knowl-
edge

Atari: Space
Invaders 0
catastrophes
(DQN 800000)

Atari
images

Q
MB D/

D

Dalal
et al.
[135]

pretrained
safety
model

DDPG Human
Designer
Knowl-
edge

spaceship:
Arena 1000
(DDPG 300)

x-y posi-
tion Ac MB C/

C

Gao
et al.
[140]

environ-
mental
knowledge

PPO Human
Designer
Knowl-
edge

Pommerman:
0.8 (Baseline
0)

Agent,
enemy
agents
and
bombs
positions

Ac MB D/
D

Turchetta
et al.
[139]

Bayesian
optimi-
sation

Human
Designer
Knowl-
edge

Simulated
rover: 80%
exploration
(Random
0.98%)

x-y posi-
tion Ac MB C/

C

Fatemi
et al.
[142]

DQN Aux-
iliary
Reward

Bridge: opti-
mal after 14k
episodes (ten
times faster
then competi-
tor)

card
types/
atari
images

Q
MB D/

D

Lipton
et al.
[141]

DQN Aux-
iliary
Reward

Atari: As-
teroids total
death 40,000
(DQN 80,000)

Atari
images Ac MB C/

C

Karim-
panal
et al.
[143]

Q-
learning
and
DDPG

Aux-
iliary
Reward

Navigation
environment:
-3 (PQRL
-3.5)

enu-
marated
state id

Q
MF C/

C

Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).
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3.7. Random-Based Methods

In random-based approaches, improvements to simple random exploration
are discussed. Random exploration tends to be inefficient as it often revisits the
same states. To solve this problem, the following approaches are considered:
(i) reduced states/actions for exploration methods, (ii) exploration parameters
methods, and (iii) network parameter noise methods, as illustrated in Fig. 13.

Figure 13: Overview of random based methods. In random-based methods, simple random
exploration is modified for improved efficiency. In modifying the states for exploration, the
number of actions to be taken randomly is reduced. In modifying the exploration parameters,
the exploration is automatically decided. In the network parameter noise, the noise is imposed
on the policy parameters.

3.7.1. Exploration Parameters Methods

In this section, exploration is parameterized (for example, ε in ε-greedy).
Then, the parameters are modified according to the agent’s learning progress.

One technique to adapt the exploration rate is by simply considering a re-
ward and adjusting the random exploration parameter accordingly, as described
in [144]. Using a pure reward can lead to problems with sparse rewards. To
solve this problem, in [145], ε was made to depend on the error of the value-
function estimates instead of the reward. It is also possible to determine the
amount of random exploration using the environmental model entropy, as dis-
cussed in [146]. The learning rate [147] can also depend on exploration in which
a parameter α that is functionally equivalent to the learning rate is introduced.
If the agent is exploring a lot, the value of α slows down the learning to account
for uncertainty. Khamassi et al. [148] used long-term and short-term reward
averages to control exploration and exploitation. When the short-term average
is below the long-term average, exploration should be increased.

Chang et al. [149] used multiple agents (ants) to adjust the exploration
parameters. At each step, the ants chose their actions randomly, but were
skewed by pheromone values left by other ants.
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Another approach of this type could be reducing states for exploration based
on some predefined metric. An approach using the adaptive resonance theorem
(ART) [150] was presented in [151] and was later extended in [152]. In ART,
knowledge about actions can be split into: (i) positive chunk which leads to
positive rewards, (ii) negative chunk which leads to negative results, and (iii)
empty chunk which is not yet taken. In this approach, the action is randomly
chosen from positive and no chunks; thus, the agent is exploring either new
things or ones with the positive reward. Wang et al. [152] extended this to
include the probability of selecting the remaining actions based on how well
they are known.

Discussion. Different parameters can be changed based on learning progress.
Initially, approaches used learning progress, reward, or value of states to deter-
mine the rate of exploration. The challenge with these approaches is determining
the parameters controlling the exploration. However, it is also possible to adjust
the learning rate based on exploration [147]. The advantage is that the agent
avoids learning uncertain information, but it slows down the training. Finally,
reducing states for exploration can make exploration more sample efficient, but
it struggles to account for unseen states that occurs after the eliminated states.

3.7.2. Random Noise

In random noise approaches, random noise is used for exploration. The
random noise can be either imposed on networks parameters or be produced
based on states met during exploration.

The easiest method of including the noise is to include a fixed amount of
noise [153]. This paper reviews the usage of small perturbations in the pa-
rameter space. In [154], chaotic networks were used to induce the noise in the
network. It is also possible to adjust the noise strength using backpropaga-
tion, as described in [155] where the noise is created by a constant noise source
multiplied by a gradient-adaptable parameter. Another way of the using the
noise is by comparing the decision made by the noisy and noiseless policy [156].
Exploration is imposed, if decisions are sufficiently different.

In [157], the problem of assigning rewards when the same state is present
multiple times is discussed. In such a problem, the agent will be likely to take
different actions for the same state, making credit assignment difficult. To solve
this problem, a random action generation function dependent on the input state
was developed; if the state is the same, the random action is the same.

Discussion. Network parameter noise was first developed for evolutionary ap-
proaches, such as [153]. Recently, the noise of parameters has been used in
policy-based methods. In particular, good performance was achieved in [155]
which was able to achieve 50% improvement averaged over 52 Atari games.

3.7.3. Summary

A comparison of the random-based approach is presented in Table 7. The
key advantage of reduced states for exploration methods is that the exploration
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can be very effective, but it needs to hold the memory of where it has been.
Exploration parameter methods solves a trade-off between exploration and ex-
ploitation well; however, the agent can still get stuck in exploring unnecessary
states. The random noise approaches are very simple to implement and show
promising results, but they rely on careful tuning of parameters by designers.

Table 7: Comparison of Random based approaches

R Prior
Knowl-
edge

U Method Top score on
a key bench-
mark

Input
Types

O
MB/
MF

A/
S

Wang
et al.
[152]

ART Explo-
ration
parame-
ters

minefield nav-
igation (suc-
cessful rate):
91% (Baseline
91%)

Vehicles
positions

Q
MB C/

C

Shani
et al.
[147]

DDQN
and
DDPG

Explo-
ration
parame-
ters

Atari: Frost-
bite 2686
(DDPG 1720);
Mujoco:
HalfCheetah
4579 (DDPG
2255)

Atari
images,
Mujoco
joints
angles

Ac/
Q

MF C/
C

Patrascu
and
Stacey
[144]

Fuzzy
ART
MAP
archi-
tecture

Explo-
ration
parame-
ters

Changing
world en-
vironment
(grid with
two alternat-
ing paths to
reward) 0.9

Enu-
merated
state id

Ac MB D/
D

Usama
and
Chang
[146]

DQN Explo-
ration
parame-
ters

VizDoom:
Defend the
centre 12.2 (ε-
greedy 11.8)

Images Q
MB C/

C

Tokic
[145]

V-
learning

Explo-
ration
parame-
ters

Multi-arm
bandit: 1.42
(Softmax
1.38)

Enu-
marated
state id

V
MF D/

D

Khamassi
et al.
[148]

Q-
learning

Explo-
ration
parame-
ters

Nao simulator:
Engagement
10 (Kalman-
QL 5)

Robot
joints
angles

Q
MF D/

D

Shi-
bata and
Sakashita
[154]

Actor-
critic

Random
noise

area with
randomly
positioned
obstacle: 0.6
out of 1

Enu-
marated
state id

Ac MF D/
D

Plappert
et al.
[156]

measure
of policies
distance

DQN,
DDPG
and
TRPO

Random
noise

Atari: Beam-
Rdier 9000 (ε-
greedy 5000);
Mujoco: Half
cheetah 5000
(ε-greedy
1500)

Atari im-
ages/Mujoco
joints
angles

Ac/
Q

MF C/
C

Shi-
bata and
Sakashita
[154]

Random
noise

Multi Arm
Bandit Prob-
lem: 1 (Opti-
mal)

Stateless
Ac MB C/

C

Fortunato
et al.
[155]

Random
noise

Atari: 57
games 633
points (Du-
eling DQN
524)

Atari
images Ac MF C/

C
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Legend: A - action space, Ac - action, R - reference, MB - model based, MF - model free, D - dis-
crete, C - continuous, Q - Q values, V - values, P - policy, O - output, S - state space, U - underlying
algorithm and Top score on a key benchmark explanation - [benchmark]:[scenario] [score] ([baseline
approach] [score]).

4. Future Challenges

In this section, we discuss the following future challenges on exploration in re-
inforcement learning: evaluation, scalability, exploration-exploitation dilemma,
intrinsic reward, noisy TV problems, safety, and transferability.

Evaluation. Currently, evaluating and comparing different exploration algo-
rithms is challenging. This issue arises from three reasons: lack of a common
benchmark, lack of a common evaluation strategy, and lack of good metrics to
measure exploration.

Currently, four major benchmarks used by the community are VizDoom [27],
Minecraft [28], Atari Games [15] and Mujoco [29]. Each benchmark is charac-
terised by different complexities in terms of state space, reward sparseness, and
action space. Moreover, each benchmark offers several scenarios with various
degrees of complexity. Such a wealth of benchmarks is desirable for exposure of
agents to various complexities; however, the difference in complexity between
different benchmarks is well-understood. This leads to difficulty in comparing
algorithms using different benchmarks. There have been attempts to solve the
evaluation issues using a common benchmark, for example, in [158]. However,
this study is not commonly adopted yet.

Regarding the evaluation strategy, most algorithms use a reward after a
certain number of steps. Note that in the context of this paragraph, steps could
also mean episodes, iterations and epochs. This makes the reporting of results
inconsistent in two aspects: (i) the number of steps in which the algorithm
was tested and (ii) how the reward is reported. The first makes comparisons
between algorithms difficult because performance can vary widely depending on
when the comparison is made. The second concern is how rewards are reported.
Most authors choose to report the average reward the agent has scored; however,
sometimes comparison with the average human performance is used (without
clear indication of what average human performance means exactly). Moreover,
sometimes the distinction between the average reward or maximum reward is
not clearly made.

Finally, it is arguable if a reward is an appropriate measure for evaluation
[37]. One of the key issues is that it fails to account for the speed of learning,
which should be higher if exploration is more efficient [37]. Attempts have been
made to address this issue in [37], but as of the time of writing this review
paper, this new metric is not widely adopted. Another issue with rewards is
that it does not provide any information regarding the goodness of exploratory
behaviour. This is even more difficult in continuous action space problems where
computing novelty is considerably more challenging.
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Scalability. Exploration in reinforcement learning does not scale well to real-
world problems. This is caused by two limitations: training time and inefficient
state representation. Currently, even the fastest training requires millions of
samples in complex environments. Note that even the most complex environ-
ments currently used in reinforcement learning are still relatively simple com-
pared to the real world. In the real world, collecting millions of samples for
training is unrealistic owing to wear and tear of physical devices. To cope with
the real world, either a sim-to-real gap needs to be reduced or exploration needs
to become more sample efficient.

Another limitation is efficient state representation so that memorising states
and actions is possible in large domains. For example, Go-Explore [31] does not
scale up well if the environment is large. This problem was discussed in [159]
by comparing how the brain stores memories and computes novelty. It states
that the human brain is much faster at determining scene novelty and has a
much larger capacity. To achieve this, the brain uses an agreement between
multiple neurons. The more neurons indicate that the given image is novel, the
higher the novelty is. Thus, the brain does not need to remember full states;
instead, it trains itself to recognise the novelty. This is currently unmatched in
reinforcement learning in terms of the representation efficiency.

Exploration-exploitation dilemma. The exploration–exploitation dilemma is an
ongoing research topic not only in reinforcement learning but also in a gen-
eral problem. Most current exploration approaches have a built-in solution to
exploration-exploitation, but not all methods do. This is particularly true in
goal-based methods that rely on hand-designed solutions. Moreover, even in
approaches that solve it automatically, the balance is still mostly decided by
the designer-provided threshold. One potential way of solving this problem is
to train a set of skills (policies) during exploration and combine skills in greater
goal-oriented policies [160]. This is similar to how humans solve problems by
learning smaller skills and then using them later to exploit them as a larger
policy.

Intrinsic reward. Reward novel states and diverse behaviour approaches can be
improved in two ways: (i) the agent should be more free to reward itself and (ii)
better balance between long-term and short-term novelty should be achieved.

In most intrinsic reward approaches, the exact reward formulation is per-
formed by an expert. Designing a reward that guarantees good exploration is a
challenging and time-consuming task. Moreover, there might be ways of reward-
ing agents which were not conceived by designers. Thus, it could be beneficial
if an agent is not only trained in the environment but is also trained on how to
reward itself. This would be closer to human behaviour where the self-rewarding
mechanism was developed through evolution.

Balancing the long-term novelty and short-term novelty is another challenge.
In this problem, the agent tries to balance two factors: revisiting states often to
find something new or abandoning states quickly to try to find something new.
This is currently a hand-designed parameter, but its tuning is time-consuming.
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Recently, there has been a fix proposed in [15] where meta-learning decides the
appropriate balance, but at the cost of computational complexity for training.

Noisy-TV problem. The noisy-TV (or couch potato problem) remains largely
unsolved. While using memory can be used to solve it, they are limited by
memory requirements. Thus, it can be envisioned that if the noisy sequence is
very long and the state space is complex, memory approaches will also struggle
to solve it. One method that has shown some promise is the use of clustering
[107] to cluster noisy states and avoid that cluster. However, this requires the
design of correct clusters.

Optimal exploration. One area which is rarely considered in the current explo-
ration in reinforcement learning research is how to explore optimally. For op-
timal exploration, the agent does not revisit states unnecessarily and explores
the most promising areas first. This problem and the proposed solution are de-
scribed in detail in [161]. The solution uses a demand matrix, which is an m by
n matrix of m states and n actions, indicating state-action exploration counts.
It then defines the exploration cost for exploration policy, which is the number
of steps each state-action pair needs to be explored. Note that the demand
matrix does not need to be known a priori and can be updated online. This
aspect needs further developments.

Safe exploration. Safe exploration is of paramount importance for real-world
applications. However, so far, there have been very few approaches to cope
with this issue. Most of them rely heavily on hand-designed rules to prevent
catastrophes. Moreover, it has been shown in [141] that current reinforcement
learning is struggling to prevent catastrophes even with carefully engineered
rewards. Thus, there exists a need for the agent to recognise unsafe situations
and act accordingly. Moreover, what constitutes an unsafe situation is not well
defined beyond hand-designed rules. This leads to problems with regard to the
scalability and transferability of safe exploration in reinforcement learning. A
more rigorous definition of an unsafe situation would be beneficial to address
this problem.

Transferability. Most exploratory approaches are currently limited to the do-
main on which they were trained. When faced with new environments (e.g.,
increased state space and different reward functions), exploration strategies do
not seem to perform well [49, 43]. Coping with this issue would be helpful in two
scenarios. First, it would be beneficial to be able to teach the agent behaviours
in smaller scenarios and then allow it to perform well on larger scenarios to
alleviate computational issues. Second, in some domains, defining state spaces
suitable for exploration is challenging and may vary in size significantly between
tasks (e.g., search for a victim of an accident).
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5. Conclusions

This paper presents a review of the exploration in reinforcement learning.
The following methods were discussed: reward novel states, reward diverse be-
haviours, goal-based methods, uncertainty, imitation-based methods, safe ex-
ploration, and random methods.

In reward novel state methods, the agent is given a reward for discovering a
novel or surprising state. This reward can be computed using prediction error,
count, or memory. In prediction error methods, the reward is given based on the
accuracy of the agent’s internal environmental model. In count-based methods,
the reward is given based on how often a given state is visited. In memory-based
methods, the reward is computed based on how different a state is compared to
other states in a buffer.

In reward diverse behaviour methods, the agent is rewarded for discovering
as many diverse behaviours as possible. Note here that we use word behaviour
loosely as a sequence of actions or a policy. Reward diverse behaviour methods
can be divided into: evolutionary strategies and policy learning. In evolution
strategies, diversity among the population of agents is encouraged. In policy
learning, the diversity of policy parameters is encouraged.

In goal-based methods, the agent is given the goal of either exploring from or
exploring while trying to reach the goal. In the first method, the agent chooses
the goal to get to and then explore from it. This results in a very efficient
exploration as the agent visits predominantly unknown areas. In the second
method, called the exploratory goal, the agent is exploring while travelling to-
ward a goal. The key idea of this method is to provide goals which are suitable
for exploration.

In probabilistic methods, the agent holds an uncertainty model about the
environment and uses it to make its next move. The uncertainty method has
two subcategories: optimistic and uncertainty methods. In optimistic methods,
the agent follows the optimism under uncertainty principle. This means that
the agent will sample the most optimistic understanding of the reward. In
uncertainty methods, the agent will sample from internal uncertainty to move
toward the least known areas.

Imitation-based methods rely on using demonstrations to help exploration.
In general, there are two methods: combining demonstrations with experience
replay and combining them with an exploration strategy. In the first method,
samples from demonstrations and collected by the agent are combined into one
buffer for the agent to learn from. In the second method, the demonstrations
are used as a starting point for other exploration techniques such as the reward
novel state.

Safe exploration methods were devised to ensure the safe behaviour of the
agents during exploration. In safe exploration, the most prevalent method is
to use human designer knowledge to develop boundaries for the agent. Fur-
thermore, it is possible to train a model that predicts and stops agents from
making a disastrous move. Finally, the agent can be discouraged from visiting
dangerous states with a negative reward.
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Random exploration methods improve standard random exploration. These
improvements include modifying the states for exploration, modifying explo-
ration parameters, and putting the noise on network parameters. In modifying
states for exploration, certain states and actions are removed from the ran-
dom choice if they have been sufficiently explored. In modifying exploration
parameter methods, the parameters affecting when to randomly explore are au-
tomatically chosen based on the agent’s learning progress. Lastly, in the network
parameter noise approach, random noise is applied to the parameters to induce
exploration before the weight convergence.

Finally, the best approaches in terms of ease of implementation, compu-
tational cost and overall performance are highlighted. The easiest methods to
implement are reward novel states, reward diverse behaviours and random-based
approaches. Basic implementation of those approaches can be used with almost
any other existing reinforcement learning algorithms; they might require a few
additions and tuning to work. In terms of computational efficiency, random-
based, reward novel states and reward divers behaviours generally require the
least resources. Particularly, random-based approaches are computationally ef-
ficient as the additional components are lightweight. Currently, best-performing
methods are goal-based and reward novel states methods where goal-based
methods have achieved high scores in difficult exploratory problems such as
Montezuma’s revenge. However, goal-based methods tend to be the most com-
plex in terms of implementation. Overall, reward novel states methods seem
like a good compromise between ease of implementation and performance.
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