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EXPLORATION, NORMALIZATION, AND

GENOTYPE CALLS OF HIGH DENSITY

OLIGONUCLEOTIDE SNP ARRAY DATA

Benilton Carvalho, Terence P. Speed, and Rafael A. Irizarry

Abstract

In most microarray technologies, a number of critical steps are required to con-

vert raw intensity measurements into the data relied upon by data analysts, bi-

ologists and clinicians. These data manipulations, referred to as preprocessing,

can influence the quality of the ultimate measurements. In the last few years, the

high-throughput measurement of gene expression is the most popular application

of microarray technology. For this application, various groups have demonstrated

that the use of modern statistical methodology can substantially improve accuracy

and precision of gene expression measurements, relative to ad-hoc procedures

introduced by designers and manufacturers of the technology. Currently, other

applications of microarrays are becoming more and more popular. In this paper

we describe a preprocessing methodology for a technology designed for the iden-

tification of DNA sequence variants in specific genes or regions of the human

genome that are associated with phenotypes of interest such as disease. In par-

ticular we describe methodology useful for preprocessing Affymetrix SNP chips

and obtaining genotype calls with the preprocessed data. We demonstrate how

our procedure improves existing approaches using data from three relatively large

studies including one in which large number independent calls are available. Soft-

ware implementing these ideas are avialble from the Bioconductor oligo package.
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surements into the data relied upon by data analysts, biologists and clinicians. These data manipulations,

referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years,

the high-throughput measurement of gene expression is the most popular application of microarray technol-

ogy. For this application, various groups have demonstrated that the use of modern statistical methodology

can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc pro-

cedures introduced by designers and manufacturers of the technology. Currently, other applications of

microarrays are becoming more and more popular. In this paper we describe a preprocessing methodol-

ogy for a technology designed for the identification of DNA sequence variants in specific genes or regions

of the human genome that are associated with phenotypes of interest such as disease. In particular we

describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with

the preprocessed data. We demonstrate how our procedure improves existing approaches using data from
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three relatively large studies including one in which large number independent calls are available. Software

implementing these ideas are avialble from the Bioconductor oligo package.

1 Introduction

The genotyping platform provided by Affymetrix interrogates hundreds of thousands of human single nu-

cleotide polymorphisms (SNPs) on a microarray. A simple description of the method is the following: DNA

is obtained and fragmented at known locations so that the SNPs are far from the ends of these fragments, the

fragmented DNA is amplifi ed with a polymerase chain reaction (PCR) reaction, and the sample is labeled and

hybridized to an array containing probes designed to interrogate the resulting fragments. There are currently

three products available from Affymetrix: an array covering approximately 10,000 SNPs (GeneChip Human

Mapping 10K), a pair of arrays covering approximately 100,000 SNPs (GeneChip Human Mapping 50K Xba

and Hind Array), and a pair of arrays covering approximately 500,000 SNPs (GeneChip Human Mapping

250K Nsp Array and Sty Array). These are referred to as the 10K, 100K, and 500K chips respectively. The

100K chips have become widely used for a handful of different applications (Uimari et al., 2005; Nannya

et al., 2005; Huang et al., 2006). The main application of this technology is genotyping SNPs at a high

throughput rate. However, various groups have used the arrays for other applications such as copy number

estimation Huang et al. (2006), Nannya et al. (2005). In this paper we focus on preprocessing algorithms that

can improve downstream analysis for any of these applications. We illustrate these using the main application

of this technology: genotyping.

We start this section with a short description of the SNP chip feature-level data. A detailed description is

available from Kennedy et al. (2003). Each SNP on the array is represented by a collection of probe quartets.

In the 100K arrays, SNP chips probesets are composed of 40 features. As with expression arrays, the features

are defi ned by 25-mer oligonucleotide molecules referred to as perfect match (PM) probes. The probesets also

include a mismatch (MM) pair for each PM feature. As in expression arrays, these are created by changing

the middle base pair. A difference with expression arrays is that PM features differ in three important ways:
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First, two alleles are interrogated (for most SNPs only two alleles are observed in nature). These are denoted

by A and B and divide the probes into two groups of equal size. For each PM probe representing the A allele

there is an allele B that differs by just one base pair (the SNP). Second, features are included to represent the

sense and antisense strands. This difference divides the probes into two groups that are not necessarily of the

same size. Finally, for each allele/strand combination, various features are added by changing the position of

the SNP within the probe. In summary we have four discriminating characteristics: PM or MM, allele A or

B, sense or antisense, and SNP location. Our methodology makes no use of the MM features mainly because

we see a trend in the company to no longer use this type of probe. Notice that an array with no MMs can

accommodate features for twice as many SNPs.

The general goal of preprocessing for SNP arrays is to normalize and summarize feature intensities into

genotype calls (AA, AB, BB). A measure of confi dence is also desired. Typically, samples not achieving a

specifi c confi dence cut-off at a given SNP receive no calls at that SNP. In this paper we propose preprocess-

ing methodology that greatly improves accuracy of genotyping calls over existing methods. We propose a

modular approach in which preprocessing is done in a fi rst step and a genotyping algorithms is defi ned for

preprocessed data. To illustrate this, and to motivate our methodology, we use three datasets: 1) The HapMap

Trio Dataset, consisting of 30 trios analyzed on the 100K Mapping platform, which are also part of the Inter-

national HapMap Project and, therefore, have precise genotype calls that can be used as “gold-standard”, 2)

a dataset comprised of the same DNA hybridized to 53 arrays, and 3) a dataset consisting of 22 samples as

described in Slater et al. (2005). We will refer to these datasets as the lab 1, lab 2, and lab 3 datasets. Lab 1

dataset will also be referred to as the Hapmap data.

The paper is organized as follows: Section 2 describes previous work in preprocessing and genotyping

methods, while Section 3 describes how we normalize and summarize the feature level data. In Section 4 we

show how the normalization we use motivates a useful genotyping algorithm, while in Sections 5 and 6 we

present and discuss our results.

3
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2 Previous Work and Motivation

The principal goal of preprocessing is to summarize the feature intensities into quantities that can be used

to discriminate genotype classes. We use a general notation in which θA and θB are the logarithms (base

2) of quantities proportional to the amount of DNA in the target sample associated with alleles A and B,

respectively. Notice that if the PCR produced X copies of the DNA fragments, these quantities should the

log of 0, X , or 2X . Thus a naive approach to genotyping would be to set thresholds and call genotypes based

on the θs being above or below these thresholds. For example, to call an AA genotype one might require

that θA > C1 and θB < C2. However, the most basic data exploration demonstrates that such an approach will

not work well in general. Figure 1A illustrates the problem. Given what we have learned from expression

arrays about optical background noise, non-specifi c binding, and probe-effects, it is no surprise that such

naive methods do not perform well. We begin this section by describing some of the more sophisticated

existing genotyping algorithms.

Although predefi ned cut-offs are not useful, for most SNPs the θA and θB do form three distinct clusters

representing the three possible genotypes. Affymetrix’s default algorithm for their 10K arrays took advantage

of this property and used a modifi ed partitioning around the mediods (MPAM) clustering algorithm to detect

the clusters. These clusters were then associated with the three different genotypes. The summarized data

was based on a relative allele signal (RAS) which is essentially a ratio of allele A intensities to the sum of

both alleles intensities. The intensities were corrected for background using the MM (Liu et al., 2003).The

algorithm worked well when there was enough data in each of the three genotypes, but not as well in other

cases. With the higher density chips this algorithm was not satisfactory as many SNPs with low minor allele

frequency are included in the 100K and 500K arrays (Di et al., 2005). For this reason, with the release of the

100K arrays, Affymetrix changed their default procedure to a dynamic model (DM) based algorithm. In this

algorithm four different Gaussian models (NULL, AA, AB, and BB) were considered for the probe intensities

for each SNP, and a genotype call made for each sample based on the likelihoods for each genotype. Notice

that DM is not a modular procedure: the calls are derived directly from the feature intensities.
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Various problems have been noted with calls obtained from the DM algorithm. In particular, a higher

degree of misclassifi cation for the heterozygous calls was observed when compared to MPAM. This fact

motivated several academic groups to develop their own algorithms (LaFramboise et al., 2005; Rabbee and

Speed, 2006). In Rabbee and Speed (2006) the robust linear model with Mahalanobis distance (RLMM) is

described and shown to outperform DM on the Hapmap dataset described above.

RLMM begins by preprocessing the feature-level data using RMA, a procedure demonstrated to work

well for expression arrays Irizarry et al. (2003). These summarized data are then used to build a SNP-specifi c

regions for each genotype using a supervised learning algorithm similar to linear discriminant analysis (LDA).

To train the algorithm, the Hapmap dataset was used. This approach is particularly appealing because em-

pirical results demonstrate that different SNPs can produce very different distributions. Figure 1A clearly

demonstrates this. Model-based approaches that impose the same (or similar) models on all SNPs are un-

likely to perform as well as algorithms that train on observed data. In fact, using cross-validation on the

Hapmap dataset, Rabbee and Speed (2006) demonstrate that RLMM greatly outperforms DM (See Figure

4 in Rabbee and Speed (2006)). However, this preprocessing strategy make RLMM’s genotyping algorithm

less useful because SNP-specifi c feature intensity distributions are different not only across SNP but within

the same SNP across labs/studies. Figure 1B clearly shows this. SNPs exhibiting the behavior shown in this

fi gure are common, which implies that regions defi ned with data from one study/lab will do poorly when

calling data from a different study/lab.

Recently, Affymetrix has made a white paper document available Affymetrix (2006) describing a new

preprocessing algorithm based on RLMM. To improve the across-lab compatibility, BRLMM does not train

the classifi cation algorithm on the Hapmap data. Instead, BRLMM uses DM calls as initial guesses for class

membership, and uses these to defi ne genotype regions. The genotype regions are then re-calibrated using a

Bayesian calculation. This algorithm is expected to become the default in the near future. More details are

available here Affymetrix (2006).

In this paper we describe new normalization and summarization methodologies that make across-lab

comparison possible. This in turn permits us to use the training algorithm strategy originally implemented by

5
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Figure 1: Genotype regions. A) RLMM genotype regions for three SNPs with data from different samples

shown as well. Different colors represent the three different genotypes and the numbers the three different

SNPs. B) RLMM genotype regions obtained using the Hapmap data and data points from labs 2 and 3

(denoted by numbers). C) As B) but for CRLMM.

RLMM to create a powerful corrected version. We will refer to our genotyping method as CRLMM. Because

our preprocessing method is an adaptation of RMA and can be used with other genotyping algorithm, we will

refer to it as SNPRMA.

3 Normalization

A likely explanation for the across-lab differences in cluster distributions seen in Figure 1A is the sample

preparation effect. In particular, the effect of DNA polymerase chain reaction (PCR) which is used to amplify

each DNA is sample. In this section we describe procedures based on observable covariates that can be used

to assess and correct the PCR effect: probe sequence and fragment length. Similar corrections have been

described by Nannya et al. (2005). However, these corrections are done on the log intensity scale and we fi nd

that effects can still be observed for the log-ratio values. We propose normalization strategies that correct for

these log-ratio biases as well.
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Figure 2: Position dependent sequence effect. A) For a typical array from the Hapmap study, the effect of

each base at each position is shown. The different bases are denoted with different colors. B) As A) for lab

2, and C) lab 3.

3.1 Correcting for sequence and fragment length

Nannya et al. (2005) noticed that fragment length has a strong effect on probe intensity, with longer fragments

resulting in weaker feature intensities (Supplemental Figures 1-2). These fi gures demonstrate that the effects

are different from sample to sample and from lab to lab, with the lab difference being greater. Nannya et al.

(2005) have also pointed out that GC content has a strong effect on feature intensity. We have noticed that

the sequence effect is actually position dependent, something that has previously been observed in expression

arrays (Wu et al., 2004). Figure 2 shows the position dependent effects of each of the four bases for three

different labs. This fi gure demonstrates that the effects are large, and that they change from sample to sample

and lab to lab. A particularly important consequence of the sequence effect is that, when comparing feature

intensities representing the different alleles, one can see relatively large differences due only to sequence.

Figure 3A shows that the sequence effect can cause relatively large differences between alleles A and B.

In our normalization procedure, our fi rst step is to correct for both sequence and fragment length effects.
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Figure 3: Sequence effect on allele A to allele B log-ratio for the six different possible base pairs. For each

array we obtain the median of the log-ratios for all SNPs with the same base-pair at the SNP. In this plot we

show boxplots of those medians for each of the six possible base pairs. The three different colors represent

the three different labs. A) Before normalization and B) after normalization.

To do this we simply fi t a linear model to the log PM intensities:

log2(PM) = µ+g(L)+ ∑
b∈{A,C,G,T}

25

∑
t=1

hb(t)1(bt = b). (1)

Here bt represents the base at location t, hb(t) are smooth functions of location (each base b is represented

by a different function), 1(bt = b) is 1 when the base at position t if b, and 0 otherwise, and g(L) is a smooth

function of fragment length L. Supplemental Figures 1-2 and Figure 2 demonstrate that the effects are well

described with a smooth functions which we model with a cubic splines with 5 degrees of freedom. With these

assumptions in place, we can estimate µ, g(·) and hb(·) using least squares. The corrected PM intensities are

obtained from subtracting the estimated sequence and fragment length effects for log2(PM). Nannya et al.

(2005) demonstrates that corrections such as these reduce unwanted variability substantially. However, in

Section 3.4 we demonstrate that sequence and length effects remain for the quantity that is most informative

for genotyping: the log-ratio. For example, Figure 3B shows that the effect of sequence is reduced but can be

8
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Figure 4: Empirical densities for log (base 2) intensities from three randomly chosen arrays from A) lab 1,

B) lab 2, and C) lab 3. The intensities have been corrected for sequence and fragment length.

further improved.

3.2 Across array normalization

An important lesson learned from analyzing expression data is that across-array normalization is almost

always needed. Figure 4 demonstrates that even after the correction described in the previous section, array

intensity distributions are substantially different. As expected, differences are seen across arrays and even

bigger differences across labs. In the case of SNP arrays it is safe to assume that the theoretical distributions

of the target DNA we are measuring should be equal since the total amount of DNA should be the same across

sample. Exceptions might come from cases for which a DNA sample has large pieces with extra or deleted

copies of chromosome. For all other cases we can make array intensities comparable across arrays using

quantile normalization Bolstad et al. (2003). However, instead of normalizing each study separately, as is

commonly done in gene expression experiments, we normalize all array intensities to a reference distribution

created with the Hapmap data.
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Figure 5: Effect of the “broken” probe effect. A) RLMM genotype regions for SNPs for which the sense

strand does not differentiate. B) As A) but for BRLMM and C) CRLMM.

3.3 Summarization

We summarize the feature intensities within each probe quartet to produce four values for each SNP. Specif-

ically, we follow the RLMM approach of using median polish to fi t a linear model to the normalized log

PM intensities (Rabbee and Speed, 2006). The linear model includes a term related to sample specifi c DNA

amount and a term for the probe effect. However, we actually fi t a separate model to each strand/allele

combination instead of combining the strands as done by RLMM. We therefore produce four numbers per

SNP which we can denote with: θA,−,θA,+,θA,−,θB,+. In Section 3.4 we describe why we keep sense and

antisense values separate.

3.4 Remaining log-ratio biases

Figures 1A and 1B show that most of the information available for separating the clusters associated with the

three genotypes is in the upper-left-to-lower-right diagonal direction, i.e. the log ratios. The same plot for

other SNPs look similar. In fact, it is diffi cult to fi nd cases where the sum of the intensities provides useful

information. For this reason we consider the log ratios M = θA − θB as the quantity used for genotyping.

Furthermore, there are many instances where one of the two strands appears to provide no information.

Figure 5 demonstrates that considering the log-ratios for the two strands, M+ and M−, instead of a summary
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Figure 6: Empirical density distribution of the across SNP M values for the array with the best (red) and

worst (green) SNR ratios.

that contains both, permits us to correctly call genotypes in cases in which the features for one of the strands

is not informative. We have observed roughly 100 cases such as the one presented in Figure 5. For this reason

we propose these strand specifi c log-ratios as the summarized quantity to be used by genotyping algorithms.

We denote the log-ratio for SNP i, sample j by Mi, j,s with sense and antisense strands denoted by s = +,−.

We code the genotypes by k = 1,2,3 for AA, AB, and BB respectively.

Careful data exploration demonstrated that, in general, these M values have powerful discrimination abil-

ity. However, we noticed that in some arrays there was better separation than others, as demonstrated in Figure

6. We also noticed that, within arrays, SNPs with inferior separability were associated with long fragment

lengths or high/low average intensity, S ≡ (θA +θB)/2, values. Figure 7 shows this very clearly. Furthermore,

Figure 3 demonstrates that, although much reduced, a sequence effect is still present for log-ratios. In the

remainder of this Section we describe our fi nal preprocessing step which estimates these remaining biases.

We describe these effects with a simple mixture model. To simplify the fi tting procedure we estimate the

model separately on each array and treat the sense and antisense feature as exchangeable. We therefore drop
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the j and s notation and write:

[Mi|Zi = k] = fk(Xi)+ εi,k, (2)

where the Xi represents covariates known to cause bias, fk describes the effect associated with these covari-

ates, and εi,k an error term which we assume to be a normal random variables with mean 0 and variance τ2
k .

We assume that f j,2 = 0, and f j,1 = − f j,3 and that τ2
1 = τ2

3.

In this section we have demonstrated that we should include at least the following three covariates in (2):

fragment length Li, the average intensity Si (treated as a fi xed covariate), and a factor coding the base pair at

the SNP. Figures 3B and 7 suggest that we can use the following model: Let f1(Li,Si,bi) = µbi
+ fL(Li)+

fS(Si) with µbi
a mean level that differers for each SNP base pair (bi =AC, AG, AT, CG, CT, or GT), fL a

cubic spline with three degrees of freedom, and fS a cubic spline with fi ve degrees of freedom. This model

has 16 parameters and, since we have thousands of observations, we obtain very precise estimates of f . We

fi t the model using the EM algorithm. Examples of the estimated fL and fS are included in Figure 7.

Although the main reason for fi tting (2) is to obtain estimates of f , two other useful summaries can be

derived. The fi rst is an estimate of the probability of membership of sample j in genotype k for SNP i given

Mi, j,k,+ and Mi, j,k,+. We denote these estimates as π̂i, j,k and notice that they are readily available from the

EM algorithm as they are the weights used by the M step. In supplemental Figure 5 we compare the predicted

probabilities to the actual error rates (computed using the Hapmap data). The fi gure confi rms that they are

in fact useful. Furthermore, they provide excellent fi rst guesses as demonstrate by Supplemental Figure

5C. Notice that even with a no call rate of 0% we achieve concordance (with Hapmap calls) rates of 99%.

Second, the quantity median( f )2/avgkτ2
k can be used as a quality measure for the array since it gives us a

general sense of separability between genotype classes. In supplemental Figure 6 we demonstrate the utility

of the SNR summary by showing plots like those in Figure 7 for the arrays producing the best and worst SNR.

This fi gures shows that for the second array, information about genotypes is likely lost. We conjecture that a

cut-off C can be defi ned so that removing arrays with SNRs lower than C improves the overall performance

of the analysis.

Notice that even after fi tting (2) we can not correct the M values by subtracting f because we do not know
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Z. In the next Section we describe a genotyping algorithm that incorporates the estimated f .

4 Genotype Calling

As mentioned above, we use a supervised learning approach to genotype calling. For most SNPs on the

arrays we have independent genotype calls for all the samples in the Hapmap data. These calls are based on

consensus results from various technologies and are considered a gold-standard. We use these calls to defi ne

known genotypes which in turn permits us to defi ne a training set. However, these calls are not available

for about 4% of the SNPs on the array. For these we use the initial guesses described in Section 3.4 to

defi ne the known classes. With the training data in place we use a two-stage hierarchical model and give

likelihood-based closed-form defi nitions of the genotype regions. Details follow.

For each SNP, we defi ne two dimensional genotype regions based on the sense and antisense M values.

However, even with 90 samples, there are SNPs for which we have a very small number of observations

available at the training step. For these cases the hierarchical model presented in this sections becomes very

useful. Using empirically derived priors for the centers and scales of the genotype regions, we give a closed

form empirical Bayes solutions to predict centers and scales for cases with few or no observations.

4.1 The Model

Let Zi, j be the unknown genotype for SNP i on sample j. As above, we code the genotypes by k = 1,2,3 for

AA, AB, and BB respectively. Figure 1A suggests that genotype regions are SNP-specifi c when considering

θA and θB as the quantities of interest. Similar pictures for M+ and M− (data not shown) demonstrate that

the same is true for the log-ratios. Furthermore, these pictures suggest that the behavior of the log-ratio pairs

can be modeled by a bivariate normal distributions. We therefore propose a two-level hierarchical multi-chip

model with the fi rst level describing the variation seen in the location of genotype regions across SNPs and

the second, the variation seen across samples within each SNP. The model can be written out as follows:

[Mi, j,s|Zi, j = k,mi,k,s] = f j,k(Xi, j,s)+mi,k,s + εi, j,k,s. (3)
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Figure 7: A) M values plotted against fragment length. Instead of plotting the points we show, with shades

of blue, the data density. The solid lines are the estimated f s. B) As A) but for intensity instead of fragment

length.

where Xi, j,s and f j,k are as in Section 3.4 but with the j and s notation re-introduced, mi,k,s is the SNP-specifi c

shift from the typical genotype region centers, and εi, j,k,s represents measurement error. As mentioned in the

previous section we expect different samples to have different biases thus the effects function f now depends

on j. Notice that the SNP-specifi c covariates X also depend on sample because the average signal S may

vary from sample to sample. The ms represent the cluster center shifts not accounted for by the covariates

included in X .

To defi ne the fi rst level of our model we denote the vector of SNP-specifi c region centers with mi =

(mi,1,+,mi,2,+,mi,3,+,mi,1,−,mi,2,−,mi,3,−)′. Data exploration shows that we can model the distribution of

this vector with a multivariate normal distribution (Supplemental Figure 4). We will denote the variance-

covariance matrix of m by V . Notice that by defi nition, m is centered at 0, since the mean levels of the three

genotypes are absorbed into f . This mean level, J−1 ∑ j I−1 ∑i f j,1(Xi, j,s) is roughly 3.

The second level of the model, the variability seen within the genotypes for each SNP, is described by the

εs. We assume these to be independent (conditioned on genotype Z) normals across samples and SNPs, with

14
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SNP/strand dependent variance σ2
i,k,s. We use an inverse χ2 prior to improve estimates when not enough data

is available, i.e.

1

σ2
i,k,s

∝
1

d0,ks2
0,k

χ2
d0,k

(4)

where dk,0 are the degrees of freedom of the χ2 distribution and s2
0,k represents the variance of a typical SNP.

4.2 The training step

Because the large number of SNPs permits us to estimate the f js precisely, for simplicity, we treat them as

known. With this estimate of f j in place for each sample, all we need to make our likelihood-based genotype

calls are estimates of the ms and σs in (3). In this Section we describe our proposed supervised learning

approach. The key idea is to consider the Hapmap calls as known genotypes and use this information to

obtain maximum likelihood estimates of m and the σs. A second step is to update these estimates with

posterior means derived from the hierarchical model. Below we describe the details.

Because we are treating Zi, j and f as known we can defi ne the maximum likelihood estimates (MLE) for

the m and σ in closed form:

m̂i,k,s = N−1
i,k ∑

j∈Gi,k

{Mi, j,s − f j,k(Xi, j,s)} and σ̂2
i,k,s = N−1

i,k ∑
j∈Gi,k

{Mi, j,s − f j,k(Xi, j,s)− m̂i,k,s}
2. (5)

Here, Gi,k is the set of indexes associated with samples of genotype k on SNP i and Ni,k is the number of

indexes in G j,k. Notice that we may also use robust versions of (5).

As mentioned above there are various cases for which not enough data is available to trust m̂ and σ̂2 as

reliable estimates of a region center and scale. The hierarchical model described in Section 4.1 provides

closed form solutions for the posterior means which can be viewed as a useful shrinkage of the estimates that

automatically takes care of cases with few observations. The shrinkage step is defi ned as follows:

m̃i = (V−1 +NiΣ−1)−1NiΣ−1m̂i (6)

σ̃2
i,k,s =

(Ni,k −1)σ̂2
i,k,s +d0,ks2

0,k

(Ni,k −1)+d0,k

, for Ni,k > 1. (7)

For N ≤ 1, there is no sample variance to use in equation (7) and we simply use σ̃2
i,k,s = s2

0,k Here m̂ is

the vector of sample means: (m̂i,1,+, m̂i,2,+, m̂i,3,+, m̂i,1,−, m̂i,2,−, m̂i,3,−)′, Σ is a 6× 6 diagonal matrix with
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Σk,k = Σk+3,k+3 = s2
0,k, and Ni is a 6×6 diagonal matrix with entries (Ni,1,Ni,2,Ni,3,Ni,1,Ni,2,Ni,3). To apply

equations (6) and (7) we need prior parameters d0,k, s2
0,k, and V . We use the empirical Bayes type approach

described in Lönnstedt and Speed (2002) and Smyth (2004).

Notice that (6) and (7) are simply weighted averages of the prior and observed means, with the weights

controlled by sample size and the prior means for the variances. In Section 6 we give an example of the utility

of the update defi ned by equations (6) and (7).

These estimated parameters, m̃ and σ̃2, are stored and used to call genotypes in other datasets. This is

described in the next section.

4.3 Likelihood based calls

The fi nal step is to make a genotype call for any given pair (sense and antisense) of observed log-ratios:

Mi, j,+,Mi, j,−. Notice that these M values can come from any study and we will use the centers and scales,

defi ned by (6) and (7), estimated from the Hapmap data. We do this by forming a likelihood based distance

function δ defi ned by:

δi,k ≡ ∑
s∈{+,−}

{

log(σ̃i,k,s)+

(

Mi, j,s − f j,k(Xi, j,s)− m̃i,k,s

σ̃i,k,s

)2
}

(8)

Our prediction is the genotype k that minimizes δi,k. Furthermore, the log likelihood ratio tests serves as a

useful measures of confi dence. Specifi cally, our measure of confi dence is δi,2 − δi,k for homozygous calls

and min(δi,1 −δi,2,δi,3 −δi,2) for heterozygous calls. Supplemental fi gure 5D demonstrates that if we apply

this method to the Hapmap data (the training data) we obtain an impressive concordance rate as described in

more detail in Section 5.

4.4 Recalibration

Although our pre-processing procedure greatly improves comparability across lab/studies, some slight dif-

ferences in cluster centers appear to persist (data not shown). For this reason we re-calibrate the centers and

scales to the new clusters in the following manner: 1) After obtaining genotype calls, use those achieving log-
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likelihood ratios associated with 99% concordance rates and recalculate the centers and scales by repeating

steps (5), (6), and (7). Then we compute calls using these new centers and scales.

5 Results

In this section we demonstrate that using our methodology provides better separability of cluster, call rates,

and across-lab agreement than RLMM and BRLMM.

To assess the separability of clusters we compare the silhouette widths (Rousseeuw, 1987), a standard

approach used in the unsupervised learning literature, for RLMM, BRLMM and CRLMM. Figure 8A shows

the empirical cumulative distribution function between the RLMM and CRLMM clusters. In particular notice

that the 99% worst distance is almost 3 times better for CRLMM over RLMMM. The improvements are

dramatic. Similar improvements over BRLMM are observed.

In Rabbee and Speed (2006) cross-validation was used to estimate the error rates. However, Figure

1 demonstrates that within lab/study error rates are not necessarily accurate. This is due to the fact that

supervised learning procedures may over-adapt to results from one lab which may result in poor performance

when we switch to data from other labs/studies. For this reason we do not use cross-validation to evaluate

the methods. Supplemental Figure 5C shows correct call rates for the initial guesses provided by the mixture

model fi t described in Section 3.4. Notice that the initial guesses, which are not based on a supervised

learning approach, slightly outperforms RLMM. Supplemental Figure 5D shows how call rates, within the

training data, increase close to perfection. Even with a no call rate of 0%, calling every single SNP on every

array, we obtain concordance rates of 99.85% for heterozygotes and 99.92% from homozygotes.

Figure 1 demonstrates how CRLMM provides predictions that are useful across labs/studies. In Figure

1C the ellipses were obtained from the training data. Notice how only for CRLMM the data for other two

studies fall in, or are close to, the regions defi ned by training on the Hapmap data. Thousands of other SNPs

show behavior similar to the one shown in Figure 1. Figure 8B is a particularly interesting example. For this

SNP the Hapmap data had no AA gold-standard calls. Notice how the prediction defi ned by (6) and (7) create
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Figure 8: Illustration of usefulness of CRLMM. A) Empirical cumulative distribution function (eCDF) of

the silhouette widths for the SNP-specifi c genotype regions for RLMM, BRLMM, and CRLMM. B) For a

particular SNP, data from Hapmap are shown with empty circles and the data from lab 3 with solid circles.

Notice that for the Hapmap data, there are no AA samples. The thin-line ellipses are defi ned using the

Hapmap data. The green thin-line ellipse is the AA region predicted with the Bayesian correction (6). The

thiker lines are the regions derived after recalibration for the lab 3 data. For the lab 3 data it appears that we

have one AA sample and it is predicted correctly.

a region for which data from another lab, that appears to come from an AA, falls close enough to be called

AA.

6 Discussion

We have described a preprocessing algorithm for Affymetrix SNP arrays that greatly improves upon existing

methods. The procedure is based on four steps: 1) Feature intensities are corrected for fragment length and

sequence effects. 2) We then quantile normalize, using a predefi ned reference distribution. 3) Next, median

polish is used to summarize feature intensities into one number for every allele keeping sense and antisense

18

http://www.bepress.com/jhubiostat/paper111



summaries separate. 4) As a fi nal step a mixture model is used to correct for fragment length and intensity

dependent biases on the log ratio of the summarized intensities. We refer to this approach as SNPRMA.

The summarized data, sequence information, fragment lengths and intensity effects can then be used to

make genotyping calls. Notice that at this stage one can use MPAM, RLMM, or BRLMM like procedures

to make genotype calls. We demonstrate that the supervised approach used by RLMM works very well in

conjunction with a correction based on a posterior mean derived from a carefully derived hierarchical model.

Although we use Hapmap calls to defi ne known classes and defi ne a training set, these calls could be avoided

entirely and the preliminary calls from our mixture model could be used in their place to give a set of high-

quality calls for determining cluster centers.
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Supplemental Figure 1: A) For the Hapmap data, an estimate of the fragment length effect is obtained by

fi tting a smoothing spline to the log intensity data. The average effect across samples is calculated and

displayed. Point-wise 95% confi dence inetervals are also shown. B) As A) for lab 2. C) As A) for lab 3.
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Supplemental Figure 2: The averages shown in Supplemental Figure 1 shown in one Figure.

23

Hosted by The Berkeley Electronic Press



−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

AC CG

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
2

0
2

4
6

SNP Base Pair

Lo
g 

R
at

io
AC CG

−
6

−
4

−
2

0
2

4
6

AC CG
−

6
−

4
−

2
0

2
4

6
AC CG

−
6

−
4

−
2

0
2

4
6

AC CG
−

6
−

4
−

2
0

2
4

6

Supplemental Figure 3: Sequence effect by lab. For three randomly selected arrays in each lab we show

the M values stratifi ed by the SNP base pair. Above is before normalization and below is after.
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Supplemental Figure 4: All pairwise scatter plots for the six estimated m values. The correlations are shown

on top of the fi gures.
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0 B) Concordance rate for starting values
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0 C) Concordance rate after training
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D) Conordance verus log−likelihood ratio
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Supplemental Figure 5: A) For all SNPs reaching predictive probability π̂k of being genotype k, obtained

from fi tting model 2, we calculate the proportion of those SNPs that are actually k. We plot these proportions

against p̂ik. B) Observed concordance between initial guesses, based on p̂ik, and Hapmap calls. C) Observed

concordance between CRLMM calls and Hapmap calls. D) Observed concordance plotted against observed

log-likelihood ratios.
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Supplemental Figure 6: Like Figure 7 but for the arrays with best and worst SNR.
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