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Abstract

Background: Determining bacterial abundance variation is the first step in understanding bacterial similarity between

individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in

describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of

bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the

Human Microbiome Project.

Results: We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus

level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette

values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class

in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the

symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and

ethnicity, significantly influence community composition in several habitats. Community classes in the vagina,

retroauricular crease and stool are stable over approximately 200 days.

Conclusion: The community composition, association of demographic factors with community classes, and

demonstration of community stability deepen our understanding of the variability and dynamics of human

microbiomes. This also has significant implications for experimental designs that seek microbial correlations with

clinical phenotypes.

Background
Knowledge of the composition, distribution and variation

of bacteria in the human body has grown dramatically in

the past decade. Different human habitats are composed of

distinct microbial populations [1-8]. The range of abun-

dance of components of the human microbiome extends

over many orders of magnitude [9]. Inter-subject variation

in bacterial community structure is also extensive in healthy

humans [4,7]. Determination of the extent of the variability

of the human microbiome is, therefore, crucial for under-

standing the microbiology, genetics, and ecology of the

microbiome as well as for practical issues in experimental

design and interpretation of clinical studies. In addition,

the human microbiome is subjected to a continual flux

of organisms from air, food, and other sources, transfer of

organisms between body habitats through routine activity,

cyclical changes in the physiology of body habitats on daily,

monthly, and other timescales, which create changing

selective pressures for each organism. Thus, temporal

changes in bacterial communities (community stability) are

also an important component of microbiome variation.

Evaluation of inter-subject variation is the first step to

understanding the bacterial distribution in the human

population. Furthermore, categorization of subjects based

on the similarity or dissimilarity of their microbiota into

groups by clustering techniques will not only help to re-

veal the bacterial distribution pattern in the population,

but also facilitate our understanding of the underlying

causes or the clinical association of specific types of mi-

crobial distributions. Indeed, recent data suggest the feasi-

bility of such operational clustering. Specifically, the

vaginal flora of asymptomatic women identified five

groups by hierarchical clustering [6,10]. The five groups
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were defined based on the species or genera they con-

tained. Race was found to be associated with the groups.

Similar studies on microbial populations in stool samples

identified three enterotypes [11]. Another approach iden-

tified two stool enterotypes by k-means clustering and

found that long-term diet was associated with enterotypes

[12], which emphasized the biological significance of these

enterotypes. Old Amish stool microbiota is disproportion-

ally of the Prevotella enterotype [13]. Enterotypes have

been discovered not only in humans, as recent studies

have described two and three enterotypes in mice and

chimpanzees, respectively, which resembled the human

stool enterotypes [14,15].

Several studies have not favored the enterotype concept

[16-18]. Those studies focused on the stool microbiome

distribution pattern in the human population, concluding

that the stool microbiota was not a discrete distribution

(three or two enterotypes) but rather a smooth gradient.

Another issue is the appropriate number of clusters in the

enteric bacterial community, for example, two or three

stool enterotypes. These discussions largely emphasize the

technical challenges in clustering data, and de-emphasize

the value of categorization, namely, to codify and simplify

relationships in a complex system and explore sensible

biological groupings. A recent investigation on entero-

types across all the human body using the Human Micro-

biome Project (HMP) data showed that the enterotypes

were affected not only by the data structure, but also by

the methods applied in the clustering, such as clustering

algorithms and distance measures [17]. These issues of

clustering methodology are not surprising, since similar

issues were previously seen in comparisons of clustering

approaches for microarray data [19-21].

Because previous enterotype analysis of the HMP data is

more technically orientated [17], biological inferences

from the categorization are limited. Here, we used HMP

16S rRNA gene data from over 200 subjects, 18 body sites

and two time points to interrogate the associated biology

and explore the potential underlying mechanisms of the

groups generated by two widely used clustering ap-

proaches. Because ‘enterotype’ originally referred to the

microbiota type in stool, here we use an ecological term,

‘community class’, to refer to the clusters we identified in

different habitats based on our cluster identification criter-

ion, and use the generic term ‘cluster’ to refer to the

groups of bacteria that do did not meet our criterion. We

have identified three stool enterotypes and various com-

munity classes in the other 17 body habitats from the

HMP 16S rRNA gene data and metagenomic shotgun

data. We found association of demographic factors with

different community classes. Also, for the first time we

systematically assessed the stability of community classes

and compared the subject composition in each commu-

nity class from different habitats.

Results
Identification of community classes in human microbiota

Currently, there is no uniform statistical approach to de-

termine the presence and optimal number of clusters or

community classes from metagenomic samples [6,11].

Multiple approaches are recommended because the clus-

tering approach is sensitive to the data sets [17]. We ex-

plored the community classes in each body site using

both hierarchical clustering (complete linkage) and fuzzy

k-means clustering with Bray-Curtis distances. The opti-

mal number of clusters for a given habitat was deter-

mined by the silhouette method, a criterion used to

choose the optimal number of clusters in previous enter-

otype studies [10-12]. The silhouette value is a measure

of within and between cluster similarities. The number

of clusters with the highest silhouette value is the opti-

mal number of clusters in a data set. Twelve of eighteen

sites had equal or higher silhouette values using hier-

archical clustering with complete linkage, compared with

k-means clustering (Table S1 in Additional file 1). The

cluster similarities between different approaches and

linkages used for hierarchical clustering are summarized

in Table S2 in Additional file 1.

Three community classes from stool were determined

based on the averaged silhouette statistics (silhouette =

0.25 for three clusters). This clustering solution resulted

in clusters of size N = 128, N = 15, and N = 66, which

correspond to the Bacteriodes, Prevotella and Rumino-

coccus enterotypes identified from 39 European subjects

[11], referred to as MetaHIT, as illustrated by principal

coordinate analysis (PCoA) (Figure 1). It should be

noted that the silhouette value only differs by 0.04 be-

tween two and three enterotypes.

To determine the effect of sample size on the number

of clusters, we randomly subsampled 50, 100, 150 and

180 samples 100 times from the total 209 stool samples

and computed the frequency of 2, 3, 4, and 5 clusters as

the optimal cluster number in hierarchical clustering. At

the subject scale, 52 of 100 subsamplings supported 2

clusters as optimal. With increasing numbers of subjects

the frequency that 3 clusters was the optimal number

increased to 72 of 100 subsamplings (Figure S1 in

Additional file 2). This suggests that sample size as well

as subject composition affects the number of clusters.

To further test the reliability of the clusters generated,

we used two external confirmation methods. First, we

clustered our data using an alternative approach. The

209 HMP stool samples were clustered using k-medoids

with Jensen-Shannon divergence. This approach was

identical to the approach used by the MetaHIT group

[11], and generated the three clusters they identified

with the highest silhouette values = 0.17 (Figure S2 in

Additional file 2). The silhouette values for three clusters

in the k-means clustering were less than those generated
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by hierarchical clustering (0.17 versus 0.25), suggesting

that the latter technique performs better with the stool

data type.

Although the same three enterotypes were generated

by both clustering approaches, the prevalence of the

specific enterotypes among the sampled subjects dif-

fered. Using hierarchical clustering, 61.2%, 31.6% and

7.2% of the stool samples were assigned to Bacteroides,

Ruminococcus and Prevotella community classes, re-

spectively. Using the MetaHIT approach, 47.4%, 42.1%

and 10.5% of the stool samples were grouped to the

above community classes.

To further confirm the validity of the clusters, whole

genome shotgun (WGS) sequencing was conducted on 81

Figure 1 Examples of community classes of human body habitats as illustrated by PCoA. PCoA was used to visualize the community

classes in different habitats. Samples are color-coded according to their community classes within the habitat. Only the major community classes

from retroauricular crease are colored. The community classes show better separation in retroauricular crease and vaginal sites with higher

silhouette values, and a less clear separation in stool and anterior nares with lower silhouette values.
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of the 209 samples. Applying our clustering/silhouette

process to the metagenomic shotgun data recapitulated

the same number and type of clusters as found with the

larger sample size 16S rRNA gene and the MetaHIT data.

Hence, the clusters were not due to bias from the amplifi-

cation step of the 16S rRNA gene sequencing protocol.

Community classes were similarly determined for the

rest of the 17 habitats. Silhouette values are similar for

different numbers of clusters tested in the skin and vagi-

nal sites (Table S1 in Additional file 1). For example, the

average silhouette values for two to nine clusters in the

right retroauricular crease ranged from 0.51 to 0.52. Al-

though the high silhouette values suggest that there were

true clusters in this habitat, the optimal number of clus-

ter was undetermined. The structure of this habitat

always involved a single large cluster with high silhou-

ette value and a variable number of smaller clusters

(Figure S3 in Additional file 2), and the indeterminacy

was due to estimating the number of these smaller clus-

ters. Manual inspection of clusters determined the opti-

mal number of clusters under this condition: placement

of 158 samples from the right retroauricular crease in

one cluster produced a very high silhouette value (0.59),

while placement of 31 samples in the other cluster re-

sulted in a silhouette value of 0.15. Further dividing of

the 31 samples into two clusters resulted in much higher

silhouette values (0.49) for the 19 samples in the first

cluster, but an even lower value for the 12 remaining

subjects (0.007). The latter value suggests that the

bacterial community structures from the group of 12

subjects were very heterogeneous, prompting assign-

ment of these samples as different clusters. Based on the

above inspection of the silhouette values from individual

groups and the taxonomic profiling from the dendro-

gram (Figure S6 in Additional file 2), we chose six clus-

ters as the optimal number for the right retroauricular

crease. Most subjects had high silhouette values for

the six clusters, suggesting the cluster solutions are ap-

propriate. A subset of samples had negative silhouette

values, indicating improper grouping. For example, the

subject with a negative silhouette value at the top of

Figure S3 in Additional file 1 was grouped into Staphylo-

coccus community classes with 16% of the Staphylococ-

cus and 68% of Helicobacter. The relative abundances of

Helicobacter in the rest of the subjects are low (<1%);

thus, this subject is inappropriate to be grouped in any

clusters. In general, subjects with negative silhouette

values are regarded as outliers. These subjects with

unique bacterial community structure are not surprising

considering the heterogeneity of the skin microbiota.

Manual inspection, following the logic described above,

was necessary for the three vaginal sites and four skin

sites where silhouette values were similar between two

or more clusters.

Table 1 summarizes the optimal number of community

classes, corresponding silhouette values, and the number of

subjects in each community class. Silhouette values for the

optimal number of clusters vary by habitat. Three to six

classes for skin sites and two to three classes for the vagina

were identified with high silhouette values (>0.5), indicating

that community classes at these sites were well-defined

(Figure 1) [22]. We also identified the five community clas-

ses (four driven by the genus Lactobacillus and one by an-

aerobic genera) in a subset of posterior fornix samples

using WGS data, as previously reported [6,10]. Strain level

analysis achieved finer resolution. The Lactobacillus gasseri

group was divided into two subgroups occupied by the

same species but different strains of L. gasseri (Figure S4 in

Additional file 2). Interestingly, two anaerobic community

classes were identified in the posterior fornix: Gardnerella

dominated one community class, while Prevotella and Ato-

pobium dominated the other. Although it was well known

that all three genera were associated with vaginosis, our re-

sult calls attention to further categorization of these bac-

teria in healthy subjects as well.

The remaining habitats presented relatively low silhou-

ette values. Four community classes were identified from

166 anterior nares samples (silhouette = 0.24; Figure 1).

Except for keratinized gingiva, buccal mucosa and hard

palate, the silhouette values in the rest of the oral sites

were <0.2, suggesting that the bacterial communities in

these habitats were more homogenous [23]. However,

biologically interesting community classes were identifi-

able in some of the habitats with silhouette values <0.2,

as addressed below.

The number of community classes was not consistent

among similar sites. Symmetric sites, the left and right

retroauricular creases, have three and six community

classes, respectively, while the left and right antecubital

fossas have five and six community classes, respectively.

However, both retroauricular crease sites contained the

same dominant community classes defined by Coryne-

bacterium, Staphylococcus and Propionibacterium. The

difference in the less dominant community classes is

partly because the source subjects for the left and right

site samples did not completely overlap. The high degree

of inter-variation among the skin microbial community

can produce some unique community classes in a small

subset of subjects. The three vaginal sites are proximal,

but contained different numbers of community classes.

Most subjects were dominated by Lactobacillus. A small

proportion of the subjects were dominated by one or

two groups of anaerobic genera.

Habitat classification and indicator taxa of community classes

In the high silhouette value habitats (>0.5), such as the

retroauricular crease, many samples from the main com-

munity class (Propionibacterium community class) were
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tightly clustered, while the remainder of the samples

formed smaller community classes, in which only a few

subjects were included (Figure 1). On the other hand, in

community classes in the relatively low silhouette value

habitats (0.25 to 0.5), such as stool and anterior nares,

samples were less tightly clustered than for the high sil-

houette value habitats.

To examine the structure underlying different commu-

nity classes, we correlated the alpha diversities (number

of taxa within a sample) and the silhouette values in the

18 habitats. As indicated by Figure S5 in Additional file

2, silhouette values are strongly negatively correlated

with the Shannon diversities (Pearson correlation =

0.96). In particular, the two lowest alpha diversity habi-

tats, vagina and retroauricular crease, had the highest

silhouette values of the clusters, and the high alpha

diversity habitats (saliva) exhibited low average silhou-

ette values of its clusters. Based on the alpha diversity

and silhouette values, the 18 habitats were divided into

two types: type I (low diversity with median Shannon

index <1.5 and high silhouette value) and type II (high

diversity and low silhouette values) habitats. Type I habi-

tats with low alpha diversity (Figure 1) were dominated

by one genus. For example, Lactobacillus was present in

each of the vaginal samples with an average abundance

of 92% in the tightly clustered subgroup. Alternatively,

bacterial communities in type II habitats were domi-

nated by different genera to different degrees, leading to

highly diverse communities. This diversity was reflected

in the clusters, where samples were less tightly clustered

than in type I habitats (Figure 1).

The definition of community class is based on the

relative abundance of genera in bacterial communities.

Certain key taxa are assigned as indicators, whose

presence, absence, and relative abundance characterize

that community class [24]. Indicator taxa were deter-

mined using the Dufrene-Legendre Indicator Species

approach [25].

Type I habitats

The left and right retroauricular crease share three of

the same three community classes (Propionibacterium,

Staphylococcus, Corynebacterium) and most subjects

were found in these three community classes. We used

the left retroauricular crease as an example to show the

indicator taxa that differentiate the community classes.

Table 1 Summary of community classes and their stability in human habitats

Habitat type Habitats Silhouette value Clusters Membership Dominant genera ARI for two visits

Type I Posterior fornix 0.86 3 3/5/80 Gardnerella / Prevotella / Lactobacillus 0.57

Mid-vagina 0.78 2 7/81 Anaerobic genera / Lactobacillus 0.58

Vaginal introitus 0.66 2 13/67 Anaerobic genera / Lactobacillus 0.44

Left retroauricular crease 0.6 3 6/14/158 Corynebacterium / Staphylococcus /
Propionibacterium

0.56

Right retroauricular crease 0.52 6 4/4/4/4/19/154 Neisseriaceae_Unclassifieda/ Corynebacterium /
Pelomonas / Anaerococcus / Staphylococcus /
Propionibacterium

0.47

Type II Left antecubital fossa 0.30 5 2/6/7/28/30 Sporacetigenium / Staphylococcus / Ralstonia/
Propionibacterium / Corynebacterium

0.07

Right antecubital fossa 0.37 6 3/3/4/6/8/61 Streptophyta / Corynebacterium / Staphylococcus /
Streptococcus / Haemophilusb / Propionibacterium

0.16

Keratinized gingiva 0.32 2 59/140 Prevotellaceae_Unclassified / Streptococcus 0.37

Buccal mucosa 0.28 2 32/153 Haemophilus / Streptococcus 0.12

Hard palate 0.25 2 10/183 Veillonella /Streptococcus 0.04

Anterior nares 0.24 4 8/13/44/101 Moraxella / Staphylococcus / Propionibacterium /
Corynebacterium

0.26

Stool 0.25 3 15/66/128 Prevotella / Ruminococcaceaea / Bacteroides 0.26

Tongue dorsum 0.18 3 35/77/94 NA

Subgingival plaque 0.21 2 97/104 NA

Throat 0.19 2 91/93 NA

Supragingival plaque 0.15 2 97/111 NA

Palatine tonsils 0.17 2 96/103 NA

Saliva 0.14 2 89/93 NA

aNeisseriaceae in retroauricular crease and Ruminococcaceae in stool are the dominant orders (not genera).
bA heterogeneous group.

ARI, Adjusted Rand Index; NA, not applicable (indicator genera are not shown because of very low silhouette value).
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While Propionibacterium is ubiquitously present on the

skin of the healthy population, the median relative abun-

dance is 86.5% in the Propionibacterium community

class, but only 8.3% and 11.4% in the other community

classes (Figure 2A). Likewise, the Staphylococcus com-

munity class features high abundance Staphylococcus

(median relative abundance 55.0%), compared with

6.4% and 19.8% in the other community classes. The

median relative abundance of Corynebacterium is 41.7%

in the Corynebacterium community classes and 0.6%

and 10.8% in other classes. Differentiation of community

classes also involves less abundant taxa. In total, 14 taxa

were significantly different between the community clas-

ses of the left retroauricular crease samples (P < 0.01;

Table S3 in Additional file 1).

Using mid-vagina as a vaginal habitat representative,

we determined indicator genera for the vaginal commu-

nity classes. The relative abundance of Lactobacillus

ranges from 31.3% to 99.9% in the Lactobacillus com-

munity class. In the anaerobic community class, Lacto-

bacillus is less abundant while the anaerobic genera,

such as Prevotella, Sneathia, Bifidobacterium, Mega-

sphaera, Dialister, and Atopobium, are more abundant

(Table S3 in Additional file 1). These genera are reported

to be vaginosis-associated genera [26].

Type II habitats

The top four most abundant genera in the anterior nares

are Corynebacterium, Propionibacterium, Staphylococcus,

and Moraxella, each of which is the dominant genus

for a distinct community class (Figure 2B; Table S3 in

Additional file 1). Each of these genera contains pathogenic

species, suggesting that the anterior nares is a potential

reservoir for pathogens.

Characterization of anterior nares bacterial communities

in 40 individuals by 16S rRNA fingerprinting based on

single-strand conformation polymorphisms demonstrated

10 clusters with the majority of subjects (36 of 40)

grouped into five clusters [27]. Four of these clusters

were identified in our analysis, the exception being a

Finegoldia group. In our 16S rRNA gene data set Finegoldia

was present in only one of the samples, and with very

low abundance. Finegoldia is isolated most frequently

from various infected sites [28], and is less common in

healthy subjects.

Five and six community classes were identified in the

left and right antecubital fossa samples, respectively.

Three of these, dominated by Propionibacterium, Cor-

ynebacterium, and Staphylococcus, were also found in

the retroauricular crease samples. However, Propionibac-

terium abundance in the Propionibacterium community

class of antecubital fossa is lower than that in retroauri-

cular crease (average of 61.6% of the community com-

pared with 92%), it is still 5-fold more abundant than in

the other community classes. In total, 24 indicator gen-

era were identified among the 7 community classes

(Table S3 in Additional file 1).

In the MetaHIT study, the Ruminococcus type is the

most frequent enterotype in stool, followed by Bacter-

oides and Prevotella [11]. In our analysis, most of the

subjects were grouped to Bacteroides followed by Rumi-

nococcus and Prevotella. The average abundance of Bac-

teroides in our data set is 55%, in contrast to the average

abundance of 35% in the other study (Figure 2C) [11].

There are methodological as well as demographic differ-

ences in the subjects in these studies, so the quantitative

differences are not surprising.

It is difficult to delimit clusters in most oral sites due

to the homogeneity of bacterial communities. We never-

theless observed biologically important groups in the

subgingival plaque in this healthy cohort. We found that

the subgingival plaque from 122 subjects was inhabited

by periodontitis-associated genera such as Treponema

and/or Porphyromonas with a median relative abun-

dance of 4.3% and 3.9%, compared with 0.05% and

0.73% in the rest of the subjects, respectively. Fourteen

subjects exhibited significant amounts of Treponema

and/or Porphyromonas, accounting for 26% to 44% of

total bacteria in their subgingival plaque. Those subjects

are major components of cluster 2 in Figure 2D. We use

the generic term cluster in this context to distinguish

the community classes described in other habitats where

clusters have a higher silhouette value. On the other

hand, the relative abundance of Veillonella, a genera that

slows the development of dental caries [29], was very

low in cluster 2 (Figure 2D). In the supragingival plaque,

pathogenic anaerobes are less abundant compared with

subgingival plaque because this is a less anaerobic envir-

onment compared with the subgingival region [30].

In keratinized gingivae, buccal mucosa, hard palate, pal-

atine tonsils and throat, one community class was domi-

nated by Streptococcus, and the other community class was

dominated by genera varying with habitats (Table S3 in

Additional file 1). Interestingly, 59 subjects had keratinized

gingiva microbiome distinguished by a high abundance of

unclassified Prevotellaceae and unclassified Bacteroidales;

this community class represented a less characterized taxo-

nomic group (Figure S6 in Additional file 2). Tongue dor-

sum and saliva are two habitats in which the Streptococcus

abundance is less dominant than in other oral sites. In-

stead, Neisseria is an essential genus in one-third of tongue

dorsum samples, resulting in detection of the Neisseria

community class (Table S3 in Additional file 1; Figure S6

in Additional file 2).

Community class comparisons across all habitats

The HMP data sets not only provide the opportunity to

characterize the community classes of multiple habitats,
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Figure 2 (See legend on next page.)
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but also allow us to determine if there are any correla-

tions between community classes at different habitats in

the same individual. This can be addressed by determin-

ing if a group of subjects who carry a particular commu-

nity class in one habitat also belong to the same

community class at other habitats.

To answer this question, we compared the subjects from

different community classes in each pair of habitats. Sub-

jects who had samples from both habitats were included

in the clustering analysis. The Adjusted Rand Index (ARI)

was used to assess the similarity between clusters in differ-

ent habitats [31], where a comparison is made between

the assignments of each pair of subjects in the clusters of

the two habitats under comparison. Complete correlation

between subjects at two habitats produces an ARI of 1. As

shown in Figure 3, the subject composition in the commu-

nity classes was highly consistent, with ARI = 0.64 in the

three vaginal sites. The left and right retroauricular creases

were also similar when comparing subject compositions in

the community classes (ARI = 0.32). Other paired habitats

showed low similarity for community classes (Figure 3).

Because the anterior nares, retroauricular crease, and

antecubital fossa each have three community classes

dominated by Propionibacterium, Corynebacterium, and

Staphylococcus, we performed a detailed comparison of

subjects carrying these three community classes. In particu-

lar, the Corynebacterium community class is the most com-

mon community class in the anterior nares, yet only 18%

(16 of 87) of samples with the Corynebacterium community

class in the anterior nares belonged to the Corynebacterium

community class of antecubital fossa. In contrast, 50%

of the samples with the Corynebacterium community class

in the anterior nares were assigned to the Propionibacter-

ium community class of antecubital fossa. The rest were

assigned to the Staphylocccus community class or other

small classes in antecubital fossa. Moraxella was the fourth

community class in anterior nares, and subjects with a high

abundance of Moraxella in their anterior nares did not

have high abundance Moraxella in their skin. Therefore,

bacterial community structures across subjects are confined

to a given habitat and the drivers of community structure

act independently of other unrelated habitats.

Associations of demographic factors with bacterial

community structure

The association of demographic factors (gender, geo-

graphical location, ethnicity, body mass index (BMI),

age) with each community class was tested by Fisher’s

exact test or ANOVA, and P-values were corrected using

the Bonferroni approach (Materials and methods; Table 2;

Figure S6 in Additional file 2).

Gender was significantly different between the commu-

nity classes in the retroauricular crease, antecubital fossa

and anterior nares (Figure 4). In the retroauricular crease,

the Staphylococcus community class was mainly carried

by females in contrast to the relatively even gender distri-

bution for Propionibacterium and Corynebacterium com-

munity classes (P = 0.0004; Figure 4A). In the antecubital

fossa, male samples were dominated by Propionibacterium

and females by the Staphylococcus community class

(P = 0.005; Figure 4B). In anterior nares, female subjects

had over-representation of Staphylococcus community

classes in anterior nares, whereas the Moraxella com-

munity class was mainly composed of male subjects

(P = 0.05; Figure 4C). As expected, the relative abun-

dances of each genus described above in male and female

subjects from skin and anterior nares sites were also

significantly different (Figure S7 in Additional file 2).

Among the 15 subjects with the Prevotella enterotype

in stool, 13 were male, which did not differ from the

gender distributions of Bacteroides and Ruminococcus

enterotypes after Bonferroni correction (P = 0.14). How-

ever, among samples in which Prevotella was present, we

found that the median abundance of Prevotella in all the

male samples was 10-fold greater than in female samples

(P = 0.005; Figure S7 in Additional file 2). We did not

detect a correlation of BMI with any enterotypes or with

the ratio of Bacteroidetes and Firmicutes in stool.

Consistent with prior studies [6], pH was strongly associ-

ated with the bacterial community structure in the vaginal

sites (Table 2). pH was significantly higher in the anaerobic

bacteria-dominant community class (P = 0.01). Ethnicity

differs significantly (P = 0.04) in the Lactobacillus commu-

nity class compared to the anaerobic bacteria subgroup.

The subjects in the Propionibacterium community class

are about 4 years older than other community classes in

retroauricular crease (P = 0.003; Figure 4D). Age was also

significantly different between community classes in hard

palate (P = 0.02), as were site of residence (St Louis versus

Houston) and race in oral sites (Table 2).

Community class stability

Figure 5A illustrates the community class changes be-

tween two time points using left retroauricular crease as

(See figure on previous page.)

Figure 2 Examples of indicator taxa between community classes. Indicator taxa driving the differentiation of community classes were

identified using the indval function in the labdsv package in R. Boxplots are labeled according to the dominant taxa in the community class.

(A-D) The colors represent different community classes. The relative abundances of dominant taxa (y-axis) in each community class are plotted

for the type I habitat left retroauricular crease (A), and the type II habitat anterior nares (B), stool (C), and subgingival plaque (D). In (D), the

name of the community classes are designated as a generic term, cluster 1 or cluster 2, because of the very low silhouette value (<0.2).
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an example. Three community classes were identified

in left retroauricular crease in the first sampling and

maintained in the second sampling. The ARI measuring

the agreement of paired subjects in the clusters of two

time points was 0.47. In particular, 86% of the subjects

were in the same community class on both visits. This

relative stability is largely because of the stability of

the major Propionibacterium community class. Of

44 subjects, 39 maintained the Propionibacterium com-

munity class (Figure 5A). One of three subjects from

the Corynebacterium community class switched to the

Staphylococcus class while the three subjects in the

Staphylococcus class still clustered in the same class.

One subject from the Propionibacterium and two sub-

jects from the Corynebacterium class switched to an

unclassified Neisseriaceae class at the second time

point. Because each community class was defined by

the relative abundance of the genera in the community,

switching between community classes indicates a sig-

nificant change in the abundance of genera.

We also evaluated community class stability in the va-

ginal introitus. The ARI was high (0.57) for community

classes from the two samplings. Eighty-six percent of

subjects retained the same community classes between

visits. Most subjects (23 of 25 subjects) from the Lacto-

bacillus community class stayed in the same community

classes at the second visit. Two subjects switched to the

anaerobic community class. Two of four subjects from

the anaerobic community class in the first visit switched

to the Lactobacillus class on the second visit (Figure S8

in Additional file 2). Subjects that switched from the

Lactobacillus to the anaerobic community class showed

increased vaginal pH, which may be caused by the de-

crease in lactic acid bacteria. Overall, the community

classes in type I habitats (retroauricular crease and va-

gina) tend to be stable over time because of the high

abundance of single genera in their communities.

In contrast to the type I habitats, community classes

in type II habitats appeared to be less stable over time.

For this analysis, the left and right antecubital fossa data
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Keratinized gingiva

Buccal mucosa

Hard palate

Left antecubital fossa

Left retroauricular crease

Mid vagina

Palatine tonsils

Posterior fornix

R antecubital fossa
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Figure 3 Community class comparisons across all habitats. Cluster similarity was analyzed using the ARI. A large overlap of carriers was

detected between community classes in left and right retroauricular creases as well as within three vaginal sites. The color saturation and size of

the circles represent the degree of cluster similarity. The circles along the diagonal from top left to bottom right, with an ARI equal to 1, indicate

self-comparison.
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Table 2 Association of demographic factors with community classes

Gender Age Race Sites Vaginal PH

Habitats Community classes
for comparisona

Pb Community classes
for comparisona

Pb Community classes
for comparisona

Pb Community classes
for comparisona

Pb Community classes
for comparisona

Pb

Anterior nares Propionibacterium
Corynebacterium,
Staphylococcus,
Moraxella

0.05

Antecubital fossa Staphylococcus,
Propionibacerium

0.005

Retroauricular crease Staphylococcus,
Propionibacterium,
Corynebacterium

0.0004 Propionibacterium
non-Propionibacterium

0.003

Hard palate Veillonella, Streptococcus 0.02

Buccal mucosa Haemophilus Streptococcus 0.00005

Subgingval plaque Two clusters 8.0 × 10-10

Supragingival plaque Two clusters 0.03 Two clusters 3.8 × 10-7

Throat Two clusters 0.04 Two clusters 6.2 × 10-6

Palatine tonsils Two clusters 0.03 Two clusters 9.5 × 10-7

Saliva Two clusters 0.03 Two clusters 0.00005

Vagina Lactobacillus, anaerobic class 0.04 Lactobacillus, anaerobic class 0.01

aCommunity classes used in the demographic association analysis.
bP-values after Bonferroni correction.

Empty fields indicate there is no significant difference between the community classes for a give demographic factor.
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were combined at each time point because of the small

amount of repeat data available. The ARI was 0.2 for

the antecubital fossa. Of 33 subjects, 20 (60%) maintained

their community classes at the second visit (Figure S8 in

Additional file 2). The less dominant community under

active switching represented the less stable community

class. Likewise, 22 of 48 sample pairs (45%) switched their

anterior nares class at the second visit (ARI = 0.26), indi-

cating the dynamic nature of the bacterial community in

the anterior nares (Figure 5B). Thirty-two percent of sub-

jects switched from Corynebacterium to Propionibacter-

ium and 24% of Propionibacterium subjects switched to

Corynebacterium. Subjects also switched in both direc-

tions between the Corynebacterium and Moraxella clas-

ses. Switching also was observed from Propionibacterium

to Staphylococcus, Staphylococcus to Corynebacterium,

and Moraxella to Staphylococcus. We did not observe

switching from the Staphylococcus to the Propionibacter-

ium or Moraxella classes. This may be because of the

small sample size (two subjects) for the Staphylococcus

community class. Also, it will be interesting to probe the

role of gender barriers in the transition between commu-

nity classes because male and female subjects were domi-

nated by different community classes.

Switches between stool community classes (31%) were

more frequent than in type I habitats, but less frequent

than in other type II habitats (ARI 0.26). The switching

mainly occurred between the Bacteroides and Ruminococ-

cus community classes (Figure 5C). Although Bacteroides

dominates in the Bacteroides community class, a subset of

subjects had high relative abundance of Ruminococcus.

These subjects tended to convert to the Ruminococcus

A B

C D

Figure 4 Examples of demographic factor correlations with community classes. (A) Gender differences in retroauricular crease samples,

with females more prevalent in the Staphylococcus community class. (B) Gender differences in community classes of antecubital fossa. The

Propionibacterium community class has significantly more males than females while the non-Propionibacterium community classes have

significantly more females than males. (C) The Staphylococcus community class in anterior nares is dominated by females, and the female

proportion is significantly higher than in the other three community classes. (D) The ages of subjects in the Propionibacterium community class

and the other community classes of retroauricular crease are significantly different. Asterisks indicate statistically significant differences.
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Figure 5 (See legend on next page.)
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community class. This is also true for subjects belong-

ing to the Ruminococcus community class but with a

relatively high abundance of Bacteroides. These subjects

tended to convert to the Bacteroides community class

at the second visit.

As addressed above, community classes in most oral

habitats are not as distinct as type I habitats, the active

conversion between classes reflecting the uncertainty of

the clusters in those habitats except saliva, tongue dor-

sum and keratinized gingiva (Table 1).

We additionally examined the variation of Treponema

between visits in subgingival plaque. The 14 subjects with

high relative abundances of Treponema (26% to 44%) at

the first visit retained 7- to 8-fold higher than average

abundance of Treponema at the second visit. The stability

of the high abundance Treponema phenotype between

visits in a subset of the subjects shows that the predomin-

ance of Treponema in these individuals is not a transient

event, reinforcing the concept that these subjects are at

higher risk to develop periodontal disease.

Discussion
Reports on the three stool enterotypes sparked an on-

going debate on whether stool microbiota is actually

discrete or a continuum [16]. Enterotypes have been re-

ported in humans and other animals [12,14,15]. There

has been controversy regarding the conceptual appro-

priateness of discrete or categorical enterotypes versus

a population description based on a gradient pattern of

bacterial community structure [18]. The debate has

been focused largely on the clustering techniques [17]

and the assignment of the number of clusters in the

community. However, these concerns overlook the pur-

pose of the categorization of the microbiota in the hu-

man body, that is, determination of like versus not-like

groupings of organisms, and easily conveyed descrip-

tions of populations with which to find biologically

meaningful groups. Clustering simplifies the complex

relationships between objects and the cluster solutions

vary with different distance/dissimilarity measurements

and clustering algorithms [17,20,21]. Clustering is only

an exploratory technique and should not play a decisive

role in data analysis.

Our analysis of stool identified three stool enterotypes,

consistent with previous studies. A study using the HMP

metagenomic data indicated only two clusters for each

of the 18 body sites, including stool [17]. Our analysis

identified two clusters for oral and two vaginal sites, but

more in stool and skin habitats. We further manually

inspected the hierarchical cluster solutions in skin and

vaginal sites where the silhouette values were similar for

different numbers of clusters. This manual inspection re-

solved more biologically interesting clusters. This man-

ual inspection is based on subjective interpretation and

related biological knowledge is thus required. For ex-

ample, our inference of two community classes in the

posterior fornix was based on our findings from an inde-

pendent project where race differed in different anaer-

obic groups (data not shown). Overall, the clustering

analysis serves as a starting point for assessing the exist-

ence and number of the groupings, and obligate further

investigation to determine biological validity.

Recent work has shown the effect of diet on entero-

types [12]. Specific long-term diets, especially those high

in protein and fat, were linked to Bacteroides entero-

types, while carbohydrates were linked to Prevotella

enterotypes [12,15]. The predominance of the Bacter-

oides enterotype identified in the HMP healthy cohort

may reflect the natural presence of enterotypes in St

Louis and Houston populations on American diets. Our

findings might have clinical relevance. For example,

metabolic diseases such as obesity are associated with

the elevation of a wide range of cytokine and inflamma-

tion markers. Calprotectin, a gut inflammation marker,

is higher in mice that harbor a Bacteroides enterotype

[12,15], suggesting that this genus triggers low-grade in-

flammation reactions in the gut. The relationships of

enterotypes, diet and inflammation raise the possibility

of manipulating gut enterotypes to mitigate risk of meta-

bolic diseases.

Subjects from the HMP cohort are healthy as defined

by clinical criteria; we nevertheless detected signals for

disease. For example, a cluster dominated by periodontitis-

associated genera such as Treponema and/or Porphyro-

monas was identified in subgingival plaque samples.

Treponema is considered a major etiological bacteria in

periodontitis and Porphyromonas is strongly associated

with chronic adult periodontitis [30,31]. Treponema is a

genus consisting of many species, but the Treponema

species are rare in healthy subjects compared with sub-

jects with periodontal disease [32]. The high abundance of

periodontal disease-associated genera and low abundance

(See figure on previous page.)

Figure 5 Dynamics of community classes over time. (A-C) Subjects from different community classes switch to other community classes or

maintain their original community class in different habitats: (A) retroauricular crease, (B) anterior nares, and (C) stool. The colored circles represent

different community classes. The names of community classes are followed by the number of subjects belonging to the community classes at

the first visit. Subjects transferring to other community classes at the second visit are indicated by arrows along with the number of subjects

that switched. The number inside each community class indicates the number of subjects maintaining the same community class at the

second visit.
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of protective genera in the healthy population is an ex-

ample of the pathogenic bacterial load carried by healthy

individuals. Similarly, the anaerobic group was identified

in a small subset of the vaginal samples from this cohort.

A high abundance of anaerobic genera in vagina is often

linked to vaginosis. The identification of an anaerobic

group in the HMP cohort may be a result of the inclusion

of unhealthy individuals in the cohort, because of the in-

complete criterion used for the diagnosis of bacterial

vaginosis [32]. Alternatively, it may represent a normal va-

ginal flora for non-Caucasians [6].

Phenotypic characterization of community classes also

sheds light on mechanisms underlying these differences.

Gender correlated with community classes in the skin,

anterior nares and stool. What drives the difference

between male and female skin and nasal community

composition? Intrinsic properties of bacteria and physio-

logical differences between genders may contribute to

the microbiota composition difference. Male skin has

more collagen and sebum with larger pores, a richer blood

supply, and an increased tendency to sweat [23,33]. Thus,

male skin may provide more nutrition for the two slow-

growing genera, Propinionbacterium and Corynebacter-

ium, that are favored among men in this cohort. The

different bacterial compositions of male and female skin

might also lead to phenotypic differences. For example,

odor precursors in men and women’s sweat are modulated

by the gender differences in bacterial compositions

[34]. We found significantly more male subjects in the

Prevotella community class before statistical correction,

although this becomes insignificant after correcting for

multiple comparisons. Human microbial communities

interplay with both environmental and host factors, so the

community class pattern may result from the combined

influence of both endogenous and exogenous factors.

The habitat-specific community classes for subjects

are dynamic. This includes differences based on age [35],

point in menstrual cycle [36,37], changes in health states

and other lifetime events. It has been reported that

bacterial abundance can vary over short periods [38].

We observed that community class stability is habitat-

dependent, with the conversion between community

classes being more common in type II habitats. It is

noteworthy that for those habitats with relatively well-

defined classes (skin, vagina, anterior nares and stool),

switching mainly occurs in minor community classes

whereas dominant community classes maintain dominance

over time. The fundamental mechanism of conversion be-

tween community classes is not known. Short-term diet

can change the microbial composition and abundance,

but has not been shown to lead to the replacement of

enterotypes [12]. Delimitation of the genetic demographic,

environmental, behavioral and nutritional factors that

influence community classes in humans is challenging.

Animal experiments in a well-controlled setting will be an

attractive approach to address to what extent the above

factors or a combination of multiple factors contribute to

the formation of and changes between community classes.

This information will provide significant value in how to

alter the human microbiome to prevent or treat disease in

the future.

Conclusion
We identified 2 to 6 community classes for each of the 18

habitats from the HMP healthy cohort by clustering aug-

mented by manual inspection. These community classes

are associated with a number of host factors, including

gender, race, age and geography, suggesting that the iden-

tification of the community classes is non-random. The

dynamics of the community classes over a year-long inter-

val underscores the complex interplay of our microbiota

with the internal and external environment.

Materials and methods
Ethics statement

Subjects provided written informed consent for screen-

ing, enrollment and specimen collection. The protocol

entitled 'HMP-07-001 Human Microbiome Project -

Core Microbiome Sample Protocol A' was reviewed and

approved by institutional review board at Washington

University in St Louis, IRB ID#: 201105198 (previously

08-0754) and Baylor College of Medicine, IRB ID#:

H-22895. The data were analyzed without personal iden-

tifiers. Research was conducted according to the princi-

ples expressed in the Declaration of Helsinki.

Sample collection

Specimens were collected by teams at the Baylor College

of Medicine and Washington University in St Louis [32].

In total, 236 healthy adults were included in this ana-

lysis. Fifteen habitats comprising anterior nares, skin

(left and right retroauricular crease, left and right ante-

cubital fossa), oral (hard palate, keratinized gingiva, buc-

cal mucosa, subgingival plaque, supragingival plaque,

saliva, tongue dorsum, palatine tonsil and throat) and

stool were sampled from all subjects. Female subjects

were sampled at three extra sites: vaginal introitus, pos-

terior fornix and mid-vagina. For longitudinal studies, a

set of samples from each habitat was collected at two

time points (visit one and visit two) separated by 30 to

359 days.

DNA sequencing, quality control and taxonomic classification

To analyze the 16S rRNA gene, the V3-5 region of the 16S

RNA gene was sequenced on the Roche-454 platform to

define the composition of the bacterial community. Sample

preparation, DNA isolation, sequencing, and data process-

ing were performed following the standardized protocols
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developed by the HMP consortium [39]. In brief, data pro-

cessing allowed one mismatch in the barcode and up to

two mismatches in primer. The minimal acceptable se-

quence length was 200 bp.

This dataset is the July 2010 16S rRNA gene sequen-

cing data freeze, 7,518 SRA runs, the Human Micro-

biome Project 16S rRNA Clinical Production Phase I,

available from NCBI at [40], and from the HMP Data

Analysis and Coordinating Center at [41].

These sequences were subsequently processed as follows.

Chimeric sequences were filtered out by Chimera-Slayer

[42]. Average qual 25 was used as the minimal quality score

to remove low quality reads. Qualifying sequences were fur-

ther classified by the Ribosomal Database Project Naive

Bayesian Classifier version 2.2 using training set 6 [43] from

phylum to genus levels. Taxa assigned <0.5 confidence were

reassigned to the next higher taxonomic level in which the

classification threshold was >0.5.

Shotgun sequences from posterior fornix, tongue dor-

sum, supragingival plaque, anterior nares, stool and buccal

mucosa were used to confirm the community classes

identified by 16S rRNA gene sequencing. Shotgun data

were processed by the HMP consortium [39], resulting in

measurement of depth and breadth of microbiota based

on the reference database [44]. The WGS sequences can

be downloaded from [45] and at NCBI at [46].

Identification of community classes

To cluster subjects with similar bacterial composition in

sets of metagenomic samples, we followed the following

statistical recipe. First, Ribosomal Database Project data

are organized in a matrix format with rows being the sub-

jects, columns being the genera, and entries in the table

being the number of reads for that subject by genus com-

bination. These read counts are scaled by dividing the

number of reads belonging to that genus by the average

copy number of 16S rRNA genes for species belonging to

that genus [47]. This was done to avoid overcounting gen-

era with high gene copy numbers. The scaled counts were

then transformed to percentages by dividing each count

by the total number of scaled counts for that subject. Sec-

ond, the proximity matrix used for the cluster analysis is

built using the Bray-Curtis dissimilarity measure as a pair-

wise distance between the genera composition of subjects.

The Bray-Curtis dissimilarity measure, d(i, j), quantifies

the dissimilarity in species composition between samples

i and j, based on the taxa abundances at each sample, and

is defined as:

d i; jð Þ ¼

X

n

k¼1

yi;k−yj;k

�

�

�

�

�

�

X

n

k¼1

yi;k þ yj;k

� �

;

where yi,k and yj,k are the abundances (in our case pro-

portions) of genus k in samples i and j, respectively, and

n is total number of distinct genera present in both sam-

ples. The measure d(i, j) ranges between 0 and 1, where

0 means the two samples share all the genera in similar

abundances, and 1 means the two subjects do not share

any genera at all. This metric was chosen because it is

commonly used in ecology because of its robust mono-

tonic and linear relationship with ecological distance

[48]. Third, the complete linkage criterion was used to

form an agglomerative hierarchical clustering and den-

drogram tree for identifying clusters [6]. The complete

linkage criterion is a method to calculate distances be-

tween two clusters, which is defined as the distance be-

tween their most dissimilar members. While there are

several criteria for agglomerative clustering, we choose

this algorithm because it tends to produce compact clus-

ters. Fourth, to determine the optimal number of clus-

ters within a dendrogram, we used the Silhouette

method [49]. The silhouette width s(i) for each observa-

tion j is defined as:

s ið Þ :¼ b ið Þ−a ið Þð Þ=max a ið Þ; b ið Þð Þ

where a(i) is the average dissimilarity between i and all

other points of the cluster to which i belongs and b(i),

the dissimilarity between i and its nearest cluster to

which it does not belong. Observations with a large s(i)

(almost 1) are very well clustered, a small s(i) (around 0)

means that the observation lies between two clusters,

and observations with a negative s(i) are probably placed

in the wrong cluster [50].

Averaged s(i) for all the members of the clusters was

used to assess the overall cluster quality. The number of

clusters that yield the highest silhouette value was

chosen to be the optimal number of clusters. Lastly,

clusters with similar average silhouette values (<0.02 dif-

ference) were manually inspected. We have followed two

general rules in this process: (a) within each cluster, sil-

houette values for the majority of the subjects were high -

this ensures the subjects with high similarity are grouped

together and avoid heterogeneity within a cluster; (b) clus-

ters with fewer than two samples were removed and clus-

ter analysis was redone with the same procedure. This

ensures the clusters we identified are sufficiently represen-

tative within a population.

We also performed fuzzy k-means clustering [50],

using the same data matrix and dissimilarity measure-

ment as described in hierarchical clustering.

Principal coordinate analysis (PCoA)

To illustrate the community classes identified in the hu-

man habitats, we performed PCoA analysis with the

ade4 packages [51] in R. This starts with the Bray-Curtis
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dissimilarity matrix generated in the clustering analysis and

assigns for each sample a location in a two-dimensional

space. S class function was used to add additional variables

into the graphs as indicated by the community classes with

different colors. Cellipse indicating the inertia ellipse size

was set to 1.5.

Indicator genera

Indicator values were calculated using the Dufrene-

Legendre Indicator Species approach from the labdsv

[25] package in R. The sample frequency (f ) and relative

average abundance (a) of each genus were calculated as

follows:

p_{i,j} = presence/absence (1/0) of species i in sample j;

x_{i,j} = abundance of species i in sample j;

n_c = number of samples in cluster c; ? for cluster c in

set K;

f_{i,c} = {∑_{j \in c} p_{i,j} \over n_c}

a_{i,c} = {(∑_{j \in c} x_{i,j}) / n_c \over ∑_{k = 1}^K

((∑_[j 48] x_{i,j}) / n_k)}

d_{i,c} = f_{i,c} \times a_{i,c}

In this analysis, indicator genera were chosen based

on: (1) indicator P-value <0.01; (2) genera present in at

least 50% of subjects in either cluster.

Quantifying the agreement of clusters between habitats

and between visits

The ARI was recommended for measurement of the agree-

ment between two partitions in the clustering analysis after

comparing many different indices [52]. The ARI is derived

from the Rand Index and is the corrected-for-chance ver-

sion of this index. It was computed by the fossil package in

R [53]. Detailed information can be found in [54]. We used

the ARI to compare the cluster similarity between different

habitats. Clustering was performed as described above

using the samples present in both compared habitats. To

evaluate the stability of community class over time, cluster-

ing used all data from sampling times 1 and 2.

Measurement of Shannon diversity

The Shannon index was used to calculate alpha diversity.

The samples were first rarified to 1,000 reads by the rar-

efy function in vegan [55] to prevent the bias caused by

different read depth. Shannon diversity was calculated

using the BiodiversityR package [56] as described below:

H 0 ¼ −

X

S

i¼1

pi ln pið Þ

where S is the number of species, and pi is the relative

abundance of each species, calculated as the proportion

of individuals of a given species to the total number of

individuals in the community.

Association of demographic factors with community

classes and single taxa

Demographic factors were mapped to the dendrogram

from the hierarchical clustering [57]. The distribution of

different of geographical locations (St Louis, Houston),

gender (male, female), race and ethnicity (Hispanic/Latino/

Spanish, not Hispanic/Latino/Spanish) and BMI (BMI <25,

25 ≤ BMI < 30, BMI ≥30) between community classes were

assessed using Fisher’s exact test. The ANOVA test was

used when the data were continuous (age). Association of

single taxa with gender was assessed by Mann-Whitney-

Wilcoxon test. P-values from multiple comparisons were

corrected using the Bonferroni method. P-values <0.05

after correction were considered as significant.

Data access

The 16S rRNA gene sequences used are the July 2010

16S rRNA gene sequencing data freeze, 7,518 SRA runs,

the Human Microbiome Project 16S rRNA Clinical Pro-

duction Phase I. It is available from NCBI at [40], and

from the HMP Data Analysis and Coordinating Center

at [41]. The WGS sequences can be downloaded from

[45] and at NCBI at [46]. Metadata were downloaded

from dbGAP (study accession phs000228.v2.p1) [58].

Additional files

Additional file 1: Tables S1 to S3 and the figure legends for Figures

S1 to S8.

Additional file 2: Figures S1 to S8.
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