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ABSTRACT Previous studies of speech emotion recognition using either empirical features (e.g., F0, energy,

and voice probability) or spectrogram-based statistical features. The empirical features can highlight the

human knowledge of emotion recognition, while the statistical features enable a general representation,

but they do not emphasize human knowledge sufficiently. However, the use of these two kinds of features

together can complement some features that may be unconsciously used by humans in daily life but have not

been realized yet. Based on this consideration, this paper proposes a dynamic fusion framework to utilize

the potential advantages of the complementary spectrogram-based statistical features and the auditory-based

empirical features. In addition, a kernel extreme learning machine (KELM) is adopted as the classifier to

distinguish emotions. To validate the proposed framework, we conduct experiments on two public emotional

databases, including Emo-DB and IEMOCAP databases. The experimental results demonstrate that the

proposed fusion framework significantly outperforms the existing state-of-the-art methods. The results also

show that the proposed method, by integrating the auditory-based features with spectrogram-based features,

could achieve a notably improved performance over the conventional methods.

INDEX TERMS Speech emotion recognition, auditory-based features, spectrogram-based features,

complementary features, kernel extreme learning machine.

I. INTRODUCTION

Human-computer interaction has become popular in vari-

ous fields, especially for intelligent dialogue systems and

voice assistants, such as Siri, Cortana, and Google Assistant.

In these applications, intention understanding is one of the

key parts of the whole dialog system. Previous research found

that emotion can significantly help machines to understand

user’s intention [1], so accurately distinguishing a user’s

emotion can enable greater interactivity and improve user

experiences. However, speech emotion recognition is still a

challenging task. One of the difficulties is determining how

to extract effective features [2]. Another challenge is that we

The associate editor coordinating the review of this manuscript and
approving it for publication was Huawei Chen.

cannot clearly ascertain which model is effective in distin-

guishing emotions [3]. In addition, humans do not express

emotions in a unified way, so the features should have good

robustness for different emotional expressions.

Researchers have proposed various methods for speech

emotion recognition. Among them, the conventional methods

use auditory-based features (e.g., Mel Frequency Cepstrum

Coefficient (MFCC), F0, energy, voice probability, and zero-

crossing rate) for this task. These auditory-based features

are selected based on human auditory perception, so they

have a certain physical meaning. People have focused on

selecting different auditory-based features for a long time [4].

The most commonly used model is to first extract auditory-

based features and then train a classifier to obtain the emotion

labels [5]. There are some traditional methods for speech
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emotion recognition, such as the Gaussian mixture model

(GMM) [6], support vector machine (SVM) [7], hidden

Markov model (HMM) [8] and bidirectional long short-term

memory (BLSTM) [9]. Han et al. [10] proposed the DNN-

ELM model, which utilized a deep neural network (DNN) to

obtain the emotion state probability distribution. In addition,

a simple classifier, the extreme learning machine (ELM),

was then used to obtain the labels. Wang and Tashev [11]

made improvements to the DNN-ELM model, in which the

activation of the last hidden layer of the DNN replaced the

probability distribution that is used to train the ELM. Lee and

Tashev [12] proposed the recurrent neural network (RNN)-

ELM model, which utilized the long contextual effect in

emotional speech. These models have been regarded as the

state-of-the-art models for many years in the field of speech

emotion recognition. However, people’s cognition of speech

emotion recognition is limited [13]. It is difficult to extract

abundant features using priori knowledge alone. Therefore,

the auditory-based features are not sufficiently representative

of emotional information.

With the development of deep learning (DL), there is

a trend in the field of speech processing to use DL

for automatically extracting features from speech signals

[14], [15]. A CNN is adept at extracting local features

from raw input data [16]. The CNN was initially applied

to image field and was regarded as one of the representa-

tive models for image recognition systems [17]. In recent

years, CNNs have been applied to speech processing and

have achieved excellent results [18], [19]. A CNN-based

speech emotion recognitionmodel had been proposed in [20].

This paper utilized CNNs to extract deep acoustic features

from spectrograms and then trained an SVM as classifier.

Lim et al. [21] and Satt et al. [22] proposed the hybrid

CNN-BLSTM model without using any traditional auditory-

based features. Although using the CNN-BLSTM model

on spectrograms derectly has obtained great achievements

and has been regarded as the most commonly used method

for this task over recent years, there are still many prob-

lems that exist in this model. First, the BLSTM model has

a complicated structure and high complexity in training;

therefore, it needs a large amount of training data [23].

For a task with insufficient data, this model tends to fall

into overfitting. Furthermore, there is no sufficiently labeled

public corpus of emotional speech at present [24], [25].

Second, the CNN-BLSTM model adopts a CNN to extract

features automatically, and it uses the spectrogram-based sta-

tistical features alone. Although statistical features can give a

general representation of emotion, they do not emphasize the

human knowledge sufficiently. In addition, previous studies

have indicated that some auditory-based empirical features

(e.g., F0, energy, and voice probability) are very important to

distinguish speech emotion [26].

In this work, we extend our previous work [27] and

continue to explore complementary features for speech emo-

tion recognition. To solve the first problem, this paper pro-

poses the CNN-KELM model, which uses a CNN to extract

FIGURE 1. Structure of the CNN-BLSTM model.

deep features from spectrograms and then uses a kernel

extreme learning machine (KELM) to distinguish emotions.

The KELM is a learning algorithm for single-hidden layer

feed-forward neural networks (SLFNs) [28], and it is a mod-

ified extreme learning machine (ELM) that was proposed by

Huang et al. [29], [30]. ELM has been applied in various

classification tasks due to the properties of high general-

ization capability and fast training [31], [32]. ELM as a

classifier shows better performance than SVM for speech

emotion recognition [10]. Moreover, ELM can perform well

on small databases. To address the second problem,motivated

by the powerful feature learning ability of some multimodal

deep models [33]–[35], this paper proposes a whole dynamic

fusion framework to utilize the potential advantages of the

complementary spectrogram-based and auditory-based fea-

tures, which is different from [27]. Paper [27] separated

the feature extraction and feature fusion stages, which can-

not guarantee the global optimal in tuning the parameters.

In addition, decision-level fusion is also considered in this

paper. In this way, the proposed framework can comple-

ment some parameters that may be unconsciously used by

humans in daily life, but have not been realized yet. Further-

more, researches found that the raw auditory-based features

are correlated, which results in a small inter-class distance

[36], [37]. To avoid this problem, this paper extracts the

discriminative bottleneck features from the raw auditory-

based features using a deep neural network (DNN). To the

best of our knowledge, it is leading edge work to explore the

complementarity between spectrogram and auditory-based

features. In addition, we adopt a KELM as the classifier to

recognize emotion.

The rest of this paper is organized as follows.

Section II describes the background theory of the baseline

CNN-BLSTM model. The proposed fusion framework is

described in Section III. The experimental results and analy-

sis are presented in Section IV. Finally, Section V gives the

conclusions and prospects.

II. THEORETICAL BACKGROUND

Since extracting features manually has many problems such

as being time-consuming and producing a limited number

of feature categories, people begin to use CNNs to extract

features automatically. In recent years, researchers have com-

monly used CNNs directly on spectrograms to extract deep
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FIGURE 2. Proposed fusion framework to integrate the spectrograms and auditory-based features based on KELM.

acoustic features [38], [39], and then the BLSTM method

was adopted to recognize emotions. The CNN-BLSTM

model [22] has become the most commonly used method for

speech emotion recognition at present. In this section, we will

give a detailed introduction to the baseline CNN-BLSTM

model.

Fig. 1 shows the structure of the CNN-BLSTM model.

First, as emotional expression is dynamic, to utilize the

dynamic information, the speech signal is divided into N

fixed length segments. Then speech signals in the segment-

level are transformed into spectrograms by using the Fourier

transform since time-frequency analysis is widely used in the

field of speech signal processing [40]. Next, CNNs are used

to extract deep acoustic features from the spectrograms. The

weights of each CNN feature map are shared, which could

result in reducing the complexity of the network and the

number of parameters. The activations of the full connection

layer are the deep acoustic features that we would like to

obtain. Finally, these deep acoustic features in the segment-

level are fed into the BLSTMmethod to obtain the utterance-

level labels. The main idea of BLSTM is to use the forward

direction LSTM and backward direction LSTM to extract the

contextual hidden information to form the final outputs [41].

This demonstrates that the BLSTM method can make good

use of the contextual information, which is important in the

speech processing field. Therefore, the BLSTM method is

widely used in some sequence-based applications, including

speech processing [42], [43].

Although the CNN-BLSTM model gets good results for

many speech processing tasks, there are still many problems

with this model. First, since the structure of the BLSTM

method is complicated, it is easy to fall into overfitting when

the database is small. Moreover, the CNN-BLSTM model

utilizes the CNN to extract only acoustic features from the

spectrograms, which does not emphasize the human knowl-

edge sufficiently. However, some auditory-based empirical

features (e.g., F0, energy, and voice probability) are key

issues for distinguishing emotions [26].

III. THE FUSION FRAMEWORK BASED ON KELM

The proposed framework for speech emotion recognition

is shown by the flowchart in Fig. 2, which consists of

speech segmentation, data preprocessing, deep complemen-

tary feature extraction, and KELM classification. Different

from the CNN-BLSTM model, this fusion framework con-

siders the effects of auditory-based features. Furthermore,

we adopt the CNN-KELM model in this framework; we use

KELM to distinguish emotions because it has properties of

high generalization capability and fast training. Moreover,

the KELM can perform well on small databases. As there

is no sufficiently labeled public corpus of emotional speech

at present [24], [25], in order to get more training data,

we divide speech into several segments. Moreover, we can

use the dynamic information through speech segmentation.

However, choosing a suitable segment size is a challenging

problem for speech emotion recognition. Researchers have

found that a segment speech signal that is greater than 250 ms

includes sufficient emotional information [44], [45]. In this

paper, we use a 265 ms window size and a slide window

of 25 ms to transform an utterance into several segments, and

all the segments in one utterance share the same label.
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The detailed description of the proposed fusion framework

is given as follows.

A. DATA PREPROCESSING

In this section, we would like to finish the extraction of

auditory-based features and spectrograms.We use the openS-

MILE [46] tool to extract the auditory-based features with

384 dimensions proposed in [47]. The selected 16 low-level

descriptors (LLDs) and their first-order derivatives are the

basic features, and then 12 functionals are applied to these

basic features. All of the LLDs and functionals set are shown

in Table 1.

TABLE 1. Auditory-based feature set.

A time-frequency analysis is commonly used in speech

signal processing [40], so we transform the speech signal

into a spectrogram for training the CNN. First, pre-emphasis

is applied to improve the high frequency and better main-

tain the speech information rather than eliminating the noise

completely. Then, the framing and windowing operations are

adopted. In this paper, we use a Hamming windowwith a size

of 16 ms and a 50% overlap. Finally, short time Fourier trans-

form (STFT) with default values for 256 points is adopted

to obtain the spectrogram. As the speech signal is divided

into many fixed-length segments of 265 ms, the size of the

spectrogram is 32 × 129.

B. COMPLEMENTARY FEATURE EXTRACTION

The proposed complementary feature extraction method con-

sists of an auditory-based features channel and a spectrogram

channel followed by a merge layer, a fully connected layer,

and a softmax layer.

Since the raw auditory-based features are correlated, which

will reduce the inter-class distance, we should not use these

features directly but rather extract the discriminative fea-

tures from the raw auditory-based features using a DNN.

Therefore, the auditory-based features with 384 dimensions

are fed into DNN to extract the discriminative features, F1.

It is well known that the deep belief network (DBN) is able to

model natural signals [37], and so a DBN consisting of super-

imposed restricted Boltzmann machines (RBMs) is used for

pre-training DNN [48]. Meanwhile, CNNs are adopted to

extact deep acoustic features from the spectrograms. The

structure of the CNN contains the convolutional layer, pool-

ing layer, flatten layer, and fully connected layer, and the

outputs of the fully connected layer are the deep acoustic

features, F2.

Then, the discriminative features, F1, and the deep acous-

tic features, F2, are spliced into a large vector, V , by a merge

layer. The representation is as follows.

V = [F1,F2]. (1)

The last two layers are the fully connected layer and the

softmax layer. Thewhole network is trained by using the error

back propagation technique. By adjusting the parameters,

the auditory-based features and spectrogram can constrain

each other to extract more robust complementary features.

When the model converges to an ideal state, the outputs

of the fully connected layer are the desired complementary

features, F .

In this work, the utterance is divided intoN segments; thus,

all the features that were extracted are segment-level. To get

utterance-level features, we perform the mean-operation as

follows.

F ′
i =

1

N

N
∑

t=1

F ti , (2)

where F ′
i is the feature set of the i-th utterance, N is the

number of segments in utterance i, and F ti is the feature set

of the t-th segment of the i-th utterance. Finally, the fusion

feature set, F ′, is fed into the KELM for speech emotion

recognition.

In fact, we have used max-pooling, min-pooling and mean

pooling to obtain the utterance-level features during our

experiments, while the mean-pooling gave the best result.

Therefore, in this paper, we only give the results of mean-

pooling, which are similar to those of [11] and [35].

C. THE KELM-BASED CLASSIFIER

ELM is a learning algorithm for single-hidden layer neural

networks, which was proposed by Schuller et al. [49] and

Zhu et al. [50]. ELM has been used for many classification

tasks and achieves better results than some of the traditional

classifiers such as SVM [10]. Suppose a network contains n

input layer nodes, l hidden layer nodes and m output layer

nodes, and there are N random samples, (xi, yi) ∈ Rn × Rm,

(i = 1, . . . ,N ). The training process of the ELM method

contains three steps:

The first step is to set the number of hidden layer nodes.

Furthermore, the bias values and weights, w, that are used

for connecting the input layer and hidden layer are randomly

initialized.

The next step is to compute the output matrix, H , of the

hidden layer as follows.

H =











g (w1, b1, x1) . . . g (wl, bl, x1)

g (w1, b1, x2) . . . g (wl, bl, x2)
...

. . .
...

g (w1, b1, xN ) . . . g (wl, bl, xN )











N×L

, (3)

where g(.) is the activation function, and the commonly used

activation function is the sigmoid function.
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Finally, the weights, β, that are between the hidden layer

and output layer are computed using the least squaresmethod,

as shown in (4):

β = HTH , (4)

where HT is the generalized inverse matrix of H .

We can see that the whole training process of ELM

only contains a pseudo-inverse calculation without param-

eter adjustment [51], [52]. The training process finishes in

a single iteration, which is faster than the training time for

conventional back propagation (BP)-based algorithms such

as BLSTM method. KELM is a modification of the original

ELM, which defines the kernel function of the inner product

for the hidden layer outputs, HT and H , and does not need to

give the number of hidden layer nodes. Previous studies have

shown that KELM is better than ELM [28], so in our method,

the KELM is used as the classifier to distinguish emotions.

IV. EXPERIMENTS

A. EXPERIMENTAL DATABASES

The evaluation and comparison of different methods are chal-

lenging due to the lack of a sufficiently labeled public corpus

of emotional speech. In this paper, we use two publicly avail-

able databases of emotional speech, the Berlin Emotional

Database (Emo-DB) [53] and Interactive Emotional Dyadic

Motion Capture database (IEMOCAP) [54]. The following

sections provide detailed descriptions of both databases.

1) EMO-DB DATABASE

The Emo-DB database contains the emotional utterances

produced by 10 German actors (five females/five males);

they read one of 10 pre-selected sentences typical of daily

conversation using different emotional expressions. This

database contains 535 utterances in German with seven

emotions: anger, boredom, fear, disgust, happiness, sadness,

and neutral. All utterances are sampled at 16 kHz and are

approximately 2-3 seconds long.

TABLE 2. Emotion distribution of the Emo-DB database.

Table 2 shows the emotion distribution of this database.

As it is a small database, similar to [21], we adopt ran-

dom 10-fold cross-validation to conduct the experiments in

this paper. In addition, we also conduct speaker-independent

experiments, which are usually adopted in most real appli-

cations [55]. The sentences from 8 speakers are used for

training, and the sentences from remaining 2 speakers are

used for testing.

2) IEMOCAP DATABASE

The IEMOCAP database is one of the most commonly used

corpora for speech emotion recognition; it contains scripted

and improvised dialogs. This database contains approxi-

mately 12 hours of audiovisual data including video, speech,

motion capture of faces and text transcriptions performed by

10 skilled actors. All utterances are sampled at 16 kHz and are

approximately 3-15 seconds long. Each utterance from either

of the actors in the interaction has been evaluated categor-

ically over the set of: angry, happy, sad, neutral, frustrated,

excited, fearful, surprised, and disgusted by three different

human annotators. Since three annotators may give different

labels for an utterance, we use the utterances with at least two

agreed-upon emotion labels for our experiments. In addition,

in this paper, we only select the utterances with labels for four

emotions: neutral, anger, sadness, and happiness, which are

often used in previous studies [56].

TABLE 3. Emotion distribution of the IEMOCAP database.

Table 3 lists the emotion distribution of IEMOCAP

database. This database has five sessions and includes

scripted and improvised utterances. In addition, there are two

speakers for each session, and there is no speaker overlap-

ping between the different sessions. Therefore, we utilize

this setup to conduct the speaker-independent 5-fold cross

validation. In each fold, the data from four sessions is used for

training the model, and the data from the remaining session

is used for testing.

TABLE 4. Important parameters of CNN.

B. EXPERIMENTAL SETUP

To get more training data, the utterances are divided into

several segments, and all segments in the same utterance

share the same label. However, it is an open problem to

choose the length of a segment. Researchers have shown that

a segment longer than 250 ms contains enough emotional

information [44], [45]. Similar to [10], in this work, the length

of a segment is set to be 265 ms. We also attempted longer

segments such as 3 s [22] and 655ms [39], and did not achieve

better results. This outcome means that segment of 265 ms

is more suitable for our method. Moreover, we conducted

many trials with different numbers of hidden layer nodes,
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layers, etc., to select the optimal structure for all the com-

parison methods. The parameters that are used in CNN in

this work are shown in Table 4. The CNN contains two

convolutional layers, two max-pooling layers, a flatten layer,

a fully connected layer, and a dropout layer. There are two

pairs of alternate convolutional layer with a size of 5× 5 and

max-pooling layer with a size of 2 × 2; the number of filters

for these two convolutional layers are 32 and 64, respectively.

After the last max-pooling layer, all the feature maps are

changed to one dimensional vector by the flatten layer. Then

follows a fully connected layer with 1024 hidden units, which

contain the deep acoustic features. In addition, to avoid over-

fitting, a dropout layer with a factor of 0.5 is used before the

output layer.

As the database and the selected utterances are different

in most studies, we cannot compare them under different

conditions. To make the experimental results more convinc-

ing, our experimental setup is consistent with that of [10].

Furthermore, for other comparison methods, we attempted

many times to choose the optimal parameters under the

same conditions. All the experimental methods are listed as

follows.

• CNN-BLSTM: This is the baseline model of this paper.

The structure of the CNN, as shown in Table 4, is uti-

lized to extract deep acoustic features with 1024 dimen-

sions from the segment-level spectrograms. Then, these

segment-level features are fed into the BLSTM method

to recognize the emotion with utterance-level label.

After many trials on Emo-DB and IEMOCAP databases,

the selected optimal structure of BLSTM method con-

tains two hidden layers, and each layer has 200 nodes.

• CNN-ELM: It is a novel method for speech emo-

tion recognition that was introduced in our previous

work [27]. This model is used to verify the effect of the

ELM classifier by comparing it with the CNN-BLSTM

model. This model uses CNN to extract deep acoustic

features from the spectrograms. Then, the ELM is used

as a classifier to recognize emotion. For the ELM struc-

ture, the number of hidden layer nodes is set to 2100 for

the Emo-DB database; meanwhile the number of hidden

layer nodes is set to 100 for the IEMOCAP database.

• CNN-KELM: This is the adopted method for speech

emotion recognition in this work. We adopt KELM

as the classifier to distinguish emotions. For Emo-DB

database, the KELM parameters, including the regular-

ization coefficient and kernel parameter, are all set to

100. For IEMOCAP database, the regularization coef-

ficient and kernel parameter of the KELM are set to

10000 and 10, respectively.

• DNN-ELM: This is a commonly used model that

uses only auditory-based features, which used to be

compared with spectrogram-based methods. All the

auditory-based features with 384 dimensions are fed into

theDNN to extract discriminative features. The structure

of the DNN contains four hidden layers, and each layer

has 512 nodes. Then, mean-pooling is performed to

obtain the utterance-level features. Finally, these dis-

criminative features are fed into the ELM to distinguish

emotions. The number of hidden layer nodes for the

ELM is set to 2100 and 100 for Emo-DB and IEMOCAP

databases, respectively.

• DNN-KELM: This method is used to verify KELM by

comparing it with the DNN-ELM model. This model

uses DNN to extract features from the auditory-based

features and then adopts the as the classifier. The

structure of the DNN contains three hidden layers,

and each layer has 512 nodes. For Emo-DB database,

the regularization coefficient and kernel parameter of the

KELM are set at 10 and 1, respectively. For IEMOCAP

database, all the parameters of the KELM are set at 1.

• Decision-Level Fusion: To compare with the proposed

feature-level fusion framework, we also consider the

decision-level fusion method. First, we use the KELM

to calculate the classification scores for the different

types of features including the auditory-based bottleneck

features, Score1, and the spectrogram-based deep acous-

tic features, Score2. Then, the scores are fused to form

a decision rule for the classification [57]. A weighted

summation is adopted in terms of the obtained class

score values as follows.

S = max {a · Score1 + (1 − a) · Score2)} , (5)

where a(0 < a < 1) defines the weight between

two kinds of features. After repeated experiments,

the weights for Emo-DB and IEMOCAP databases are

0.4 and 0.6, respectively.

• The Proposed Fusion Framework Based on KELM:

This framework uses the CNN structure, as shown

in Table 4, to extract the deep acoustic features from the

spectrograms and uses the DNN to extract the auditory-

based discriminative features. The structure of the DNN

contains three hidden layers, each having 512 nodes,

followed by a merge layer, a fully connected layer with

1024 nodes, and a softmax layer. The outputs of the

fully connected layer are the complementary features.

Finally, these complementary features are fed into the

KELM to distinguish emotions. For Emo-DB database,

the regularization coefficient and kernel parameter of the

KELM are set to 10000 and 10, respectively, and the

regularization coefficient and kernel parameter are set

to 100 and 1000 for IEMOCAP database.

C. ANALYSIS OF THE DIFFERENT FEATURES

To analyze the effects of different features, Fig. 3 shows

their visualization maps. All types of features are listed as

following:

• Raw Auditory-Based Features: These features with

384 dimensions consist of the LLDs and their statistical

features, which are shown in Table 1.

• Discriminative Features: The discriminative features

with 512 dimensions are extracted by the DNN from the

raw auditory-based features.
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FIGURE 3. Visual distributions of the different features. (a) Raw auditory-based features. (b) Discriminative features.
(c) Spectrogram-based features. (d) Complementary features.

• Spectrogram-Based Features: These deep acoustic

features with 1024 dimensions are extracted from the

spectrograms using the CNN.

• Complementary Features: The complementary fea-

tures with 1024 dimensions are extracted by the

fusion framework from the auditory-based features and

spectrograms.
We use data from the Emo-DB database for the fea-

ture analysis. First, we need to reduce the features to two

dimensions. There are many techniques for dimensionality

reduction; among them, the t-distributed stochastic neighbor

embedding (t-SNE) [58] is a commonly used method for

dimensionality reduction. In particular, the t-SNE technique

has been successfully applied for visualization. In this paper,

we use an optimization of t-SNE called fast t-SNE [59]

for dimensionality reduction. Then, we illustrate the distri-

butions of the seven emotions using different colors in a

two-dimensional plane.

From Fig. 3(a), we can see that the data distributions of

the different classes are significantly overlapped, and it is

difficult to distinguish the different emotions. Furthermore,

the boundaries of the different emotions in Fig. 3(b) are

clearer than those in Fig. 3(a). In particular, there is clear

boundary between anger and sadness. This results indicates

that the discriminative features are more effective than the

raw auditory-based features for speech emotion recognition,

so it is necessary to extract the discriminative features using

the DNN. Fig. 3(c) shows that most of the classes are clus-

tered together, especially for anger, sadness, and boredom

classes. However, the distributions of fear and happiness

are rather scattered. In addition, there is a large inter-class

distance in each emotion. Fig. 3(d) performs the best perfor-

mance among those types of features. First, there are clear

contours for sadness, anger, boredom, and fear. Furthermore,

the inter-class distances in Fig. 3(d) are less than those of

other features. To summarize, the complementary features

show strong discriminative ability for emotions.

D. RESULTS AND DISCUSSION

In this work, we use two common evaluation criteria [22] to

validate the overall effect of the proposed fusion framework,

as following:
• Weighted accuracy (WA) - this is the classification accu-

racy for the whole test set.

• Unweighted accuracy (UA) - the classification accu-

racy for each emotion is first calculated and then

averaged.
The evaluation results for Emo-DB and IEMOCAP

databases are illustrated in Table 5 and Table 6, respectively,

and some conclusions can be drawn as following:
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TABLE 5. Accuracy of Emo-DB database.

TABLE 6. Accuracy of IEMOCAP database.

1) As shown in Table 5, the results of the random 10-fold

cross validation are better than those of the speaker-

independent experiments because normalizing features

on a per-speaker basis can significantly improve the

performance [60]. Furthermore, we can observe that

they show a consistent trend in all the methods.

This outcome means that the proposed method is

still effective under the speaker-independent condition.

Therefore, in the following experiments, we only report

the results of the random 10-fold cross validation for

Emo-DB database.

2) The spectrogram-based methods (i.e., CNN-BLSTM,

CNN-ELM, and CNN-KELM) all outperform the

perceptual feature-based methods (i.e., DNN-ELM,

and DNN-KELM) for Emo-DB database, but for

IEMOCAP database, the spectrogram-based methods

are not better than perceptual feature-based methods.

We believe the reason is that the utterances of the

IEMOCAP database contain more noise and silent seg-

ments [54], so CNN cannot extract effective emotion-

relevant features from spectrograms with noise and

silence. In addition, there are differences in size, anno-

tations, speech quality, speaker, etc., for these two

corpora.

3) Both the CNN-ELM and CNN-KELM models per-

form better than the CNN-BLSTM model on Emo-

DB and IEMOCAP databases. For Emo-DB database,

the CNN-KELMmodel outperforms the CNN-BLSTM

model in terms of UA and WA by an absolute 4.41%

(from 86.66% to 91.07%) and 4.3% (from 87.66%

to 91.96%), respectively. For IEMOCAP database,

the CNN-KELM achieves an absolute 3.97% (from

51.44% to 55.41%) and 3.43% (from 50.41% to

53.84%) improvements over the CNN-BLSTM model

in terms of UA and WA. The results prove that the

proposed CNN-KELM model is effective for emotion

recognition and KELM/ELM models are excellent

classifiers, at least in this work. We think there are

two reasons contribute to these results. First of all,

as a relatively abundant number of features have been

extracted by the CNN, the emotional utterances can

be classified by a simple static classifier. Furthermore,

KELM/ELM can perform well on small databases.

Meanwhile, we can see that using the KELM as a

classifier is better than the ELM on both spectrogram-

based and perceptual feature-based methods, so the

KELM is used as the classifier in our proposed fusion

framework.

4) Although the decision-level fusion framework obtain

better performances than other comparison methods,

it still performs worse than the proposed feature-

level fusion framework on Emo-DB and IEMOCAP

databases. We think the reason is that decision-level

fusion cannot capture themutual correlation among dif-

ferent types of features because auditory-based features

and spectrogram-based features are independent in this

framework.

5) For Emo-DB database, the results of the proposed

feature-level fusion framework are better than those

of the other methods in terms of UA and WA. For

example, the proposed fusion framework outperforms

the state-of-the-art model, the CNN-BLSTM, by an

absolute 5.79% (from 86.66% to 92.45%) and 5.24%

(from 87.66% to 92.90%) in terms of UA and WA,

respectively.We think it is because the utterances of the

Emo-DB database are clean and the labels are uncon-

troversial. In addition, the CNN can extract relatively

rich and effective features from clean spectrograms.

Finally, the fusion framework can extract more robust

complementary features based on the spectrogram-

based features and auditory-based features, which can

highlight the weights of the emotion-relevant features.

6) For IEMOCAP database, the proposed feature fusion

model based on KELM obtains the best results in

terms of UA and WA. Compared with the CNN-

BLSTM model, the fusion framework achieves an

absolute 6.55% (from 51.44% to 57.99%) and 6.14%

(from 50.41% to 56.55%) improvement in terms of

UA and WA, respectively. In addition, the proposed

model also performs better than the perceptual features-

based methods. For example, the fusion framework

outperforms DNN-KELM by an absolute 2.71% (from

55.28% to 57.99%) and 2.02% (from 54.53% to

56.55%) in terms of UA and WA, respectively. From

the above results, we can see that the fusion framework

is effective on IEMOCAP database, which indicates

that the spectrogram-based features and auditory-based

discriminative features are complementary.

To evaluate the effects for each emotion, we give the F1 for

all the methods. The F1 score is the most commonly used

evaluation criterion for testing accuracy because it has a bal-

ance between recall (R) and precision (P). Equation (6) gives

the expression for F1. Table 7 and Table 8 give the F1 results
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TABLE 7. F1 (%) of each emotion for Emo-DB database.

TABLE 8. F1 (%) of each emotion for IEMOCAP database.

for Emo-DB and IEMOCAP databases, respectively.

F1 =
2 · P · R

P+ R
. (6)

From Table 7, we can see that for Emo-DB database,

the proposed feature-level fusion framework performs best in

the boredom, neutral and sadness classes. For utterances with

labels of fear, disgust, happiness and anger, the F1 scores of

the fusion framework are not the best, but the results are still

significantly better than those of the baseline CNN-BLSTM

model. CNN-ELM performs best in the fear and disgust

classes, indicating that using ELM as the classifier is useful

for speech emotion recognition. Additional, the decision-

level fusion method obtains the best results in the happiness

and anger classes. Furthermore, the fusion framework outper-

forms the state-of-the-art method, the CNN-BLSTM model,

by an absolute 5.5% (from 87.49% to 92.99%) in terms of the

average F1.

From Table 8, we can see that for IEMOCAP database,

the feature-level fusion framework achieves the best results

in most of the emotion classes (i.e., anger, sadness, and

happiness) and especially in the sadness class where it out-

performs the CNN-BLSTM model by an absolute 10.41%

(from 50.43% to 60.84%). In addition, for neutral and

happiness classes, the decision-level fusion method per-

forms best. In terms of the average F1, our methods

(‘‘CNN-ELM’’, ‘‘CNN-KELM’’, ‘‘Decision-level fusion’’,

‘‘Feature-level fusion’’) each obtain a better performance

than the CNN-BLSTM model, and the proposed feature-

level fusion framework significantly outperforms the CNN-

BLSTM and DNN-KELM models by an absolute 6.61%

(from 51.12% to 57.73%) and 2.45% (from 55.28% to

57.73%), respectively. The results indicate that the decision-

level fusion framework and feature-level fusion framework

are effective in IEMOCAP database. In addition, we can

observe that the extracted complementary features are more

FIGURE 4. Confusion matrices for Emo-DB database. (a) CNN-BLSTM.
(b) The fusion framework.

useful for distinguishing emotions than the decision fusion

strategy.

Finally, to analyze the relation between each emotion class,

we give the confusion matrices. Fig. 4 and Fig. 5 give the

confusion matrices for Emo-DB and IEMOCAP databases,

respectively. The abscissa is the detected label and the ordi-

nate is the actual label.

Fig. 4 shows the confusion matrices of CNN-BLSTM and

the proposed feature-level fusion framework for Emo-DB

database. We can see that much confusion is concentrated

between the happiness and anger classes; as seen in Fig. 4(a),

there are approximately 30% happiness utterances detected

as anger. Although our model makes a great improvement on

happiness recognition, there are still approximately 18% hap-

piness utterances detected as anger in Fig. 4(b). We assume

the reason is that both happiness and anger have the high

energy and arousal [61]. However, there are few anger
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FIGURE 5. Confusion matrices for IEMOCAP database. (a) CNN-BLSTM.
(b) The fusion framework.

utterances detected as happiness. This is mainly because the

anger utterances have the highest proportion in this database.

In addition, we found that the confusion between the boredom

and neutral classes is mutual. Fig. 4(a) shows that there are

approximately 8.6% boredom utterances detected as neutral

and 8.8% neutral utterances detected as boredom.We assume

this result is because both the boredom and neutral emotions

have the peaceful mood and low arousal [61]; it is difficult to

distinguish them, while our method can significantly weaken

the confusion between them.

Fig. 5 shows the confusion matrices for IEMOCAP

database. Much confusion is concentrated between the happi-

ness and neutral/anger classes. Different from Fig. 4, the con-

fusion between happiness and anger is mutual. Furthermore,

the proposed method achieves a higher accuracy than the

CNN-BLSTM model in all classes. However, the improve-

ment in the anger emotion is limited. We assume this result is

because there is a low percentage of anger utterances in this

database.

To summarize, the proposed fusion framework is effec-

tive for speech emotion recognition, which indicates that

the spectrogram-based features and auditory-based features

are complementary to some extent. However, the results

for IEMOCAP database are obviously worse than those for

Emo-DB database. There are three reasons for this. First,

the speech quality is different. The IEMCOAP database

contains much noise and silent segments [54]. In addition,

the IEMOCAP database contains scripted and improvised

utterances, and as the script text exhibits strong correlation

with the labeled emotions, it may give rise to lingual content

learning, which has a side effect on speech emotion recogni-

tion [62]. Finally, there are three different human annotators,

whichmay give rise to different labels. Therefore, some labels

are controversial.

V. CONCLUSIONS AND PROSPECTS

In this paper, we focused on improving speech emotion

recognition by using complementary features. To utilize the

potential advantages of two types of features (i.e., the

spectrogram-based statistical features and auditory-based

empirical features), we proposed a dynamic fusion frame-

work to extract the complementary features based on spec-

trograms and the auditory-based features. In addition, the

CNN-KELMmodel was adopted in this work, which utilized

the KELM as the classifier to distinguish emotions since the

KELM can perform well on small databases. After obtain-

ing the utterance-level feature by using mean-operation,

the complementary features were fed into the KELM. In

this paper, to build a better fusion framework, we also

considered the decision-level fusion strategy. Experiments

were conducted on Emo-DB and IEMOCAP databases. The

experimental results showed that the CNN-KELM model

was effective for speech emotion recognition. Furthermore,

the proposed feature-level fusion framework outperformed

the decision-level fusion model. This is because a frame-

work using feature-level fusion can capture the mutual cor-

relation among the different types of features. The results

also demonstrated that the fusion of these two kinds of

features (i.e., spectrogram-based features and auditory-based

features) performed better than using either one alone. This

results means that these two kinds of features are comple-

mentary to some extent. Furthermore, the proposed fusion

framework can also be used for other similar tasks such as

language recognition, speaker recognition, dialog act detec-

tion, and spoken language recognition.

To further improve speech emotion recognition, some

aspects of this model should be improved. First, we will

have a stricter requirement in selecting the auditory-based

features. In addition, as emotional expressions are dynamic,

it is important to capture the key emotional segments in the

stage of feature extraction.
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