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Abstract

This paper describes the use of data analytics tools for predicting the fatigue strength

of steels. Several physics-based as well as data-driven approaches have been used to

arrive at correlations between various properties of alloys and their compositions and

manufacturing process parameters. Data-driven approaches are of significant interest

to materials engineers especially in arriving at extreme value properties such as cyclic

fatigue, where the current state-of-the-art physics based models have severe

limitations. Unfortunately, there is limited amount of documented success in these

efforts. In this paper, we explore the application of different data science techniques,

including feature selection and predictive modeling, to the fatigue properties of steels,

utilizing the data from the National Institute for Material Science (NIMS) public domain

database, and present a systematic end-to-end framework for exploring materials

informatics. Results demonstrate that several advanced data analytics techniques such

as neural networks, decision trees, and multivariate polynomial regression can achieve

significant improvement in the prediction accuracy over previous efforts, with R2 values

over 0.97. The results have successfully demonstrated the utility of such data mining

tools for ranking the composition and process parameters in the order of their

potential for predicting fatigue strength of steels, and actually develop predictive

models for the same.

Keywords: Materials informatics; Data mining; Regression analysis;

Processing-property linkages

Background

Causal relations are foundational to all advances in sciences and technology. In advanc-

ing materials science and engineering, the practitioners of the field have traditionally

relied largely on observations made from cleverly designed controlled experiments and

sophisticated physics-basedmodels to establish the desired causal relations, e.g., process-

structure-property (PSP) linkages. In recent vision-setting documents [1,2], experts in

materials science and engineering have identified data science and analytics as offer-

ing a third set of distinct tools (i.e., experiments, models, and data analytics making

up the three foundational components of an integrated approach) for establishing the

desired causal relations. Data science and analytics is expected to positively impact the
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ongoing materials development efforts by maximizing the accuracy and reliability of the

core knowledge mined from large ensembles of (often heterogeneous and/or incomplete)

datasets, and providing clear guidance for investment of future effort in as yet unexplored

“white” spaces with the highest potential for success/benefit. In fact, data analytics tech-

niques have already been successfully making inroads in the quest for newmaterial design

and discovery. The considerable interest and progress in the recent years has resulted in

developing this new field and terming it as “Materials Informatics” [3,4]. The Materials

Genome Initiative [2] places a large emphasis on data-driven approaches. Progress in this

direction is supplemented by the availability of large amounts of experimental and simu-

lation data, enhanced computing tools and advances in data analytics, which is expected

to augment rather than compete with existing analytics methods.

State-of-the-art data analytics

Over the last few decades, our ability to generate data has far exceeded our ability to

make sense of it in practically all scientific domains, andmaterials science is no exception.

This has led to the emergence of the fourth paradigm of science [5], which is data-driven

science and discovery, and is based on developing predictive and discovery-based data

mining approaches on big data in a comprehensive manner. Fourth paradigm compli-

ments the three traditional scientific advancement models of mathematical modeling,

experiments, and computer simulations. Indeed, the most advanced techniques in this

field come from computer science, high-performance computing, machine learning and

data mining algorithms, and via applications in business domain, climate science, bioin-

formatics, astronomy/cosmology, intrusion detection, network analysis and many others,

where predictive data mining has been effectively used for decision making with signifi-

cant gains in the outcomes relevant to that domain. For example, companies like Amazon

[6,7], Netflix [8], Google [9], Walmart [10] and Target [11] use predictive modeling for

recommendations, personalized news, cost reductions, predicting demand and supply

chain management at a massive scale providing lifts in sales and satisfaction. Scientists

use predictive mining on big data to discover new stars/galaxies, predict hurricane paths,

or predict structure of new materials. The accurate prediction of the path of hurricane

Sandy illustrates an example of how the use and analysis of much larger data sets and

algorithms can significantly improve accuracy.

The impressive advances made in the last two decades in both materials character-

ization equipment and in the physics-based multiscale materials modeling tools have

ushered the BIG DATA age of materials science and engineering. With the advent of big

data came the recognition that advanced statistics and modern data analytics would have

to play an important role in the future workflows for the development of new or improved

materials.

Several case studies illustrating the potential benefits of this emerging new field of

Materials Informatics (MI) have already been published in literature. Rajan et al. [12]

applied principal component analysis (PCA) on a database consisting of 600 compounds

of high temperature superconductors to identify patterns and factors which govern this

important property. They observed that the dataset clusters according to the average

valency, a criterion which has been reported in literature to be of utmost importance

for superconducting property. They concluded that informatics techniques allow one

to investigate complex multivariate information in an accelerated and yet physically
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meaningful manner. Suh and Rajan [13] applied informatics tools on a dataset consist-

ing of AB2N4 spinel nitrides to find the statistical interdependency of factors that may

influence chemistry-structure-property relationships. Using partial least squares (PLS),

they developed a quantitative structure-activity relationship (QSAR) relating bulk mod-

ulus of AB2N4 spinels with a variety of control parameters. They observed a strong

agreement between the properties predicted based on ab-initio calculations and the

ones based strictly on a data-driven approach. Nowers et al. [14] investigated property-

structure-processing relations during interpenetrating polymer network (IPN) formation

in epoxy/acrylate systems using an informatics approach. They concluded that material

informatics is a very efficient tool which can be utilized for additional materials devel-

opment. Gadzuric et al. [15] applied informatics tools on molten salt database to predict

enthalpy (δHform) and Gibbs free energy of formation (δGform) of lanthanide halides. The

results of the analysis indicated a high level of confidence for the predictions. George

et al. [16] applied similar approach on a dataset consisting of binary and ternary metal

hydrides to investigate the interrelationships amongmaterial properties of hydrides. They

developed a relationship between entropy of a hydride and its molar volume which was

in close agreement with the theoretical predictions. Singh et al. [17] developed a neural

networkmodel in which the yield and tensile strength of the steel was estimated as a func-

tion of some 108 variables, including the chemical composition and an array of rolling

parameters. Fujii et al. [18] applied neural network approach for prediction of fatigue

crack growth rate of nickel base superalloys. They modeled the rate as a function of 51

variables and demonstrated the ability of such methods for investigation of new phe-

nomena in cases where the information cannot be accessed experimentally. Hancheng

et al. [19] developed an adaptive fuzzy neural network model to predict strength based

on compositions and microstructure. Runway stiffness prediction and evaluation mod-

els have also been developed using techinques such as genetic programming [20] and

artificial neural networks [21]. Wen et al. [22] applied support vector regression (SVR)

approach for prediction of corrosion rate of steels under different seawater environ-

ments. They concluded that SVR is a promising and practical method for real-time

corrosion tracking of steels. Rao et al. [23] applied SVR for prediction of grindability

index of coal and concluded that SVR is a promising technique and needs smaller data

set for training the model than artificial neural network (ANN) techniques. To the best

of our knowledge, there is only one prior study [24] dealing with fatigue strength pre-

diction using the NIMS database (same data that we use in this work; details of the data

provided later). It applied PCA on the data and subsequently performed partial least

square regression (PLSR) on the different clusters identified by PCA for making predic-

tions. Large R2 values ranging between 0.88 and 0.94 were obtained for the resulting

clusters.

Motivation

The prior MI case studies cited above have established the unequivocal potential of

this emerging discipline in accelerating discovery and design of new/improved materi-

als. However, there still does not exist a standardized set of protocols for exploring this

approach in a systematic manner on many potential applications, and thus, establish-

ing the composition-processing-structure-property relationships still remains an arduous

task. A report published by NRC [1] stated that materials design has not been able to keep
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pace with the product design and development cycle and that insertion of new materials

has become more infrequent. This poses a threat to industries such as automotive and

aerospace, in which the synergy between product design, materials, and manufacturing is

a competitive advantage.

In this paper, we embark on establishing a systematic framework for exploring MI, and

illustrate it by establishing highly reliable causal linkages between process variables in a

class of steels, their chemical compositions, and their fatigue strengths. The approach

described in this work comprises of four main steps: (i) Preprocessing for consistent

description of data, which can include things like filling in missing data wherever pos-

sible, with the help of appropriate domain knowledge; ii) Feature selection for attribute

ranking and/or identifying the best subset of attributes for establishing a given linkage;

(iii) Predictive modeling using multiple statistical and advanced data-driven strategies

for the establishment of the desired linkages, (iv) Critical evaluation of the different

informatics approaches using appropriate metrics and evaluation setting to avoid model

over-fitting.

Accurate prediction of fatigue strength of steels is of particular significance in mate-

rials science to several advanced technology applications because of the extremely high

cost (and time) of fatigue testing and often debilitating consequences of fatigue failures.

Fatigue strength is the most important and basic data required for design and failure

analysis of mechanical components. It is reported that fatigue accounts for over 90% of

all mechanical failures of structural components [25]. Hence, fatigue life prediction is of

utmost importance to both the materials science and mechanical engineering communi-

ties. The unavailability of recorded research in using a large number of heat treatment

process parameters, composition to predict extreme value properties such as fatigue

strength has led us to work on this problem. The complex interaction between the var-

ious input variables have baffled the conventional attempts in pursuing this work and

advanced data analytics techniques may lead the path. The aim of this study is thus to fill

some of the gaps encountered in this work and serve as a preliminary guide for prospec-

tive researchers in this field. The scope of this paper includes application of a range of

machine learning and data analytics methods applied for the problem of fatigue strength

prediction of steels using composition and processing parameters. A conference version

of this paper with preliminary results appeared in Proceedings of the 2ndWorld Congress

on Integrated Computational Materials Engineering (ICME 2013) [26].

Data

Fatigue Dataset for Steel from National Institute of Material Science (NIMS) MatNavi

[27] was used in this work, which is one of the largest databases in the world with details

on composition, mill product (upstream) features and subsequent processing (heat treat-

ment) parameters. The database comprises carbon and low-alloy steels, carburizing steels

and spring steels. Fatigue life data, which pertain to rotating bending fatigue tests at room

temperature conditions, was the target property for which we aimed to construct predic-

tive models in the current study. The features in the dataset can be categorized into the

following:

• Chemical composition - %C, %Si, %Mn, %P, %S, %Ni, %Cr, %Cu, %Mo (all in wt. %)

• Upstream processing details - ingot size, reduction ratio, non-metallic inclusions
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• Heat treatment conditions - temperature, time and other process conditions for

normalizing, through-hardening, carburizing-quenching and tempering processes

• Mechanical properties - YS, UTS, %EL, %RA, hardness, Charpy impact value (J/cm2),

fatigue strength.

The data used in this work has 437 instances/rows, 25 features/columns (composi-

tion and processing parameters), and 1 target property (fatigue strength). The 437 data

instances include 371 carbon and low alloy steels, 48 carburizing steels, and 18 spring

steels. This data pertains to various heats of each grade of steel and different processing

conditions. The details of the 25 features and given in Table 1.

Methods

The overall proposed approach is illustrated in Figure 1. The raw data is preprocessed

for consistency using domain knowledge. Ranking-based feature selection methods are

also used to get an idea of the relative predictive potential of the attributes. Differ-

ent regression-based predictive modeling methods are then used on the preprocessed

and/or transformed data to construct models to predict the fatigue strength, given the

composition and processing parameters. All constructed models are evaluated using

Leave-One-Out Cross Validation with respect to various metrics for prediction accuracy.

Below we present the details of each of the 4 stages.

Table 1 NIMS data features

Abbreviation Details

C % Carbon

Si % Silicon

Mn % Manganese

P % Phosphorus

S % Sulphur

Ni % Nickel

Cr % Chromium

Cu % Copper

Mo % Molybdenum

NT Normalizing Temperature

THT Through Hardening Temperature

THt Through Hardening Time

THQCr Cooling Rate for Through Hardening

CT Carburization Temperature

Ct Carburization Time

DT Diffusion Temperature

Dt Diffusion time

QmT Quenching Media Temperature (for Carburization)

TT Tempering Temperature

Tt Tempering Time

TCr Cooling Rate for Tempering

RedRatio Reduction Ratio (Ingot to Bar)

dA Area Proportion of Inclusions Deformed by Plastic Work

dB Area Proportion of Inclusions Occurring in Discontinuous Array

dC Area Proportion of Isolated Inclusions

Fatigue Rotating Bending Fatigue Strength (107 Cycles)
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Figure 1 Block diagram. Schematic of overall proposed approach to fatigue strength prediction of steels

with knowledge discovery and data mining.

Preprocessing

Understanding and cleaning the data for proper normalization is one of the most impor-

tant steps for effective data mining. Appropriate preprocessing, therefore, becomes

extremely crucial in any kind of predictive modeling, including that of fatigue strength.

The dataset used in this study consists of multiple grades of steel and in some records,

some of the heat treatment processing steps did not exist. In particular, different spec-

imens are subjected to different heat treatment conditions. For example, some are

normalized and tempered, some are through hardened and tempered, and others are

carburized and tempered. There could be cases where normalization is done prior to

carburization and tempering. In order to bring in a structure to the database, we have

included all the key processes in the data-normalization, through hardening, carburiza-

tion, quenching and tempering. For the cases where the actual process does not take

place, we set the appropriate duration/time variable to zero with corresponding tempera-

ture as the austenization temperature or the average of rest of the data where the process

exists. Setting the time to zero would essentially mean that no material transformation

occurs. An artifact of our resulting data is that we are treating temperature and time as

independent variables whereas they actually make sense only when seen together.

Feature selection

Informationgain

This is an entropy-based metric that evaluates each attribute independently in terms of

its worth by measuring the information gain with respect to the target variable:

IG(Class,Attrib) = H(Class) − H(Class|Attrib) (1)

where H(.) denotes the information entropy. The ranking generated by this method can

be useful to get insights about the relative predictive potential of the input features.

SVD-PCA

Singular value decomposition is a matrix factorization defined as:

D = U × S × V (2)
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where, D is the data matrix such that every observation is represented by a row and each

column is an explanatory variable,U is the matrix of left singular vectors, V is the matrix

of right singular vectors and S is the diagonal matrix of singular values. In this case, A =

U × S is a transformation of D where the data is represented by a new set of explanatory

variables such that each variable is a known linear combination of the original explanatory

parameters. The dimensions of A are also referred to as the Principal Components (PC)

of the data.

Predictivemodeling

We experimented with 12 predictive modeling techniques in this research study, which

include the following:

Linear regression

Linear regression probably the oldest andmost widely used predictive model, which com-

monly represents a regression that is linear in the unknown parameters used in the fit.

The most common form of linear regression is least squares fitting [28]. Least squares

fitting of lines and polynomials are both forms of linear regression.

Pace regression

It evaluates the effect of each feature and uses a clustering analysis to improve the statisti-

cal basis for estimating their contribution to overall regression. It can be shown that pace

regression is optimal when the number of coefficients tends to infinity. We use a version

of Pace Regression described in [29,30].

Regression post non-linear transformation of select input variables

A non-linear transformation of certain input variables can be done and the resulting

data-set used for linear regression. In this study, the temperature variation effects on

the diffusion equation are modelled according to the Arrhenius’ empirical equation as

exp(−1/T) where T is measured in Kelvin.

Robust fit regression

The robust regressionmethod [31] attempts tomitigate the shortcomings which are likely

to affect ordinary linear regression due to the presence of outliers in the data or non-

normal measurement errors.

Multivariate polynomial regression

Ordinary least squares (OLS) regression is governed by the equation:

β = (X′X)−1X′Y (3)

where β is the vector of regression coefficients, X is the design matrix and Y is the vector

of responses at each data point. Multivariate Polynomial Regression (MPR) is a special-

ized instance of multivariate OLS regression that assumes that the relationship between

regressors and the response variable can be explained with a standard polynomial. Stan-

dard polynomial here refers to a polynomial function that contains every polynomial

term implied by a multinomial expansion of the regressors with a given degree (some-

times also referred to as a polynomial basis function). Polynomials of various degrees and

number of variables are interrogated systematically to find the most suitable fit. There
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is a finite number of possible standard polynomials that can be interrogated due to the

degree of freedom imposed by a particular dataset; the number of terms in the polynomial

(consequently the number of coefficients) cannot exceed the number of data points.

Instance-based

This is a lazy predictive modeling technique which implements the K-nearest-neighbour

(kNN) modeling. It uses normalized Euclidean distance to find the training instance

closest to the given test instance, and predicts the same class as this training instance

[32]. If multiple instances have the same (smallest) distance to the test instance, the first

one found is used. It eliminates the need for building models and supports adding new

instances to the training database dynamically. However, the zero training time comes

at the expense of a large amount of time for testing since each test instance needs to be

compared with all the data instances in the training data.

KStar

KStar [33] is another lazy instance-based modeling technique, i.e., the class of a test

instance is based upon the class of those training instances similar to it, as determined

by some similarity function. It differs from other instance-based learners in that it uses

an entropy-based distance function. The underlying technique used of summing proba-

bilities over all possible paths is believed to contribute to its good overall performance

over certain rule-based and instance-based methods. It also allows an integration of both

symbolic and real valued attributes.

Decision table

Decision table is a rule-basedmodeling technique that typically constructs rules involving

different combinations of attributes, which are selected using an attribute selection search

method. It thus represents one of the simplest andmost rudimentary ways of representing

the output from a machine learning algorithm, showing a decision based on the values

of a number of attributes of an instance. The number and specific types of attributes can

vary to suit the needs of the task. Simple decision table majority classifier [34] has been

shown to sometimes outperform state-of-the-art classifiers. Decision tables are easy for

humans to understand, especially if the number of rules are not very large.

Support vectormachines

SVMs are based on the Structural Risk Minimization (SRM) principle from statistical

learning theory. A detailed description of SVMs and SRM is available in [35]. In their

basic form, SVMs attempt to perform classification by constructing hyperplanes in a

multidimensional space that separate the cases of different class labels. It supports both

classification and regression tasks and can handle multiple continuous and nominal vari-

ables. Different types of kernels can be used in SVMmodels, including linear, polynomial,

radial basis function (RBF), and sigmoid. Of these, the RBF kernel is the most recom-

mended and popularly used, since it has finite response across the entire range of the real

x-axis.

Artificial neural networks

ANNs are networks of interconnected artificial neurons, and are commonly used for

non-linear statistical data modeling to model complex relationships between inputs and
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outputs. The network includes a hidden layer of multiple artificial neurons connected

to the inputs and outputs with different edge weights. The internal edge weights are

‘learnt’ during the training process using techniques like back propagation. Several good

descriptions of neural networks are available [36,37].

Reduced error pruning trees

AReduced Error Pruning Tree (REPTree) [38] is an implementation of a fast decision tree

learner. A decision tree consists of internal nodes denoting the different attributes and

the branches denoting the possible values of the attributes, while the leaf nodes indicate

the final predicted value of the target variable. REPTree builds a decision/regression tree

using information gain/variance and prunes it using reduced-error pruning. In general, a

decision tree construction begins at the top of the tree (root node) with all of the data.

At each node, splits are made according to the information gain criterion, which splits

the data into corresponding branches. Computation on remaining nodes continues in the

same manner until one of the stopping criterions is met, which include maximum tree

depth, minimum number of instances in a leaf node, minimum variance in a node.

M5model trees

M5 Model Trees [39] are a reconstruction of Quinlan’s M5 algorithm [40] for inducing

trees of regression models, which combines a conventional decision tree with the option

of linear regression functions at the nodes. It tries to partition the training data using a

decision tree induction algorithm by trying to minimize the intra-subset variation in the

class values down each branch, followed by back pruning and smoothing, which substan-

tially increases prediction performance. It also uses the techniques used in CART [41] to

effectively deal with enumerated attributes and missing values.

Evaluation

Traditional regression-based methods such as linear regression are typically evaluated by

building the model (a linear equation in the case of linear regression) on the entire avail-

able data, and computing prediction errors on the same data. Although this approach

works well in general for simple regressionmethods, it is nonetheless susceptible to over-

fitting, and thus can give over-optimistic accuracy numbers. In particular, a data-driven

model can, in principle learn every single instance of the dataset and thus result in 100%

accuracy on the same data, but will most likely not be able to work well on unseen data.

For this reason, advanced data-driven techniques that usually result in black-box models

need to be evaluated on data that the model has not seen while training. A simple way to

do this is to build the model only on random half of the data, and use the remaining half

for evaluation. This is called the train-test split setting for model evaluation. Further, the

training and testing halves can then also be swapped for another round of evaluation and

the results combined to get predictions for all the instances in the dataset. This setting is

called 2-fold cross validation, as the dataset is split into 2 parts. It can further be general-

ized to k-fold cross validation, where the dataset is randomly split into k parts. k−1 parts

are used to build the model and the remaining 1 part is used for testing. This process is

repeated k times with different test splits, and the results combined to get preductions

for the all the instances in the dataset using a model that did not see them while training.

Cross validation is a standard evaluation setting to eliminate any chances of over-fitting.
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Of course, k-fold cross validation necessitates builing k models, which may take a long

time on large datasets.

Leave-one-out cross validation

We use leave-one-out cross validation (LOOCV) to evaluate and compare the prediction

accuracy of the models. LOOCV is commonly used for this purpose particularly when

the dataset is not very large. It is a special case of the more generic k-fold cross validation,

with k = N , the number of instances in the dataset. The basic idea here is to estimate the

accuracy of the predictive model on unseen input data it may encounter in the future, by

withholding part of the data for training the model, and then testing the resulting model

on the withheld data. In LOOCV, to predict the target attribute for each data instance, a

separate predictive model is built using the remaining N −1 data instances. The resulting

N predictions can then be compared with the N actual values to calculate various quan-

titative metrics for accuracy. In this way, each of the N instances is tested using a model

that did not see it while training, thereby maximally utilizing the available data for model

building, and at the same time eliminating the chances of over-fitting of the models.

Evaluationmetrics

Quantitative assessments of the degree to how close the models could predict the actual

outputs are used to provide an evaluation of the models’ predictive performances. A

multi-criteria assessment with various goodness-of-fit statistics was performed using all

the data vectors to test the accuracy of the trained models. The criteria that are employed

for evaluation of models’ predictive performances are the coefficient of correlation (R),

explained variance (R2), Mean Absolute Error (MAE), and Root Mean Squared Error

(RMSE), Standard Deviation of Error (SDE) between the actual and predicted values. The

last three metrics were further normalized by the actual fatigue strength values to express

them as error fractions. The definitions of these evaluation criteria are as follows:

R =

∑N
i=1(yi − y)(ŷi − ŷ)
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where y denotes the actual fatigue strength values (MPa), ŷ denotes the predicted fatigue

strength values (MPa), and N is the number of instances in the dataset.

The square of the coefficient of correlation, R2, represents the variance explained by the

model (higher the better), and is considered one of the most important metrics for evalu-

ating the accuracy of regressive predictionmodels. Another useful metric is the fractional

mean absolute error,MAEf , which represents the error rate (lower the better).

Results and Discussion

We used the following statistical and data mining software for conducting the analysis

reported in this paper: R [42], MATLAB [43], WEKA [44]. Default parameters were used

unless stated otherwise.

The entire available data-set was assessed for visible clustering by employing K-means

clustering technique. The cluster plot demonstrates inherent clustering in the available

data, which agrees with the a priori knowledge of the dataset. The distinct clustering in

the available data represents 3 clusters according to the grade of steels as depicted in

Figure 2. These clusters however do not offer sufficient data-points to create individual

meta-models for each cluster and hence, for all methods used, the entire data-set is used

to develop predictive models.

The information gain metric was calculated for each of the 25 input attributes. For

this purpose, the numerical fatigue strength was discretized into 5 equal-width bins as

this only works for categorical target attributes. The relative predictive power of the 25

input attributes is shown in Figure 3. All the attributes were retained for building vari-

ous predictive models as all of them were found to have significant predictive potential.

We also looked at the correlation values of the 25 input features with the fatigue strength,

as shown in Figure 4. Interestingly, TT (tempering temperature) shows up as the most

important attribute for predicting fatigue strength in Figure 3. This is because the dataset

Figure 2 Cluster visualization. K-means clustering of the NIMS data using the top 2 principal components

with K=3, clearly depiciting the 3 clusters corresponding to the 3 steel grades.
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Figure 3 Information gain based feature ranking. The 25 input attributes along with their relative

predictive power in terms of information gain.

consists of multiple grades of steel, each with a narrow yet significantly different range of

TT. For example, TT for Through-hardened-tempered (without carburization) is around

400°C and that with carburization is around 200°C. These two situations will lead to a

large difference in the fatigue strength. Thus, there is no surprise that the influence of TT

seems high. However, the truth is that having a carburization step is what makes the key

difference in the fatigue strength. Nevertheless, tempering will have a significant effect

and this is reflected by the influence of tempering time in Figure 4. Figure 4 also identi-

fies other variables such as carburizing temperature or through hardening temperature as

important influencing factors. These are in line with expected results.

As mentioned before, we use Leave-One-Out Cross Validation (LOOCV) for model

evaluation. Figure 5 and Table 2 present the LOOCV prediction accuracy of the 12 mod-

eling techniques used in this work, in terms of the metrics discussed earlier. Clearly, many

Figure 4 Correlation based feature ranking. The 25 input attributes along with their correlation values

with fatigue strength. White (black) bars indicate positive (negative) influence.
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Figure 5 Results comparison. R2 ,MAEf , RMSEf , and SDEf for 12 predictive modeling techniques. Better

fitting accuracy is characterized by higher values of R2 and lower values ofMAEf , RMSEf , and SDEf .

of the employed data analytics techniques are able to achieve a high predictive accu-

racy, with R2 values ∼0.98, and error rate <4%. This is extremely encouraging since it

significantly outperforms the only prior study on fatigue strength prediction [24], which

reported R2 values of <0.94. It is well known in the field of predictive data analytics that

it becomes progressively more and more challenging to increase the accuracy of predic-

tion beyond a certain point. To put it in context of this study, an increase in R2 from 0.94

to 0.98 should not be viewed as simply an improvement of 0.04 or 4%. Rather, it should be

seen with respect to the available scope for improvement of 0.06 (= 1.00 - 0.94). Thus, a

more reasonable evaluation of the improvement accomplished by the current study over

prior work would be about 66% (0.04/0.06), which is very significant.

Figure 6 presents the scatter plots for the 12 techniques. As can be seen from these

plots, the three grades of steels are well separated in most of the techniques, and different

Table 2 Results comparison

Method R R2 MAE RMSE SDE MAEf RMSEf SDEf

DecisionTable 0.9494 0.9014 34.8762 58.5932 47.1371 0.0584 0.0806 0.0557

IBk 0.9589 0.9195 46.0320 53.2749 26.8499 0.0859 0.0940 0.0382

KStar 0.9702 0.9413 36.9986 45.3779 26.3029 0.0706 0.0857 0.0487

SVM 0.9795 0.9594 24.2820 37.6250 28.7736 0.0400 0.0530 0.0349

LRTrans 0.9796 0.9596 22.3336 37.4748 30.1272 0.0370 0.0514 0.0357

RobustFitLSR 0.9804 0.9612 22.2152 37.2188 29.8960 0.0369 0.0520 0.0366

LinearRegression 0.9815 0.9633 25.6006 35.7168 24.9345 0.0456 0.0581 0.0360

PaceRegression 0.9816 0.9635 25.0302 35.5733 25.3065 0.0439 0.0565 0.0356

ANN 0.9861 0.9724 19.7778 31.0545 23.9695 0.0343 0.0470 0.0322

REPTree 0.9862 0.9726 22.5671 30.9401 21.1907 0.0414 0.0542 0.0349

M5ModelTree 0.9890 0.9781 19.3760 27.6065 19.6870 0.0353 0.0484 0.0332

MPR 0.9900 0.9801 18.5529 26.4378 18.8563 0.0350 0.0556 0.0432
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Figure 6 Scatter plots. Scatter plots for the 12 modeling techniques. X-axis and Y-axis denote the actual and

predicted fatigue strength (in MPa) respectively. a) Decision Table; b) Instance-based; c) KStar; d) Support

Vector Machines; e) Regression with Transformed Terms; f) RobustFit Regression; g) Linear Regression; h)

Pace Regression; i) Artificial Neural Networks; j) Reduced Error Pruning Trees; k)M5 Model Trees; l)

Multivariate Polynomial Regression.

techniques tend to perform better for different grades. Figure 7 shows the histograms of

the error fractions for each of the techniques, to visualize the spread in the prediction

errors. As expected, the spread in the error reduces as R2 values improve. However, a

point to be noted is that even though R2 value is high, there are regions of data clusters

where data fit is not sufficiently high and this is reflected in the nature of distribution of
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Figure 7 Error histograms. Histograms of the error fractions for the 12 modeling techniques. X-axis and

Y-axis denote the error fraction bins and the frequency respectively. a) Decision Table; b) Instance-based; c)

KStar; d) Support Vector Machines; e) Regression with Transformed Terms; f) RobustFit Regression; g) Linear

Regression; h) Pace Regression; i) Artificial Neural Networks; j) Reduced Error Pruning Trees; k)M5 Model

Trees; l)Multivariate Polynomial Regression.



Agrawal et al. IntegratingMaterials andManufacturing Innovation 2014, 3:8 Page 16 of 19

http://www.immijournal.com/content/3/1/8

errors. Thus, the methods that result in bimodal distribution of errors or the ones with

significant peaks in higher error regions are not so good even though their reported R2

may be reasonable.

The general opinion in data mining community about predictive modeling is that it is

more helpful to know about a set of well performing techniques for a given problem rather

than identifying a single winner. We have thus examined 12 different techniques for pre-

dictivemodeling of fatigue strength, and it is shown that a number of different approaches

produce highly reliable linkages. In particular, neural networks, decision trees, and multi-

variate polynomial regression were found to achieve a high R2 value of greater than 0.97,

which is significantly better than what has been previously reported in the literature. This

is also shown by narrow distribution of errors. It is very encouraging to see that despite

the limited amount of data available in this dataset, the data-driven analytics models were

able to achieve a reasonably high degree of accuracy.

Although themain contribution of this paper is to present an end-to-end framework for

exploring predictive materials informatics, and its application on NIMS data is a specific

example of the application of the framework, it is nonetheless important for complete-

ness to discuss some of the limitations of the proposed framework’s specific application

on the NIMS dataset. Since the data used in this study is very small compared to the typ-

ical amounts of data used in data mining studies in other domains, we believe that the

obtained high accuracy is but an encouragement to use more data (possibly combine data

from heterogenous sources) to further validate the results and/or making the model more

robust. One possibility would be to add structure information to the data, whichmay ease

the application of the developed models to actionable materials design, as structure infor-

mation is what is primary responsible for the resulting properties. Another limitation of

the NIMS data used in this study is the significantly different number of data instances

corresponding to the different types of steels. Hence the predictive models, which are

developed over the entire data may not be highly accurate for all steel types, which is

also evident from the scatter plots. Possible approaches to deal with this imbalanced data

distribution are discussed in the next section.

Conclusions

Materials Informatics, steeped in modern data analytics and advanced statistics, is fast

emerging as a key enabler for accelerated and cost-effective development of new and

improved materials targeted for advanced technologies. One of the core challenges

addressed by this nascent field is the successful mining of highly reliable, quantitative,

linkages capturing the salient connections between chemical compositions, processing

history, and the final properties of the produced material. These linkages can provide

valuable guidance to future effort investment with tremendous potential for cost-savings.

In this paper, we have tried to critically explore the viability of extracting such link-

ages from open access databases. As a specific example, we have focused on extracting

reliable linkages between chemical compositions, processing history, and fatigue strength

of a class of steels using data available from the open access materials database hosted

by Japan’s National Institute for Materials Science (NIMS). In this study, a range of

advanced data analytics techniques, typically involving a combination of feature selection

and regression methods, have been successfully employed and critically evaluated for the

problem of fatigue strength prediction of different grades of steels.
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There are several directions of future work that can stem from the present research.

From the data analytics point of view, ensemble predictive modeling can be used to com-

bine the results from multiple predictive models using same and/or different techniques

built on different random subsets of the training data. Apart from this, since the scatter

plots showed that different techniques can work well for different steel types, we can also

try hierarchical predictive modeling, where we first try to classify the input test instance

into one of the three grades of steel, and subsequently use the appropriate model(s) for

that grade to predict the fatigue strength. From the materials science point of view, it

would be good to explore the use of additional input features that may be easily measur-

able like some mechanical properties. Methods for using grouped variables representing

each processing step could be of significant utility as well. It would also be extremely valu-

able to add structure information to the data, which may be able to give more actionable

insights for materials design, as structure is very closely linked to property. Finally, the

analytics framework developed and used in this paper can be used for building prediction

models for other desired target properties, such as % Elongation, the data for which is also

available in the NIMS dataset.

Availability of supporting data
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