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ABSTRACT 

Visible to near-, shortwave-, and longwave-infrared (VNIR, SWIR, LWIR) remote 

sensing data are typically analyzed in their individual wavelength regions, even though 

theory suggests combined use would emphasize complementary features. This research 

explored the potential for improvements in material classification using integrated 

datasets. Hyperspectral (HSI) VNIR and SWIR data from the MaRSuper Sensor System 

(MSS-1) were analyzed with HSI LWIR data from the Spatially Enhanced Broadband 

Array Spectrograph System (SEBASS) to determine differences between individual 

(baseline) and combined analyses. The first integration approach applied separate 

minimum noise fraction (MNF) transforms to the three regions and combined only non-

noise transformed bands from the individual regions during analysis. The second 

approach integrated over 470 hyperspectral bands covering the VNIR, SWIR, and LWIR 

wavelengths before using MNF analysis to isolate linear band combinations containing 

high signal to noise. Spectral endmembers isolated from data were unmixed using partial 

unmixing. The feasible and high abundance pixels were spatially mapped using a 

consistent feasibility ratio threshold. Both integration methods enabled straight-forward 

and effective identification, characterization, and mapping of the scene because higher 

variability existed between endmembers and background. Results were compared to the 

baseline analysis. Material identification was more conclusive when analyzing across the 

full spectrum. 
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I. INTRODUCTION 

Spectra of surface materials have historically been collected and analyzed in 

separate wavelength regions, which include the visible to near-infrared (VNIR), 

shortwave-infrared (SWIR), midwave-infrared (MWIR), and longwave-infrared (LWIR). 

Each individual region is sensitive to different electronic and vibrational processes based 

on the physiochemical makeup of the substance in question. The LWIR and MWIR 

regions retain fundamental vibrational features, while the VNIR and SWIR regions 

expose overtones and combination tones. When spectra are measured and analyzed using 

only individual regions, additional features that occur at wavelengths outside of a single 

region may be undetected. For example, vegetation pigments are detected in the visible 

region, with prominent absorption features near 0.4 and 0.68 micrometers. Vegetation 

also has high reflectance in the NIR near 0.8 micrometers, the so-called “IR plateau.” 

Spectra of leaves in the SWIR wavelengths exhibit specific spectral features due to 

chemical composition. Only subtle spectral features exist for vegetation in the LWIR 

(van der Meer & de Jong, 2011). Another example is quartz, which has broad emissivity 

features in the LWIR caused by silicon-oxygen stretching vibrations in the silicate lattice, 

but is mostly featureless in the VNIR and SWIR wavelength regions (Lyon, 1964; 

Moersch & Christensen, 1995; van der Meer & de Jong, 2011; Vincent & Thomson, 

1972). This thesis explores the topic of full-spectrum terrain analysis and classification 

for improved detection and identification of surface materials.  

The strategy used for this study was to integrate VNIR, SWIR, and LWIR spectra 

(0.4 to 14 micrometers, excluding MWIR channels from 3 to 5 micrometers), to exploit 

both reflective and emissive signatures. Existing algorithms for analysis of atmospheric 

corrections, temperature emissivity separation, and geometric corrections were evaluated 

and implemented as part of this research. Two integration techniques were analyzed and 

compared to a standard hyperspectral analysis approach utilizing individual wavelength 

regions. Ground point spectra collected in the field were used to correct for sensor 

calibration errors and for identification of spectral endmember—the key spectral 

signatures that explain the data variability.  

 1 



Integration of datasets has the potential to help all aspects of imaging 

spectrometry, including mapping, target and anomaly detection, and identification of 

surface materials.  This technique is expected to expedite the hyperspectral analysis 

process and provide efficient identification and mapping capabilities. The addition of 

ground truth spectra in the analysis process should increase the probability of conclusive 

identification.  

Following this introduction, an inclusive background (Chapter II) on 

electromagnetic radiation, the science of spectroscopy, and the remote sensing discipline 

is described. The approaches and methods section (Chapter III) explains the atmospheric 

and geometric corrections applied to the original datasets and the specific algorithms used 

for hyperspectral analysis and integration. The next section (Chapter IV) presents and 

compares the results from the standard analysis and the two integrated approaches. 

Finally, the research is summarized and conclusions are offered (Chapter V) on the 

benefits of integrating the VNIR-SWIR-LWIR wavelength regions. Suggestions for 

future research are offered in Chapter VI.  
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II. BACKGROUND 

This section introduces the vast field and capabilities of remote sensing. For 

initial understanding of the subject matter it is imperative to review the electromagnetic 

continuum and the interactions of light at both the macroscopic and microscopic scale. 

Both reflectance and emission spectroscopy are introduced. Next, various remote sensing 

technologies are discussed, with emphasis on imaging spectrometry. An overview of 

previous full-range spectral analysis is also provided. Lastly, the hyperspectral sensors, 

the dataset, and the study site used in this thesis are presented.  

A. ELECTROMAGNETIC RADIATION 

The electromagnetic (EM) spectrum spans all wavelengths and frequencies of 

energy interactions described as electromagnetic radiation (EMR) (Olsen, 2014; Richards 

& Jia, 2013) (Figure 1). EMR can be described by its energy, frequency, or wavelength. 

Energy E is related to frequency ν as described by Planck’s relation using Planck’s 

constant h, which is approximately equivalent to 6.62x 3410− J s⋅ . 

E hυ=  (1) 

Frequency ν and wavelength λ are inversely related with respect to the speed of 

light c, which is approximated to be 3.0x 810
m
s

. Equation 2 details the fundamental 

inverse relationship.  

 

cλ
ν

=
 (2) 

Frequency can be replaced by wavelength changing the energy equation 

(Equation 1) to:  

 cE h
λ

=  (3) 

High energy waves, such as gamma rays, are characterized by short wavelengths 

and high frequencies, and are located at one extreme of the EM spectrum. At the other 

end of the EM spectrum lower energy waves, such as microwaves and radio waves, are 

represented by longer wavelengths and lower frequencies (Figure 1). 
 3 



 
Figure 1.  Electromagnetic Spectrum (from Shapley, 2012).  

The four fundamental EMR interactions with matter are transmission, reflectance, 

scattering, and absorption. The relative importance of these interactions is based on the 

compositional and physical properties of the medium, the specific wavelength of the 

incident radiation, and the angle at which the light strikes the surface (Figure 2) (Olsen, 

2014). The variation in partitioning of energy as a function of wavelength is the key to 

differentiating and characterizing different materials.  

 
Figure 2.  The four fundamental energy interactions with matter 

(from Olsen, 2014). 
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Transmission occurs when incident radiation passes through a material (Olsen, 

2014). Light transmission must be accounted for to analyze absorption features caused by 

photon interactions with the atomic structure of the chemicals present in the material 

being observed (Richards & Jia, 2013). Specular reflectance occurs when incident 

radiation bounces off the surface in a single, predictable direction and is characteristic of 

smooth surfaces relative to the wavelengths of the light source (Olsen, 2014). Scattering, 

or diffuse reflection, occurs when incident radiation hits the surface and is returned in 

many unpredictable directions, including the direction from which it originated (Olsen, 

2014). Diffuse reflection is characteristic of rough surfaces relative to the wavelengths of 

the light source. Absorption occurs when incident radiation is absorbed by a medium 

because the material is opaque to the incident radiation. A portion of the absorbed 

radiation is converted into heat energy and some of the radiation may later be emitted 

(Olsen, 2014). 

B. SPECTROSCOPY 

The science of spectroscopy investigates material properties based on the 

interaction of EMR with matter (Green, 1998). When incident light interacts with a 

selected substance, light at certain wavelengths is absorbed, while at other wavelengths 

light is reflected or transmitted (van der Meer & de Jong, 2011). Molecular vibrations and 

electronic processes produce key spectral features that have unique positions, shapes, 

depth, and width parameters related to the crystal and chemical structure of the material 

(van der Meer & de Jong, 2011). The primary vibrational interactions are measureable in 

the LWIR, while overtones and combination tones can be measured in the VNIR and 

SWIR portion of the EM spectrum. 

1. Radiance 

Radiance is the amount of optical power from a surface area that is emitted into a 

solid angle (Berk, Bernstein, & Robertson, 1989; Olsen, 2014; Rees, 2013; Salvaggio, 

Miller, Baue, & Lewis, 2011; van der Meer & de Jong, 2011). This measurement is 

indicative of how much power radiated, by a reflective or emitting surface, will be 

received by an optical instrument looking at the surface from a specified angle.  
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Radiance, L in units 2

Watts
m sterµ⋅ ⋅

 is defined as:  

 
2

5

2 1

1
hc
kT

hcL
eλλ

=
−

 (4) 

where 

L Spectral radiance 
T Absolute temperature 

Bk  
Boltzmann constant, 1.38x 2310−  

2

2

m kg
s K
⋅
⋅

 

h Planck constant, 6.62x 3410− J s⋅  
c 

Speed of light, 3.0x 810  m
s

 

2. Reflectance  

The ratio of the intensity of the light reflected from the sample material to the 

intensity of the incident light is defined as the reflectance (van der Meer & de Jong, 

2011). Reflectance spectroscopy is the study of light as a function of wavelength that has 

been reflected or scattered from matter. As photons enter a material, some are reflected 

from the surface, some pass through the surface, and others are absorbed. Primary 

reflectance features are seen in the VNIR and SWIR wavelengths.   

Spectral features occurring in the VNIR wavelength region from 0.4 to 1.0 

micrometers are caused by electronic processes. Electronic processes include crystal field 

effects, charge transfer, conduction band absorption, and color centers (van der Meer & 

de Jong, 2011). A common electronic process is seen in healthy vegetation, which has an 

absorption feature at approximately 0.68 micrometers from the presences of chlorophyll 

(Elvidge, 1990).  

Features occurring in the SWIR wavelength region from 1.0 to near 2.5 

micrometers are the result of molecular vibrational processes. Rocks and soils have 

absorption features that depend on the specific molecules and the types of molecular 

bonds present in the substance (Goetz, Vane, Solomon, & Rock, 1985). Most mica 

materials have an absorption feature near 2.2 micrometers caused by Al-O, Fe-O, and 
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Mg-O bending vibrations. Prominent features such as these can be used to uniquely 

identify materials.  

3. Thermal Emission 

Heat energy is the result of kinetic energy from random motion of particles of 

matter. As heat energy increases, the number of collisions also increases, which may 

cause changes in vibrational, orbital, and rotational orientations. The change in physical 

properties of particles results in the emission of EMR, causing the heat energy to be 

converted into radiant energy (van der Meer & de Jong, 2011). Thermal radiation is 

emitted by all objects at temperatures above absolute zero (van der Meer & de Jong, 

2011). This emitted energy is in the 3 to longward of 20 micrometer range. This thesis 

explores these effects principally in the LWIR region, which covers the spectral range 

from approximately 8 to 14 micrometers. 

A blackbody is a perfect emitter of all incident energy and transforms heat energy 

to radiant energy at the maximum rate (van der Meer & de Jong, 2011). A blackbody in 

thermal equilibrium radiates according to Planck’s law. The wavelength λ of maximum 

spectral radiance of a blackbody decreases with increasing temperature and can be 

calculated from the division of a constant C = 2.898x 310− m K⋅ by temperature T, as 

described by Wien’s displacement law:  

 max
C
T

λ =  (5) 

Most materials are not perfect blackbodies, however, and instead reflect or 

transmit some radiation through molecular interactions based on their physiochemical 

makeup (Figure 3). The spectral emissivity ε of a material is the ratio of the spectral 

radiance ( )L materialλ to that of a blackbody ( )L blackbodyλ at the same temperature (van 

der Meer & de Jong, 2011).  

 

( )
( )

L material
L blackbody

λ
λ

λ

ε =
 (6) 
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Figure 3.  Comparison of Blackbody, Graybody, and Selective Radiator 

(from Riedl, 2001). 

The majority of materials have emissivity values between 0.9 and 1.0, although 

certain minerals do have lower emissivity values (van der Meer & de Jong, 2011). An 

important feature that occurs in the LWIR spectral region is commonly called the 

Restrahlen effect. At the restrahlen maximum frequency of a particular material, the 

reflectance of the material increases sharply causing low emissivity features. An example 

of a well-known restrahlen band is that for quartz near 9 micrometers, where an intense 

emissivity minimum appears due to the vibrational stretching of Si-O bonds (Lyon, 1964; 

van der Meer & de Jong, 2011; Vincent & Thomson, 1972). Other silicate minerals have 

features between 8 and 12 micrometers depending on silica concentration and 

characteristics of the silicate bonds. Sulfates, phosphates, oxides, and hydroxides also 

exhibit strong features in the LWIR.  

Because the perfect blackbody by definition has an emissivity of 1.0, the only 

additional factor that contributes to the radiance of the observed material is temperature. 

The relationship between temperature, emissivity, and the location of the radiance peak 

with respect to total power can be explained by the Stephan-Boltzmann law. Total power 

S is defined by emissivity ε, a constant σ = 5.669x 810−
2

4

W m
K
⋅

, and temperature T of the 

object being measured. 

 4S Tεσ=  (7) 
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The quintessential relationship between emissivity and reflectance can be 

explained by Kirchoff’s law, where ε is emissivity and ρ is reflectance. 

 1ε ρ= −  (8) 

C. REMOTE SENSING  

Remote sensing is the science of acquiring information about an object of interest 

without actual physical contact with the object (van der Meer & de Jong, 2011). 

Advantages of using remote sensing techniques rather than in situ methods include 

obtaining wide-area coverage, avoiding regional hazards, and retaining minimal 

disturbances. Remote sensing data can be acquired by ground-based, airborne, and space-

based platforms (Campbell, 2002).  

The two primary remote sensing operational modes are active and passive (Elachi, 

1987). Active remote sensing technologies require a self-generated signal from a 

radiation source. Examples of active methods include Radio Detection and Ranging 

(RADAR), Light Detection and Ranging (LiDAR), and Sound Navigation and Ranging 

(SONAR). Passive remote sensing does not require a self-generated signal, energy, or 

radiation to achieve a measurement. The primary passive remote sensing technology is 

electro-optical (EO) imaging, which is the primary focus of this thesis.  

Various regions of the EM spectrum can be exploited to obtain information 

desired from EO imagery. EO systems covering the full spectral range of the EM 

spectrum initially record radiance measurements. The radiance values are later converted 

to either reflectance or emissivity after evaluating atmosphere influences. The 

commonality of units enables analysis and characterization of the full range of the 

spectrum.  

Reflected solar radiation can be detected and measured in the VNIR to SWIR EM 

regions (Richards & Jia, 2013). Depending on the spatial resolution of the sensor, VNIR 

imagery can provide structural information about buildings, city layouts, traffic patterns, 

and general ways of life. Both VNIR and SWIR imagery can provide information about 

the composition of materials. LWIR imagery can provide information about the surface 

materials’ composition and temperature properties (Richards & Jia, 2013).  
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Within the EO imaging subset of the remote sensing discipline, finer areas of 

study can be defined such as multispectral imaging (MSI) and imaging spectrometry. 

MSI is widely understood as subdividing selected spectral ranges into broad spectral 

intervals, producing images that show varying spectral response for surface materials 

(Goetz, 2009). The usual spectral width is on the order of hundreds of nanometers and 

sensors have a limited number of bands, nominally four to sixteen. In comparison, 

imaging spectrometry sensors have narrow contiguous spectral bands with widths on the 

order of tens of nanometers (Goetz et al., 1985). The narrower bands provide higher 

spectral resolution and include significantly more spectral channels compared to MSI 

sensors allowing identification rather than discrimination of materials.  

1. Imaging Spectrometry 

Imaging spectrometry, also known as hyperspectral imaging (HSI), acquires 

images in a large number of narrow, contiguous spectral bands (Figure 4). Hyperspectral 

refers to the multidimensional character of spectral data. Goetz et al. (1985) formally 

defined imaging spectrometry as “the acquisition of images in many narrow contiguous 

spectral bands throughout the visible and solar-reflected infrared” portions of the 

electromagnetic spectrum (p. 1147). Although the lexicon has diverse meanings, the 

community regards this technique as “the acquisition of images in hundreds of registered, 

contiguous spectral bands such that for each picture element of an image it is possible to 

derive a complete reflective spectrum,” (Goetz, 1992, p. 547). The greater number of 

bands enables more accurate measurements of physical quantities at the Earth’s surface, 

such as upwelling radiance, reflectance, emissivity, and temperature (van der Meer & de 

Jong, 2011). The ability to identify materials using HSI differs from MSI systems 

because the band widths are narrower and more closely spaced (Figures 4 and 5). 
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Figure 4.  The imaging spectroscopy concept includes an imaging sensor with a 

large number of narrow and contiguous spectral bands 
(from Shaw & Burke, 2003).   

The high spectral resolution of imaging spectrometers allows the data to be self-

reducing and for atmospheric and solar effects to be removed for direct comparison with 

spectra measured in the field or in a laboratory setting (van der Meer & de Jong, 2011). 

High spectral resolution also aids in separating subtle material differences, allowing 

identification in addition to discrimination of surface materials (Figure 5). Multispectral 

systems with higher spatial resolution, but coarser spectral resolution lose the ability to 

distinguish and map fine spectral detail. 
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Figure 5.  Comparison of spectral resolution of HSI and MSI data 

(from Goetz, 2009).  

Hyperspectral imaging has many diverse applications, which can be grouped into 

three main categories: anomaly detection, target recognition, and background 

characterization (Figure 6). Anomaly detection separates pixels into man-made objects or 

natural features, target recognition provides detection and classification parameters of 

potential targets, and background characterization identifies the condition of natural 

features associated with land, ocean, or the atmosphere (Shaw & Burke, 2003).  
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Figure 6.  Hyperspectral Imaging Applications (from Shaw & Burke, 2003).   

2. Atmospheric Effects 

Primary effects caused by the atmosphere with regard to EO remote sensing of the 

Earth’s surface include absorption, scattering, and turbulence. Atmospheric absorption is 

caused by atomic and molecular interactions of the gases present in the atmosphere, 

commonly water vapor, carbon dioxide, and ozone, with the surface-leaving radiance 

(Olsen, 2014) (Figures 7 and 8). The water vapor features in the SWIR region of the EM 

spectrum are commonly found at approximately 1.4 and 1.9 micrometers. In these 

regions, all energy is absorbed by the atmosphere and no remote sensing data can be 

obtained from the ground surface. Similar water vapor, carbon dioxide, and ozone 

features define the atmospheric windows for other portions of the EMR spectrum, 

including those near 2.5, 4.4, between 5 and 8 micrometers, and longward of 14 

micrometers (Figures 7 and 8). 
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Figure 7.  Atmospheric Transmission Plot of VNIR-SWIR 

(from Berk et al., 1989).  

 
Figure 8.  MODTRAN Plot displaying atmospheric transmission bands 

 (from Olsen, 2014). 
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Scattering is caused by collisions between the photons and scattering agents that 

include molecules, suspended particles, and clouds (Olsen, 2014). Rayleigh, Mie, and 

Nonselective scattering differ based on the relationship between wavelength and size of 

the scattering agent (Figure 9). Rayleigh scattering, commonly referred to as molecular 

scattering, is typically caused by oxygen and nitrogen molecules whose diameters are 

significantly smaller than the wavelength being scattered (Olsen, 2014). Mie scattering 

primarily is caused by larger size particles such as water vapor and small dust particles. 

Nonselective scattering is independent to wavelength because the size of the particles in 

the atmosphere is larger than the wavelength (Olsen, 2014). Common particles 

contributing to nonselective scattering are large raindrops and dust particles.  

 
 

Figure 9.  Atmospheric scattering effects caused by the size of the scattering agent 
(from Olsen, 2014). 
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The last environmental effect that limits the obtainable resolution with an imaging 

system is turbulence. Turbulence is caused by fluctuations in the temperature and density 

of the atmosphere (Olsen, 2014). 

D. PREVIOUS WORK: FULL-RANGE SPECTRAL ANALYSIS 

Spectral imagery is commonly analyzed and characterized separately as either 

VNIR-SWIR using reflectance or LWIR using emission, even though the spectral 

information provided tends to be complementary (Hook, Abbott, Grove, Kahle, & 

Palluconi, 1999).  

An early exception is shown in the work by Abrams, Abbott, and Kahle (1991), a 

study that combined VNIR-SWIR and LWIR MSI information to map lava flows in 

Hawaii. The NS-001 sensor collected eight spectral channels covering the visible, 

infrared, and thermal infrared regions of the EM spectrum with eight meter pixels, and 

was processed using principal components transformation to reduce dimensionality. The 

Thermal Infrared Multispectral Scanner (TIMS) collected six spectral channels between 8 

to 12 micrometers with an angular resolution of 2.5 milliradians and was processed using 

a decorrelation stretch to distinguish color differences within the image. The VNIR-

SWIR data were sensitive to presences of iron oxides, brightness of the flow, and surface 

vegetation variation. The LWIR data were sensitive to surfaces containing silica and 

detecting younger lava flows. The combined dataset was processed using principal 

component analysis (PCA), which provided evidence that the VNIR-SWIR and LWIR 

data were correlated and not independent. Image color variations were used to distinguish 

relative ages of the flows. Overall, it was found that the combined data exposed more 

information compared to the separated analysis. This work combined a relatively small 

number of bands at fairly coarse spatial resolution for analysis. Obtaining smaller pixels 

may have improved results and using HSI instruments instead of MSI would have 

provided higher spectral resolution leading to quantitative results and identification of the 

variations of lava flows.  

Cudahy, et al. (2001) also investigated the benefits of complementary VNIR-

SWIR-LWIR data. This study used VNIR-SWIR Hyperspectral Mapping (HyMap) data 
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and LWIR Spatially Enhanced Broadband Array Spectrograph System (SEBASS) data to 

analyze variations of minerals near Yerington, Nevada. Both datasets were independently 

calibrated to radiance and atmospherically corrected. It was hypothesized that full 

spectral analysis would improve mapping of iron oxides, oxyhydroxides, both OH-

bearing and non-OH-bearing silicates, carbonates, sulfates, and phosphates. The study 

concluded that separately, VNIR-SWIR and LWIR were able to map calcite, dolomite, 

amphibole, and epidote. The VNIR-SWIR data were sensitive to chlorite and overall 

abundance levels of mica minerals. The LWIR data were sensitive to garnet and 

plagioclase feldspar. The VNIR-SWIR and LWIR data were not combined, but the 

authors suggested that full spectral coverage would provide complementary information 

about the mineralogical and mineral chemistry patterns. The separate analysis of the 

overlapping images was the first step in analyzing full spectral coverage. Future work 

was proposed to combine the HSI bands to analyze variations in the results to 

quantitatively and effectively map the surface. 

Kruse (2002) combined MSI SWIR and LWIR data to map minerals associated 

with hot springs and epithermal mineral deposits from sites around the world containing 

both active and fossil hot springs. The study used data obtained from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the 

MODIS/ASTER Airborne Simulator (MASTER). The ASTER sensor spans from 

approximately 0.55 to 11.3 micrometers and has three spectral bands in the VNIR with 15 

meter resolution, six bands in the SWIR with 30 meter resolution, and five bands in the 

LWIR with 90 meter resolution. (Yamaguchi, Kahle, Tsu, Kawakami, & Pniel, 1998; 

Kruse, 2002) The MASTER sensor has 50 spectral bands ranging from 0.4 to 13 

micrometers; 11 bands cover the VNIR, 14 bands cover the SWIR, and 25 bands cover 

the LWIR (Hook, Myers, Thome, Fitzgerald, & Kahle, 2001; Kruse, 2002). The VNIR-

SWIR data were atmospherically corrected and converted to reflectance and the LWIR 

data were atmospherically corrected and converted to temperature and emissivity (Kruse, 

2002). Only the SWIR and LWIR bands were analyzed. The SWIR and LWIR data were 

analyzed separately using the same overall processing flow to include using a linear 

transformation of the reflectance or emissivity data to minimize noise and data 
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dimensionality, identifying purest pixels, extracting endmember spectra, and spatially 

mapping specific image endmembers. The SWIR region mapped carbonates, kaolinite, 

alunite, buddingtonite, muscovite, and hydrothermal silica, while the LWIR region only 

detected siliceous sinter. The identification of minerals was supplemented with ground 

truth and library spectra. The integration of the datasets was not completed at the time of 

publication, but the hypothesis for future research was that refined maps showing the 

distribution of key minerals associated with hot springs and epithermal mineral deposits 

would be possible using combined VNIR-SWIR-LWIR. In addition to integrating the 

datasets an improvement to the work would be to include an additional HSI dataset to 

refine identification of key features in addition to using ground and library spectra for 

comparison with ASTER and MASTER spectra.  

Vaughan and Calvin (2004) integrated HSI VNIR-SWIR-LWIR data collected by 

the HyperSpecTIR (HST) spectrometer and SEBASS to explore environmental hazards 

and precious metals found in the Comstock mining district around Virginia City, Nevada. 

The HST, developed by Spectral Technology and Innovative Research Corporation 

(SpecTIR), measured solar reflected radiance between 0.45 and 2.45 micrometers in 227 

continuous channels (Vaughan & Calvin, 2004). The VNIR-SWIR images had a spatial 

resolution of 2.5 meters and were acquired in a series of overlapping frames rather than a 

single, continuous strip. The SEBASS data had a spatial resolution of 2 meters. Both data 

ranges were independently atmospherically corrected. The VNIR-SWIR data were 

converted to reflectance and the LWIR data were converted to emissivity. A similar 

processing scheme as described in the Kruse (2002) study was implemented to focus on 

the information necessary to characterize mineral features within the image. Clay 

minerals were more clearly identified by the VNIR-SWIR spectra and the LWIR image 

spectra excelled in identifying hydrous sulfate phases. Most interestingly, minerals that 

could not conclusively be identified with one spectral range could be identifying using a 

combination of VNIR-SWIR and LWIR HSI data, specifically the differentiation of 

jarosite and hydrous sulfate (Figure 10). 
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Figure 10.  Mineral maps of Comstock mining district around Virginia City, 

Nevada (from Vaughan & Calvin, 2004).  

Chen, Warner, and Campagna (2007) explored the possibilities of integrating the 

full spectral range for geological mapping of the canonical Cuprite, Nevada site. This 

experiment combined data from the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) and the MASTER sensor to examine if the integrated dataset would provide 

improved lithologic mapping. AVIRIS measures the solar reflected spectrum from 0.4 to 

2.5 micrometers, with 224 contiguous spectral channels at 10 nanometer intervals across 

the spectrum (Green et al., 1998).  This study focused on HSI VNIR-SWIR and MSI 

LWIR because at the time of the study it was difficult to obtain HSI LWIR imagery, 

while MSI imagery was widely available and provided sufficient geological information 

(Chen, Warner, & Campagna, 2007). The AVIRIS and MASTER data were separately 

geo-referenced and converted from radiance to reflectance and emissivity, respectively. 

Classification and identification were performed using two statistical classification 

methods, minimum distance and maximum likelihood, as well as two spectral 

classification methods, spectral angle mapper (SAM) and spectral feature fitting (SFF). 
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The combined data mapped using SAM provided the most accurate results, as determined 

by the calculated Kappa coefficients for each wavelength region (Figure 11). Overall, 

improvements in most of the classification results were seen with the integrated VNIR-

SWIR and LWIR data compared to the AVIRIS and MASTER data alone.   

 
Figure 11.  The results from study conducted by Chen, et al. (2007) to determine 

the advantage of using combined wavelength datasets. 

In a continuing effort to improve classification results Chen, Warner, and 

Campagna (2010) further explored classification methods by implementing a hybrid 

algorithm exploiting the strengths of SAM classification and SFF. The new expert system 

achieved a notably higher performance than the SAM, SFF, minimum distance, and 

maximum likelihood classification methods did on their own. An improvement to the 

study would have been to use HSI LWIR rather than MSI. The increase in number of 

LWIR bands would, however, likely complicate the methods of combining the datasets. 

Inclusion of ground truth would have also confirmed the results and accuracy of their 

classification approach.   
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Warner and Nerry (2009) combined HSI VNIR-SWIR data with MSI LWIR to 

explore urban land-cover classification of Strasbourg, France. Support vector machine 

classification was used to analyze the data. The imagery was taken with the Digital 

Airborne Imaging Spectrometer (DAIS), which has 79 spectral channels: 72 bands 

covering the VNIR-SWIR, 1 band in the MWIR, and 6 MSI bands in the LWIR. The 

VNIR-SWIR bands were converted to reflectance and atmospherically corrected. The 

LWIR bands were recalibrated using ground measurements to separate temperature and 

emissivity. Ground reference data was obtained from high-resolution orthophotography 

and used to create eight training classes. Various band combinations were analyzed, new 

regions of interests were created, and an accuracy parameter was calculated. The 

accuracy score calculated using the HSI VNIR-SWIR bands for classification was high. 

Interestingly, the accuracy of using only the MSI LWIR bands was also high. The 

inclusion of a single, broad thermal band increased the accuracy and indicated that 

variance in surface temperatures is useful in distinguishing between classes. This was 

further proven when the accuracy parameter increased approximately 10% when 

including all LWIR bands. Specifically, railway, roof, and road-asphalt became 

distinguishable when the LWIR bands were included in analysis because their spectra 

differed in the LWIR, but were too similar for discrimination when only using spectral 

information in the VNIR-SWIR region. This study was interesting because it provided 

evidence of the usefulness of full spectrum analysis beyond geological applications. 

Improvements and future work include HIS rather than MSI bands to identify more 

endmembers in the scene.    

The National Research Council (NRC) (2007) introduced the Hyperspectral 

Infrared Imager (HyspIRI) satellite proposed by the National Aeronautics and Space 

Administration (NASA). The HyspIRI remote sensing payload will be composed of two 

instruments that will combine over 200 VNIR and SWIR hyperspectral channels ranging 

from 0.38 to 2.5 micrometers with eight thermal MSI bands. Analysis of simulated 

VNIR-SWIR-LWIR HyspIRI data using AVIRIS and MASTER data by Kruse et al. 

(2011) suggests that HyspIRI will be useful for many geologic applications. The 

simulated data were resampled using the proposed HyspIRI band passes. The VNIR-
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SWIR and LWIR datasets were individually atmospherically corrected and converted to 

reflectance and emissivity, respectfully. The VNIR-SWIR and LWIR data were analyzed 

separately to extract endmembers and compared to library spectra for identification. The 

simulated datasets were used to successfully identify and map minerals such as goethite, 

hematite, jarosite, kaolinite, dickite, alunite, buddingtonite, montmorillonite, muscovite-

illite, calcite, and hydrothermal silica. The MSI LWIR results were similar to ASTER, 

allowing minerals rich in silica to be detected. The surface temperatures obtained from 

the LWIR data were also used to identify active hot springs areas. The coarse HyspIRI 

spatial resolution of 60 meters limited the detection of some occurrences and details 

compared to airborne data. The proposed spaceborne sensor will provide larger coverage 

area and is predicted to measure geothermal and hydrothermal systems. Future work will 

include additional test sites and refinement of simulations.  

E. HYPERSPECTRAL SENSORS, DATA SET, AND STUDY SITE 

The hyperspectral data used for full-range spectral analysis for the purposes of 

this thesis were acquired using the MaRSuper Sensor System (MSS-1) covering the 

VNIR-SWIR wavelength regions and SEBASS covering the LWIR wavelength region. 

1. Hyperspectral Sensors 

a. VNIR-SWIR Sensor 

The precursor to MSS-1, the Mapping Reflected-energy Sensor (MaRs) was 

developed by JPL in the mid-2000s as the next generation AVIRIS system. The sensor 

system used 332 spectral channels to cover the solar reflective spectral region ranging 

from 0.38 to 2.5 micrometers with high spectral resolution (Simi & Olchowski, 2009). A 

low-distortion Offner spectrometer provided high optical throughput, allowing high SNR 

over the full spectrum (Figure 12). The MaRS was first flown in May 2005 at Ivanpah 

Playa in Nevada to perform both functionality testing and radiometric verification (Simi 

& Olchowski, 2009). Additional MaRS collect locations included Cuprite, Nevada in 

March 2007 to investigate surface texture information, and Washington, DC, in August 

2008 to investigate species variability (Simi & Olchowski, 2009).   
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Figure 12.  Signal-to-noise ratio comparison of MaRS to 2004 AVIRIS 

(after Simi & Olchowski, 2009).  

The MSS series was developed as an improved MaRS. The MSS-1 sensor used 

for this study is a Northrop Grumman Integrated Systems pushbroom sensor with a high-

magnification telescope. The MSS-1 collected solar radiance in the VNIR-SWIR spectral 

regions ranging from 0.38 to 2.5 micrometers using over 400 spectral channels. This HSI 

sensor had a spectral resolution of approximately five nanometers. The pixel size for the 

dataset of interest for this study was approximately 0.65 meters. The sensor was cooled 

using a cryocooler device capable of cooling to 140°K without using liquid nitrogen and 

utilized an on-board calibrator. Four MSS sensors make up the fleet, and the sensors have 

successfully carried out diverse missions. One advantage of MSS-1 is the higher signal-

to-noise ratio (SNR) output compared to both MaRS and AVIRIS sensors.  

b. LWIR Sensor 

The LWIR data used for this study were collected using the SEBASS sensor. The 

imaging spectrometer was built by the Aerospace Corporation and first flown in October 

1995 (Hackwell et al., 1996). The original intent of SEBASS was to be able to remotely 
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identify solids, liquids, gases, and chemical vapors in the 2 to 14 micrometer “chemical 

fingerprint” spectral region.  

The SEBASS is a pushbroom scanner with high signal-to-noise ratio (SNR) 

capable of measuring an instantaneous field of view of 1.1 milliradians (Wright, Riley, 

Peppin, & Schulenburg, 2008; Kirkland et al., 2002). The sensor collects 256 spectral 

channels with varying spatial resolution depending on the flight altitude (Wright et al., 

2008). The spectral channels consist of 128 MWIR bands ranging from 2.5 to 5.3 

micrometers and 128 LWIR bands ranging from 7.6 to 13.5 micrometers. The SNR 

remains high because the optical bench is cooled to 4°K using liquid helium which 

increases the sensitivity of the sensor (Kirkland et al., 2002). Typically, SEBASS 

produces LWIR hyperspectral images that are 128 pixels wide and approximately 2000 

pixels long.  

Some of the prominent applications of SEBASS include target detection, mapping 

atmospheric variations, geological mapping, and environmental monitoring. Spectra 

obtained by SEBASS can be compared with laboratory emissivity spectra to identify 

surface materials (Figure 13).  

 
Figure 13.  Comparison of SEBASS emissivity spectrum (hydrothermal silica, 

Cuprite, NV) and laboratory spectrum of quartz (JHU Minerals 
Emissivity spectral library). 
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2. Study Site 

The study site for this research is a small, selected portion of the Nevada National 

Security Site (NNSS). The NNSS is located approximately 65 miles northwest of Las 

Vegas, Nevada. The site is a rural desert area and was chosen for this work because of the 

uniform background and unique targets.  

The NNSS was originally created in the 1950s under the Truman administration 

to provide a desolate area for atmospheric nuclear tests and research. A total of 100 

atmospheric tests were conducted at the site until all atmospheric testing was banned on 

August 5, 1963 when the Limited Test Ban treaty was signed in Moscow (Fehner & 

Gosling, 2000). After the treaty was signed, 928 full-scale nuclear tests were conducted 

underground. All full-scale nuclear testing ended in 1992 when the U.S. entered into the 

Comprehensive Nuclear Test Ban with Russia and France (Fehner & Gosling, 2000). 

Presently, NNSS has become the United States’ principal area for nuclear/radiological 

testing, training, and emergency response in support of Homeland Security.  

3. Data Sets 

Imagery used for this research cover a selected portion of the NNSS (Figure 14). 

The VNIR-SWIR MSS-1 data were acquired on August 20, 2013, with approximately 

0.65 meter spatial resolution. The LWIR SEBASS data were collected on September 16th, 

2013, with approximately 0.86 meter spatial resolution. MSS-1 covered a larger area 

compared to SEBASS. Figure 14 shows the data coverage. Co-registered, geometrically 

corrected images illustrating coincident coverage for the VNIR-SWIR and LWIR are 

used for integrated analysis and are shown later in this thesis. 
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Figure 14.  MSS-1 and SEBASS georeferenced (not registered) coverage area of 

the NNSS location.   
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III. APPROACH AND METHODS 

Imaging spectrometer data must be spectrally, radiometrically, and geometrically 

calibrated in order to derive physical parameters including reflectance, emissivity, 

temperature, and water vapor. The VNIR-SWIR and LWIR data were atmospherically 

corrected separately and then geometrically corrected to cover the same area. Once all 

corrections were finalized two methods of integration were examined and compared to a 

standard baseline processing scheme utilizing the individual spectral regions to 

characterize and map the VNIR, SWIR, and LWIR data. 

A. VNIR-SWIR DATA PREPARATION 

The MSS-1 VNIR-SWIR data used for this thesis work were first prepared for 

analysis by removing vertical line artifacts from the image using a destriping algorithm. 

Then, primary atmospheric influences were removed using a model-based approach to 

convert the calibrated radiance to reflectance. The model-based reflectance was further 

refined to remove instrument artifacts using ground spectral measurements. Lastly, the 

data were geometrically corrected by georeferencing the image to ground surveyed 

points.     

1. Destriping  

Vertical striping artifacts are common in hyperspectral pushbroom scanners, such 

as MSS-1. A radiometric correction algorithm is required to correct the variable 

calibration of the focal plane arrays, which results in vertical striping artifacts (Scheffler 

& Karrasch, 2014) (Figure 15). A common issue known as the keystone effect is caused 

by aberration or slight misalignments of the optical components in the sensor system 

(Scheffler & Karrasch, 2014). Co-calibration-registration issues can also be caused by 

using two or more spectrometer systems. Often the striping effects aren’t apparent in 

standard color composite images and only become noticeable when a sharply contrast 

stretch is applied to the image or when spectral signatures are extracted. The striping 

artifacts are more apparent in transformed data spaces utilized to maximize data variance 

 27 



(Figure 15). Ultimately the striping effects need to be eliminated so spectral analysis can 

be conducted and endmembers can be identified. 

 

Figure 15.  MSS-1 calibrated radiance true color image (left), MNF-transformed 
image (MNF Bands 1, 2, 3 as RGB) showing striping problems 

(right).  

Two different algorithms were tested to remove the striping artifacts present in the 

MSS-1 imagery. First, the Spectral Processing Exploitation and Analysis Resource 

(SPEAR) Vertical Stripe Removal algorithm was applied using the Environment for 

Visualizing Images (ENVI) software interface (EXELIS, 2014). The SPEAR algorithm 

corrects for variations in brightness of pixels relative to other nearby pixels, as in striping 

artifacts. The algorithm is most effective on heterogeneous images (those with bright or 

dark areas, e.g., clouds and shadows). By default, the darkest and brightest 5% of the 

band is masked to aid in identifying the striping artifacts. For the specific image of 

interest, a mask of band 52 at 0.63 micrometers (red channel) was created using a lower 

bound of 5.00% and an upper bound of 95.00% to filter the bright and dark pixels. The 
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ability to manually exclude the darkest and brightest pixels in the image from the 

correction is unique compared to the general destriping algorithm available in ENVI 

(EXELIS, 2014).   

Next, the Tactical Hyperspectral Operations Resource (THOR) De-Striping 

algorithm was applied using ENVI. This method presents an alternative for removing the 

vertical line artifacts by calculating the mean of the determined number of vertical lines 

or horizontal row samples and normalizing each one to its respective mean (EXELIS, 

2014). Figure 16 presents a visual comparison of the THOR destriping method utilizing 

Minimum Noise Fraction (MNF) images to best emphasize the similarities and 

differences. A more thorough explanation of MNF will be provided in the analysis and 

integration chapter.  

 
Figure 16.  MNF-transformed image without destriping (left), MNF-transformed 

image with THOR destriping applied (right). MNF Bands 1, 2, 3 as 
RGB. 
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Both algorithms seem to work effectively on the lower MNF bands. Vertical 

stripe artifacts remain in the higher MNF bands, which isolate the noise content. In both 

methods the first MNF band highlighted a bright vertical stripe in the middle of the image 

(Figure 17). The THOR De-Striping algorithm displayed a smoother average of the 

artifact, while the line artifact appeared more prominent in SPEAR image against the 

dark background. This result was consistent in the majority of the non-noise MNF 

transformed bands. Moving forward, all analysis was performed on the THOR destriped 

image.  

 
Figure 17.  Comparison of Destriping: SPEAR Vertical Stripe Removal (left) and 

THOR De-Striping (right).  

2. Atmospheric Correction 

Atmospheric correction is required for comparing and analyzing HSI data with 

data acquired by other imaging instruments, spectrometers, or spectra generated by 
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system models. In addition, atmospheric correction is required to be able to compare 

spectra across time and space by transforming the calibrated radiance data to 

dimensionless reflectance data.  

Several different methodologies have been developed to remove atmospheric 

influences and convert radiance to reflectance, including empirical and model-based 

algorithms. The objective of all correction methods is to remove atmospheric absorption 

and scattering effects, as well as the solar spectrum (Matthew et al., 2003). Empirical 

models based on in-scene parameters are appropriate to use when sensor calibration data 

is not available and when overall collection and model parameters are not available. 

Empirical methods tend to be less computationally demanding than model-based 

methods, resulting in faster returns (Bernstein, Jin, Gregor, & Adler-Golden, 2012). 

Empirical methods perform more approximate atmospheric correction compared to 

model-based approaches. Some statistical techniques include the internal average relative 

reflectance (IARR) method, which uses the mean radiance of all the pixels in the images 

as a correction factor to adjust raw radiance data, and the flat field correction (FFC), 

which assumes there is an area in the scene that is spectrally neutral (Clark et al., 2002; 

Griffin & Burke, 2003; Kruse, 1988). The Quick Atmospheric Correction (QUAC) is 

another common in-scene based approach that works with a variety of MSI and HSI 

VNIR-SWIR channels and provides absolute accuracy of approximately ± 15% with 

respect to radiative transfer models (Bernstein et al., 2012). Empirical atmospheric 

correction can be used as a baseline for expected influences, but model based approaches 

that use sensor parameters, atmospheric models, aerosol models, and flight information 

calculate more accurate reflectance spectra. 

Common model-based approaches in use for VNIR-SWIR imaging spectrometer 

data analysis include Atmospheric Removal (ATREM), Atmospheric Correction Now 

(ACORN), Atmospheric Correction (ATCOR), and Fast Line-of-sight Atmosphere 

Analysis of Spectral Hypercubes (FLAASH) (Gao, Heidebrecht, & Geotz, 1993; Griffin 

& Burke, 2003; Kruse, 2004; Matthew et al., 2003; Richter, 1996). These all are based on 

the use of the Moderate resolution atmospheric Transmission (MODTRAN) atmospheric 

radiative transfer code, which allows modeling of specific atmospheric parameters such 
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as water vapor, gas constituents, and scattering (Berk, Bernstein, & Robertson, 1987). All 

of the models require that the hyperspectral data be well calibrated and that certain 

information is known about the sensor, atmospheric parameters, and location. 

This work tested and compared the empirical QUAC algorithm, the model-based 

FLAASH algorithm, and a hybrid approach that combines FLAASH and ground 

measurements.   

a. Quick Atmospheric Correction 

The QUAC method uses information from the scene to correct and remove 

atmospheric influences. The correction does not require user input or knowledge of sensor 

metadata and instead uses approximate specifications of sensor band locations and 

radiometric calibration (Bernstein et al., 2012).  It is assumed that the average reflectance 

of material spectra is not dependent on each scene, allowing faster processing when 

compared to model-based methods (Bernstein et al., 2012). The algorithm calculates 

approximate reflectance spectra if the following two assumptions are met: the scene has at 

least 10 diverse materials and enough dark pixels to estimate the baseline spectrum. The 

results of QUAC will not worsen as sensor and measurement uncertainties increase because 

only in-scene information is being used in the algorithm (Bernstein et al., 2012). QUAC 

can be applied to MSI and HSI data covering all or part of the VNIR–SWIR spectral range 

(Bernstein et al., 2012). The data processing flow is illustrated in Figure 18.  
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Figure 18.  Outline of QUAC data processing algorithm 

(from Bernstein, Jin, Gregor, & Adler-Golden, 2012).   

The QUAC algorithm was applied to the destriped MSS-1 VNIR-SWIR data to 

create a baseline for expected radiance and reflectance spectra. Figure 19 depicts the 

calibrated radiance and the QUAC-corrected reflectance spectrum of a single pixel 

located at position (335, 892) in the image. The QUAC method corrects for the major 

atmospheric water vapor bands near 1.4 and 1.9 micrometers, seen by the removal of data 

points near these regions (Figure 19). The 1.9 to 2.1 micrometer range is noisy, indicating 

that carbon dioxide influences remain in the QUAC-corrected spectrum (Griffin & Burke, 

2003).  
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Figure 19.  Comparison of the radiance and QUAC corrected reflectance spectra. 

QUAC corrected true color reflectance image (left). Radiance 
( 2 1 1W cm sr mµ µ− − −⋅ ⋅ ⋅ ) spectrum and QUAC corrected reflectance 

(scaled from 0 to 10,000) spectrum of pixel (335, 892) (right).   

b. Fast Line-of-Sight Atmosphere Analysis of Spectral Hypercubes  

FLAASH was developed by Spectral Sciences, Inc., the Air Force Research 

Laboratory, and the Spectral Information Technical Applications Center (SITAC) and 

uses MODTRAN atmospheric models to make atmospheric corrections (Matthew et al., 

2003). The FLAASH approach uses the physics-based model to apply atmospheric 

correction that uses flight and sensor metadata to include date, time, and location with 

assumed and measured atmospheric parameters to generate reflectance spectra from 

radiance data (Matthew et al., 2003).  

FLAASH is available in the EXELIS ENVI software package (EXELIS, 2014). 

The model-based, or first-principles, atmospheric correction is carried out in three steps. 

The first step obtains atmospheric parameters to include an aerosol description and the 
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column water amount (Matthew et al., 2003). The second step in the correction converts 

the radiance data to reflectance and calculates the aerosol and column water vapor levels 

using the radiative transport equation. The FLAASH model has an option to compute 

average visibility from the amount of aerosol and haze present in the scene (Matthew et 

al., 2003). The MODTRAN-based algorithm is also capable of providing correction for 

the adjacency effect, which is caused by atmospheric scattering of surface-reflected 

radiance from pixels adjacent to the one being corrected. The final step in the process is 

spectral polishing to remove remaining artifacts from the spectra. FLAASH allows 

adjusting the thresholds for polishing to suppress artifacts. Spectral polishing uses only 

information from the image of interest to produce an atmospherically corrected HSI 

image with consistent spectra. 

A scale factor of 1000 was applied to the MSS-1 calibrated radiance data for data 

scaling purposes. Additional parameters are listed in Table 1 specifying sensor and flight 

information and in Table 2 specifying FLAASH options that were used to analyze and 

compare the U.S. Standard and the Mid-Latitude Summer atmospheric models for the 

MSS-1 data. These models were chosen based on the scene temperature, date, and 

latitude.  

Scene Center Location Latitude: 36°48’21.68” 

Longitude: -116°8’56.96” 

Sensor Altitude (km) 3.950 

Ground Elevation (km) 1.150 

Pixel Size (m) 0.655 

Flight Date August 20, 2013 

Flight Time GMT 21:29:10 

Table 1.   Sensor Parameters for FLAASH 
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Water Retrieval Yes 

Water Absorption Feature 1.135 mµ  

Aerosol Mode Rural 

Aerosol Retrieval  2-Band (K-T) 

Initial Visibility (km) 40.00 

Spectral Polishing  Yes 

Width (number of bands) 9 

Wavelength Recalibration No 

Table 2.   FLAASH Parameters 

The U.S. Standard model did not accurately correct for the atmospheric 

conditions for these data and the model was assumed to be too general for the site 

location. Deep, broad absorptions features appeared near 0.9, 1.1, 1.4, and 1.9 

micrometers indicating the presences of atmospheric water (Griffin & Burke, 2003). The 

reflectance spectra deviated only slightly when different water absorption features were 

used in the FLAASH algorithm to calculate atmospheric water vapor. The reflectance 

spectra drastically differ from the baseline QUAC results and no significant features can 

be detected (Figure 20).  

The Mid-Latitude Summer model produced reflectance spectra with distinct 

features similar to the QUAC spectra (Figure 20). When using 0.820 micrometers as the 

water absorption feature for water vapor determination, the spectra do, however, 

overcompensate for atmospheric influences, especially the atmospheric water absorption 

bands near 1.4 and 1.9 micrometers. Corrections preformed on the 0.940 and 1.135 

micrometers water absorption feature calculate nearly the same reflectance spectra, with 

less overcompensation compared to the 0.820 micrometers result. The carbon dioxide 

region is less noisy in the FLAASH spectra compared to the QUAC spectra.  
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Figure 20.  QUAC reflectance spectrum (red), FLAASH reflectance spectrum 

using U.S. Standard atmospheric model (green), FLAASH reflectance 
spectrum using Mid-Latitude Summer atmospheric model (blue). 
Spectra are representative of a single pixel located at (335,892).  

The results obtained by applying the Mid-Latitude Summer atmospheric model, 

using the 1.135 micrometers water absorption feature, to the calibrated radiance data 

were used to further analyze cloud cover and column water vapor of the scene. Almost no 

cloud cover appears in these data (Figure 21), and only 12 pixels representing structural 

objects (i.e., building, car, etc.) returned water retrieval errors. The pixels resulting in 

water retrieval error had to be masked to accurately display the column water vapor of 

the scene (Figure 21). The column water vapor is displayed in units of centimeters 

multiplied by the atmospheric scale factor of 1000 (EXELIS, 2014). Purple to blue pixels 

show low water vapor, while red pixels show higher water vapor content. The bottom of 

the image shows less water vapor compared to the top of the image because the ground 

elevation is higher. Most of the road surface pixels show highest water vapor compared 

to the desert vegetation background because a special liquefied plastic coating has been 

applied to the surface.  
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Figure 21.  Column water vapor (cm) obtained from the Mid-Latitude Summer 

FLAASH algorithm. 

c. Radiative-Transfer-Ground-Calibration 

When comparing the Mid-Latitude Summer FLAASH results to field 

measurements, it became clear that undesired atmospheric and sensor influences 

remained present in the image spectra. Specifically, overcorrected features are seen near 

0.94, 1.11 and 1.13 micrometers creating unexpected peaks in the reflectance spectra 

(Figure 22). The features are most likely due to elevation differences within the scene.  

These issues may also be associated with the assumption that the model is an exact 

representation of reality, which is not true for this dataset. The features are more apparent 

in soil spectra compared to spectra of manmade targets (Figure 22).  

To remove the undesired features a hybrid method similar to the method 

described by Clark et al. (2002) was implemented. Radiative-transfer-ground-calibration 
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(RTGC) used a combination of radiative transfer model results and ground spectral 

measurements to convert radiance to reflectance. First, the Mid-Latitude Summer 

FLAASH algorithm was applied to the image to remove atmospheric absorption features 

and correct spectral response relative to wavelength. Next, ground spectra collected on 

site were used to create a calibration site. A comparison of the average ground spectra to 

the image spectra indicated that additional corrections were required (Clark et al., 2002).  

A multiplicative gain factor was derived for each spectral channel by dividing the 

average field spectrum by the calibration site average spectrum. After applying the 

correction factor to the data, the resulting image spectra for the calibration site closely 

resembled the field and laboratory reflectance spectra. This approach also makes spectra 

for other natural and manmade targets in the scene appear more like known reference 

spectra (Figure 22). Moving forward, VNIR and SWIR analysis was performed on the 

reflectance data corrected using the hybrid RTGC approach.  

   
Figure 22.  Comparison of FLAASH and RTGC correction results against ground 

measurements. Left: Manmade target (335,892), Right: Soil target 
(349,209).   

3. Geometric Corrections 

The MSS-1 imagery were geometrically corrected to allow direct comparison of 

image spectra to ground truth spectra and for later combined full spectrum analysis with 
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the SEBASS imagery. A Geometry Lookup Table (GLT) was created by transforming the 

Input Geometry File (IGM), derived from sensor parameters and collection information, 

to a map referenced dataset (EXELIS, 2014). The image geometry and location were 

further refined utilizing known ground control points (GCPs) to provide more accurate 

geolocation.  

Georeferencing changes the hyperspectral cube by adding null values around the 

edges of the image that must be masked in processing. These inflate the size of the 

dataset by replicated pixels as indicated in the GLT files (EXELIS, 2013). Due to these 

drawbacks only three bands representing a true color image (0.638 mµ ; 0.547 mµ ; 0.467

mµ ) were used to create a GLT for initial georeferencing. 

a. Georeferenced Geometry Lookup Table  

The provided IGM file associated with the MSS-1 data was used to create the 

GLT, a file of map-projected coordinates for each image pixel. The IGM file consists of 

the x and y latitude and longitude coordinates for each pixel in the uncorrected input 

image (EXELIS, 2013). In this specific case the IGM input data were geographic latitude 

and longitude utilizing the World Geodetic System from 1984 (WGS-84) datum, while 

the desired output for georeferenced image (which contains the map projected pixel 

coordinates for the specified map projection) was Universal Transverse Mercator (UTM) 

using WGS-84 datum - Zone 11 North.  

The GLT file contained the sample and line locations of each pixel in the output 

image corresponding to the input image. Positive GLT values indicated there was an 

exact pixel match and negative values used the nearest neighboring pixel value to 

interpolate the pixel vale (EXELIS, 2013). The calculated parameters for the GLT are 

shown in Table 3 and the georeferenced true color reflectance image is show in Figure 23 

along with the visual representation of the GLT. The dimensions of the referenced 

reflectance image changed from 600 samples x 1000 lines to 611 samples x 1294 lines. 

The majority of the negative GLT values were around the edges of the GLT image. The 

dark pixels in the GLT images represent interpolated pixels and the dark area bordering 

the georeferenced image is the image boundary of no data (Figure 23). 
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Output Pixel Size (m) 0.654920 

Output Rotation -56° 

Georeference Background Value 0 

Table 3.   GLT Parameters for MSS-1 Data 

Figure 23.  GLT Sample Lookup image (left), GLT Line Lookup image (center), 
Georeferenced Reflectance image (right). The dark pixels in the GLT 

images represent interpolated pixels. The dark area in the 
georeferenced image is the image boundary of no data.  

b. Image-to-Map Registration

Sixteen surveyed ground points corresponding to the corners of the four 

farmhouses in the image were used to refine the geometric corrections. First, the sixteen 

ground control points (GCP) were plotted in Google Earth to confirm reference latitude 

and longitude positioning. Using the ENVI software, the GCPs were assigned image 
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pixel values based on a true color image using the red, green, and blue channels described 

above (Figure 24). A low root mean square (RMS) error value of 0.16 meters was 

obtained.  

Image warping was applied using a first order polynomial method. This warp 

includes an XY interaction term to account for image shear (EXELIS, 2014). Nearest 

neighbor resampling was used because the method uses the nearest pixel without any 

interpolation to create the warped image limiting the alteration of spectral information. 

The georeferenced and registered MSS-1 image is shown in Figure 24.  

Figure 24.  True color unregistered MSS-1 image showing GCPs (left), 
Geocorrected MSS-1 image (right). 

B. LWIR DATA PREPARATION 

To begin preparing the LWIR data, approximately the first consecutive 200 

hundred lines were removed from the SEBASS flight line because of apparently corrupt 

pixels as evidenced by horizontal line artifacts. The new subset, used for the remainder of 

this analysis, had dimensions of 128 samples by 823 lines by 128 bands. 
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1. Sensor Artifact Removal  

A MNF transform was applied to the at-sensor calibrated radiance to assess the 

quality of the data. The initial MNF bands exposed a nonlinear response of the focal 

plane as well as very pronounced sensor artifacts (Collins, 1996). These features were 

most apparent in MNF space because the signal response of these artifacts was stronger 

than the signal of the features within the scene. The sensor artifact caused a pattern of 

horizontal lines to show up throughout the image. The first four MNF bands were 

removed to isolate the bands containing the excess noise issues and an inverse MNF 

rotation was applied to MNF bands 5-12 (Fountanas, 2014) (Figure 25).  

 
Figure 25.  MNF Bands #1-3 exposed the non-linear focal plane array and MNF 

Band #4 showed the sensor artifact. MNF Band #5 (right) represented 
the expected MNF result.  
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An assumption was made that the remaining response signals from the artifacts 

were weaker compared to the targets within the scene and would therefore not be 

assigned as endmembers later on in the analysis.  

2. Atmospheric Correction 

For reasons similar to those discussed previously, atmospheric corrections are 

necessary in the LWIR region for comparison between image and library emissivity 

spectra across time and space. Equally important, surface temperatures need to be 

separated from the emissivity curves for direct comparison to field and library spectra.  

Two different atmospheric compensation algorithms were investigated to include 

an empirical method and a model-based method. The first atmospheric correction 

algorithm explored was the In-Scene Atmospheric Correction (ISAC), commonly used 

for simple empirical correction of LWIR data and found in the ENVI suite (Young, 

Johnson, & Hackwell, 2002). The second algorithm used was a pre-release version of the 

MODTRAN-based atmospheric model “Fast Line-of-sight Atmosphere Analysis of 

Spectral Hypercubes – Infrared” (“FLAASH-IR”) based on principles similar to 

FLAASH (Adler-Golden, Conforti, Gagnon, Tremblay, & Chamberland, 2014; Matthew, 

2003). The same temperature emissivity separation algorithm was applied to provide 

direct comparison of the two algorithms (Kealy & Hook, 1993). 

a. In-Scene Atmospheric Correction  

The ISAC algorithm used in-scene LWIR information to characterize the 

terrestrial scene (Young et al., 2002). ISAC is an effective and available algorithm that 

does not require radiative transfer modeling (DiStasio & Resmini, 2010). The 

transmission and upwelling radiance were extracted from the data using a line-fitting 

procedure (Young et al., 2002). ISAC depends on the natural occurrence of blackbody 

surfaces within the scene and assumes natural temperature variations (Young et al., 

2002). Surface areas covered by green vegetation or water exhibit near blackbody 

qualities and were therefore used as blackbody references in the algorithm. The algorithm 

also assumed that the surface temperature is greater than the effective atmospheric 

radiation temperature (Young et al., 2002).  
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Surface temperature estimated for each pixel were calculated from a normalized 

regression fitting technique using the maximum value of the brightness temperatures 

found throughout the input wavelengths (EXELIS, 2013). The “Top of Bins” fitting 

techniques was used which fits a line to the top of the scatter plot of radiance verse 

brightness temperature. A spectrum atmospherically corrected with ISAC is compared to 

a spectrum of calibrated radiance in Figure 26.  

Figure 26.  ISAC Results for single pixel SEBASS LWIR data. 

b. Fast Line-of-Sight Atmosphere Analysis of Spectral Hypercubes –

Infrared

A pre-release version of FLAASH-IR was used for this research. FLAASH-IR 

allows the user to manipulate atmospheric and aerosol models for the LWIR spectral 

range (Adler-Golden et al., 2014). Similar to the FLAASH algorithm implemented in 

ENVI for VNIR-SWIR HSI data, flight and sensor parameters were included in the 

correction and removal of atmospheric influences. The algorithm took into account the 

surface air temperature, water vapor column density, and an ozone column density scale 

factor to suppress atmospheric influences by modifying a built-in MODTRAN 

atmospheric model (Adler-Golden et al., 2014). Both the model mode and aerosol type 

were designated to “automatic” allowing the algorithm to choose the best model based on 
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the location and date information.  Several FLAASH-IR modes were tested, however, the 

differences between the results were negligible and the “TES with Rigorous Fitting to 

entire wavelength range” was used for comparison with the ISAC results.    

Comparison of the calculated emissivity to the calibrated radiance shows that both 

atmospheric corrections remove a significant amount of the atmospheric influences. The 

atmospherically corrected spectra resemble Planck-like radiance curves (Figure 27). The 

FLAASH-IR spectra appear less noisy in the 7.5 to 9.0 micrometer range compared to the 

ISAC corrected spectra. Slight minima in all three radiance spectra are seen near 9.6 

micrometers caused by activated ozone (Adler-Golden, Gruninger, & Smith, 1992).    

Figure 27.  Comparison of ISAC and FLAASH-IR radiance spectra: coated road 
pixel (left) and vegetation pixel (right). 

3. Temperature Emissivity Separation

The radiation emitted from a surface in the LWIR is a function of surface 

temperature and surface spectral emittance, as well as atmospheric influences (Kahle & 

Alley, 1992). To determine surface emissivity spectra within the scene, temperature has 

to be removed from the radiance data. 

Emissivity values for both the ISAC corrected image and FLAASH-IR corrected 

image were calculated using the emissivity normalization algorithm in ENVI. The 

emissivity normalization technique calculates the temperature for every band in each 
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pixel using a fixed emissivity value. The highest temperature for each pixel is used to 

calculate the emissivity values using Planck’s function (Kealy & Hook, 1993). For this 

work, the maximum emissivity value was set to 1.0 for better comparison with the ground 

truth spectra, which have values with maxima of 1.0.  The first and last three bands 

showed noisy results and were removed from the image before separating the temperature 

component because their values contained outliers.  

A mean region of the coated road was selected for emissivity comparison, 

highlighted in red in Figure 28. The model-based FLAASH-IR spectrum is smoother 

compared to the ISAC spectrum, especially longward of 10 micrometers. Both spectra 

contain the ozone feature near 0.96 micrometers, but a similar feature is also found in the 

ground measurements of the coated road.  

Figure 28.  Comparison of ISAC - NEM and FLAASH-IR - NEM results for 
SEBASS LWIR data. 
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The emissivity spectra produced from the TES algorithm in FLAASH-IR were 

visually compared to the FLAASH-IR NEM spectra. The ozone feature near 9.6 

micrometers was more pronounced in FLAASH-IR TES spectra causing real features in 

the 9.0 to 10.0 micrometer region to be falsely represented. Additional testing to remove 

the ozone feature would be useful, but was not attempted as part of this research. The 

FLAASH-IR NEM image was chosen as the best option for further integration analysis.  

The temperature and emissivity results obtained from the inverse MNF correction 

were compared against non-corrected LWIR data to identify if and how the correction 

technique affected the original data. The inverse MNF approach removed the strong 

signals of the sensor artifacts and had negligible effects on the surface temperature range 

within the scene (Figure 29). The surface temperature range remained the same in both 

the original and the corrected data, but some individual pixel temperature values did 

change. Specifically, the surface temperature of the desert background composed of a 

mixture of vegetation and soils became more consistent. In the original data the desert 

background appeared speckled and ranged from 306°K in some regions to 328°K in 

others. The desert background in the corrected data averaged around 316°K throughout 

the majority of the scene. The center road in the original data was measured to be 

approximately 318°K, while the same road surfaces in the corrected data were measured 

to be approximately 10°K warmer at 328°K. Some emissivity spectra did change with the 

correction, but overall became less noisy when the artifacts were removed from the 

radiance image. Two single pixel emissivity spectra from an area in the image showing 

the largest temperature change, from approximately 305°K to 301°K, were examined 

(Figure 30). Emissivity features remained at the same wavelength, but overall noise in the 

corrected spectrum was reduced compared to the uncorrected spectrum. Using a MNF 

transform to suppress noise and remove the sensor artifacts from the LWIR data was 

effective and the results were used for the remainder of this research. It is important to 

note that even though the temperature and emissivity of some individual pixels changed 

when the correction was applied the slight alterations were expected to be beneficial for 

analysis and isolation of spectral endmembers. 
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Figure 29.     The temperature range, in both the original dataset (left) and the data 

corrected for sensor artifacts (right), was approximately 301 to 328°K.  
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Figure 30.  Comparison of uncorrected LWIR emissivity data to corrected data.  

4. Geometric Corrections 

The final steps in preparing the LWIR data before integrated analysis were 

georeferencing the SEBASS data using the provided IGM file and then registering the 

new image to the registered MSS-1 imagery.  

a. Georeferenced Geometry Lookup Table  

The same procedure as described in the VNIR-SWIR Data Preparation section for 

georeferencing, using the provided IGM file, was used to build GLT files for the LWIR 

data. The input geographic latitude and longitude coordinates were projected to UTM 

WGS-84, Zone 11 North. The updated pixel size and rotation value produced from the 

projection are recorded in Table 4. The georeferenced result provided a rough estimation 

of the geographic coverage area of the LWIR scene (Figure 31). The most significant 

change was the flip with respect to the y-axis changing the overall orientation of the 

image.    

The dark pixels in the GLT images represent interpolated pixels using a nearest 

neighbor resampling because there was not an exact pixel match from the input image 

corresponding to the map location. All interpolated pixels have a negative value in the 

GLT results, while pixels unable to be interpolated have a value of zero. To investigate 
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the sensor artifacts seen as horizontal lines in the bottom third of the GLT images, a 

threshold was set to identify all the pixels with a value of zero. Only the image boundary 

contained pixels unable to be interpolated, while the pixels within the scene to include the 

sensor artifacts were able to be interpolated using a nearest neighbor pixel. 

Output Pixel Size (m) 0.864215 

Output Rotation -44° 

Georeference Background Value 0 

Table 4.   GLT Parameters for SEBASS Data 

Figure 31.  GLT Sample Lookup image (left), GLT Line Lookup image (center), 
Georeferenced Emissivity image (right). The dark pixels in the GTL 

images represent interpolated pixels and the dark area in the 
georeferenced image is image boundary of no data.  
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b. Image-to-Image Registration

The SEBASS image, using band 65 (11.02 mµ , ~0.86 meter spatial resolution), 

was registered to the MSS-1 band 52 (0.638 mµ , ~0.65 meter spatial resolution) using 

ground control points (GCPs). Thirty-five GCPs were manually chosen from the VNIR-

SWIR image to estimate locations within the LWIR scene. A RMS error value of 1.65 

meters was obtained. The LWIR data was warped using a first order polynomial method 

and nearest neighbor resampling. A color composite of the warped LWIR data is 

displayed below using 11.02, 10.04, and 9.00 mµ  as RGB (Figure 32).   

Figure 32.  GCPs from base MSS-1 Band 52 (left) aligned with GCPs on warped 
SEBASS Band 65 (center) used to register the SEBASS image (right). 

C. ANALYSIS APPROACHES 

Combining the VNIR, SWIR, and LWIR data requires that the scene coverage be 

identical. The two geocorrected and registered datasets were chipped to the same size 

(825 x 875) using a region of interest created from the registered images (Figure 33).  
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Figure 33.  Subset of VNIR-SWIR and LWIR data used for integrated analysis.  

1. Standard Hyperspectral Analysis 

A standard approach to classifying and mapping hyperspectral data outlined by 

Boardman and Kruse (2011) was carried out on each wavelength region individually to 

provide a control for comparison of the integration results (Figure 34). Individual MNF 

transforms were applied to the VNIR, SWIR, and LWIR subsets. Spectral endmembers 

were extracted and identified. Individual classification maps were created to expose the 

sensitivity of each wavelength region and were used as the control for the integration 

experiment.       
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Figure 34.  N-Dimensional processing flow for VNIR-SWIR HSI data 

(from Boardman & Kruse, 2011).  

a. Spectral Data Reduction 

The MNF transform was coined and developed by Green, Berman, Switzer, and 

Craig (1988) as an improved principal component analysis (PCA) for reduction of noise 

content in airborne imaging scanner data. MNF is similar to the PCA transformation, 

which is standard for MSI data because the data have high between band correlation. 

Both transforms reduce the spectral information content by performing a linear 

transformation of the data to reorganize the bands according to high information content. 

The MNF transform differs from PCA because the noise variance in the transformed data 

is normalized, resulting in image bands ordered by decreasing signal-to-noise (Boardman 

& Kruse, 2011; Green, Berman, Switzer, & Craig, 1988).  

The dimensionality analysis is essential in hyperspectral data so that the noise in 

every band is uncorrelated and has unit variance (Boardman, Kruse, & Green, 1995). The 

output of the MNF transform is apparent reflectance (or emissivity) data projected onto a 

subset of minimum dimension, with the majority of noise eliminated from the dataset 
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(Boardman, 1993). This linear transform is commonly used for noise characterization and 

minimization in HSI data (Boardman & Kruse, 2011). Spectra from the three data regions 

used in this research were transformed into MNF space to minimize the influence of 

noise on the data processing and analysis. Only the coherent portions of the data resulting 

in the highest signal, the initial MNF bands, were carried forward in the analysis.  

b. Spatial Data Reduction 

The pixel purity index (PPI) algorithm was useful to reduce spatial dimensionality 

of HSI data to narrow down the possible endmember spectra. Thinking of spectra as 

points in an n-dimensional scatterplot, where n is the number of bands, allows spectral 

endmembers to be detected from the distribution of points (Boardman, 1993). Spectral 

endmembers are defined as the purest spectral signatures and their combinations can be 

used to explain all of the spectra in an HSI dataset via spectral mixing. Applying convex 

geometry principals, a best fit simplex was determined based on the content of the 

scatterplot. The vertices of the simplex were used to best estimate the spectral signatures 

of the mixing endmembers (Boardman, 1993).  

The PPI was created by repeatedly projecting the data in MNF space onto random 

unit vectors (Boardman et al., 1995). A cumulative record was maintained during the 

iterations when a pixel was found to be extreme (i.e., most spectrally pure). The output 

was an image created using digital number (DN) values to display the number of extreme 

hits each pixel obtained during the PPI iterations. The pixels with the most hits were 

identified as possible image endmembers minimizing the number of pixels used for 

further analysis (Boardman et al., 1995; Boardman & Kruse, 2011).  

c. Visualization 

Once the spectral and spatial information were reduced to a manageable size, the 

pixels were visualized in the n-Dimensional Visualizer tool in ENVI. The desired 

dimensionality corresponded with the number of non-noise MNF bands. Initially, the 

‘Auto Cluster’ option using the most extreme 10,000 pixels was chosen to assign an 

endmember class to pixels containing similar spectral information. The majority of 

classes consisted of single pixels as endmembers, so several of the classes were 
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deselected and a manual selection process proceeded. The pixels located at the vertices 

rotating in the same direction in various dimensions were selected as possible spectral 

endmembers.     

d. Identification 

The mean spectra of the selected endmembers were used for comparison against 

measurements in spectral libraries and obtained via field collections. Visual comparison 

of spectral plots was used for initial selections. Beyond visual comparison, several 

algorithms that utilize location, depth, and shape of spectral features exist for 

identification of image endmember spectra. Identification of spectra for this thesis was 

accomplished using visual comparison, the expert system approach of Kruse, Lefkoff, 

and Dietz (1993a) and Kruse (2008); and “SigDB” by Ramachandran et al. (2014).  

The “Spectral Expert” uses diagnostic features and characteristics of spectra to 

create rules for identification. The goal of the algorithm is to extract and isolate 

individual reflectance absorption features. A continuum is defined for each image 

endmember spectrum by creating a straight line between local maxima. The feature 

position, the feature depth, the full width at half maximum depth, and absorption band 

asymmetry are extracted to analysis (Kruse, Lefkoff, & Dietz, 1993a; Kruse, 2008). A 

matching score between 0.0 (no match) and 1.0 (perfect-match) is calculated for each 

specific pixel material. The algorithm is most effective when analyzing unique 

endmembers with prominent features and least effective for analysis of spectral mixtures.  

The “SigDB” was created to meet the demands of the industry for a tool with the 

ability to view, search, and match infrared spectra obtained from a variety of sources. The 

database aids in the “exchange, preliminary analysis, comparison and classification of 

collected spectra” (Ramachandran et al., 2014, p. 5). Spectral comparison and 

identification of unknown spectra against library spectra is conducted using a derivative 

of SAM and k-Mean clustering to spatially characterize spectral similarities. The program 

provides direct comparison of spectra obtained from sensors with different spectral 

resolution and coverage. 
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e. Mapping and Characterization  

A variety of methods are available for characterization of HSI data, including, but 

not limited, to Spectral Angle Mapper (SAM), feature-based classification, and spectral 

unmixing. SAM is an empirical approach that calculates a similarity score between an 

image spectrum and a reference spectrum, where a smaller score between the two spectra 

indicates higher similarity (Kruse et al., 1993b). Feature-based classification uses a 

continuum removal to extract strong spectral features for comparison against library 

spectra for identification and characterization (Clark & Roush, 1984, Clark et al., 2003, 

Kruse, 1988; Kruse et al., 1993a; Kruse, 2008). Spectral unmixing is defined as the 

process of reducing spectra containing multiple substances into specific endmembers – 

key spectral signatures that explain HSI data variability, and a set of fractional 

abundances representing the proportion of each endmember (Tarantola & Valette, 1982). 

Mixed pixels occur when the spatial resolution of a sensor is low enough that several 

substances occupy one pixel and their spectra combine at the sensor, or when distinct 

materials are physically combined into a mixture (Tarantola & Valette, 1982).  Linear 

algorithms can be assumed if endmembers in a pixel appear in spatially segregated 

patterns. Non-linear approaches must be used when endmembers are mixed on a spatial 

scale smaller than the path length of photons in the mixture (Keshava & Mustard, 2002). 

This thesis research utilized the spectral unmixing approach to map and 

characterize spectral endmembers using HSI. In both MSI and HSI data, image spectra 

may represent surfaces made up of mixtures of materials with different spectral 

properties. The increased number of spectral bands in HSI compared to MSI data allows 

pixels composed of multiple materials to be analyzed. Unmixing methods enable spectral 

separation of the materials’ signatures (Boardman & Kruse, 2011).  

In this work, the partial unmixing method Mixture-Tuned Matched Filtering 

(MTMF) was used because it does not require all the endmembers in the scene to be 

known, but still provides estimated abundances for each endmember (Boardman & 

Kruse, 2011). MTMF combines statistical concepts of matched filtering (MF) analysis 

with theory from linear mixing models. The MF model originated in the field of electrical 

engineering and signal processing, where the signals are unbound and false positives are 
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not restricted. MF theory alone fails in hyperspectral analysis because of the feasibility 

constraints of the simplex being additive and nonnegative (Boardman & Kruse, 2011). 

The MTMF procedure includes MF for abundance estimation and mixture-tuning (MT) 

for false positive rejection (Boardman & Kruse, 2011). Figure 35 illustrates the MTMF 

feasibility constraints; the certainty of pixel identification increases towards the center of 

the feasibility contours. 

 
Figure 35.  MTMF Feasibility Cone Concept (from Boardman & Kruse, 2011). 

MTMF was applied to determine the feasibility of the unknown natural and 

dominant endmembers based on the target endmembers discovered during PPI 

investigation and n-dimensional visualization. Abundance estimation, the MF score, was 

calculated using the MNF data statistics for the background, and the MT score, defined as 

“infeasibility” was calculated using convex geometry theory to evaluate the feasibly of 

each pixel with regards to both the target and background (Boardman & Kruse, 2011). 

High MF scores correspond to high abundances of a specific endmember. Low 

infeasibility scores indicate high feasibility for that endmember. A ratio of MF to 

infeasibility score (used in further discussion here as the “feasibility ratio”) was used to 

determine those pixels with feasible mixtures and the highest abundances (Kruse et al., 
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2011). Larger feasibility ratios indicate higher likelihood of a specific endmember 

occurring at that pixel.   

Rule classification, a simple thresholding approach, was used to apply a 

consistent threshold to the feasibility ratio across all endmembers, and to produce 

classification maps of the most spectrally abundant material at each pixel (EXELIS, 

2014). The background, defined as the densest area of pixels, clusters around zero 

abundance and zero infeasibility. Separation of endmember abundance from background 

was straight-forward where the background was compact and the endmember was able to 

be isolated (Figure 36, Left). In cases where the background was distributed, it became 

difficult to separate the endmember from background, and some background pixels were 

included in the class assignment (Figure 36, Right). For this research, a higher 

significance was given to the consistent comparison of the mapping results, and examples 

of the undesired inclusion of background pixels in the classification maps have been 

noted within the discussion. A feasibility ratio threshold was selected that mapped the 

majority of the endmembers for each wavelength range without including excess 

background pixels. If the threshold was reduced, the resulting map would have assigned 

background pixels as endmember pixels, and if the threshold was increased, additional 

endmembers would have been omitted from the map. 

59 



Figure 36.  Examples of dispersal of pixels in MTMF plot; compact background 
and isolated endmember (left) compared to distributed background 

and endmembers with inclusion of background pixels using the 0.04 
feasibility ratio threshold (right).    

2. Integration

Two integration techniques were performed on the VNIR, SWIR, and LWIR 

datasets and compared to the standard hyperspectral analysis. The goal of the integration 

was to improve classification and mapping results by making use of the complementary 

features in all three spectral regions.  

a. MNF Integration

The first approach applied the MNF transform to the three wavelength regions 

independently. Then, all non-noise MNF bands for the VNIR, SWIR, and LWIR regions 

were combined by creating a new image file. This was possible because the datasets were 

georegistered and provided consistent coverage. The new image consisted of forty-three 

bands: eleven VNIR MNF bands, twenty-two SWIR MNF bands, and ten LWIR MNF 

bands. The order of MNF bands was not significant because the MNF transformation is 

linear (Green et al., 1988). The analysis procedure from the integration point onward was 

the same as the standard approach described above. PPI was applied to the combined 

MNF image. The most extreme pixels were visualized using the n-Dimensional 
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Visualizer and possible spectral endmembers were isolated and identified. MTMF 

analysis was performed and a single classification map was created using the feasibility 

ratio threshold approach.  

b. Full Integration 

The second approach, coined Full Integration, combined 476 hyperspectral bands 

from the VNIR, SWIR, and LWIR regions prior to spectral reduction analysis using 

MNF. Again, combining these was possible because the spatial dimensions of the 

datasets were consistent. Before integration the SEBASS data were converted from 

emissivity to reflectance using Kirchoff’s law to create consistency for viewing purposes. 

A new image was created by stacking the overlapping pixels of the MSS-1 reflectance 

and SEBASS reflectance data using nearest neighbor resampling. Layer stacking allowed 

for the entire spectral range from 0.4 to 2.5 and 8.0 to 13.5 micrometers to be viewed for 

each pixel. The combined dataset was transformed using MNF, applying a mask of only 

the pixels found in both the MSS-1 and SEBASS coverage area. Only MNF bands with 

significant information content were carried forward in the analysis and classification 

process. The standard hyperspectral analysis procedure as described above was 

implemented after the integration step to create a single classification map.  

3. Field Spectroscopy and Validation 

Field spectroscopy has a similar goal to HSI, to acquire accurate “data on the 

spectral [characteristics] of Earth surface materials from a remote location” (Milton, 

Schaepman, Anderson, Kneubuhler, & Fox, 2009, p. S92). Field measurements can be 

acquired with more control compared to airborne and satellite collects. For example, the 

target of interest can remain in the field of view for a longer duration and the path length 

between the target and the sensor can be reduced (Milton et al., 2009). Field instruments 

commonly have a higher spectral resolution and can provide additional information, as 

well as help fill in the missing gaps of overhead data.  

There are a variety of commercially available field portable spectroradiometers 

capable of recording either the reflectance or emission properties of surface materials. 

Ground spectra of the NNSS site were measured for this study with the Spectra Vista 
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Corporation (SVC) HR-1024i and the Designs & Prototypes (D&P), discussed below. 

The field measurements aided in atmospheric correction of the MSS-1 data, as well as 

identification of spectral endmembers found in all three wavelength regions.   

a. Spectra Vista Corporation (SVC) 

The SVC HR-1024i is a field portable spectroradiometer covering the VNIR-

SWIR wavelengths spanning from 0.35 to 2.5 micrometers. The sensor has a spectral 

resolution of approximately three nanometers in the VIS, nine nanometers in NIR, and 

six nanometers in the SWIR. The SVC uses one silicon and two indium gallium arsenide 

(InGaAs) diode array diffraction grating detectors to measure up to 1024 spectral bands 

(Spectra Vista Corporation, 2013). The instrument records local time and location 

information associated with each spectral measurement.  

Radiometric calibration was achieved using a white reference and a dark 

reference. The white reference was a spectralon panel which has known highly diffuse 

reflectance. The dark reference was measured using the black cap of the lens, which has 

zero reflectance. One measurement was taken for each point of interest at the test site. 

Approximately ten spectra were acquired across a section of the road of interest and 

averaged to represent the mean spectra of the target road section (Figure 37). The 

radiance to reflectance conversion was calculated onboard the instrument.  
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Figure 37.  SVC reflectance field measurements of F1 Road.  

b. Designs and Prototypes (D&P) 

The D&P is a complete person-portable infrared spectrometer packaged in a 

small, portable, and durable case. The instrument measures a continuous spectrum of 

solar radiance using a miniature Michelson interferometer with a spectral range of 

approximately 2 to 16 micrometers. The spectral resolution can be adjusted to 2, 4, 8, or 

16 inverse centimeters. The standard detector is a dual sandwich type, consisting of 

indium antimonide (InSb) and mercury cadmium telluride (HgCdTe). A temperature 

controlled laser diode provides the reference for the servo and sampling electronics, and 

wavelength calibration for the spectrum (D&P Instruments, 2009). 

For this study, the D&P was calibrated approximately every 15 to 20 minutes 

using the attached blackbody, acquiring a warm and cold blackbody measurement to set 

the limits of the sample measurement. Radiance measurements covering the LWIR were 

obtained using the same approach as the VNIR-SWIR measurements, once at each point 

of interest and an average of approximately ten measurements to represent the sections of 

road throughout the scene (Figure 38). A downwelling radiance measurement was 

acquired every 1 to 2 minutes between sample measurements to account for atmospheric 

 63 



and cloud conditions. The downwelling radiance measurements were subtracted from the 

sample radiance to remove atmospheric effects. The sample radiance measurements were 

then converted to emissivity using the bulk processing option in the D&P Utilities 

software (Salvaggio et al., 2001).      

 
Figure 38.  D&P emissivity field measurements averages of F1 Road (red) and F2 

Road (green).  
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IV. RESULTS AND DISCUSSION 

A. STANDARD HYPERSPECTRAL ANALYSIS APPROACH 

Due to the background pixels generated by the geometric corrections, a mask was 

applied during the MNF transformations of the three individual wavelength regions to 

only include the image pixels in the analyses. The MSS-1 data were separated into VNIR 

and SWIR wavelength regions and the VNIR, SWIR, and LWIR data were individually 

transformed into MNF space. The number of non-noise MNF bands used for analysis for 

each region are listed in Table 5, and MNF bands 1, 2, and 3 are displayed as RGB for 

the VIS, SWIR, and LWIR subsets in Figure 39. The color variations in the MNF images 

for the individual wavelength regions extracted the baseline differences of the surface 

materials, but spectral analysis was required to understand and identify the meaning of 

the color assignments.   

Wavelength 

Region 

Wavelength 

Range (µm) 

Number of Input 

Bands 

Number of Non-noise 

MNF Bands 

VNIR 0.387 to 0.998 123 11 

SWIR 1.003 to 2.445* 231 22 

LWIR 7.829 to 13.427 122 10 
*Bands in the atmospheric water vapor region 1.324-1.449 and 1.794-1.970 micrometers were removed.  

Table 5.   MNF Transform Parameters of VNIR-SWIR-LWIR data 
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Figure 39.  Linear MNF transform results of VIS (left), SWIR (center), LWIR 

(right) displaying MNF bands 1, 2, 3 as RGB.  

The PPI algorithm was applied individually to the non-noise MNF bands from the 

VNIR, SWIR, and LWIR regions for 30,000 iterations and using a threshold of 2.5 DN, 

where DN was roughly equivalent to one standard deviation. The total pixel count leveled 

out after approximately 28,500 iterations for the VNIR, approximately 30,000 iterations 

for the SWIR, and approximately 28,400 for the LWIR. A threshold was applied to the 

PPI image to include the purest 10,000 pixels for initial n-dimensional visualization. 

These pixels represented potential endmember spatial locations. The number of non-noise 

MNF bands was used to specify the data dimensionality for each region and n-

dimensional visualization was used to extract endmember spectra. The spectrally pure 

pixels located at the vertices of the simplex formed in n-dimensional space by the PPI 

extracted MNF spectra were selected as image endmembers. The endmember extraction 

results for the three individual wavelength regions are summarized in Table 6.  
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Wavelength Region Number of Endmembers  

VNIR 28 

SWIR  38 

LWIR 17 

Table 6.   Number of endmembers from each wavelength region 

After the pure endmembers were isolated, MTMF analysis was applied 

individually to the non-noise MNF bands of the three wavelength regions. The feasibility 

ratio was calculated for each endmember to create consistency and quantify areas with 

feasible mixtures at various abundances. Classification maps for each wavelength region 

were generated by applying a feasibility ratio threshold of 0.04 to the endmembers to 

include only pixels with high MF scores and low infeasibility (Figure 40, Figure 41, and 

Figure 43). Some endmember classes only contained a few pixels or were omitted from 

the classification map at the 0.04 ratio threshold. Spectral endmembers composed of 

similar materials were displayed using similar color shades. What appeared to be man-

made materials were displayed on the classification maps using shades of red to purple, 

vegetation spectra were displayed using shades of green, soils were displayed using shade 

of yellow to orange, and road surfaces were displayed using shades of blue. In several 

cases, soil and road endmembers appeared similar spatially and spectrally because the 

roads were composed of mixtures of soils.  

Exact spectral identification of the majority of the endmembers was difficult 

using only the MSS-1 VNIR reflectance data. Even so, various types of man-made 

materials, vegetation, and soil varietals were verified using the extracted endmembers, 

spectral libraries, and spatial and spectral browsing of the MSS-1 VNIR wavelengths 

(Figure 41). Several of the man-made endmembers in the scene show prominent features 

between 0.4 and 0.6 micrometers indicating specific colors of the materials. For example, 

the spectra of Man-made #2, #5, #9, and #14 have broad peaks near 0.56 to 0.59 

micrometers suggesting a green to yellow colored target.  The majority of the man-made 

spectra have a sharp rise in reflectance between 0.45 and 0.60 micrometers and a broad 
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feature from 0.77 to 1.0 micrometers suggesting the presence of iron oxide or iron 

hydroxide, possibly a hematite or goethite mixture (Hunt & Ashley, 1979; Kerekes, 

Strackerjan, & Salvaggio, 2008). Man-made #6 has a peak near 0.46 micrometers and a 

minimum near 0.93 micrometers (common in most plastic materials) leading towards an 

identification of a blue, opaque high-density polyethylene material. The 0.93 to 0.94 

micrometer region is also a known water vapor band. Using only the VNIR wavelengths, 

this feature could not be used to differentiate between the chemical makeup of the 

material and the atmosphere. Man-made #17 has a minimum near 0.39 micrometers and a 

peak near 0.42 micrometers, similar to spectra of white painted materials (painted 

aluminum in spectral library). Background pixels were included in the Man-made #10 

and #12 classes at the 0.04 ratio threshold and therefore are seen spatially mixed in the 

desert background. The majority of the vegetation appeared green to yellow with a 

feature near 0.68 micrometers, suggesting the presences of chlorophyll (Elvidge, 1990; 

Kokaly, Despain, Clark, & Livo, 2007). Vegetation #1 and #4 are mostly featureless in 

the VNIR region, but spatial analysis indicated the endmembers as possibly dry 

vegetation. Both spectra have a feature near 0.76 micrometers and Vegetation #1 has a 

reflectance minimum near 0.94 micrometers. Vegetation #2, #3, and #5 have reflectance 

minima near 0.68 micrometers and higher reflectance near 0.8 micrometers, indicating 

healthier vegetation containing water; possible identities include sagebrush or saltbush. 

The soil endmembers were mostly featureless in the VNIR region, but were identified as 

desert soils based on spatial analysis of the feasible pixels. Soil #3 and #6 were the 

brightest soils, while #4 was the darkest soil in the scene.  Based on the gradual incline 

from 0.45 to 0.60 micrometers in the soil spectra iron oxide is assumed to be present. 

Analysis of the additional wavelength regions, specifically the SWIR, can be used to help 

further identify the various soil types.  
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Figure 40.  Image Map of MSS-1 VNIR endmembers using a feasibility ratio 

threshold of 0.04 (Top Left); VNIR endmember reflectance spectra 
extracted using MNF data (Right and Bottom Spectral Plots).   

SWIR endmembers were verified using spectral libraries and spatial and spectral 

browsing of the MSS-1 SWIR reflectance data. Several man-made targets, a few 

vegetation types, and sixteen different types of soil spectra were isolated (Figure 41). 

Many of the SWIR endmember spectra contained a water vapor band near 1.14 

micrometers that was not completely removed by the atmospheric correction model. 

Several of the man-made spectra had a doublet near 1.11 and 1.15 micrometers, similar to 

the feature seen in fiberglass materials and atmospheric water vapor. Using only the 

SWIR wavelengths made identification of material features versus atmospheric features 

challenging. Man-made #10, most similar to the library spectra of a fiberglass roof, has 
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additional features near 1.72, 2.14, and 2.26 micrometers. Man-made #1 and #8 have a 

deep reflectance minimum near 1.21 and another feature near 1.54 micrometers, 

indicating the presences of nylon or a synthetic polymer material. Man-made #1 also has 

a feature near 1.71 micrometers. Man-made #6 and #12 have features near 2.3, consistent 

with fiberglass and nylon signatures. All the vegetation endmembers have reflectance 

minima near 1.68, 2.10, and 2.30 micrometers from protein, lignin, and cellulose 

associated with dry vegetation (Kokaly, Despain, Clark, & Livo, 2007; Peterson & 

Hubbard, 1992). From visual comparison to library spectra, possible identifications 

include tumbleweed, sagebrush, or other types of dry vegetation found in desert 

environments. Vegetation #2 has a unique feature near 1.19 micrometers consistent with 

Pinyon Pine, Bigberry Manzanita, and Mormon Tea shrubs spectra. Based on the site 

location, the most probably identification is Mormon Tea or similar vegetation. Soil #4 

has a feature at 2.2 micrometers indicating the presence of clay or mica in the soil; 

additional features expected in these minerals fall in the water vapor absorption regions 

and cannot be confirmed using only the SWIR wavelengths. Soil #6, #8, #10 have 

reflectance minima near 2.15 micrometers, similar to calcite, but lack the strong feature 

near 2.34 micrometers and instead showed a weak shifted feature near 2.30, similar to 

dolomite. Soil #7 has features near 1.22 and 2.30. Chlorite is also likely to be in the soils 

based on features near 2.32 micrometers. When only using the SWIR wavelengths, these 

feature locations can be confused with dry vegetation or synthetic materials. The various 

surface coatings on the road could be differentiated in the SWIR. Soil-Road #2 and #5 

had similar base coatings applied to the surfaces and different additives, which explains 

why two spectrally different classes were discovered. Soil-Road #2, #4, and #5 have 

reflectance minima near 1.68 micrometers, #2 and #4 have additional features near 2.14 

and 2.30 micrometers corresponding with ground measurements collected on the site. 

These features are not present in spectra of the untreated road surfaces (Figure 42).  
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Figure 41.  Image Map of MSS-1 SWIR endmembers using a feasibility ratio 

threshold of 0.04 (Top Left); SWIR endmember reflectance spectra 
extracted using MNF data (Right and Bottom Spectral Plots).   
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Figure 42.  Differences between road (Soil-Road #2 [blue] and Soil-Road #4 

[cyan]) and bare soil (Soil #5 [orange]).   

A few man-made objects and several different types of soils in both the desert 

background and on the road surfaces were detected using the SEBASS (LWIR) data 

(Figure 43). Man-made #1 and #2 were spectrally similar and ended up representing the 

same rooftop on one of the buildings in the scene, even though the n-dimensional 

visualization indicated two different pure endmembers. Soil endmembers #1, #2, and #8 

were similar and have emissivity minima near 11.2 micrometers similar to calcite 

(Hewson, Cudahy, Jones, & Thomas, 2008; Loeppert, 2008). The emissivity minimum 

near 9.2 micrometers, present in most of the soil spectra, indicates the presence of silica 

in the soil. The compositions of soils on the road surfaces were similar to the soils in the 

desert background, making it difficult to entirely separate these endmembers from the 

background pixels using the feasibility ratio approach. At a 0.04 threshold, almost all the 

“Soil-Road” endmembers included background pixels, most evident in Soil-Road # 2 and 

#3. Most of the road soils spectra also had an emissivity minimum near 9.38 

micrometers. Soil-Road #1 had a small feature near 8.08 micrometers, which differed 

from the rest of the spectra in the group. Residual atmospheric ozone (not removed by the 

atmospheric correction model) was also apparent, as evidenced by the emissivity 

minimum at 9.58 micrometers present in all LWIR spectra. 
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Figure 43.  Image Map of SEBASS LWIR endmembers using a feasibility ratio 

threshold of 0.04 (Top Left); LWIR endmember reflectance spectra 
extracted using MNF data (Right and Bottom Spectral Plots).   

The discussions above make it apparent that identification of specific materials 

using the individual VNIR, SWIR, and LWIR wavelength ranges can be difficult. Using 

two or more wavelength regions in combination potentially provides additional 

information that could highlight spectral similarities and differences and enhance spectral 

identification. 
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B. MNF INTEGRATION APPROACH 

The forty-three non-noise MNF bands summarized in Table 5 were combined into 

a single dataset and the PPI algorithm was applied for 30,000 iterations. The purest 

10,000 pixels from the PPI were viewed in n-dimensional space using 43 dimensions. 

Forty-five spectrally unique endmembers were isolated and selected for MTMF 

unmixing. A mask of the LWIR data was applied before the MTMF analysis to include 

only pixels present in both datasets.  

When analyzing the MTMF feasibility ratio scores at the 0.04 ratio threshold for 

the integrated MNF data, very few to zero endmember pixels were extant in the 

classification map (Figure 44). A feasibility ratio of 0.02 was deemed more appropriate 

for the majority of the combined endmembers, and was used for comparison of the 

mapping results for the integrated datasets. The infeasibility scores were higher in the 

integrated analysis because of the increase of spectral content, which resulted in 

increased variability between the background and the endmember pixels. The higher 

variance simplified the extraction process of feasible endmembers; however, the average 

feasibility ratios were lower, and thus a reduced feasibility threshold ratio was required 

for mapping.  

 
Figure 44.  Comparison of ratio threshold at 0.04 (red) and 0.02 (green).  
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The integration of the VNIR, SWIR, and LWIR allowed further discrimination and 

identification of image endmembers. The MNF integration detected man-made materials, 

road surfaces, soils, vegetation types, as well as other unique spectra (Figure 45).   

 
Figure 45.  Image Map of MNF Integration endmembers using a feasibility ratio 

threshold of 0.2.  

In several instances the VNIR and SWIR spectral features differed, while the 

LWIR spectra were similar. Likewise, for some endmembers the VNIR and SWIR 

spectra appeared similar, but spectral differences were seen in the LWIR. For example, 

Man-made #12 and #14 appeared similar in the VNIR, but differed dramatically in the 
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SWIR and LWIR (Figure 46). Man-made #12 has SWIR and LWIR features near 1.70, 

2.15, 2.28, 9.38, and 9.58 micrometers, while Man-made #14 has LWIR features near 

8.08, 9.59, 9.94, and 10.34 micrometers. Man-made #12 and #13 have similar features 

near 2.27 micrometers in the SWIR and the spectra appeared almost identical in the 

LWIR, but differed dramatically in the VNIR. The high reflectance between 0.38 to 0.57 

micrometers in the Man-made #12 spectrum suggested a white material and the peak near 

0.65 micrometers in Man-made #13 indicated a dark red material. Man-made #15 is 

mostly featureless in the VNIR and SWIR only showing a gradual increase in reflectance 

between 0.04 to 0.75 micrometers, but was identical to the LWIR signature of Man-made 

#14. Man-made #12 appeared similar to white fiberglass based on the features near 1.13, 

1.69, 2.15, and 2.27 micrometers. Man-made #13 has a doublet feature near 1.12 and 1.15 

micrometers expected in spectra of plastics. Man-made #14 appeared similar to library 

spectra of painted aluminum with a reflectance minimum near 0.43. Additional LWIR 

library spectra would have provided further evidence for identification, but were 

challenging to find for comparison. 
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Figure 46.  True color image showing classification results of Man-made #12-#15 

(left); VNIR-SWIR reflectance spectra (top right); LWIR emissivity 
spectra (bottom right).  

Spectral feature locations, depths, and shapes differed slightly in the soil and road 

endmembers when analyzing the full spectrum (Figure 47). Soil #6 and #7 were similar 

in the VNIR and SWIR with features near 0.43, 0.94, 1.71, and 2.21 micrometers. The 

gradual rise in reflectance from 0.4 to 0.8 micrometers suggested the presences of iron 

oxide in the soil. The LWIR spectra for Soil #6 and #7 were also similar, but differed in 

emissivity level, as well as small shape difference at the 9.38 micrometer feature. Road 

#3 and #4 differed slightly in all three wavelength regions. Road #3 has features near 

0.99 and 1.18 micrometers and showed a more significant increase in reflectance after the 

1.4 micrometer water vapor band compared to Road #4. Road #4 resembled the soil 

endmembers in the VNIR and SWIR, but with an additional feature near 2.13 

micrometers. The Road #4 spectrum appeared more similar to Road #3 in the LWIR, but 

with a feature at 9.22 micrometers.   
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Figure 47.  Full range comparison of spatially similar soil (Soil #6, Soil #7) and 

road (Road #3, Road #4) endmembers; VNIR-SWIR reflectance 
spectra (left) and LWIR emissivity spectra (right). 

The different road surfaces were differentiated more effectively in the MNF 

Integration compared to the individual wavelength analysis (Figure 48). Road #5 and #6 

appeared similar in the VNIR and SWIR with features near 0.41, 1.71, 2.13, 2.30 

micrometers. Slight differences occurred at 1.16 micrometers for Road #5 and at 0.93 and 

1.14 micrometers for Road #6. The 0.93 and 1.14 micrometers features are consistent 

with atmospheric water vapor. Unfortunately, no HSI LWIR information was obtained 

for the Road #5 endmember because the pixels isolated in the PPI visualization were not 

spatially located in the overlapping coverage area, making it difficult to determine if the 

water vapor features in Road #6 were real or if they were not appropriately corrected by 

the atmospheric model. The pixels representing Road #5 and #6 were most likely 

assigned to different classes because of the nonexistent LWIR data for Road #5. Road #7 

appeared similar in shape and overall reflectance value to the spectra of Road #5 and #6, 

however, Road #7 did not have features near 1.71, 2.13, 2.30 micrometers. Road #8 has 

features near 0.50, 0.92, 1.11 and 2.20 micrometers. The features near the atmospheric 

water vapor regions were smoother and broader compared to Road #6, suggesting the 

features are real. The LWIR spectra for Road #7 and #8 were identical with weak features 

near 8.84, 9.27, 9.59, 10.09, and 11.15 micrometers. The feature near 9.27 micrometers 

suggests that the road surface includes a silica soil mixture.  
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Figure 48.  True color image showing classification results of Road #5 and #6 

(left); VNIR-SWIR reflectance spectra of Road #5-#8 (top right); 
LWIR emissivity spectra of Road #6-8 (bottom right).  

Further analysis of spectral features was accomplished by comparing the image 

spectra for Road #5 and #6 to field measurements (Figure 49). The atmospheric water 

vapor features near 0.93 and 1.14 micrometers were not seen in the field measurement, 

leading to the conclusion that the atmospheric model did not appropriately correct for 

water vapor in the Road #6 spectrum. The LWIR field measurement was an average of 

approximately ten point measurements, which explains the small differences in the 

spectra seen between Road #6 and the field measurement. Key features are seen the 

spectra near 9.38 and 9.58 micrometers. Based on the field measurement an expected 

feature should have been located near 8.01 micrometers.  
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Figure 49.  Spectral comparison of field (black) and image endmember spectra 

(green). 

Fewer vegetation endmembers were detected in the integration of the non-noise 

MNF bands compared to the standard analysis. This may be because the vegetation 

spectra contain fewer features across the full range and are mostly featureless in the 

LWIR. Identification of Vegetation #1 was made by comparison with library spectra of 

sagebrush (Figure 50). Reflectance features were found at 0.68, 0.97, 1.19, 1.72, 2.10 and 

2.30 micrometers in both spectra. In addition to feature locations, the overall depths and 

shapes were similar for the image and library spectra. The difference in overall 

reflectance value is most likely due to variation in collection variables, to include 

bidirectional effects, environment and seasonal differences, collection geometry, and 

field of view. Sagebrush was assumed to be present in the VNIR and SWIR analyses, but 

conclusive identification was not possible. Vegetation #2 is similar to #1, but has a 

reflectance peak near 0.63 micrometers suggesting an orange color, and has a different 

shape between 0.73 and 0.93 micrometers compared to Vegetation #1. No significant 

LWIR data was obtained for either vegetation endmember.  
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Figure 50.  Spectral comparison of sagebrush library spectrum and vegetation 

image endmember spectra.  

C. FULL INTEGRATION APPROACH 

A MNF transformation was applied to the 476 bands in the combined image 

created by layer stacking MSS-1 bands 2-189, 214-283, and 318-413 with SEBASS 

bands 4-125. A mask was applied to the data to include only pixels in both the MSS-1 

and the SEBASS data. A color image of MNF bands 1, 2, and 3 showed expected 

contrast throughout the scene. Specifically, the variations in road surfaces were apparent 

in the initial MNF bands (Figure 51). The MNF results of the integrated data contained 

less noise and fewer sensor artifacts compared to any of the individual MNF images 

because the artifact signals were overpowered by the signals of the surface materials. 

There was less user subjectivity in this approach because all the bands were included in 

the MNF transform, reducing the likelihood of omitted spectral information.  
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Figure 51.   Linear MNF transform results of full integration image displaying 

MNF bands 1, 2, 3 as RGB. 

Of the transformed 476 input bands, the first twenty-six MNF bands contained 

high information content and low noise. The non-linear focal plane response of the 

SEBASS data was still apparent in later MNF bands even when using the corrected data, 

suggesting the sensor artifacts were not entirely removed from the radiance data. A PPI 

algorithm was applied to the twenty-six non-noise MNF bands for 30,000 iterations and 

using a threshold of 2.5. The response leveled out near the end of the 30,000 iterations. 

The 10,000 purest pixels from the PPI were visualized using twenty-six dimensions in n-

dimensional space. Thirty-six endmembers were manually selected and used for MTMF 

analysis. The feasibility ratios were calculated, and for consistency purposes and 

comparison with the MNF Integrated results, a 0.02 ratio threshold was applied to the 
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Full Integration classification map. The classification map result was a similar to the 

MNF Integration, which was expected, due to the fact that MNF is a linear transformation 

(Green et al., 1988). Several man-made and natural materials were detected using this 

integration technique (Figure 52). 

 
Figure 52.   Image Map of MNF Integration endmembers using a feasibility ratio 

threshold of 0.2. 

Man-made #10 and #13 have reflectance features in the VNIR and SWIR near 

0.47, 0.93, 1.20, 1.54, and 1.70 (Figure 53). The location and shape of these features is 

consistent with opaque plastic. A library spectrum of white opaque high density 

polyethylene plastic was used for comparison against the man-made endmember spectra 
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(Figure 53). Nylon spectra also exhibit similar features, confirming the identification of a 

plastic polymer endmember. The 0.47 micrometer peak was more prominent in Man-

made #13 and indicated the material of interest is blue in color. The shape of the LWIR 

spectra differ because Man-made #10 has additional features near 8.72 and a broad 

shallow feature ranging from 8.78 to 9.48 micrometers.   

 
Figure 53.  Spectral comparison of assumed plastic spectra; VNIR-SWIR 

reflectance spectra (left); LWIR emissivity spectra (right). 

Iron oxides, assumed to be a mixture of goethite, were found in multiple man-

made endmembers (Figure 54). Man-made #8 and #14 have broad features from 0.60 to 

0.76 and 0.76 to near 1.20 micrometers commonly seen in iron oxide spectra. Both 

spectra have a peak near 0.60 micrometers suggesting the material is red. Man-made #14, 

as well as Man-made #1 and #7, appear to contain plastic based on the features at 0.93, 

1.12, 1.70, and 2.30 micrometers. Man-made #7 has a feature at 0.43 and a distinctive 

peak at 0.56 micrometers suggesting the presence of a green painted material (similar to 

green painted aluminum in spectral library). The LWIR spectra are similar in shape, but 

Man-made #8 has deeper and smother features from 9.0 to 9.5 micrometers and Man-

made #14 has shallow features from 8.0 to 9.5 micrometers.  
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Figure 54.  Spectral comparison of assumed plastic spectra; VNIR-SWIR 

reflectance spectra (left); LWIR emissivity spectra (right). 

The majority of the predicted soil endmembers isolated in the Full Integrated 

method were similar in the VNIR and SWIR wavelength regions and differed most in the 

LWIR (Figure 55). Soil #6, #7, #8, #9, and #10 all have a gradual rise in reflectance 

between 0.40 to near 0.75 micrometers, suggesting the presence of iron oxide. The 

majority of the soils are assumed to contain a silica mixture based on the subtle LWIR 

features near 8.3 and 9.2 micrometers. The ozone feature near 9.60 micrometers seen in 

all the LWIR spectra may overpower and change the mineral features.   

 
Figure 55.  Spectral comparison of soil spectra; VNIR-SWIR reflectance spectra 

(left); LWIR emissivity spectra (right). 
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One of the issues emphasized in this technique was the sensitivity of the 

geocorrections and registration of the MSS-1 and SEBASS data. The registration errors 

were more pronounced in this analysis because of the increase number of bands and 

variance. The slight misalignment of pixels returned multiple classes because different 

materials were detected in the different wavelength regions. For example, the VNIR and 

SWIR detected a vegetation signature, while the LWIR detected a soil sample. This was 

specifically seen near the edges of road surfaces (Figure 56). Soil #10, Road #2, and 

Road #3 appear similar in shape in the VNIR-SWIR and share a common feature near 

1.70 micrometers. Soil #15 has unique features at 1.12 and 2.30 micrometers and shares a 

similar feature with Road #2 at 2.14 micrometers. The LWIR spectra are all similar with 

varying levels of emissivity at 9.38 and 9.59 micrometers. Road #3 has the weakest 

emissivity minima, with broad shallow features from 8 to 9 micrometers and from 9 to 10 

micrometers. Soil #15 shows a broad, smooth emissivity minimum from 9 to 9.4 

micrometers. The overlapping class assignment on the edges of the road resulted from 

misalignment of MSS-1 and SEBASS pixels. 
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Figure 56.  True color image showing classification results soil and road 
endmembers (left); VNIR-SWIR reflectance spectra (top right); LWIR 

emissivity spectra (bottom right).  

Fewer vegetation classes were detected and isolated in the Full Integration. This is 

likely caused by the lack of vegetation features in the LWIR. The two assumed 

vegetation classes have spectral features near 0.68 micrometers, but the rise of the IR 

plateau is not as steep or as long as expected for healthy vegetation (Figure 57). The 

additional features in the VNIR and SWIR wavelengths at 0.96, 1.18, 1.76, 2.10, and 2.30 

are consistent with several types of dry vegetation. The features in the LWIR at 8.99, 

9.38, 9.59, and 10.34 micrometers are more similar to soil endmembers found in the 

previous analyses.     
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Figure 57.  Spectral comparison of assumed vegetation endmember spectra; 

VNIR-SWIR reflectance spectra (left); LWIR emissivity spectra 
(right). 

D. COMPARISON AND DISCUSSION OF IMAGE MAP RESULTS 

The image map results from the standard hyperspectral analysis and integration 

methods were compared to determine how each phenomenology detected the man-made 

and natural endmembers within the scene (Figure 58). The individual MTMF feasibility 

ratio classifications maps for the VNIR, SWIR, and LWIR are located in the top and 

middle rows, and the MNF Integration and Full Integration results are located on the 

bottom row. Five spatial locations were selected across the images to provide direct 

comparison; descriptions are in Table 7.   

Location Description 

A Road surface (top) 

B Bare soil areas with man-made materials 

C Road surface (center) 

D Road surface (bottom) 

E Desert background 

Table 7.   Description of comparison locations  
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Figure 58.  Comparison of MTMF feasibility ratio classification maps; VNIR (top 

left), SWIR (top right), LWIR (middle center); MNF Integration 
(bottom left), Full Integration (bottom right).  
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1. Comparison 

Note that similar materials in each classification were assigned similar colors for 

consistency; however, this makes it challenging to see some of the individual 

endmembers at times. Also note that class color assignments are variable between the 

images, specifically in differentiation between soil and road surfaces, due to similarity of 

composition and locations. These concerns are discussed in more detail for each location.  

Location (A) was mapped clearly in the VNIR and the SWIR analyses, as soil and 

road, respectively. The VNIR analysis did not include road classifications because the 

wavelengths lacked significant soil features and could not clearly differentiate between 

the bare soil and road surfaces. The LWIR and both integrated analyses partially mapped 

the area with multiple classes. Based on ground truth knowledge, the multiple class 

assignment in the LWIR analysis is artificial and due to inclusion of excess background 

pixels. The MNF analysis mapped only the area above the center road and the Full 

analysis mapped the area above the center road and the area farthest to the right along the 

road. The lack of consistent mapping in the integration is due to the influence of the 

LWIR data.  

Location (B) emphasizes the man-made materials in the scene, consisting of 

buildings and large equipment. Man-made materials were detected in all analyses. Small 

deviations in class assignment are most clear in the VNIR, MNF, and Full analyses 

because these analyses included VNIR wavelengths, which are more sensitive to physical 

color and iron oxide content compared to the SWIR and LWIR wavelengths. Soil 

endmembers were most clearly located in the VNIR, SWIR, and Full analyses. A variety 

of soils, mixed with road classes, were detected in the LWIR. The misclassification 

between soil and road was common throughout the analyses because the class assignment 

was subjective. Few soil pixels were included in the MNF Integration image at the 

chosen feasibility ratio.       

Location (C) representing the main road located in the center of the coverage area 

was detected in the SWIR, LWIR, MNF, and Full analyses. The LWIR analysis assigned 

the entire road to one class, while the SWIR, MNF, and Full analyses were able to 
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differentiate between the sections containing various additives to the bare soil. There are 

some artificial classes seen along this road in the Full analysis caused by coregistration 

errors.      

Location (D) includes the intersection of the center road and a side road located 

near the bottom of the image. The soil and road variations were mapped in the analyses. 

Both the VNIR and SWIR classified the intersection, composed of bright soil, and the 

extending road as the same endmember. The extending road was mostly truncated in the 

analyses using only the LWIR and overlapping coverage area. The LWIR and Full 

analyses detected the intersection, but did not detect the road. The MNF analysis 

uniquely differentiated the soil surface intersection and the road surface.  

Location (E) was selected to highlight the desert background consisting of 

vegetation and soil. Vegetation was most effectively detected in the VNIR, SWIR, and 

MNF analyses. Vegetation was not adequately mapped in the LWIR and Full analyses. 

Background soil pixels were best mapped in the VNIR, SWIR, and Full analyses. The 

LWIR also mapped a variety of soil types, but the visual analysis of the LWIR was 

misleading because the road endmembers in the middle of the image were unable to be 

fully isolated from the background pixels at the chosen feasibility ratio threshold.       

2. Discussion  

The VNIR analysis mapped the locations of man-made and natural endmembers 

within the desert scene. Man-made materials were detected based on physical color 

differences exhibited in the spectra and interpreted iron oxide content, but were smaller in 

size compared to the desert background, and therefore not as clearly seen on the map. 

The soil spectra generally lacked spectral features in the VNIR region, making 

identification difficult. Spatial context was used, however, to help determine that they 

were in fact soils. The vegetation spectra had prominent features in the VNIR, enabling 

detection and identification of several vegetation types.  

The individual analysis of the SWIR region achieved detection of similar man-

made and natural materials, but based on physiochemical makeup of the materials. Man-

made materials, specifically plastics, were located and displayed on the image map. 
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Different types of soil materials were spatially and spectrally detected. The spectra from 

the SWIR wavelengths indicated silica and clay were present in the soil mixtures. The 

majority of the road surfaces were differentiated from the background and bare soil, 

although not all endmembers were mapped at the chosen feasibility ratio. Fewer 

vegetation endmembers were detected compared to the VNIR analysis, but the SWIR 

spectra provided evidence of dry vegetation. Class assignment was difficult using only 

the SWIR wavelength. Ambiguities in this spectral region caused some confusion 

between soils, dry vegetation, and synthetic materials.  

The individual LWIR analysis detected and mapped various man-made and 

natural endmembers, some different from the VNIR and SWIR analyses. Spectral 

identification was difficult due to residual atmospheric effects present in all LWIR 

spectra and lack of comprehensive library spectra for comparison. No vegetation 

endmembers were detected in the LWIR due to the lack of features in this range. Broad 

emissivity features seen near 8.2 to 9.5 micrometers in the soil and road endmember 

spectra indicated that many of the surfaces contained silica. The main road surfaces were 

differentiated from the bare soils in the desert background. Inclusion of background 

pixels was most prevalent in the LWIR image map. This suggests that the selected 

feasibility ratio threshold, chosen for consistency with the standard analysis, could have 

been improved.  

The MNF and Full Integration approaches detected man-made and natural 

endmembers similar to those found by the standard analyses. Man-made materials such 

as metal and plastics were detected and partially identified by the integrated analyses 

based on features seen through the VNIR, SWIR, and LWIR spectral regions. The 

variations in road surface materials were best differentiated (spatially and spectrally) in 

the integrated analyses, seen in the color differences along the center road. Although the 

road surfaces contained various additives mixed with the bare soil, it was difficult to 

separately define the soil and road classes. Fewer vegetation endmembers were detected 

utilizing the integrated approaches, again due to the lack of features across the full range, 

specifically the LWIR. Identification was achieved for the vegetation discovered in MNF 
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Integration analysis using spectral features found in the VNIR and the SWIR wavelength 

regions.  

The Full Integration results were similar to the MNF Integration, as expected 

because MNF is a linear transform. Man-made materials were detected based on 

electronic and vibrational modes of the physiochemical makeup of the materials. 

Consistent identification of metals and plastics was obtained, mainly aluminum, 

fiberglass, and other synthetic materials. Identification was achieved using the spectral 

features across all three wavelength ranges. Soil and road variations were detected 

spatially and spectrally. The most variability was seen along the center road in the Full 

Integration compared to all other analysis methods. The majority of the unique class 

assignments appear to be real based on ground truth knowledge, but some were artificial 

caused by the misalignment of the MSS-1 and SEBASS pixels. A few possible vegetation 

endmembers were detected, but spatial/spectral browsing revealed that many of the 

corresponding LWIR spectra were not consistent with expected vegetation features. The 

features in the LWIR spectra suggest the predicted vegetation spectra were a mixture of 

vegetation and soil.   

Both integrated methods produced classification maps with endmembers similar 

to the results obtained with the baseline analysis. Additional spatial and spectral 

variations of man-made, soil, and road endmembers were detected in the integrated 

approaches compared to the standard analysis. The integrated analyses also benefited 

from reduced computation and data volume making the procedure more effective and the 

results straight-forward. Full range analysis of spectral features provided more 

information for spectral identification compared to separate use of the individual 

wavelength regions.     
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V. SUMMARY AND CONCLUSIONS  

Material maps were created utilizing hyperspectral remote sensing data and 

analyses to explore the benefits of integrated full-range spectral analysis of the VNIR, 

SWIR, and LWIR wavelength regions. MSS-1 data were used for the VNIR and SWIR 

regions and SEBASS data were used for the LWIR region. Before beginning 

hyperspectral analysis, sensor artifacts were removed from both datasets. Model-based 

atmospheric correction algorithms were separately applied to the MSS-1 and SEBASS 

data. The MSS-1 data were geocorrected and the SEBASS data were resampled and 

registered to the MSS-1 data. Standard hyperspectral analysis consisting of spectral data 

reduction, spatial data reduction, n-dimensional visualization to extract possible spectral 

endmembers, identification of spectral endmembers using expert systems and spectral 

libraries, and partial unmixing and mapping using the MTMF algorithm was carried out 

individually on the VNIR, SWIR, and LWIR wavelength regions. After this baseline 

analysis was created, two integration methods were examined. The first integration 

method, MNF Integration, consisted of combining all non-noise MNF bands from 

previous analysis of the VNIR, SWIR, and LWIR. The integration occurred during the 

spatial reduction process. The second integration method, Full Integration, combined the 

reflectance bands from the VNIR and SWIR and the emissivity bands from the LWIR, 

and integration was achieved during the spectral reduction process. In both cases, 

integration was possible because the images were geocorrected, coregistered, and spatial 

dimensions were identical. A mask was applied before integration to include only pixels 

represented in both scenes. After the specific integration step, the standard analysis 

approaches were followed and a single classification map was created for each 

integration method.  

The results from the standard hyperspectral analysis utilizing separate spectral 

regions provided detection of man-made and natural endmembers. The VNIR analysis 

was most effective in locating and differentiating between vegetation and soils in the 

desert background. Specifically, the 0.68 micrometer feature in healthy vegetation was 

most prevalent in VNIR. The reflectance peaks between 0.4 and 0.6 micrometers 
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established color of selected materials. The SWIR analysis excelled at differentiating the 

types of soils within the scene and identifying potential minerals present in the soils. 

Based on the spectral features, it can be assumed the soils are composed of phyllosilicates 

(2.2 to 2.3 micrometers), oxides (0.45 to 0.6 micrometers), and carbonates (2.3 to 2.34 

micrometers). The LWIR analysis detected the differences between the soil background 

and the road surfaces. The emissivity minimum present in most of the soil spectra near 

11.2 micrometers is assumed to represent calcite and the feature near 9.2 micrometers 

indicates the presences of silica in the soil. In all three cases, using only an individual 

wavelength region to analyze the scene made positive and conclusive endmember 

identification difficult.  

The full spectral range integration methods provided more efficient analysis in a 

consolidated classification map. Identification improved when library spectra were 

available for comparison, because materials with features in multiple wavelength regions 

could be analyzed. For example, when examining soil endmembers, the VNIR 

wavelengths suggested the presence of iron oxide, the SWIR wavelengths specified the 

existence of carbonates, and the LWIR wavelengths gave insight into silicate material in 

the soil. The MNF Integration dataset detected man-made and natural materials similar to 

those found in the standard analysis. The inclusion of multiple wavelength regions 

allowed confirmation of spectral features across the full range. The results for the Full 

Integration were similar to the MNF Integration approach, as expected based on the fact 

that MNF is a linear transformation. Some exceptions occurred within the subjective 

endmember selection and artificial class assignments due to misalignment of MSS-1 and 

SEBASS pixels. Vegetation endmembers were more difficult to isolate in the integrated 

analysis due to the lack of specific features across the entire spectrum, notably in the 

LWIR.  

Results would have been improved by the removal of residual atmospheric and 

sensor artifacts, as well as eliminating registration errors. Model-based correction 

algorithms provide spectra that are more similar to ground truth than the corrected spectra 

from most empirical methods, but are not always consistent with reality. The inconsistent 

results from the atmospheric correction models often differentiated similar pixels into 
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more than one class. The atmospheric correction was applied to the data before the 

standard hyperspectral or integrated analysis, so the issues were apparent in the results for 

both the control and the experiment. Inclusion of the full range of spectral data helped 

discriminate between the existence of material and atmospheric features. The MSS-1 and 

the SEBASS data contained sensor artifacts, which affected the isolation and class 

assignments of the spectral endmembers. Even though algorithms were implemented to 

remove the artifacts, some pixels remained influenced. The slight misalignment of the 

small MSS-1 and SEBASS pixels resulted in artificial spectral endmembers, where a 

spatial target was represented by multiple classes. This was mostly seen near the edges of 

the roads, and was more apparent in the Full Integration results than any of the other 

classification maps. Although a rural scene was used for this analysis and was not 

expected to dramatically change spectrally over time, the month time gap between the 

MSS-1 and SEBASS collects may have also contributed to incorrect pixel identification 

and class assignments. Artifacts due to geometric misalignments would have been 

minimized if a single platform with multiple sensors was used to simultaneously collect 

the spectral measurements.  

Benefits of integrated analysis across the full wavelength range from VNIR 

through SWIR and LWIR include independence of the data from phenomenology units, 

because the data were transformed into a new data space for analysis.  When combining 

at the spatial data reduction or the spectral data reduction step, the integrated 

classification maps were representative of the man-made and natural elements in the 

scene. The results were similar to each other and to the results obtained from the standard 

hyperspectral analysis. Integrated analysis was more efficient, resulting in reduced 

computation and data volumes compared to individually analyzing each wavelength 

region. Both integrated methods enabled straight-forward and effective identification, 

characterization, and mapping of the scene because higher variability existed between the 

endmembers and background. Material identification was more conclusive when 

analyzing across the full spectrum. 
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VI. RECOMMENDATIONS FOR FUTURE WORK 

While this research has validated the basic integrated analysis approaches, 

additional work is required to quantify improvements resulting from the integrated 

methods. Future work should include additional experimentation between the MNF and 

Full integration methods to quantify results. This would require a well-characterized site 

and additional, detailed ground truth. The inclusion of more field measurements would 

assist in the removal of atmospheric influences, specifically water vapor and ozone, and 

improve identification and mapping. Additional geologic ground truth of the scene with 

regards to reflectance and emission properties of the surface materials would also help 

confirm spectral and spatial identification of image endmembers. Increased availability of 

LWIR library spectra would be valuable in this analysis and should provide further 

evidence for identification. Increasing the amount of overlapping coverage in the datasets 

would have also been helpful for conclusive analysis. In future work, all analysis should 

be limited to the smallest coverage area to reduce confusion of spectral endmember 

assignments. The decision of assigning similar colors to similar materials should be 

reconsidered in future work because the visualization and differentiation of endmembers 

were challenging to see on the image maps. Full-range spectral analysis may also be 

appropriate in improving computation and reducing data volumes for other applications 

within remote sensing field. The benefits of integrated approaches could aid in 

operationally identifying specific targets of interest with known features across the EM 

spectrum. Additional benefits may be revealed if utilizing integrated analysis on urban 

scenes containing higher variability of materials. As the demand for development and 

operation of single platforms with multiple sensors increases, integrated analysis will 

become more prevalent and provide an efficient means of analysis. If the VNIR, SWIR, 

and LWIR data were acquired simultaneously, coregistration of the different 

phenomenologies and temporal differences in the data would be minimized. 

Simultaneously obtained data would ease and potentially reduce the analysis process, as 

well as reduce the number of artificial class assignments and error.  
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