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Abstract. This paper presents an action selection technique for reinforcement learning in stationary Markovian
environments. This technique may be used in direct algorithms such as Q-learning, or in indirect algorithms such as
adaptive dynamic programming. It is based on two principles. The first is to define a local measure of the uncertainty
using the theory of bandit problems. We show that such a measure suffers from several drawbacks. In particular, a
direct application of it leads to algorithms of low quality that can be easily misled by particular configurations of the
environment. The second basic principle was introduced to eliminate this drawback. It consists of assimilating the
local measures of uncertainty to rewards, and back-propagating them with the dynamic programming or temporal
difference mechanisms. This allows reproducing global-scale reasoning about the uncertainty, using only local
measures of it. Numerical simulations clearly show the efficiency of these propositions.
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1. Introduction

Although it recently proved to be an alternative to classical dynamic programming (DP)
based techniques for high dimensional problems, reinforcement learning (RL) is primar-
ily concerned with the adaptive optimization of imperfectly modeled dynamic decision
problems (Sutton, Barto, & Williams, 1991; Sutton, 1992; Mahadevan & Kaelbling, 1996;
Kaelbling, 1996; Kaelbling, Littman, & Moore, 1996). Classically, the definition of a rein-
forcement algorithm supposes the choice of two basic components:

• a technique for calculating and storing the estimated value of each state-action pair,
• a rule for selecting actions.

The problem of action selection is not trivial, since always choosing the estimated best
actions often leads the learner to converge on a sub-optimal policy (Kumar, 1985). The
environment must be explored by sometimes performing estimated non-optimal actions.
There is thus a constant dilemma between two contradictory objectives:
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• exploitation(of past experience), that is, maximization of expected reward, knowing that
this cannot be done with certainty because one only possess estimates of some variables;
• explorationof the environment in order to make estimates more accurate or timely, by

the choice of the least known actions.

This paper proposes a technique to deal with the exploration vs. exploitation dilemma during
the adaptive optimization of stationary Markov decision processes (MDPs). This problem
already has been addressed in many adaptive control (Martin, 1967; Kumar & Becker,
1982; Kumar & Lin, 1982; Sato, Abe, & Takeda, 1985, 1988, 1990) and RL (Thrun, 1992a;
Kaelbling, 1993, chap. 9; Fiechter, 1994) studies. However, there seems to be a lack of
efficient solutions for multi-state decision models as MDPs (Kaelbling, 1996), as opposed
to bandit problems that represent the single-state case.

Our technique may be implemented in direct (model-free) algorithms such as Watkins’
Q-learning (1989), and in indirect (model-based) algorithms such as adaptive dynamic
programming (Barto, Bradtke, & Singh, 1991, 1995). It is based on two principles:

1. to define local measures of the uncertainty in the form ofexploration bonuses, using the
theory of bandit problems;

2. to add these bonuses to reward and back-propagate them with the dynamic programming
(DP) or temporal difference (TD) mechanisms.

The use of local measures of uncertainty is convenient, but it is dangerous. Without prudence,
algorithms can be misled by some particular structures of the environment. This is what
happens in most current applications (Thrun, 1992a; Kaelbling, 1993, chap. 9). The back-
propagation of exploration bonuses is an effective way to avoid this drawback. It has
already been used by Sutton (1990) to deal with non-stationarity in an indirect algorithm,
and mentioned by Thrun (1992a, 1992b). Here we adapt it to the stationary Markovian case,
and to algorithms which are exclusively direct, such as Q-learning.

The paper is organized as follows: Section 2 sets up the framework of MDPs with
unknown transition probabilities. It describes briefly the most popular adaptive algorithms
for these problems, and the origins of the exploration versus exploitation dilemma.

Section 3 presents the first main feature of our technique: the local measures of uncertainty
used for each state-action pair, based on the theory of bandit problems. We first describe pre-
vious results on bandit problems, and then propose a unifying notation for several Bayesian
and non-Bayesian approaches. Then we consider using these results to derive solutions for
multi-state MDPs with unknown probabilities. We stress several drawbacks inherent to this
approach, and show that even if it seems to be a reasonable solution, such an approach can-
not be supported by exact mathematical foundations. In the end of Section 3, we describe
a first series of algorithms, and show what kind of environment may mislead them.

So far, we have done nothing more than generalize, extend and analyze a previous
technique described by Kaelbling (1993). Section 4 presents the second main features of
our technique, and the main original contribution of this paper. Here, we explain that adding
the exploration bonuses defined previously to rewards, and back-propagating them with a
DP or TD mechanism, allows us to overcome the drawbacks of the previous algorithms.
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Using this idea, we propose a second series of algorithms that should not be misled by
the environments in which the first fail. In the end of the section, we try to generalize this
technique to a wider class of algorithms.

In Section 5, we demonstrate the efficiency of our algorithms using extensive numerical
simulations.

2. The exploration vs. exploitation dilemma: The stationary Markovian case

A key assumption underlying much reinforcement learning research is that the interaction
between an agent and its environment may be modeled as a Markov decision process (MDP)
(Howard, 1960; Putterman, 1994).

2.1. Markov decision processes

A finite MDP Sis defined asS= (X, A, P, R, γ )whereX = {xi } is the (finite) state space,
A = {ak} is the (finite) action (or decision) space,1 P = [ pk

ij ] is the transition matrix:

pk
i j

def= Pr(x(t + 1) = xj | x(t) = xi ,a(t) = ak) (∀ t),

R= [r k
i j ] is the reward matrix:r k

i j is the (deterministic) reward received by the system each
time that inxi it chooses actionak and then goes toxj , andγ ∈ [0, 1) is the discount factor:
one unit of reward received at timet + 1 is worthγ unit of reward received at timet . S is
stationary because the transition probabilities are the same for all timet .

The strategy that maximizes the expected discounted reward

E

( ∞∑
t=0

γ t · r (t)
)
= lim

T→∞
E

(
T∑

t=0

γ t · r (t)
)
, (1)

is a mappingµ∗ : X→ A defined by solving Bellman’s fundamental equation

υi = max
k

[
qk

i + γ
∑

j

pk
i j · υ j

]
(∀ i ) (2)

or its equivalent form

υk
i = qk

i + γ
∑

j

pk
i j ·max

l
υ l

j (∀ (i, k)), (3)

where

qk
i

def=
∑

j

pk
i j · r k

i j (∀ (i, k)) (4)

is the expected immediate reward if the systems executes actionak in statexi ; υi is the
expected discounted reward (1) if the system starts inxi and always follows an optimal
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policy; andυk
i is the expected discounted reward (1) if the systems starts inxi , executes

actionak first, and then always follows an optimal policy. Then we have

µ∗(xi ) = arg max
k

[
qk

i + γ
∑

j

pk
i j · υ j

]
= arg max

k
υk

i (∀ i ). (5)

Bellman’s system (3) may be solved by asynchronous DP that calculates successive
approximations ofυk

i by iterating

Vk
i ← qk

i + γ
∑

j

pk
i j ·max

l
Vl

j , (6)

for different (i, k). Such an operation is called a ‘back-up’ of the state-action pair(i, k).
Provided that each(i, k) is backed up an infinite number of times, but whatever the order
in which they are selected, we haveVk

i converges toυk
i for all (i, k) (see e.g., Bertsekas,

1982; Puterman, 1994).

2.2. Adaptive optimization

RL is well suited to situations where there is significant uncertainty about some parameters
of the model. In the case of MDPs, one possibility is that the transition matrixP, and
sometimes the reward matrixR, are initially unknown.2

The typical solution proposed by (non-Bayesian) adaptive optimal control is the algorithm
called adaptive DP (ADP). First, it tries each action once in each state, so that the maximum
likelihood estimate (MLE) ofP, P̃ = [ p̃k

i j ], is defined by

p̃k
i j =

nk
i j

nk
i

(∀ (i, j, k)), (7)

wherenk
i j is the number of transitions from statexi to statexj due to actionak, observed

since time 0, andnk
i =

∑
j nk

i j is the number of executions ofak in xi since time 0. Note
that, at this point, the rewardr k

i j is known with certainty for all triple(i, j, k) such that
p̃k

i j > 0. The MLE is then used to determine the certainty-equivalent optimal policy, i.e.,
the policy that would be optimal if̃P were the real value of the unknown parameterP. This
is done by DP that executes back-ups according to

Vk
i ← q̃k

i + γ
∑

j

p̃k
i j ·max

l
Vl

j , (8)

where

q̃k
i

def=
∑

j

p̃k
i j · r k

i j (9)

is the estimated value ofqk
i , for all (i, k). Provided that each action is tried in each state an

infinite number of times, the MLE converges to the true value of the unknown parameter,
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thus ensuring that the policy calculated by successive applications of Eq. (8) converges to
the optimal policy (cf., e.g., Barto, Bradtke, & Singh, 1991, 1995).

ADP is called an indirect algorithm because it uses a “model”P̃ of the problem, and
calculates the estimated optimal policy starting from this estimate in the same way as in the
non-adaptive case. On the contrary, RL also proposes direct algorithms that estimate the
value of the different state-action pairs without an explicit model of the unknown parameters.

The typical direct algorithm for MDP with unknown transition probabilities and rewards is
Watkins’ Q-learning (QL) (1989). This algorithm uses a set of Q-values{Qk

i } to approximate
the solutionsυk

i of Bellman’s equation (3). Each time that the execution of actionak in
statexi leads to statexj (we say that the transition(i, j, k) occurs or is observed), the value
Qk

i is updated by the amount

1Qk
i = α

(
nk

i

)[
r k

i j + γ ·max
l

Ql
j − Qk

i

]
, (10)

whereα(nk
i )∈ (0, 1) is the learning rate. Watkins and Dayan (1992) and Tsitsiklis (1994)

proved that if each action is tried an infinite number of times in each state, and if the learning
rateα(n) satisfies

∞∑
n=0

α(n) = +∞ and
∞∑

n=0

α(n)2 < +∞, (11)

then, with probability 1,Qk
i → υk

i as time tends to infinity for all(i, k).

2.3. Exploration vs. exploration dilemma

We see that the convergence to the optimal policy is ensured for both adaptive algorithms
(ADP and QL), but it requires that each action be tried infinitely often in each state. In
practice, this is impossible to achieve because we cannot wait an infinite time before start-
ing the optimization. Therefore, at each timet , we have to decide between continuing to
sample to ensure convergence (exploration), and following the estimated optimal policy
(exploitation).

There have been many propositions for dealing with this problem (Martin, 1967; Sato,
Abe, & Takeda, 1985, 1988, 1990; Thrun, 1992a; Kaelbling, 1993; Fiechter, 1994). An
intuitive way is to measure the uncertainty attached to each action, and to use these measures
and the actions’ estimated quality to take decisions.

3. Local measures of uncertainty based on the theory of bandit problems

As other researchers experimented previously (e.g., Kaelbling, 1993), we use the theory of
bandit problems to define measures of the uncertainty attached to each state-action pair. The
origin of this approach is an attempt to distribute the adaptive optimization by considering
an independent bandit problem for each state of the original problem. In this work, we use
results pertaining to normal bandit problems.
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3.1. Normal bandit problems

3.1.1. Definition. The exploration vs. exploitation dilemma is very often associated with
the K -armed bandit problem where it appears in its simplest form (Kaelbling, Littman, &
Moore, 1996). To understand this problem (and the origins of its name), we must imagine
several slot-machines (or “one-armed-bandits”) side-by-side. A single play of a machine
costs the same price whatever the machine. Therefore, everything happens as if there was
a single machine with several levers (or “arms”), the player choosing one of them after
inserting a coin. We speak then ofK -armed bandits.

Each arm delivers a random reward. Because there are initiallyK independent machines,
the rewards delivered by different arms are independent random variables (this is a funda-
mental hypothesis). Some arms are better than others (i.e., give higher expected rewards),
but usually we do not know which is the best.

Except if the arm statistics are completely known (no exploration needed), or if they are
completely unknown (no exploitation possible), we face the exploration vs. exploitation
dilemma when we play a multi-armed bandit. Exploitation consists of choosing the esti-
mated best arm, and exploration is the choice of another arm, for the sake of checking that
estimations are correct, or for making them more accurate.

Each bandit problem is a special case characterized by what is known of the probability
distributions on the rewards delivered by each arm. If one knows these laws sufficiently
well—which supposes a sufficient knowledge of the uncertainty attached to them—a direct
calculation of the solution (according to some optimality criterion) is possible. The Berry
and Fristedt book (1985) provides an extensive bibliography on the subject.

Hereafter, we will use results developed for bandit problems where each armk delivers
the random rewardρk that follows a normal (Laplace-Gauss) distribution N(mk, σk) with
meanmk and varianceσ 2

k . We will consider two cases:

• mk unknown andσ 2
k known, for allk,

• mk andσ 2
k are unknown, for allk.

3.1.2. Interval estimation. A non-Bayesian solution to this problem was proposed by
Kaelbling (1993). This algorithm, called ‘Interval Estimation’ (IE), consists in always
choosing the arm that maximizes the upper-boundubk of a 100(1−θ)% confidence interval
of ρk, for some confidence coefficientθ ∈ (0, 1).3 We recall thatI k

θ is a 100(1− θ)%
confidence interval ofρk if and only if

Pr
(
mk ∈ I k

θ

) = 1− θ. (12)

It can be demonstrated quite easily that, ifρk follows a normal distribution with unknown
meanmk and known varianceσ 2

k , then we have

ubk = ρ̄k + σk
zθ/2√

nk
(nk ≥ 1) (13)

where

ρ̄k
def=
∑
ρk

nk
(nk ≥ 1) (14)
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is the sample mean ofnk observations ofρk, andzθ/2 is the upper 100(θ/2)% point of the
unit normal distributions, i.e., the valuez> 0 such that Pr(N(0, 1) < z) = 1− θ/2.

Another basic result of statistics is that if both the mean and variance ofρk are unknown,
then

ubk = ρ̄k + sk

tnk−1
θ/2√

nk
(nk ≥ 2) (15)

where

sk
def=
√∑

(ρk − ρ̄k)2

nk − 1
=
√

nk
∑
ρ2

k − (
∑
ρk)2

nk(nk − 1)
(nk ≥ 2) (16)

is the sample standard deviation ofnk observations ofρk, andtnk−1
θ/2 is Student’st-function

at confidence levelθ/2 and with(nk − 1) degrees of freedom.
In practice, IE first tries each arm once if the variances are known, and twice otherwise.

Then, it uses Eq. (13) or (15) to calculate the upper boundubk associated with each arm.
The solution is then to choose, at each timet , an arm that maximizesubk, while updating
this value each time that a new observation is available. The values ofzθ/2 in Eq. (13) and
of tnk−1

θ/2 in Eq. (15) are obtained by consulting tables available in any general statistics book
(e.g., Larsen & Marx, 1986; Snedecor & Cochran, 1989).

3.1.3. Gittins’ indices. The Bayesian solution to bandit problems is always associated
with powerful mathematical tools known as Gittins’ indices (or dynamic allocation indices)
(Gittins, 1989). The use of Gittins’ indices spreads beyond the scope of bandit problems,
but bandit problems constitute their primary field of application.

Bayesian adaptive control aims at maximizing the expected discounted reward

E

( ∞∑
t=0

gt · ρ(t)
)
, (17)

whereρ(t) is the reward received at timet (which only depends on the arm chosen at this
time), andg∈ [0, 1) is a discount factor.4 The expectation in this equation is calculated
relative not only to the stochastic behavior of the model, but also to a certain probability
distribution on the unknown parameters (the initial belief). In this framework, the Gittins’
index is a valueνk attached to each armk, and such that it is always optimal (with respect
to (17)) to choose an arm that maximizesνk.

According to Gittins (1989, Sections 7.2 and 7.3):

• if ρk follows N(mk, σk) with meanmk unknown and uniformly distributed over the real
line, and known varianceσ 2

k , then

νk = ρ̄k + σk · νg(0, nk)
def= νg(ρ̄k, nk) (nk ≥ 1), (18)
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whereρ̄k is defined as in Eq. (14) andνg(0, n) ≥ 0 is the index of a normal arm with
unknown and uniformly distributed mean, with variance known and equal to 1, and after
n observations with sample mean 0 (i.e., the value that the index should have ifρ̄k = 0
andσk = 1);
• if both the mean and variance ofρk are unknown and uniformly distributed over the real

line, then

νk = ρ̄k + sk · νg(0, 1, nk)
def= νg(ρ̄k, sk, nk) (nk ≥ 2), (19)

wheresk is defined as in (16), andνg(0, 1, n) ≥ 0 is the index of a normal arm with
unknown and uniformly distributed mean and variance, aftern observations with sample
mean 0 and sample standard deviation 1 (i.e., the value that the index should have if
ρ̄k = 0 andsk = 1).

The values ofνg(0, n) in (18) andνg(0, 1, n) in (19) may be found in tables provided by
Gittins (1989).5

The algorithm derived from these results is very close to IE: first, try each alternative one
or two times, depending on whether the variancesσ 2

k are known or not; then use Eq. (18)
or (19) to determine the next action to perform, by referring to tables when necessary, and
by updating the statistics̄ρk, sk andnk each time that an outcome of armk is observed.

3.1.4. Conclusion: Exploration bonuses.We see that whatever the nature of the approach
(Bayesian or not), the optimal solution to normal bandit problems is always to choose, after
some steps, the arm that maximizes the estimated average rewardρ̄k plus theexploration
bonusδk defined by

δk
def=
{
σk · δ0(nk) in the case of known variance,

sk · δ0(nk) in the case of unknown variance,
(20)

where theunit exploration bonusδ0(n) is a positive decreasing function ofn defined by
Eqs. (13), (15), (18) or (19) as

δ0(n)
def=


zθ/2/
√

n (interval estimation, known variance),

tn−1
θ/2 /
√

n (interval estimation, unknown variance),

νg(0, n) (Gittins’ indices, known variance),

νg(0, 1, n) (Gittins’ indices, unknown variance).

(21)

Practically, this value is calculated easily starting from tables.
The exploration bonusδk represents the maximum amount (of reward or utility) that

one is willing to pay for one observation of the output of armk (figure 1). It measures
the importance of sampling this arm to obtain information rather than simply obtaining the
expected reward̄ρk. In all cases we have limn→∞ δ0(n) = 0. This reflects the fact that,
when an arm has been tried an infinite number of times, its characteristics are known with
certainty and thus, there is no further information to be learned from sampling it.
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Figure 1. If the system6 chooses arm 2, its estimated loss isρ̄1 − ρ̄2 > 0, but it makes a new observation of
arm 2. It will make this choice (and pay this price) as long asρ̄2+δ2 ≥ ρ̄1, i.e.,ρ̄1− ρ̄2 ≤ δ2. Thus, the maximum
amount it is willing to pay for an observation of arm 2 is equal to the exploration bonusδ2.

(a) (b)

Figure 2. Interval estimation (non-Bayesian) unit exploration bonuses forθ = 0.8, 0.6, 0.4, 0.2, 0.1, 0.05,
0.02, 0.01 and 0.002 (known variance) or 0.001 (unknown variance) (the interval estimation bonus is a decreasing
function ofθ ). (a) Known variance:δ0(n) = zθ/2/

√
n; (b) Unknown variance:δ0(n) = tn−1

θ/2 /
√

n (the value for
θ = 0.001,n = 2 is 450.14).

Because the bonuses are used in additive equations, their order of magnitude is very
important and scaling them may dramatically corrupt the behavior they induce. At each
time t , the optimal decision does not only depend on the order of preference of the different
arms according to the current knowledge, but it also depends on the very value attached to
each arm (cf. Section 4.2.2).

Figures 2 and 3 show plots of the non-Bayesian and Bayesian unit exploration bonuses
δ0(n), for small values ofn. It is striking to observe:

• the similarity between graphs 2a and 3a and between graphs 2b and 3b,
• the rapid decrease ofδ0(n) during the first steps of the exploration, especially in the case

of unknown variance,
• the higher values of non-Bayesian bonuses (figure 2) than the Bayesian (figure 3).

With regard to this last point, it is to be noticed that because limn→∞ tn−1
θ/2 = zθ/2, the

non-Bayesian bonus is always equivalent tozθ/2 ·n−1/2 whenn tends to infinity. Moreover,
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(a) (b)

Figure 3. Gittins’ (Bayesian) unit exploration bonuses forg = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and 0.995 (the
Gittins’ bonus is an increasing function ofg). (a) Known variance:δ0(n) = νg(0, n); (b) Unknown variance:
δ0(n) = νg(0, 1, n).

according to Gittins we have

lim
n→∞

νg(0, 1, n)

νg(0, n)
= 1+ (∀ g ∈ [0, 1)), (22)

andn · νg(0, n) always converges to a positive value asn tends to infinity. Therefore, the
Bayesian bonus behaves asK · n−1 for someK > 0 asn tends to infinity. We see that, in
general, the non-Bayesian optimal behavior results in more exploration than the Bayesian.

Before ending this section, we notice that all the algorithms presented here are subject to
the “sticking problem” (Kaelbling, 1993, Section 4.2.2): only one arm is played infinitely
often, and there is a non-zero probability that it is a non-optimal arm that is selected.
This limitation is present in every problem of adaptation to a stochastic process: one can
never be sure to have found the best alternative before having tried all of them an infinite
number of times. Clearly, this is in contradiction to the necessity eventually to exploit the
acquired knowledge. In response to this problem, Sato, Abe, & Takeda (1982, 1985, 1988,
1990) have developed the notion of “asymptotic optimality” that consists of trying every
alternative infinitely often, while making the frequency of use of the estimated best tend to 1.
It is noteworthy that both the Bayesian and the non-Bayesian approaches lead to abandoning
every arm except the estimated best, and thus risk making mistakes from time to time.

3.2. Distributing the learning task

Our purpose is to use results from the theory of bandit problems, and particularly Eqs. (20)
and (21), to define local measures of the uncertainty for the multi-state problem. For this
reason, we examine the possibility of distributing the learning task by representing the
problem of adaptation to a multi-state MDPS= (X, A, P, R, γ ) (|X|> 1), as a set of|X|
bandits, each with|A| arms.
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The bandit problem associated with statexi will be calledBi . The execution of actionak

in xi is equivalent to a pull of armk of Bi . The distributed approach consists in considering
a different sub-system6i “playing” the banditBi , for all i . The reward earned by6i when
it pulls armk is ρk

i , to be specified.

3.2.1. Non-stationarity of each bandit problem.The first thing to do is to defineρk
i , the

reward earned by sub-system6i when it plays armk. An obvious solution is to chose the
reward received immediately after the execution ofak in xi , i.e.,ρk

i follows the law

ρk
i = r k

i j with probability pk
i j . (23)

However, in this case, each6i will consider exploitation to consist of maximizing the
expected immediate rewardqk

i defined by Eq. (4). Thus, the overall system6 = ⋃i 6i is
adaptively optimizing the one-step-horizon reward E(r (0)), which is often very different
from the infinite-horizon reward (1).

If we want to be able to manage the temporal credit assignment problem, the reward
received by6i must contain some information about the value of the arrival states. An
ideal solution is

ρk
i = r k

i j + γ · υ j with probability pk
i j . (24)

An algorithm based on this law would avoid the drawback of definition (23). Unfortunately,
such an algorithm is impossible to implement because we do not know the true valuesυk

i ,
and we only have some time-varying approximations of them calledVk

i or Qk
i (Eqs. (8)

and (10)). Hereafter, we are limited to the definition

ρk
i = r k

i + γ ·max
l

 Vl
j

or

Ql
j

 with probability pk
i j , (25)

that constitutes a direct adaptation of Eq. (24). In this case, the distribution ofρk
i varies as

the V- or Q-values vary. Therefore, each bandit problemBi is not stationary, even if the
original problemS is. The consequences in imposing a forgetting mechanism for each6i

are important, and have already been stressed by Kaelbling (1993, p. 150).

3.2.2. Non-independence of different arms.If ρk
i follows (25), then the reward delivered

by armk of banditBi depends on the estimated value of each possible arrival state. With
both ADP and QL, the value of a state is updated each time this state is visited. Thus, when
6i chooses armk and6 moves fromxi to xj , the value of the arrival statexj is going to
be modified at the next time step. As a consequence, the law followed byρk

i is going to
change. Similarly, this is the case for eachρk′

i with k′ 6= k, such that(i, j, k′) is a possible
state transition.

In this way, the choice of an arm changes the distributions associated with other arms.
Thus, the fundamental hypothesis of independence of the different arms is not respected,
and the local sub-problems are not bandit problems.
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3.2.3. Non-independence of different sub-problems.In the same way as above, we can
show that the choice of armk in xi changes the distributions of someρk′

i ′ with i ′ 6= i . The
consequence is that the different sub-problems are not independent.

3.2.4. Conclusion. We see that a set of independent bandit problems constitutes an ap-
proximate and false model of the original problem. Therefore, a decentralized approach
based on bandit problems is essentially heuristic, and may not have an exact theoretical
foundation. However, this should not discourage empirical studies of this approach.

3.3. Basic algorithms

One of simplest ways to design algorithms is to assume that6i approximatesρk
i by a normal

distribution, for all(i, k). Then we can use the results presented in Section 3.1.

3.3.1. Outline. Depending on whether we use a model of the process or not,V- or Q-
values are kept up to date using Eq. (8) or (10). Each time that transition(i, j, k) occurs,
6i receives the reward

ρk
i = r k

i + γ ·max
l

 Vl
j

or

Ql
j

 , (26)

then it updates:

• nk
i , the number of pulls of armk,

• ρ̄k
i , the mean of the rewards received from armk, defined as (14),

• sk
i , the sampled standard deviation of these rewards, defined as (16).

From these statistics, it calculatesubk
i

or

νk
i

 = ρ̄k
i + δk

i (∀ (i, k)), (27)

where

δk
i = sk

i

 t
nk

i −1
θ/2 /

√
nk

i

or

νg(0, 1, nk
i )

 = sk
i · δ0

(
nk

i

)
(∀ (i, k)), (28)

for a given confidence coefficientθ or discount factorg. The valueδk
i represents a local

measure of uncertainty about the infinite-horizon rewards. It is an exploration bonus adapted
to the multi-state problem.

The non-stationarity of eachBi is managed by simulating a forgetting mechanism in
each6i . In our applications, we calculate the statisticsnk

i , ρ̄k
i andsk

i , and the exploration
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bonusesδk
i , on equally-weighted sliding windows of lengthLwin (i.e., using only the last

Lwin observations ofρk
i ).

6i first tries every arm twice, then it always chooses an arm that maximizesubk
i or νk

i .

3.3.2. Fundamental equation. Whenρk
i follows Eq. (25) we have

ρ̄k
i ' E

(
ρk

i

) = qk
i j + γ

∑
j

pk
i j ·max

l

 Vl
j

or

Ql
j

 '
 Vk

i

or

Qk
i

 (∀ (i, k)). (29)

Thus, the natural criterion (27) may be approximated by

Nk
i

def=

 Vk
i

or

Qk
i

+ δk
i (∀ (i, k)). (30)

This is a direct way to design algorithms where the statisticρ̄k
i is kept in memory only

because it is needed to calculatesk
i . Upon seeing that the variablesVk

i andQk
i are better

estimates of the quality of the state-action pair(i, k) than the mean̄ρk
i (especially ifρ̄k

i
is calculated on a sliding window), we prefer to use Eq. (30) instead of the original (27).
Moreover, we consider that this equation is characteristic of the algorithms developed in
this section (as opposed to those defined in Section 4).

3.3.3. Algorithms. Our algorithms are defined by the following set of formulas:

• the equations of ADP or QL: (7), (8) and (9); or (10) and (11);
• the definition of the rewardρk

i introduced in the sliding windows: (26);
• the definition of the statistics̄ρk

i andsk
i : (14) and (16);

• the definition of the exploration bonus: (28);
• the definition of the criterion of choice: (30).

Figure 4 provides an outline of the algorithms. We call these algorithms IDP−, IEDP−,
IQL− and IEQL− where:

• I stands for “indices” and denotes the choice of the Bayesian framework, while IE denotes
the choice of a non-Bayesian algorithm,
• DP and QL stand for ADP and Q-learning,
• “−” distinguishes these algorithms from those proposed in Section 4.

IEQL− is very close to Kaelbling’s algorithm (1993, chap. 9). The two algorithms differ
only on the following points:

• we use Eq. (30) instead of the natural criterion (27) used by Kaelbling,
• the mechanisms used to forget observations at the level of each6i are not the same:

Kaelbling uses a geometrical decay of statistics whereas we use sliding windows.
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Figure 4. Outline of “−” algorithms’ variance- and error-based variants (ADP and QL).

3.4. Variants

Thrun (1992a, 1992b) has proposed classifying the techniques of action selection according
to the information used. The first distinction he introduces is between:

• undirected techniquesthat do not use any “exploration-specific” knowledge about the
learning process,
• directed techniquesthat remember knowledge about the learning process and use it to

direct exploration.

Undirected techniques proceed by drawing at random the executed action, in a way that
favors the estimated best. They are distinguished from each other by the probability dis-
tribution used for these drawings. The two most used are the semi-uniform (orε-greedy)
distribution (e.g., Watkins, 1989; Whitehead & Ballard, 1991) and the Boltzmann law (e.g.,
Watkins, 1989; Barto, Bradtke, & Singh, 1991, 1995; Kaelbling, Littman, & Moore, 1996).

Most directed techniques are heuristic and are not theoretically motivated. However, they
use the notion of an exploration bonus. The criterion they maximize may be put in the form

Nk
i =

 Vk
i

or

Qk
i

+ δk
i + · · · (31)

whereδk
i is an exploration bonus that measures the uncertainty in a particular way, and the

dots indicate that several bonuses of different nature may be added.
Thrun proposes to classify the directed techniques according to the information used to

select the actions. He distinguishes:
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counter-based techniques that keep up-to-date countersnk
i of the number of times that

each state-action pair(i, k) has been tried, and use them during the choice of the actions
(e.g., Sato, Abe, & Takeda (1985, 1988, 1991) asymptotically optimal algorithms).
When two actions have the same estimated value, they choose the one that has been tried
the least often previously;

error-based techniques that use the measured (or predicted) variations of the variables
Vk

i or Qk
i during their last (or next) update(s), in the rule of selection of the actions (e.g.,

Moore, 1990; Schmidhuber, 1991a; Thrun & Moller, 1991, 1992). In general, these
techniques prefer the states or actions whose estimated quality varied the most in the
past, or is predicted to vary the most in the future;

recency-based techniques that deal with non-stationary problems by keeping in memory
the date of the last trial of each state-action pair, and choosing preferentially the actions
that have been tried the least recently (e.g., Sutton, 1990, 1991a).

Some techniques are mixed-techniques, i.e., they use pieces of information of different
nature. This is achieved by adding several different exploration bonuses in Eq. (31) (e.g.,
counter-/error-based techniques proposed by Thrun), or by defining mixed exploration
bonuses (see below).

3.4.1. Variance-based algorithms.Thrun’s lexicon does not cover the case of the algo-
rithms presented in Sections 3.1 and 3.3. Because the exploration bonusδk depends onnk

(Eq. (20)), these algorithms are counter-based techniques. However, the counters are not
the only information used in the exploration bonuses: the standard deviationsσk or sk of the
rewards are present as well. When two actions have been tried the same number of times
and have the same estimated value, the algorithms choose the one which delivers the most
random reward. In this way, they show a preference for risk.

To qualify these algorithms, we introduce the following definition:

variance-based techniques measure the variability of the outcome of different actions
in order to calculate of their exploration bonuses.

Thus, the bandit-problem solutions of Section 3.1 are variance-/counter-based techniques.
The algorithms for multi-state MDPs of Section 3.3 (and Kaelbling’s algorithm) are also
variance-/counter-based techniques: their exploratory behavior depends mainly on counters
nk

i and standard deviationsk
i of different state-action pairs(i, k). However, their case is

more complicated: due to of the presence of the variableVl
j or Ql

j in the right term of
Eq. (26), they are also, to a smaller extent, error-based techniques. In the following, we
will refer to them simply as variance-based IDP, IEDP, IQL and IEQL.

3.4.2. Error-based algorithms. The use of the rule

ρk
i =

 Vk
i

or

Qk
i

 (32)
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instead of Eq. (26) is another way to define the local reward received by sub-system6i when
it pulls armk. In this way, all that is developed in Section 3.2 is still true, and Eq. (30) is still
an approximation of Eq. (27). The algorithms using this law measure the variations of theV-
or Q-values during their last updates. Thus, they are error-/counter-based techniques using
mixed exploration bonuses. In the following, we will refer to them simply as error-based
IDP, IEDP, IQL and IEQL.

3.4.3. Worst-case algorithms.The development of the algorithms presented here was
motivated by the following facts. A wide class of problems are characterized by a sparse
reward matrixR, i.e., r k

i j = 0 for most triples(i, j, k). In this case, if theV- or Q-values
are initialized to 0, then they remain zero during a first stage that may last for a long time.6

Thus, most of the standard deviationssk
i and exploration bonusesδk

i of the algorithms based
on Eq. (26) or (32) degenerate to 0 during the first steps of the experience. Therefore, the
behavior of variance- and error-based algorithms is greatly degraded, and it may turn to
random walk, arbitrary choice of always the same actions, or greedy exploitation.

To avoid this problem, we first note that if

r M
def= max

i, j,k
r k

i j and rm
def= min

i, j,k
r k

i j , (33)

and the initialV- or Q-values satisfy

rm

1− γ ≤

 Vk
i

or

Qk
i

 ≤ r M

1− γ (∀ (i, k)), (34)

then this equation is satisfied at each timet . Therefore, the standard deviationσ k
i of a

random variable defined by Eq. (26) or (32) satisfies

σ k
i ≤

r M − rm

2(1− γ )
def= σmax (∀ (i, k)). (35)

We propose to use this result and to suppose that the standard deviation ofρk
i is known and

equalsσmax, for all (i, k). Then we use the formulas for normal arms with known variance
Eqs. (13) and (18) and define the exploration bonus as

δk
i = σmax

 zα/2/
√

nk
i

or

νg(0, nk
i )

 = σmax · δ0
(
nk

i

)
(∀ (i, k)). (36)

The statisticsρ̄k
i andsk

i are not used anymore, and neither are the sliding widows. The
algorithms are then greatly simplified. We call themworst-caseIDP−, IEDP−, IQL− and
IEQL−, because they suppose that the standard deviation is always equal to its biggest
(worst) possible value. They are defined by the following set of formulas:
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Figure 5. Outline of “−” algorithms’ worst-case variant (ADP and QL).

• the equations of ADP or QL: (7), (8) and (9); or (10) and (11);
• the definition of the exploration bonus: (36);
• the definition of the criterion of choice: (30).

Figure 5 provides an outline of the algorithms.
Worst-case algorithms are pure counter-based techniques. They avoid the degeneration

of the exploration bonuses that happens with sparse reward matrices. However, they need
to know in advance the difference(r M − rm), and thus, they need more information than
the previous algorithms.

From the optimal control point of view, the rewards represent the objective function and
thus they are initially given. From the decision theory point of view, the rewards represent
the utility function, also known in advance. In general, we consider that specifying its
reward structure to a system is telling it its task. Thus, as long as we are concerned with
optimization and problem solving, the rewards are always known in advance.

However, if this is not the case and the difference(r M − rm) is initially unknown, then
this value must be measured on-line. In this case, a positive constant must be used in place
of σmax as long as two different rewards have not been received. The value of this constant
has no influence on the algorithm’s behavior.

3.5. Conclusion

As we have shown earlier, the algorithms developed in this section do not rely on rigorously
valid theoretical foundations. However, they represent rational propositions supported by
common sense arguments.

Each6i uses an optimal solution of single-state problems, exploring more or less each
action, and most likely ultimately converging to the estimated best. The aggregation of
these local behaviors works well with problems where the different states are visited
equally often. However, it is held in check by particular configurations of the environment
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Figure 6. Task 1 (γ = 0.99) (Meuleau, 1996).

where some states are visited much more often than others. As a matter of fact, be-
cause we consider a set of|X| independentbandit problems, each6i functions within its
own concept of time. For6i time elapses only when it plays, and it is frozen otherwise.
Thus, ‘−’ algorithms may be misled by problems where some important states are rarely
visited.

This is the case of the problem represented in figure 6. In this deterministic problem, one
always has the choice of going to the next index state and winning nothing, or returning
to statex0 and receiving 2. Once arriving in the higher index statex5, one may stay there
and win 10, or return tox0 and win 2. Withγ = 0.99, the optimal policy is to choosea1

everywhere. However, this may appear late in theV- or Q-values, because the reward 10
must be back-propagated along the whole chain of states. Moreover, statex0 is visited very
often. Thus,60 may become self-confident too early, and start exploitation before the real
V- or Q-values are known. It may then converge to the sub-optimal actiona0 and prevent
further exploration.

The deterministic problem presented in figure 7 was designed by Watkins (1989) to be
misleading. It functions with the same principle as task 1:60 may become self-confident
before the reward 2 has been back-propagated untilx0, and then converge on the sub-optimal
actiona1.

To solve this kind of problem, we introduce now the second basic principle of our
algorithms.

Figure 7. Task 2 (γ = 0.9) (Watkins, 1989).
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4. Back-propagation of uncertainty

Local measures of uncertainty are convenient, but a direct use of them leads to a local-
scale reasoning about information that is insufficient in many multi-state environments.
The back-propagation of the exploration bonuses is an easy way to simulate global-scale
reasoning about the uncertainty, using only its local measures.

4.1. Local vs. global exploration policies

We say that the algorithms based on Eq. (30) represent local exploration policies, because
their decisions do not take into account the uncertainty attached to states other than the
current state.

In contrast, we say that an algorithm implements a global exploration policy if it takes
into account, during the choice of its actions, the uncertainty attached to states other than
the current state. Intuitively, global exploration strategies are such that an observation made
in some statexi may change the decision in other statesxj ( j 6= i ), independently of any
change in theV- or Q-values that may result from the observation. An instance of global
scale reasoning is presented in figure 8. These strategies should not be misled by problems
such as tasks 1 and 2.

There are a few algorithms able to simulate global exploration policies. To our knowledge,
only three techniques are available:

1. Bayesian adaptive control, applied to finite multi-state MDPs by Martin (1967);
2. Feldbaum’s (1965) “caution and probing” technique, applied to dynamic programming

by Bar-Shalom (1981);
3. Sutton’s Dyna-Q+ algorithm (1990).

The first two proceed by introducing the knowledge about the process into the state of the
system, which is then called “super-state” or “information-state”. Then, applying DP to
the reformulated problem simulates global scale reasoning about uncertainty. Although
this approach constitutes an elegant theoretical solution, it requires prohibitive amounts of
computer time and space, and thus it is not applicable to most real-world problems.

Sutton’s Dyna-Q+ algorithm (1990) is the first instance of an algorithm’s using the
principle of back-propagation of uncertainty. It seems that it is the only realistic solution
proposed before ours. We will first present our algorithms, and then show their similarities
and differences with Dyna-Q+ (Section 4.4).

4.2. Back-propagation of exploration bonuses

Our propositions will be presented in three steps, each one corresponding to an improvement
of the algorithms. We shall be concerned first with ADP; the case of QL will be examined
in Section 4.2.3.
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(a) (b)

(c)

Figure 8. An instance of global-scale reasoning about uncertainty. (a) Timet : in statexi , the system chooses the
non-optimal actionak because it attaches a lot of uncertainty to it and wants to explore. A part of this uncertainty
is due to the fact that the actional of a known possible arrival statexj has not been tried yet. (b) Timet + 1:
the observation of transition(i, j, k) reduces the uncertainty attached to actionak in statexi . In xj , the system
continues to explore and chooses actional . (c) Timet + 2: after the next state transition, the uncertainty attached
to al in xj is reduced and, as a consequence, the uncertainty attached toak in xi is reduced as well.

4.2.1. Basic principle. The fact that IDP− and IEDP− represent only local exploration
policies clearly appears in the fundamental Eq. (30):

Nk
i

def= Vk
i + δk

i

'
(

q̃k
i + γ

∑
j

p̃k
i j ·max

l
Vl

j

)
+ δk

i

' (q̃k
i + δk

i

)+ γ∑
j

p̃k
i j ·max

l
Vl

j (∀ (i, k)). (37)
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We see that only the exploration bonus associated with the next action is present. Thus,6i

is not motivated in any way by observations that could be made in states other thanxi , for
all i .

To take into account the uncertainty attached to states other than the current one, the
associated exploration bonuses must be present in the criterion. If we use, for instance

Nk
i

def= (q̃k
i + δk

i

)+ γ∑
j

p̃k
i j · max

l

(
Vl

j + δl
j

)
(∀ i, k), (38)

then the next two observations are taken into account. The exploration bonus of the second
action is discounted as a reward. Wheni = j andk = l , the bonus of the second action
is over-evaluated because the decreasing ofδk

i after the transition(i, j, k) is neglected:
δl

j = δk
i = δ(nk

i ) is used instead ofδ(nk
i + 1).

If we accept approximations of this kind, it is possible to take into account the uncertainty
attached to every state that we may reach in the future. To do this, we will try to find the
solution of Bellman’s system defined by

νk
i =

(
q̃k

i + δk
i

)+ γ∑
j

p̃k
i j · max

l
νl

j (∀ (i, k)), (39)

using, for instance, an asynchronous DP algorithm based on the unit operation

Nk
i ←

(
q̃k

i + δk
i

)+ γ∑
j

p̃k
i j · max

l
Nl

j . (40)

In this way, the exploration bonus of every future action is represented implicitly in the
variablesNk

i . The bonuses are discounted at the same rate as the rewards. As in Eq. (38),
the decreasing ofδ0(n)with n is neglected, and thus most of the bonuses are over-evaluated.7

Despite this approximation, an algorithm based on Eq. (40) is a global-scale exploration
strategy: each decision takes into account the uncertainty in each state attainable in the
future, and the observation ofak in xi implies an update ofδk

i , which may cause a change
of the decision in some statexj ( j 6= i ). This constitutes an approximate solution for two
reasons:

1. the uncertainty is measured with formulas valid for normal bandit problems,
2. the decrease ofδ0(n) is neglected.

Therefore, the fundamental principle of the algorithms developed here is toadd the ex-
ploration bonuses to rewards and to introduce them into the DP process. They are then
back-propagated through the state lattice to simulate global-scale reasoning about uncer-
tainty.

4.2.2. Scaling of the exploration bonuses.We have stressed in Section 3.1.4 the impor-
tance of the order of magnitude of the exploration bonuses in the different solutions of bandit
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problems: the optimal behavior defined as maxk(ρ̄k + δk) may be significantly changed if
we multiply all the bonusesδk by a positive constant.

The Bayesian and non-Bayesian statistics propose to calculate the exploration bonus
δk starting from a unit exploration bonusδ0(nk), whose value varies between rather close
bounds as a function of the external parameterθ or g. The unit bonus is then scaled by
the standard deviation ofρk (measured or not), and thus, the resulting bonusδk may be
considered as proportionate toρ̄k.

The algorithms developed in the previous section keep close to these propositions, because
the criterionNk

i defined by Eq. (30) is an average cumulated rewardVk
i , plus an exploration

bonusδk
i proportionate to this quantity, by the presence of the standard deviationsk

i or σmax

in its definition (28) or (36). Informally, we say that Eq. (30) has the form

V + δV =
( ∞∑

t=0

γ t · r
)
+ δV , (41)

whereV a meanV-value, andδV andr represent, respectively, an exploration bonus propor-
tionate toV and a mean reward.

With the same notation, the order of magnitude of the criterion (40) is

∞∑
t=0

γ t (r + δV ) = V + δV

1− γ . (42)

We see that the bonus is multiplied by the constant(1− γ )−1 > 1. Becauseγ is usually
close to 1,(1− γ )−1 is usually a great positive value. Therefore, the algorithms based on
Eq. (40) explore much more than the original algorithms.

This problem is easily solved by multiplying all the exploration bonuses by(1−γ ) before
introducing them into the DP process. The fundamental Eq. (39) then takes its final shape

νk
i =

(
q̃k

i + δk
i (1− γ )

)+ γ∑
j

p̃k
i j ·max

l
νl

j (∀ (i, k)), (43)

and the associated DP equation is

Nk
i ←

(
q̃k

i + δk
i (1− γ )

)+ γ∑
j

p̃k
i j ·max

l
Nl

j . (44)

The criterion is thus brought back to the order of magnitude (41), whereδV is proportionate
to expected cumulated rewardsV , but it is composed atγ t (1 − γ )100% of the bonus
associated with the action executed at timet , for all t .

Scaling the exploration bonuses to take into account the discountingis the second tech-
nique used in the algorithms presented in this section. Figure 9 describes their operation in
comparison with ‘−’ algorithms.

4.2.3. Initialization of variables. Equation (44) allows the derivation of efficient indirect
algorithms. Now we try to apply the ideas developed above to QL.



EXPLORATION OF MULTI-STATE ENVIRONMENTS 139

(a) (b)

Figure 9. Functioning of bandit problem-based algorithms. (a) Local exploration (Eq. (30)): DP calculates the
V-values in an iterative way, starting from the rewardsR and the estimated probabilities̃P (figured asP). When
the V-values are “ready”, the exploration bonusesδ are added to them to get the criterionN that is maximized
at each time step. (b) Global exploration (Eq. (44)): the exploration bonuses are scaled and added to the rewards
before starting the DP iterations. Hereafter, DP directly calculates the variablesN that are maximized at each
time step.

The QL equation associated with Eq. (44) is

1Nk
i = α

(
nk

i

)[(
r k

i j + δk
i (1− γ )

)+ γ ·max
l

Nl
j − Nk

i

]
. (45)

This operation is executed each time that transition(i, j, k) occurs, and only at these times.
This is the main limitation of QL: it cannot back-propagate the value of a state-action
pair without passing through this state and executing this action. Therefore, it must travel
through the problem not only for the needs of exploration, but also to calculate the estimated
optimal policy, i.e., for the needs of exploitation. This weakness has been illustrated by the
experiments of Barto, Bradtke, & Singh (1991, 1995). It is at the origin of the development
of intermediate solutions such as Sutton’s (1990, 1991b) Dyna architecture.

In the case of our “N-learning”, this drawback may be disastrous because the bonusδk
i

varies at each transition(i, j, k), for all j . The MDP implicitly defined by Eq. (43) changes
at each time step, i.e., much faster than QL solves it. Thus, it appears that a model of the
problem is required for implementing the back-propagation of exploration bonuses in a
perfect manner.

However, we think that it is possible to have at least an approximate mechanism of back-
propagation of uncertainty in a direct algorithm such as QL. We argue that, even if it is not
rigorously stated, Eq. (45) deserves to be tried. However, some preliminary considerations
about the initial values of the variables are necessary.

Theoretically, the initialQ-values do not matter for QL’s convergence, the main require-
ment being that every action is tried infinitely often in each state. In practice, theQk

i are
often initialized to 0, because we suppose some symmetry of the problem.

Here, we try to manage the impossibility of an infinite number of trials of each state-action
pair. TheN-values are made to reflect considerations about uncertainty and inaccuracy, and
the actions that maximize these variables are executed exclusively. Therefore, their initial
value is very important. One can easily see that setting them to 0 is not satisfying at all:
because uncertainty is great in the beginning of the experience, a positive and rather high
initial value is better.
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Observing that:

1. if theQ-values are initialized to 0, only the part due to uncertainty is present in the initial
value ofNk

i ,
2. in the worst-case algorithms, each actionak is tried at least once in each statexi , and

then the associated exploration bonusδk
i is initialized to its value corresponding to one

observation:

δ1
def= σmax · δ0(1) = σmax

 zα/2
or

νg(0, 1)

, (46)

3. in the variance- and error-based algorithms, each action is tried twice in each state, and
the initial value ofδk

i varies as a function ofsk
i , for all (i, k);

we propose to initialize theNk
i to the valueδ1 defined

• by Eq. (46) in the worst-case algorithms,
• as an external parameter in the case of variance- and error-based algorithms. Because

this parameter represents the exploration bonus associated to an action that has been tried
only once, one must assign to it a value greater than any possible exploration bonus.
For instance, if the differencer M − rm is known, one could chooseδ1 > σmax · δ0(2).
Moreover, if one wants to preserve the convexity of the exploration bonus with respect
to n (see figures 2 and 3), one should chooseδ1 > σmax(2 · δ0(2)− δ0(3)).

With its main variables initialized to this rather high value (because of the presence of
the factor(1− γ )−1 in the definition (35) ofσmax), the algorithm is forced to explore the
environment completely. Actually, the simulation results presented in the next section show
very positive results of a system based on Eq. (45) if we introduce this later sophistication.

Therefore, the last technique used in the algorithms presented in this section isto initialize
the main variables with the value of an exploration bonus after one observation, or with
another large positive constant.

This is an instance of the heuristic called “optimism in the face of uncertainty” (Kaelbling,
Littman, & Moore, 1996) already used by several authors to favor exploration (Schmidhuber,
1991; Moore & Atkeson, 1993; Kaelbling, 1993; Koenig & Simmons, 1996). Its use is
perfectly justified in our framework, because the main variables reflect the uncertainty
which is high in the beginning of experiments.

This heuristic is useless in the case of ADP, as long as the DP stage between two decision-
times is performed synchronously. In this case, using it is equivalent to adding the same
positive constant to eachNk

i at each timet . However, this heuristic is necessary when we
apply the ideas developed above to any asynchronous DP-based algorithm which executes
back-ups of some state-action pairs before having tried all of them once. This is true for QL
as well as for Barto, Bradtke, & Singh, ARTDP algorithm (1991, 1995) and for Sutton’s
Dyna architectures (1990, 1991b).
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4.3. Algorithms

Using the same nomenclature as in Section 3, we call variance- or error-based IDP+,
IEDP+, IQL+, and IEQL+ the algorithms defined by the following set of formulas:

• the equations of ADP or QL: (7), (8) and (9); or (10) and (11);
• the equation that is chosen for the rewardρk

i introduced in the sliding windows: (26) or
(32);
• the definition of the statistics̄ρk

i andsk
i : (14) and (16);

• the definition of the exploration bonus: (28);
• the special ADP or QL equation: (44) or (45).

These algorithms are depicted in figure 10.
These algorithms use two sets of variables: theVk

i or Qk
i , and theNk

i . All the operations
usually executed on the first (V or Q) are also applied to the second (N). The first are
used to calculate the sample standard deviationsk

i , the second are the main variables of the
algorithms. Because of this double set of variables, the time of calculation is multiplied by
two.8

Worst-case IDP+, IEDP+, IQL+, and IEQL+ do not use two sets of variables, because
the standard deviations are not measured but are taken at their greatest possible value. These
variants use the following formulas:

Figure 10. Outline of “+” algorithms’ variance- and error-based variants (ADP and QL).
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Figure 11. Outline of “+” algorithms’ worst-case variant (ADP and QL).

• the definition of the exploration bonus: (36);
• the special ADP or QL equations: (7), (9) and (44), or (11) and (45).

They are represented in figure 11. It is important to be note that their complexity is very
close to the complexity of the original algorithm (ADP or QL) with greedy exploitation.

4.4. Other instances of back-propagation of uncertainty

The back-propagation of uncertainty has already been used by Sutton, and it may be imple-
mented in every algorithm that uses an exploration bonus. Moreover, a similar mechanism
may be used to direct the first step of the exploration of synchronous ADP.

4.4.1. Sutton’s Dyna-Q+. In a paper about the applications of Dyna architectures to QL,
Sutton (1990) defines two algorithms:

Dyna-Q− that uses the usual QL equation (10) and always chooses the action that maximizes
the recency-based criterion

Qk
i + ε

√
1k

i , (47)

where1k
i is the time elapsed since the last try of the state-action pair(i, k), andε > 0

is an external parameter;
Dyna-Q+ that does not use Eq. (10) but

1Qk
i = α

(
nk

i

)[(
r k

i j + ε
√
1k

i

)+ γ ·max
l

Ql
j − Qk

i

]
, (48)

and always chooses the actions that maximize the Q-values calculated in this way.

Equation (48) is very close to Eq. (45), the main difference being the way in which the
exploration bonus is defined: the stationary bandit problem’s bonus (28) or (36) is replaced
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by Sutton’s recency-based exploration bonus that is adapted to non-stationary environ-
ments. Note that:

• it is useless to scale the exploration bonuses by the factor(1− γ ), because Sutton’s
bonuses are directly proportional to the external parameterε, thus changingε for ε(1− γ )
has the same effect;
• Sutton says to “simulate state transitions that have never occurred”. This results in back-

propagating the bonuses of actions that have never been tried before, and thus this is an
alternative to the initialization ofNk

i with large positive values.

Thus, Sutton already used the back-propagation of exploration bonuses. However, our
work is innovative in the following two ways:

1. We have proposed algorithms for stationary MDPs with adapted definitions of the
exploration bonuses.

2. Although it is derived from QL, Dyna-Q+ uses a model of the unknown process. Thus,
this is not really a direct algorithm, and one could think that the principle of back-
propagating uncertainty could not be made to work in direct algorithms (cf. e.g., Thrun,
1992a). However, IQL+ and IEQL+ are completely direct algorithms that successfully
implement this principle (see Section 5).

Like ours, Sutton’s experiments show an important improvement of the algorithm’s per-
formance due to back-propagation of exploration bonuses. This constitutes a convincing
empirical demonstration of the utility of this mechanism.

4.4.2. Directed exploration. It is possible to introduce the back-propagation of uncertainty
in every algorithm that uses exploration bonuses, as we did in Section 4.2. For instance, the
different directed techniques presented by Thrun (1992a) use a criterion of the form (31).
Therefore, we can build a ‘+’ version of each one by introducing the back-propagation of
exploration bonuses. Note that:

• the scaling of the exploration bonuses is useless when the bonuses are directly propor-
tional to an external parameter, as are Sutton’s and most of Thrun’s bonuses. In this case
multiplying the external parameter by(1− γ ) has the same effect;
• as stated in Section 4.2.3, the initialization of the main variables with a positive constant

is unnecessary in synchronous ADP, since this is equivalent to adding a positive constant
to each variable at each time. However, it should be used in asynchronous algorithms
such as ARTDP and QL.

4.4.3. The first steps of ADP.Synchronous and Gauss-Seidel versions of ADP are cha-
racterized by the fact that each state-action pair(i, k) is backed up at least once during each
DP stage, between two decision-times (cf. Barto, Bradtke, & Singh, 1991, 1995). Thus,
these algorithms cannot calculate the value function before the MLE (7) is completely
defined, i.e., each action has been tried at least once in each state (nk

i > 0, for all (i, k)).
To achieve this, one will force the algorithm to choose an action that has never been tried
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in the current state, each time that such an action is available (i.e., the algorithms first try
each action once in each state). However, this does not define a complete policy, since we
have not decided what to do when the algorithm returns in a state where every action has
already been tried, while the MLE is still incomplete.

A completely defined strategy is, for instance: in each state, try every action in an arbitrary
order and in a cyclical way, until the MLE is complete. This is equivalent to always choosing
the actions that minimize the counternk

i , the indexk determining the order in which actions
are selected. Therefore, the countersnk

i represent a kind of “exploration penalty” that must
be minimized for exploration. In regard to this penalty, the algorithm works in a greedy
way, i.e., it does not anticipate penalties other than the immediate. For this reason, the
algorithm constitutes a local exploration policy.

As in Section 4.2, we can deduce from this local criterion a global exploration policy. It
consists of always choosing the actions that minimize the variableξ k

i defined by

ξ k
i =

nk
i + γ

∑
j

p̃k
i j ·min

l
ξ l

j if nk
i > 0,

0 otherwise,
(∀(i, k)). (49)

These equations can be solved using an asynchronous DP algorithm that does not back-up
the state-action pairs(i, k) such thatnk

i = 0.

5. Numerical simulations

Extensive numerical simulations have been run to test the algorithms presented in this paper
and to compare them with some well-known techniques for action selection. In general,
these experiments show that very good performance is attained by the ‘+’ algorithms, partic-
ularly their worst-case variants. A representative subset of these results is reproduced here.

5.1. Experimental protocol

The protocol that we followed is very close to Kaelbling’s (1993, chap. 9). First, we im-
plemented a selection of algorithms including our own. Then, we set up a benchmark of
several small MDPs taken from previous material, or that we built to cover the set of possible
problems as widely as possible. Finally, we ran each algorithm on each problem, hiding
the transition probabilities so that the algorithm must discover them on-line. During these
experiments, we measured the evolution of the rewards received by the algorithms as a func-
tion of time and of other performance criteria. Here, we present the results obtained with
3 environments of our benchmark. More results are available in Meuleau’s thesis (1996).

5.1.1. Algorithms. The results we present were obtained with the following 16 exploration
techniques:

• two undirected techniques: the semi-uniform distribution and Boltzmann law, with con-
stant parametersPbestandT (cf. Thrun, 1992a, 1992b),
• a selection of directed techniques:
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— Sato et al.’s (1988) asymptotically optimal technique,
— Sutton’s (1990, 1991a) recency-based technique, implemented in its local form as in

Dyna-Q− (see Section 4.4.1),
— our 12 proposed techniques: variance-based, error-based and worst-case I and IE

algorithms, implemented in their local (−) or global (+) forms.

Each technique was implemented both in QL and in a version of ADP that executes
two iterations of Gauss-Seidel DP after each state transition.9 This constitutes a total of 32
different algorithms.

5.1.2. Environments. The results presented here concern three stochastic MDPs used as
testing environments.

Tasks 1 and 2 are derived from the deterministic MDPs presented in figures 6 and 7
respectively (Section 3.5), by including 20% inherent randomness: each time that an action
is chosen by an algorithm, there is a 0.2 probability that the other action is executed, without
the system’s being aware of this error. This probability value was chosen because it leaves
the optimal policy unchanged.

These two environments were built to mislead local exploration policies. As we will see,
it appeared during the simulations that task 1 represents a very difficult problem for these
techniques, whereas task 2 is less misleading.

Task 3 is a five-state, three-action MDP taken from Sato, Abe, & Takeda (1988) paper.
Because it is characterized by a positive transition matrix (pk

i j > 0 for all (i, k)), this
problem should not favor global exploration policies.

Therefore, the three environments used in this paper are of decreasing difficulty for local
exploration policies. Note that task 2 presents a sparse reward matrix and thus it may mis-
lead variance- and error-based algorithms.

5.1.3. Measures. An experiment consists of testing an algorithm in an environment, after
having fixed the algorithm parameters. Each experiment has a fixed duration of 5000 time-
steps. The initial state of the system isx0 in the case of tasks 1 and 2, and is drawn at random
and uniformly in the case of task 3.

The performance of an algorithm during an experiment is defined as the average reward
that it receives per time-step. It is interesting to compare this measure with the optimal
performance, i.e., the expected rate of reward if one always executes the optimal policy
defined by (5) (which is reachable only if the problem is known in advance). Howard
(1960) has developed a technique for calculating this data. The results of these calculations
will be presented with the simulation results.

Note that the “optimal performance” defined above is not the greatest expected perfor-
mance possible. Instead, the greatest expected performance is realized by the policy that
maximizes a 5000-step horizon criterion

E

(
4999∑
t=0

r (t)

)
, (50)

which usually differs from policy (5) This suggests using the discounted cumulated reward
received during the experiment as performance criterion, so that the policy that realizes
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the greatest expected performance is very close to the optimal policy (5).10 However, early
experiments showed that this criterion does not establish any discrimination between the
different algorithms, as it places too much emphasis on the first steps of the experiments
when all the algorithms are equally as inefficient.

Another measure used is the rate of convergence of the algorithms over several experi-
ments in the same environment. This is the percentage of times that the estimated optimal
policy is precisely the optimal policy (5) at the end of the run.

The last measure recorded is the learning curve. This is the graph showing the average
reward received at timet , as a function oft (averages are calculated over several experiments
in the same environment). Because these raw data are always very noisy, they have to be
smoothed by moving averages.

5.1.4. Protocol. Two series of experiments are executed for each algorithm and each
environment:

1. a first set of experiments allows for optimizing the algorithm parameters. This is done by
looking at the evolution of the average performance over 100 experiments, as a function
of these parameters. See Meuleau (1996) for more details about parameter optimization;

2. a second set of 1000 experiments is conducted with the parameters set to their optimal
value. Then we measure the rate of convergence and draw the learning curves.

Table 1. Simulation results for task 1: performance of the algorithms (standard deviation), and rate of conver-
gence (conv.) of the best variant (vb.: variance-based, eb.: error-based, wc.: worst-case). The expected optimal
performance (attained when the problem is known in advance) is 3.02.

Exploration policy QL ADP

Semi-uniform distribution 1.60 (0.19), conv.= 46.5% 2.34 (0.55), conv.= 73.2%

Boltzmann law 1.53 (0.38), conv.= 58.2% 2.67 (0.31), conv.= 98.4%

Sato (asymptotically optimal) 1.82 (0.36), conv.= 28.3% 2.62 (0.54), conv.= 82.3%

Sutton (recency-based) 2.28 (0.23), conv.= 99.6% 2.77 (0.26), conv.= 99.8%

vb. IEQL− or IEDP− 1.80 (0.47) 2.79 (0.27)

eb. IEQL− or IEDP− 1.80 (0.51) 2.81 (0.23), conv.= 97.1%

wc. IEQL− or IEDP− 2.00 (0.48), conv.= 22.0% 2.21 (0.18)

vb. IQL− or IDP− 1.66 (0.55) 2.81 (0.27), conv.= 99.2%

eb. IQL− or IDP− 1.68 (0.42) 2.80 (0.31)

wc. IQL− or IDP− 2.03 (0.37), conv.= 41.7% 2.18 (0.19)

vb. IEQL+ or IEDP+ 2.78 (0.13) 2.85 (0.28)

eb. IEQL+ or IEDP+ 2.61 (0.15) 2.88 (0.25), conv.= 98.5%

wc. IEQL+ or IEDP+ 2.84 (0.16), conv.= 79.7% 2.88 (0.20), conv.= 95.3%

vb. IQL+ or IDP+ 2.57 (0.15) 2.83 (0.33)

eb. IQL+ or IDP+ 2.53 (0.15) 2.83 (0.33)

wc. IQL+ or IDP+ 2.85 (0.16), conv.= 88.2% 2.87 (0.26), conv.= 97.7%
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(a)

(b)

Figure 12. Learning curves of (a) Q-learning and (b) adaptive dynamic programming for task 1.

Note that only the best variants (variance-based, error-based, or worst-case) of our algo-
rithms were submitted to the second series of experiments.

5.2. Simulation results and comments

Simulation results are presented in tables 1 to 3, and in figures 12 to 14.

5.2.1. Task 1. Task 1 (Table 1, figure 12) is the most discriminating of the three problems.
Results in this environment clearly show the superiority of directed exploration techniques
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over undirected, and of global exploration over local. This classification is striking in the
case of QL, and less apparent, but still present, in the case of ADP.

The observed oscillating behavior of Sutton’s recency-based QL is characteristic of this
exploration technique: first, the algorithm finds the local optimum defined as always choos-
ing the actiona0. As time passes, the algorithm is pushed by the recency-based exploration
bonuses to explore more profoundly. Then it finds the optimal policy. However, the algo-
rithm will never converge on the optimal policy, but instead will regularly restart exploration.
This behavior is adapted to non-stationary environments. In stationary environments, it al-
lows a good convergence rate, but poor performance.

5.2.2. Task 2. Task 2 (Table 2, figure 13) is less discriminating. In the case of QL, it
highlights the same classification of the techniques as task 1. In the case of ADP, results do
not show a superiority of global exploration over local.

Variance- and error-based IQL and IEQL suffer from the degeneration of the exploration
bonuses due the sparse reward matrix (cf. Section 3.4.3). However, this does not happen
with indirect algorithms.

The most surprising fact is that the best performance is attained by direct algorithms:
IQL+ and IEQL+ perform better than IDP+ and IDP+. This phenomenon was observed
in almost half of the environments of our complete benchmark. Further experiments are
needed to understand this result which suggests that a model of the problem is not necessary
if the exploration policy is efficient, at least in small environments.

Table 2. Simulation results for task 2: performance of the algorithms (standard deviation), and rate of convergence
(conv.) of the best variant (vb.: variance-based, eb.: error-based, wc.: worst-case). The expected optimal
performance (attained when the problem is known in advance) is 0.245.

Exploration policy QL ADP

Semi-uniform distribution 0.192 (0.011), conv.= 91.4% 0.216 (0.022), conv. = 88.8%

Boltzmann law 0.193 (0.019), conv.= 88.5% 0.218 (0.025), conv.= 83.3%

Sato (asymptotically optimal) 0.214 (0.012), conv.= 96.3% 0.232 (0.018), conv.= 97.2%

Sutton (recency-based) 0.215 (0.008), conv.= 100.0% 0.228 (0.016), conv.= 98.8%

vb. IEQL− or IEDP− 0.102 (0.028) 0.231 (0.019)

eb. IEQL− or IEDP− 0.104 (0.034) 0.232 (0.016), conv.= 98.3%

wc. IEQL− or IEDP− 0.221 (0.014), conv.= 99.7% 0.223 (0.014)

vb. IQL− or IDP− 0.103 (0.034) 0.231 (0.020)

eb. IQL− or IDP− 0.100 (0.025) 0.231 (0.017)

wc. IQL− or IDP− 0.217 (0.015), conv.= 99.9% 0.232 (0.19), conv.= 98.5%

vb. IEQL+ or IEDP+ 0.179 (0.003) 0.233 (0.017),conv.= 97.6%

eb. IEQL+ or IEDP+ 0.179 (0.004) 0.232 (0.018)

wc. IEQL+ or IEDP+ 0.235 (0.008), conv.= 100.0% 0.228 (0.017)

vb. IQL+ or IDP+ 0.179 (0.004) 0.231 (0.020)

eb. IQL+ or IDP+ 0.179 (0.004) 0.231 (0.19)

wc. IQL+ or IDP+ 0.238 (0.007), conv.= 100.0% 0.232 (0.017), conv.= 98.0%
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(a)

(b)

Figure 13. Learning curves of (a) Q-learning and (b) adaptive dynamic programming (“others”: Sato, IEDP−,
IDP−, IEDP+, and IDP+) for task 2.

5.2.3. Task 3. Task 3 (Table 3, figure 14) was chosen because it should not favor global
exploration policies. Simulation results fit this expectation rather well: they show a superi-
ority of directed exploration over undirected, but no clear superiority of global exploration
over local. However, among the directed techniques tested (local and global), our algorithms
behave better than others.

Even if the results do not show a clear superiority of global exploration in this completely
connected environment, the ‘+’ algorithms do not perform worse than the ‘−’. This tends
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Table 3. Simulation results for task 3: performance of the algorithms (standard deviation), and rate of conver-
gence (conv.) of the best variant (vb.: variance-based, eb.: error-based, wc.: worst-case). The expected optimal
performance (attained when the problem is known in advance) is 1.05.

Exploration policy QL ADP

Semi-uniform distribution 0.87 (0.11), conv.= 78.4% 0.89 (0.11), conv.= 80.9%

Boltzmann law 0.86 (0.13), conv.= 60.6% 0.85 (0.16), conv.= 95.6%

Sato (asymptotically optimal) 0.89 (0.14), conv.= 63.2% 0.93 (0.10), conv.= 78.8%

Sutton (recency-based) 0.91 (0.08), conv.= 88.9% 0.91 (0.08), conv.= 96.2%

vb. IEQL− or IEDP− 0.94 (0.11) 0.95 (0.10), conv.= 84.9%

eb. IEQL− or IEDP− 0.95 (0.10), conv.= 80.5% 0.95 (0.12), conv.= 75.1%

wc. IEQL− or IEDP− 0.93 (0.12) 0.95 (0.05), conv.= 99.7%

vb. IQL− or IDP− 0.93 (0.13) 0.96 (0.09)

eb. IQL− or IDP− 0.94 (0.12), conv.= 69.4% 0.96 (0.11)

wc. IQL− or IDP− 0.93 (0.12) 0.98 (0.07), conv.= 94.8%

vb. IEQL+ or IEDP+ 0.71 (0.05) 0.96 (0.09)

eb. IEQL+ or IEDP+ 0.71 (0.05) 0.97 (0.10), conv.= 82.5%

wc. IEQL+ or IEDP+ 0.96 (0.08), conv.= 91.2% 0.97 (0.07), conv.= 92.7%

vb. IQL+ or IDP+ 0.72 (0.05) 0.92 (0.14)

eb. IQL+ or IDP+ 0.72 (0.05) 0.91 (0.16)

wc. IQL+ or IDP+ 0.95 (0.10), conv.= 78.9% 0.98 (0.08), conv.= 91.6%

to show that, even if the back-propagation of exploration bonuses does not always increase
the performance of the algorithms, it does not decrease it.

The surprising result is the bad performance of variance- and error-based IQL+ and
IEQL+. Because task 3 has a positive transition matrix and a full (as opposed to sparse) re-
ward matrix, the degeneration of exploration bonuses should not happen. Actually, variance-
and error-based ‘−’ algorithms perform well. Further experiments are required to explain
why the ‘+’ algorithms fail on this task.

5.2.4. Discussion. Our experiments show the following classification of exploration tech-
niques (by increasing efficiency):

1. undirected exploration,
2. directed, local exploration,
3. directed, global exploration.

These results appear very clearly in the case of QL, especially, but not exclusively, in
environments that were designed to be discriminating. Results with ADP are less significant,
probably because the environments used are too small.

Among the different variants tested, worst-case algorithms are the simplest and the
most efficient. They represent a very good compromise between these two objectives.
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(a)

(b)

Figure 14. Learning curves of (a) Q-learning (“others”: IEQL−, IQL−, IEQL+, and IQL+) and (b) adaptive
dynamic programming (“others”: IDP−, IEDP+, and IDP+) for task 3.

In particular one should remember worst-case IQL+ and IEQL+ which, despite their low
complexity, achieve the best performances of QL in all the environments of our complete
benchmark.

6. Conclusion

This paper makes several contribution to the problem of exploration of multi-state en-
vironments. First, we proposed a unified notation for different solutions to normal bandit
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problems, and we stressed the importance of the notion of exploration bonuses (Section 3.1).
Second, we highlighted several theoretical and practical limitations to the approach that con-
sists of using bandit problem theory to define local measures of the uncertainty in multi-state
environments (Sections 3.2 and 3.5). Finally, we proposed efficient algorithms built on the
basis of these results (Section 4).

Qualitatively, the algorithms that we propose may be defended by the following argu-
ments:

1. exploration bonuses are defined to evaluate the interest of the actions in regards to
exploration. They allow us to quantify the uncertainty in the same units as the rewards,
and to make explicit the reasons for the choice of a non-optimal action;

2. the back-propagation of exploration bonuses allows an intelligent and complete explo-
ration of the environment, using only local measures of uncertainty;

3. the scaling of exploration bonuses is necessary to moderate the effect of the back-
propagation of bonuses; it allows a reasonable exploration;

4. the initialization of variables with a large positive constant allows exploration to start
from time 0, even if there is no model of the problem. This technique is necessary in
asynchronous algorithms to ensure correct behavior before the environment has been
completely visited.

Experiments showed that very good performance can be attained if these four techniques
are jointly applied. Further research is needed to determine the relative role of each one in
the origin of this success.

In the introduction, we said that most reinforcement learning algorithms may be divided
into two components, the first being responsible for the calculation and the storage of the
value function, and the second being the rule of action selection. It is noteworthy that this
distinction is no longer relevant in ‘+’ algorithms: the variablesNk

i calculated by Eqs.
(44) and (45) represent, at the same time, the value function and the rule of selection of
the actions. Our work shows that introducing considerations about uncertainty in the value
function is an elegant and efficient solution for the exploration of multi-state environments.
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Notes

1. The following results can be generalized to problems where the set of available actions depends on the state.
2. A short discussion on this subject is present at the end of Section 3.4.3.
3. We do not use the usual notationα for the confidence coefficient, because we already used this symbol for

QL’s learning-rate.
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4. We prefer to develop a special notation by replacing rewardsr by ρ, and discount factorγ by g, when bandit
problems are concerned. This will prevent confusion in the following sections, when we use bandit problem
solutions in the framework of MDPs.

5. Gittins provides tables for the quantitiesn(1− g)1/2νg(0, n) andνg(0, 1, n)/νg(0, n)− 1. This is sufficient
to calculateνg(0, n) andνg(0, 1, n).

6. This phenomenon causes the degeneration of undirected exploration that turns to random walk, see
Section 4.2.3.

7. This drawback may be avoided in Barto, Bradtke, & Singh (1991, 1995) ARTDP algorithm.
8. To avoid this, we tried to suppress theV- or Q-values and use only theN-values, even for feeding the sliding

windows (N replacesV in Eqs. (26) and (32)); see Meuleau (1996).
9. Because variance- and error-based IDP+ and IEDP+ have to manage two sets of variables (cf. Section 4.3),

they execute only one iteration of Gauss-Seidel DP with each set of variables after each state transition.
10. Boundary effects due to the finite duration of the experiments introduce few differences between these two

policies. However, since their divergence occurs only during the last steps of the experiment, its overall
influence its negligible.
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Thrun, S., & Möller, K. (1992). Active exploration in dynamic environments. In J.E. Moody et al. (Eds.),Advances

in neural information processing 4. San-Mateo, CA: Morgan Kaufmann.
Tsitsiklis, J.N. (1994). Asynchronous stochastic approximations and Q-learning.Machine Learning, 16, 185–202.
Watkins, C. (1989).Learning from delayed reward. Ph.D. Thesis, University of Cambridge, Cambridge, England.
Watkins, C., & Dayan, P. (1992). Technical note: Q-learning.Machine Learning, 8, 279–292.
Whitehead, S.D., & Ballard, D.H. (1991). Learning to perceive and act by trial and error.Machine Learning, 7,

45–83.

Received May 1996
Accepted November 1998
Final Manuscript November 1998


