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Exploration of Physical Layer Security in Underwater Acoustic

Communications

Yi Huang, Ph.D.

University of Connecticut, 2016

Physical layer security has been under extensive investigation in recent years in

wireless radio communications. However, its study in the context of underwater acous-

tic (UWA) communications is very limited. This dissertation will explore the funda-

mental properties of UWA channels to achieve physical layer security. It includes three

research topics: 1) Channel estimation in UWA systems leveraging the inherent chan-

nel sparsity; 2) Secret key generation through the reciprocity of UWA channels; 3)

Self-protection jamming in half-duplex systems leveraging large propagation delays.

The first part of the dissertation deals with sparse channel estimation in UWA or-

thogonal frequency division multiplexing (OFDM) systems. By exploiting the sparse

nature of UWA channels, compressed sensing (CS) based channel estimation meth-

ods have demonstrated superior performance compared to conventional least-squares

(LS) methods. However, a priori information of channel sparsity level is required to

set the regularization parameter properly. We propose a data-driven sparsity learning

approach based on a linear minimum mean squared error (LMMSE) equalizer to tune

the regularization parameter for OFDM transmissions.



Yi Huang––University of Connecticut, 2016

The second part of the dissertation focuses on secret key generation in UWA chan-

nels. Predefined secret keys are often used to encrypt information. However, they

could be leaked to eavesdroppers. A key generation protocol is presented where se-

cret keys are dynamically generated by quantizing the measured amplitudes on OFDM

subcarriers, and then using error correction codes for secret bits extraction according

to the Slepian-Wolf coding principle. By analyzing the performance based on col-

lected field data, an improved key generation protocol is proposed by incorporating

two modules to increase the channel correlation and deal with channel dynamics.

The last part of the dissertation presents a self-protection jamming approach for

block transmissions in half-duplex UWA systems. Different from existing approaches,

where additional helpers (e.g., relays) are needed to transmit jamming signals, the

proposed protocol does not need any helper but instead relies on the legitimate receiver

itself. This approach exploits the half-duplex nature of underwater transceivers and

the block-based transmission structure, by taking advantage of the large propagation

delays to create interference at the eavesdropper without affecting the reception of the

intended user.
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Chapter 1

Introduction

1.1 Motivation

Physical layer security is an important research topic. The research on physical

layer security in radio communications has been ongoing for decades. However, the

research on physical layer security in UWA communications is at an early stage.

Shannon introduced the concept of perfect secrecy in [99], where a shared secret

key at least as long as the message was required to achieve information-theoretically

secure communication by one-time pad encryption, resulting the random guess as the

best strategy for the eavesdropper to retrieve the transmitted message. Wyner sug-

gested the weak secrecy of a system if the leaked information rate is asymptotically

zero in the codeword length [121]. The pioneer work of Wyner reveals that if the eaves-

dropper’s channel is a degraded version of the channel between the source and the

destination, the information-theoretically secure communication between legitimate

1
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users at a non-zero rate is feasible without using any secret keys. Csiszár and Körner

generalized Wyner’s results to the cases of non-degraded channels, where information-

theoretically secure communication is realizable by taking advantage of the inherent

channel randomness [32].

In radio communications, the approaches to guarantee secrecy against eavesdrop-

ping at the physical layer can be divided into two categories [14]. One is on secret

key generation, which is the source model based physical layer security approach. The

characteristics of wireless channels can be used to extract secret keys for encryption,

based on the reciprocity and randomness of the channels [78]. The time, frequency,

space, and multipath diversity of channels can be used for key extraction. The other

one is on information-theoretic security based on jamming, which is characterized

as the channel model based physical layer security approach. Cooperative jamming

and interference alignment are two popular methods to improve the secrecy rate [81],

where “Barrage Jamming” (BJ) or full noise jamming is usually exploited for theoreti-

cal analysis. Barrage jamming can interfere the eavesdropper by transmitting artificial

noise within the signal bandwidth [7]. If the transmitted waveform is known, the jam-

mer can design a better jamming strategy than BJ, and achieve higher bit error rate

(BER) with less jamming power. Ref. [98] showed that jamming the pilot subcarri-

ers of OFDM symbols could lead to higher BER than barrage jamming. If the pilot

information is shared between legitimate users, superimposed pilot jamming can se-

cure the communication between the legitimate users without any helpers, where the

superimposed pilots act as the artificial noise [27].



3

Due to the fast speed of the electromagnetic wave (3×108 m/s), all the research on

physical layer security in radio communications neglects the propagation delay and as-

sumes that the received signals are perfectly synchronized. The key generation process

and jamming protocols are assumed to be within the channel coherence time. As such,

the helpers can optimize their transmission to achieve interference cancellation or in-

terference alignment by exploiting the spatial orthogonality in both half-duplex and

full-duplex systems, and secret keys can be extracted from the stable channels within

the coherence time. However, underwater acoustic channels are time-varying and dif-

fer from radio channels drastically. The UWA channel suffers from long propagation

delay and severe Doppler effects, due to the low acoustic speed in water (around 1500

m/s) [76, 104]. The assumptions in radio communications no longer hold in UWA

communications. The research in this dissertation provides a timely investigation of

physical layer security in the context of UWA communications.

1.2 Outline of the Dissertation

Chapter 2 introduces the sparse channel estimation for underwater acoustic OFDM

with data-driven sparsity learning, which helps to gain a deep understanding of the

channel multipath structure.

Chapter 3 investigates secret key generation based on the frequency response of the

estimated UWA channels, where the reciprocity of mutual channels will be validated

by data collected from field experiments and the data by simulations.



4

Chapter 4 presents a half-duplex jamming approach for block transmissions over

UWA channels, where the propagation delay plays an important role.

Chapter 5 concludes the dissertation.

1.3 Publications

The results from the following publications have been included in this thesis.

Journal papers:

• [J1] Y. Huang, S. Zhou, Z. Shi, and L. Lai, “Channel frequency response based

secret key generation in underwater acoustic systems,” IEEE Transactions on

Wireless Communications, May 2016 (Accepted).

• [J2] Y. Huang, P. Xiao, S. Zhou and Z. Shi, “A half-duplex self-protection

jamming approach for improving secrecy of block transmissions in underwa-

ter acoustic channels,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4100–4109,

Jun. 2016.

• [J3] Y. Huang, L. Wan, S. Zhou, Z. Wang, and J. Huang, “Comparison of sparse

recovery algorithms for channel estimation in underwater acoustic OFDM with

data-driven sparsity learning,” Elsevier Journal on Physical Communication,

vol. 13, pp. 156–167, Dec. 2014.

Conference papers:
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• [C1] Y. Huang, S. Zhou, Z. Shi, and L. Lai, “Experimental study of secret key

generation in underwater acoustic channels,” in Proc. of the Asilomar Confer-

ence on Signals, Systems and Computers, Pacific Grove, CA., Nov. 2014.

The results from the following papers have not been included in this thesis.

Journal papers:

• [J4] L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi and J-H. Cui, “Adap-

tive modulation and coding for underwater acoustic OFDM,” IEEE Journal of

Oceanic Engineering, vol. 40, no. 2, pp. 327-336, Apr. 2015.

• [J5] Y. Zhang, Y. Huang, L. Wan, S. Zhou, X. Shen, and H. Wang, “Adaptive

OFDMA with partial CSI feedback for underwater acoustic communications,”

Journal of Communications and Networks, Aug. 2015 (Accepted).

• [J6] X. Cai, L. Wan, Y. Huang, S. Zhou and Z. Shi, “Further results on multi-

carrier MFSK based underwater acoustic communications,” Elsevier Journal on

Physical Communication, vol. 18, pp. 15–27, Mar. 2016.

Conference papers:

• [C2] Y. Su, Y. Zhang, S. Le, H. Mo, L. Wei, Y. Huang, Z. Peng, and J. Cui,

“A versatile lab testbed for underwater sensor networks,” in Proc. of IEEE/MTS

OCEANS conference, San Diego, CA, vol. 1, no. 5, pp. 23–27, Sep. 2013.

• [C3] L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi and J.-H. Cui, “Field

test of adaptive modulation and coding for underwater acoustic OFDM,” in
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Proc. of the ACM International Workshop on UnderWater Networks (WUWNet),

Kaohsiung, Taiwan, Nov. 2013.

• [C4] Y. Zhang, Y. Huang, L. Wan, H. Zhou, S. Zhou, X. Shen, and H.

Wang, “Adaptive OFDMA for downlink underwater acoustic communications,”
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Chapter 2

Comparison of Sparse Recovery Algorithms for

Channel Estimation in Underwater Acoustic OFDM

with Data-Driven Sparsity Learning

2.1 Introduction

Underwater acoustic (UWA) channels are often characterized as doubly

(time- and frequency-) selective channels due to the large delay and Doppler spreads

[37, 88, 89, 111, 136]. The UWA communication performance largely hinges on the

channel estimation accuracy at the receiver. Recent research progress on UWA chan-

nel estimation [11, 16, 44, 61, 64, 66] has demonstrated that sparse channel estimation,

which exploits the inherent sparsity in UWA channels, leads to better receiver decoding

performance than the conventional least-squares (LS) based channel estimation.

7
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For block transmissions in UWA environments, different channel models have been

explored for channel estimation, see e.g., [11, 16, 61, 92, 123]. Consider a block trans-

mission with the channel outputs collected in a vector z and the channel unknown

parameters collected in a vector x. A sparse channel estimation can be formulated as

an Lq-norm based optimization problem:

x̂ = argmin
x

1

2
‖z − Ax‖22 + λ‖x‖qq, 0 ≤ q ≤ 2 (1)

where the first item is the fitting error with A being a suitable mixing matrix, the second

term promotes the sparsity of the solution x̂, ‖ · ‖q denotes the Lq norm of a vector, and

λ is the regularization parameter which trades off the fitting error and the sparsity of

the solution.

Different values of parameter q in (1) dictate different optimization problems. The

regularized L2 problem could be called a sparse least-squares problem but the solution

may be not sparse with high probability [83]. A series of greedy algorithms based on

matching pursuit (MP) aim to solve an NP-hard L0 problem. Many iterative shrink-

age/threshold (IST) algorithms for L1 problems, often referred as Basis pursuit (BP)

or BP De-Nosing, thrive to solve a convex optimization L1 problem in recent years,

such as FISTA, TwIST, Nesterov, Homotopy, and ADM [9, 13, 82, 90]. Ref. [48] com-

pared three BP algorithms: SpaRSA, l1 ls [58], and YALL1 algorithms in underwater

environments, while [90] compared Homotopy and YALL1. To achieve a sparser so-

lution without degrading the performance, a half thresholding algorithm is proposed

in [124] to tackle an L1/2 optimization problem, and is proven efficient in synthetic
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aperture radar imaging processing [130]. In this chapter, we compare the performance

of different Lq solvers for the UWA channel estimation.

In practice, the regularization parameter λ is unknown, and an inappropriate λ will

considerably degrade the recovery performance. A lot of research has been carried

out on how to select λ. For the L2 problem, a modified L-curve method is proposed

to overcome the non-robustness of the L-curve method, by utilizing prior information

to define the bounds on λ [96]. For the L0 problem, the information criteria that are

first introduced in autoregressive−moving−average (ARMA) model order selection is

used to select λ, e.g., the generalized maximum likelihood (GML) adopted in [91] and

the Bayesian information criterion (BIC) in [66]. For the L1 problem, ref. [5] adopts

the BIC criterion to choose λ, ref. [84] proposes to use the minimal description length

(MDL) to select λ based on a maximum a-posteriori probability (MAP) estimator aim-

ing to find the minimal data error, while the minimum noiseless description length

(MNDL) criterion extends the selection of λ to minimize the reconstruction error [87].

The mean square error (MSE), Stein’s unbiased risk estimation (SURE) and general-

ized cross validation (GCV) methods are tested in both L1 and L2 problems, where

the predictive risk and the signal estimation errors are minimized to select λ [8, 95].

As shown in [12], minimizing root mean square error (RMSE) with the original sig-

nal may not always be a good method. In this chapter, we propose a new approach

that is called data-driven sparsity learning based on an LMMSE equalizer to tune the

regularization parameter.
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This chapter focuses on sparse channel estimation in an Orthogonal frequency di-

vision multiplexing (OFDM) system, which has been under extensive investigation in

recent years [11,17,28,41,44,46,65,80,101,102,106,116,125,137]. The contributions

of this chapter are summarized as follows.

1) We compare the decoding performance of the aforementioned Lq sparse re-

covery algorithms in the intercarrier interference (ICI)-ignorant and ICI-aware

OFDM receivers, respectively, for q = 0, 1/2, 1, 2. Both simulation and exper-

imental results reveal that the ICI-aware receiver outperforms the ICI-ignorant

receiver for any Lq algorithm, and L1/2 achieves nearly the same performance

as L1 algorithms, which outperform L0 and L2 algorithms.

2) We propose a data-driven sparsity learning approach based on an LMMSE equal-

izer to select the regularization parameter λ in OFDM block transmissions. The

tuned λ in the first block will be used in the following blocks, and the golden

section search is utilized to accelerate the sparsity learning process. Simulation

and experimental results validate the effectiveness of the proposed approach.

The rest of the chapter is organized as follows. Section 2.2 briefly describes the sys-

tem model. Section 2.3 introduces sparse channel estimation and several compressed

sensing algorithms. Section 2.4 presents the data-driven sparsity learning approach

based on an LMMSE equalizer. The simulation results are provided in Section 2.5.

The experimental results are presented in Section 2.6. Finally, we draw conclusions in

Section 2.7.
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Notation: Bold lower case letters and upper case letters denote column vectors and

matrices, respectively. (·)T and (·)H denote transpose and Hermitian transpose, respec-

tively. x[m] denotes the mth element of vector x, and H[m, k] denotes the (m, k)th

element of matrix H. I denotes the unit matrix. ‖x‖∞ denotes the maximum absolute

value of elements of vector x.

2.2 System Model

The zero-padded (ZP) OFDM signal format is considered [61]. Let T denote the

symbol duration, Tg the guard interval. The total OFDM block duration is Tbl = T+Tg.

Let B denote the bandwidth and K the total number of subcarriers. The subcarrier

spacing is △f = 1/T = B/K. The mth subcarrier is at frequency

fm = fc +
m

T
, m = −K

2
, . . . ,

K

2
− 1 (2)

where fc is the center frequency. The K subcarriers are divided into three non-

overlapping sets: data subcarriers SD, pilot subcarriers SP, and null subcarriers SN,

which satisfy SD ∪SP ∪SN = {−K/2, . . . , K/2− 1}. The numbers of corresponding

subcarriers are KD, KP, and KN, which satisfy KD + KP + KN = K. Let s[m] denote

the symbol to be transmitted on the mth subcarrier. The transmitted signal of one

ZP-OFDM block in passband is given by

x̃(t) = 2Re

{[ ∑

m∈SD∪SP

s[m]ej2π
m
T
tg(t)

]

ej2πfct

}

, t ∈ [0, Tbl] (3)
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where g(t) is a rectangular pulse-shaping window, whose Fourier transform is given

by

G(f) =
sin(πfT )

πfT
e−jπfT . (4)

2.2.1 Channel Model

The path-based time-varying underwater channel is modeled as

h(τ, t) =

Npa∑

p=1

Apδ (τ − [τp − apt]) (5)

where Npa is the number of paths, Ap, τp and ap are the amplitude, delay and Doppler

scaling factor of the pth path within one block duration, respectively. The received

signal in passband is expressed as

ỹ(t) =

Npa∑

p=1

Apx̃ ((1 + ap)t− τp) + ñ(t) (6)

where ñ(t) is the additive noise.

2.2.2 Receiver Model

The receiver adopts the two-step Doppler compensation method [61]. The Doppler

scale â and the carrier frequency offset (CFO) ǫ̂ are estimated as described in [61]

and [109]. The signal after the Doppler compensation can be expressed as: z̃(t) =

ỹ(t/(1+ â))e−j2πǫ̂t. The frequency-domain measurement on the mth subcarrier is then

z[m] =

∫ Tbl

0

z̃(t)e−j2πfmtdt =

K/2−1
∑

k=−K/2

H[m, k]s[k] + n[m] (7)
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where H[m, k] is the ICI coefficient that specifies how the symbol on the kth subcarrier

contributes to the measurement on the mth subcarrier, and n[m] is the additive noise.

Using the banded-ICI assumption in [50] [49]

H[m, k] ≃ 0, if |m− k| > D, (8)

the system model becomes

z[m] =
m+D∑

k=m−D

H[m, k]s[k] + η[m], (9)

where D denotes the ICI depth, and

η[m] =
∑

|m−k|>D

H[m, k]s[k] + n[m]. (10)

Using the matrix-vector notation, we have the compact input-output relationship

as

z , HDs + η (11)

where z contains the measurements from all subcarriers, s contains all transmitted

symbols, and HD is the banded channel matrix with nonzero entries on the 2D + 1

diagonals.

Based on different assumptions on D, two kinds of OFDM receivers are developed:

• ICI-aware receiver (D > 0): It reduces the computational complexity com-

pared to the full ICI-aware receiver, and models the ICI effect with ICI-depth D

in time-varying channels.

• ICI-ignorant receiver (D = 0): It is a special case of ICI-aware receiver, where

HD is a diagonal matrix.



14

After the channel matrix HD is estimated, the LMMSE equalizer [108] is used for

symbol detection, and the details are discussed in Section 2.4.1. With the soft outputs

from LMMSE, the rate 1/2 nonbinary LDPC decoder proposed in [22, 51] will yield

the decoded information symbols.

2.3 Channel Estimation

The ICI coefficient H[m, k] in (7) can be represented by the Npa path parameters

as

H[m, k] =

Npa∑

p=1

ξpe
−j2πm

T
τ̄pG

(
fm + ǫ̂

1 + bp
− fk

)

(12)

where the complex gain ξp, the scaled delay τ̄p, and the residual Doppler rate bp are

bp :=
ap − â

1 + â
, τ̄p :=

τp
1 + bp

, ξp :=
Ap

1 + bp
e−j2πm

T
τ̄p . (13)

Define a K × K diagonal matrix Λ with entries of [Λ(τ̄p)]m,m = e−j2πm
T
τ̄p , and

another K×K matrix Γ with entries of [Γ(bp)]m,k = G

(

fm+ǫ̂
1+bp

−fk

)

. Define a banded

matrix Γ
D which keeps the 2D + 1 diagonals of Γ, then the banded channel mixing

matrix is

HD =

Npa∑

p=1

ξpΛ(τ̄p)Γ
D(bp). (14)

2.3.1 Sparse Channel Representation Based on Overcomplete Dictionary

The channel matrix HD has K(2D + 1) −D(1 +D) entries, but can be specified

by Npa triple parameters of {ξp, τ̄p, bp} [60]. The overcomplete dictionary for sparse

channel estimation as described in [11] can be constructed, to transform (11) into a CS
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problem. The path parameters {τ̄p, bp} are discretized into uniformly spaced grids,

τ̄p ∈
{

0,
T

λbK
,
2T

λbK
, . . . , Tg

}

(15)

bp ∈
{

− bmax,−bmax +△b, . . . , bmax

}

(16)

where T/K is the sampling interval in baseband, λb is the oversampling factor, and

N1 = λbKTg/T tentative delays cover the channel delay spread; bmax covers the

Doppler spread, and △b is the Doppler resolution, leading N2 = 2bmax/(△b) + 1

tentative residual Doppler rates. Although N1N2 candidate paths will be searched,

the energy of most paths would be close to zero due to the characteristics of a sparse

channel.

Define the vector ξi = [ξ1,i, . . . , ξN1,i]
T to be the path gains with the same Doppler

rate bi, and stack ξi into a long vector as x = [ξT1 , . . . , ξ
T
N2
]T . Denote the indices of

pilot and null subcarriers within the signal band as {p1, · · · , pK1} where K1 is the total

number of pilot and null subcarriers. Define a K1×K selector diagonal matrix Ψ with

unit entry of Ψ[k, pk] = 1 for k = 1, · · · , K1, and zeros elsewhere. Define zP = Ψz,

ηP = Ψη, and

sP =







s[k], k ∈ SP

0, k ∈ SN ∪ SD

. (17)

Combining all N1N2 candidate paths, the input-output relationship can be rewritten as

a sparse representation form under the banded-ICI assumption,

zP = Ψ

( N1∑

l=1

N2∑

i=1

ξl,iΛ(τ̄l)Γ
D(bi)s + η

)

≈ Ax + ηP (18)
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where

A = [ΨΛ(τ̄1)Γ
D(b1)sP, . . . ,ΨΛ(τ̄N1)Γ

D(bN2)sP]. (19)

The sparse signal recovery algorithms, to be discussed in Section 2.3.2, can be used

to estimate the path gain x, based on which the banded channel mixing matrix HD can

be reconstructed according to (14).

2.3.2 Sparse Recovery Algorithms

Sparse recovery algorithms, which take advantage of the sparse structure of UWA

channels, can be used for channel estimation through solving (18). Taking the Lq

quasi-norm as a regularization term to control the solution sparsity, the sparse channel

estimation problem in (18) can be reformulated as

x̂ = argmin
x

1

2
‖zP − Ax‖22 + λ‖x‖qq. (20)

For different choices of q, different Lq regularization problems are derived.

2.3.2.1 L2 Algorithms - LSQR

Solving an L2 problem equals to approximating the solution by minimizing the

power of error,

min
x

1

2
‖zP − Ax‖22 + λ‖x‖22, (21)

but the solution can be not sparse with high probability. LSQR constructs an approx-

imation by undergoing the bidiagonization process of Golun and Kahan [83]. LSQR
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resembles the conjugate gradient method, but is more stable and reliable when A is ill

conditioned.

2.3.2.2 L0 Algorithms - OMP

L0 penalty yields the most sparse solution, but it is NP-hard [15]. OMP can get the

local optimal solution of L0 problem with a low computational complexity,

min
x

‖x‖0 s.t. ‖zP − Ax‖22 ≤ δ. (22)

Assuming that the observation vector zP is a linear combination of the columns of A,

OMP reconstructs the sparse signal iteratively. At each iteration, OMP chooses one

column from A that mostly resembles the residual vector, and then finds the solution

xn in the nth iteration by solving an LS problem with the combination of all n chosen

column vectors [107].

2.3.2.3 L1 Algorithms

Since (22) with L0 penalty is an NP-hard problem, the approximation problem with

L1 penalty is often preferred, which turns (20) into a convex quadratic optimization

problem,

min
x

1

2
‖zP − Ax‖22 + λ‖x‖11. (23)

Among the corresponding sparse recovery algorithms, considering that SpaRSA has

shown good performance in [48], and that Nesterov, FISTA, and TwIST are the fast

algorithms supported by Matlab toolboxes, we take them as the representative of L1
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solvers for performance comparison.

SpaRSA: SpaRSA is an iterative shrinkage/thresholding (IST) algorithm, which

solves the second order approximation of (23),

xn+1 ∈ arg min
w

1

2
‖w − un‖22 +

λ

αn

‖w‖11 (24)

where un = xn+
1
αn

AH(zP−Axn). αn is chosen by Barzilai-Borwein spectral method,

so that αnI can mimic the Hessian matrix ∇2(1
2
‖zP − Ax‖22) over the step just taken,

leading accelerated convergence. Then the solution of (24) is

xn+1 = soft(un,
λ

αn

) (25)

where soft(u, a) = max(0, 1 − a
‖u‖)u. Continuation procedure can be used to

accelerate the convergence speed [118].

Nesterov: Nesterov’s Primal-Dual approach is a complex accelerated scheme,

which solves the same problem in (24) as SpaRSA [82], but αn is replaced by the

Lipschitz constant αn = ‖A‖22. To speed up the convergence, un becomes a linear

combination of two vectors, where one is derived from the problem in (24), and

the other from a subproblem which involves a weighted sum of all past gradients,

resulting a convergence rate of n2.

FISTA: FISTA is a faster IST algorithm with its convergence rate accelerated to

n2 [9]. Similar to Nesterov which combines the results of all previous iterations to

speed up convergence, FISTA works on the two previous estimates directly, which
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holds the computational expense nearly the same as Nesterov.

TwIST: TwIST is a combination of IST and IRS (iterative reweighted shrinkage)

algorithms. It has the good denoising performance of IST scheme, while can tackle

the ill-posed problem as efficiently as IRS. For TwIST, each iteration depends on the

two previous estimates [13]. Its solution is

xn+1 = (1− ζ)xn−1 + (ζ − β)xn + β · soft(un, λ) (26)

where ζ and β are the positive relaxation factors that control the convergence of the

iteration.

2.3.2.4 L1/2 Algorithm

L1/2 regularization is a non-convex, non-smooth, and non-Lipschitz optimization

problem,

min
x

1

2
‖zP − Ax‖22 + λ‖x‖1/21/2 (27)

but has a fast solution due to the existence of the resolvent of gradient of ‖x‖1/21/2 [124].

L1/2 seems promising among Lq (0 < q < 1) problems: when q ∈ [1
2
, 1], L1/2 yields

the best sparse solution; when q ∈ [0, 1
2
], the performance is not significantly different.

The iterative solution of half thresholding algorithm L1/2 based on a known spar-

sity κ (the number of non-zero entries) of x can be written as,

xn+1 = Hλnµ,
1
2
(Bµ(xn)) (28)
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where Bµ(x) = x+µAH(zP−Ax), step size µ ∈ (0, ‖A‖−2
2 ], and the half thresholding

operator Hλµ, 1
2
(x) is defined as

Hλµ, 1
2
(x) =







2
3
‖x‖(1 + cos(2

3
π − 2ϕλµ(x)

3
)) ‖x‖ >

3√54
4
(λµ)

2
3

0 otherwise

(29)

where ϕλµ(x) = a cos(λµ
8
(‖x‖

8

− 3
2 )). The corresponding near-optimal regularization pa-

rameter λn is expressed as

λn =

√
96

9µ
(‖Bµ(x)‖κ+1)

3
2 (30)

where ‖Bµ(x)‖κ+1 is the (κ+ 1)-th largest component in magnitude.

2.4 Data-driven Sparsity Learning

The sparse recovery algorithms discussed in Section 2.3.2 require the regulariza-

tion parameter λ in L1 and L2, and sparsity κ in L1/2, to be predefined in practical sys-

tems. However, due to time variation of UWA environments, constant regularization

parameter λ and sparsity κ may not be appropriate all the time. Under-sized sparsity

brings higher MSE, and degrades decoding performance. Over-sized sparsity not only

results in overfitting, but also increases the computation complexity. Here, we propose

a data-driven sparsity learning algorithm based on an LMMSE equalizer to select the

regularization parameter λ, where golden section search is proposed to accelerate the

learning process.
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2.4.1 Data-driven Sparsity Learning based on an LMMSE Equalizer

Assume that the UWA channel does not change much during the transmission of a

data burst with Nb OFDM blocks. Taking the first block in a data burst as a pilot block

whose data symbols are known at the receiver, we propose to use the regularization

parameter λ or sparsity κ tuned in the first block for channel estimation in the following

blocks within this burst.

Remark 1. Note that if there is a preamble, the sparsity can be estimated based on

the preamble. Otherwise, the first block will be used as the preamble, as done in this

chapter.

The proposed data-driven sparsity learning algorithm uses the LMMSE equalizer

from [108] to select the sparsity. The null subcarriers of the first OFDM block are

used for noise variance estimation. The pilot subcarriers are used for channel estima-

tion, and the data subcarriers are used for regularization parameter tuning. Take λ for

example. The procedure is as follows.

Firstly the noise variance σ̂2
N is initially estimated based on measurements on the

null subcarriers within the signal band, where the ambient and ICI noise are included,

σ̂2
N =

1

|SN|
∑

m∈SN

|z[m]|2 . (31)

Based on the sparse channel estimate Ĥ
D

obtained in Section 2.3.2, the observation on

the mth subcarrier can be reformulated as

z[m] =
m+D∑

k=m−D

Ĥ[m, k]s[k] + η̃[m] (32)



22

where η̃[m] now contains the error introduced in channel estimation.

The LMMSE equalizer, which is used to mitigate ICI and detect data symbols, can

help to find the optimal regularization parameter λ. According to (32), stack all the

observations, and we have

z = Ĥs + η̃. (33)

Then the LMMSE estimate of s can be expressed as

ŝ = Ĥ
H
(

ĤĤ
H
+

σ̂2
N

σ2
s

I

)−1

z (34)

where the mean and variance of s are defined as E(s) = 0, Σs = Cov(s, s) = σ2
sI, and

σ2
s is the average symbol energy. Define ĥm as the mth column of Ĥ that relates to

s[m] directly. The LMMSE estimate of s[m] can be given as [114]

ŝ[m] = α[m]s[m] + η′[m] (35)

where the equivalent noise η′[m] is assumed to be Gaussian distributed η′[m] ∼

CN (0, σ2
η′ [m]), and

α[m] = ĥ
H

m

(

ĤĤ
H
+

σ̂2
N

σ2
s

I

)−1

ĥm, (36)

σ2
η′ [m] = σ2

s(α[m]− α[m]2). (37)

In the first block where s[m] is known in advance, ŝ[m] is Gaussian distributed

with ŝ[m] ∼ CN (α[m]s[m], σ2
η′ [m]). The data-driven sparsity learning approach aims

to minimize the objective function J(λ), which is the average of the weighted mean-

square error on all data subcarriers of the first block.

λopt = argmin
λ

J(λ) = argmin
λ

1

|SD|
∑

m∈SD

|ŝ[m]− α[m]s[m]|2
σ2
η′[m]

(38)
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Figure 1: J(λ) vs. λ, for D = 0/1 based on LMMSE from one training block, Julian

date 300, SPACE08

Remark 2. For the ICI-ignorant receiver (D = 0), the equivalent criteria to select λopt

based on the LMMSE equalizer would reduce to:

λopt = argmin
λ

J(λ) = argmin
λ

1

|SD|
∑

m∈SD

∣
∣
∣z[m]− Ĥ[m,m]s[m]

∣
∣
∣

2

, (39)

which amounts to minimizing the variance of the effective noise on data subcarriers.

Since the performance based on the LMMSE equalizer outperforms that based on ef-

fective noise variance in the ICI-aware receiver, only the former one will be discussed

in this chapter.

Figure 1 shows that the objective function J(λ) has a convex shape with respect to

the regularization parameter λ in the ICI-ignorant and the ICI-aware receivers based

on the LMMSE equalizer. The optimal λopt that minimizes J(λ) is marked by the star

in Figure 1. Then the tuned λopt from the training block will be used to decode the

following data blocks.
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2.4.2 Golden Section Search

The data-driven sparsity learning approach aims to find the optimal value of λopt

that minimizes the cost function (38). However, no analytical solution can be obtained

by taking the derivative of (38). An exhaustive search of λopt within a preknown in-

terval λ ∈ [λmin, λmax] could be performed but is often computationally intensive.

Leveraging on the convex property of the objective function as shown in Figure 1, we

propose a golden-section search to find the desired λ with an affordable computational

complexity. Even if there might be some small oscillations at some parts, it would

not deteriorate the performance significantly unless the search process requires a very

small step size [8].

The search interval of λ is critical. As [39] indicates, when λ is close to zero, there

would be no sparse solution of (20). While for λ ≥ ‖AHzP‖∞, the optimal solution

would be x̂ = 0. Thus, the optional interval of λ is

λ ∈ (0, ‖AHzP‖∞). (40)

For the L1/2 case, the sparsity κ equals to the estimated number of paths N̂pa. The

lower boundary of N̂pa is 1, which is the minimal positive integer. The upper boundary

can be determined by the number of observations Nobs in one OFDM block, which

shows the most number of non-zeros elements of unknowns x that can be recovered in

the sparse-domain. Hence, we have

N̂pa ∈ [1,Nobs] (41)

where Nobs = KP + KN, the total number of pilot and null subcarriers.
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Take λ for example. Algorithm 1 shows how golden section search works. The

procedure would be the same for the L1/2 case.

Algorithm 1 : Golden Section Search

1: Initialization:

2: Set the golden ratio: γ = 1+
√
5

2
;

3: Set the initial search interval of λ: [λmin, λmax];
4: Define the current interval length: Lcur = λmax − λmin;

5: Define the tolerant interval as the stopping criteria: Ltol;

6: repeat

7: Select λ1 and λ2 within interval [λmin, λmax] for evaluation:

λ1 = λmin + (1− γ)Lcur

λ2 = λmax − (1− γ)Lcur

8: Estimate the channel Ĥ(λ1), and Ĥ(λ2). Evaluate J(λ1) and J(λ2).
9: if J(λ1) < J(λ2) then λmax = λ2;

10: else λmin = λ1;

11: end if

12: Lcur = λmax − λmin.

13: until Ltol > Lcur

14: Output: [λopt, Ĥ(λopt)] = min
λ

(J(λmin), J(λmax))

Finally, the optimal regularization parameter λopt and the corresponding channel

matrix Ĥ(λopt) can be found by ⌈1.44 × log2(
λmax−λmin

Ltol
)⌉ iterations during the search

process.

Note that the golden section search algorithm will not be used in OMP. By increas-

ing the number of iterations, OMP finds solutions with more non-zero entries. The

best OMP solution is determined by the data-driven approach in (38).



26

1 2 3 4 5 6 7 8 9 10 11 12
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

phone

λ
o
p
t

S1, 1:57AM

S1, 5:54AM

S3, 1:57AM

S3, 5:54AM

Figure 2: The tuned λopt on different phones from blocks at different time, Julian date

300, SPACE08

2.4.3 Multichannel Combination

For an array with multiple hydrophones, different hydrophones often have differ-

ent channels. The optimal regularization parameter may have different optimal values

λopt across hydrophones. Figure 2 shows the result from the 2008 Surface Processes

and Acoustic Communications Experiment (SPACE08) experiment, that the tuned λopt

changes with the hydrophone, the transmission time, and the distance S1 and S3 be-

tween transmitter and receivers. It is necessary to train λ separately. For the rth data

block of the vth hydrophone, the effective noise variance on pilots SP after channel

estimation is estimated by

σ̂2
r,v =

1

|SP|
∑

m∈SP

∣
∣
∣
∣
∣
zr,v[m]−

k=m+D∑

k=m−D

Ĥr,v[m, k]sr,v[k]

∣
∣
∣
∣
∣

2

(42)
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where the residual ICI, channel estimation error and the ambient noise are included.

Hydrophone combining can be carried out as in [110] after the frequency measure-

ments are weighted by the factor 1√
σ̂2
r,v

.

2.5 Simulation Results

A single-input single-output (SISO) OFDM system is considered for simulation,

with center frequency fc = 13 kHz, bandwidth B = 9.77 kHz, symbol duration

T = 104.86 ms, and guard interval Tg = 24.6 ms. The OFDM system has a total

of K = 1024 subcarriers, out of which 96 are null subcarriers and 256 are pilot sub-

carriers. Among the null subcarriers, 24 are placed on the edges of signal band for

band protection, and the rest 48 subcarriers are equi-spaced in the middle of signal

band. 256 pilot subcarriers are uniformly distributed among the signal band. For the

ICI-aware receiver, 96 data subcarriers adjacent to the middle null subcarriers and ex-

isting pilots, are taken as extra pilot subcarriers for ICI estimation [11]. The remaining

data subcarriers are encoded using an LDPC code with rate 1/2, and modulated with

16-QAM constellation. The pilot symbols are modulated with QPSK constellation,

with 1.5 times of power than that of data.

The simulated sparse channel has 15 discrete paths. The inter-arrival time of paths

is exponentially distributed with mean of 1 ms, resulting a 15-ms channel delay spread

on average. The Doppler rate of each path is independently distributed ap = vp/c,

where vp is the relative speed between the transmitter and the receiver with the standard
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deviation of 0.2 m/s, and c is the sound speed. The amplitude of each path is Rayleigh

distributed, whose average power decreases exponentially with delay.
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Figure 3: BLER vs. SNR, SISO with ICI-aware receivers, 16-QAM.

We generate 100 OFDM packets, with each packet consisting of 10 OFDM blocks,

resulting 1000 blocks in total. We assume that the channel does not change within each

packet transmission. The spectral efficiency α and the data rate R for the ICI-aware

receiver are [11]

α =
T

T + Tg

· 336− 96

1024
· log2 16 = 0.76 bits/s/Hz, (43)

R = αB = 7.42 kb/s. (44)
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Figure 4: Data-driven sparsity learning, BLER vs. SNR, SISO, 16-QAM.

The corresponding spectral efficiency and data rate for the ICI-ignorant receiver would

be α = 1.06 bits/s/Hz and R = 10.39 kb/s [11].

The oversampling factor λb of the delay grid in the overcomplete dictionary is set

to be 2. Since the covered channel delay spread by the channel estimator is equivalent

to the guard interval, there are N1N2 = λbTgB = 480 unknowns that need to be

estimated for the ICI-ignorant receiver by assuming no Doppler spread N2 = 1, and

there are N1N2 = 7200 unknowns for the ICI-aware receiver by assuming N2 = 15

Doppler values within an interval [−5 · 10−4, 5 · 10−4]. The span of golden section

search is set to be [0.1, 8.0], with the search span of termination to be less than 0.2.

The tolerance for Lq algorithms on x is 1e-4, with maximal iteration to be 50.

We take SpaRSA, FISTA, and L1/2 under D = 1 as representatives to show the

performance of the sparse recovery algorithms with data-driven sparsity learning. As

shown in Figure 3(a), 3(b), and 3(c), the prefixed values of λ are 0.1, 0.5, 1.0, 1.5,

2.0, 3.0, 4.0, 5.0, and 6.0, and the prefixed sparsity N̂pa are 100, 200, 300, 350, 400,
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450, 500, 600, 800 and 1000. SpaRSA, FISTA, and L1/2 can achieve nearly the best

performance compared to the case of fixed λ and N̂pa for D = 1 with λopt = 1.0 and

1.5, and N̂pa,opt = 200 and 250. The result demonstrates the importance of selecting

appropriate λ and N̂pa, and verifies the effectiveness of the data-driven approach. The

under-sized and over-sized λ and N̂pa will degrade the performance of the Lq algo-

rithms.

Figure 4 shows the performance of the Lq algorithms with data-driven sparsity

learning approach. We can see that the ICI-aware receivers considerably outperform

the ICI-ignorant receivers. LSQR performs the worst due to the model mismatch. The

L1/2, and L1 algorithms have similar performance.

2.6 Experimental Results - SPACE08 Experiment

To evaluate the performance of the data-driven sparsity learning approach, the data

collected from the SPACE08 experiment are used. The SPACE08 experiment was

conducted off the coast of Martha’s Vineyard, MA, from Oct. 14 to Nov. 1, 2008,

where the water depth was about 15 meters. The transmitter and six receivers were

anchored at different locations of the sea bottom. Each receiver was a 12-element

array with elements spaced by 0.1 meter, resulting a single-input multi-output (SIMO)

system. We consider two receivers labeled as S1 and S3 which were 60 meters and 200

meters away from the transmitter, respectively. The recorded data from Julian Dates

300 are considered, since this day suffered the toughest weather condition during the

experiment.
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Figure 5: SIMO with ICI-aware receiver, 16-QAM, Julian date 300, SPACE08-S1 (60

m)

In the SPACE08 experiment, the transmitter sent 20 consecutive OFDM blocks

every 2 hours. In total 12 data files were saved each day. On Julian Date 300, 5 files

recorded during the afternoon were severely distorted, therefore only the remaining

data files are used to test the performance. The parameter setting in this experiment is

the same as that in simulation.

Figures 5(a), 5(b) and 5(c) compare the performance between data-driven and

fixed-sparsity FISTA, SpaRSA, and L1/2 in the ICI-aware receiver (D = 1). The

prefixed value of λ and sparsity N̂pa are the same as that in simulation. Different λ’s
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Figure 6: Data-driven sparsity learning, SIMO, 16-QAM, Julian date 300, SPACE08-

S1 (60 m)

lead to quite different performance of FISTA and SpaRSA, which indicates the ne-

cessity to select a proper value of λ. The BLER curves of L1/2 are tighter during the

span of prefixed N̂pa, which suggests L1/2 is insensitive to N̂pa in this experiment.

We can see that FISTA with data-driven sparsity approximates the best performance

with fixed λ =1.0 and 1.5. SpaRSA with data-driven sparsity presents the same best

BLER performance as the fixed λ = 1.0. L1/2 with data-driven sparsity approximates

the best with N̂pa = 200, 300, 350, 400, 450, 500. In short, the three algorithms with

data-driven sparsity learning approximate the best performance of the fixed λ or N̂pa,

which demonstrates the validity of the data-driven method.

Figure 6 shows the BLER performance of the ICI-ignorant receiver and the ICI-

aware receiver with an increasing number of phones for S1, where the data-driven

approach is used to select the proper regularization parameter λ and sparsity N̂pa. As

Figure 6(a) and 6(b) demonstrate, we can see that the ICI-aware receivers outperform

the ICI-ignorant receivers. LSQR fails to decode the blocks due to model mismatch.
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Figure 7: Data-driven sparsity learning, SIMO, 16-QAM, Julian date 300, SPACE08-

S3 (200 m)

OMP and all the listed L1 algorithms have better performance than L1/2 algorithms

when D = 0. However, all the L1 and L1/2 algorithms have the same performance

when D = 1, which is better than that of OMP.

Figure 7 demonstrates the BLER performance of the ICI-ignorant receiver and the

ICI-aware receiver with an increasing number of phones for S3, where the data-driven

sparsity learning method is included in all the listed Lq algorithms. With LSQR, the

ICI-ignorant receiver has better performance than the ICI-aware receiver, since the

solution of LSQR is not sparse with high probability, which degrades the performance

of the ICI-aware receiver which has more variables. With all other Lq algorithms,

the ICI-aware receivers outperform the ICI-ignorant receivers. For both D = 0 and

D = 1, SpaRSA, TwIST, FISTA, Nesterov, and L1/2 have the best performance, much

better than LSQR, while OMP is worse than L1 and L1/2 only for D = 1 .
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2.7 Conclusions

This chapter presented a data-driven sparsity learning approach based on an

LMMSE equalizer to select a proper regularization parameter in OFDM systems. The

golden section search was employed to accelerate the sparsity learning process. The

block error rates of several different Lq algorithms were compared in the ICI-ignorant

and the ICI-aware OFDM receivers. Simulation and experimental results showed that

the half thresholding algorithm and the four BP solvers: SpaRSA, FISTA, Nesterov,

and TwIST have nearly the same performance, which outperform the OMP algorithm,

and the LSQR performs the worst. The data-driven sparsity learning approach helped

to achieve nearly the same performance as that of the best fixed regularization param-

eter. We conclude that L1 and L1/2 sparse recovery algorithms based on data-driven

sparsity learning are appealing choices in underwater OFDM systems.

Estimation of the underwater acoustic channel lays the foundation for secret key

generation in underwater systems as described in the next chapter.



Chapter 3

Channel Frequency Response Based Secret Key

Generation in Underwater Acoustic Systems

3.1 Introduction

Security has attracted great attention in recent years, due to the system vulnerabil-

ities to malicious attacks [25,26,33,81,93,142,143]. The broadcast nature of wireless

medium allows an attacker to eavesdrop the signals in the physical channel easily. It

becomes a major concern to have shared secret keys among wireless sensor network

(WSN) users to secure the private data [26,55]. However, the public key infrastructure

mechanisms are not practical for sensor networks since they need a certification author-

ity, and the key predistribution schemes are not suitable for large-scale networks [100].

One area of active research is on dynamic key generation at the physical layer to pro-

vide secure communications for wireless systems [81, 100].

35
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3.1.1 Key Generation in Wireless Radio Communications

Based on the reciprocity of the wireless channels between two legitimate users,

various key generation protocols have been explored in wireless radio communica-

tions.

• The power variation of received signal strength (RSS) has been adopted for key

generation in flat fading channels. The received signal strength indicators (RSSI)

for many off-the-shelf wireless devices can be easily assessed. Smart antenna

with beam-forming technique is used to create artificially fluctuant channels by

adjusting the reactance randomly, leading independent RSSI for key generation

[3]. A level-crossing algorithm with one-bit quantization to extract keys from

the RSSI of correlated Rayleigh fading wireless channels is proposed in [78]. A

multi-bit quantization of the RSSI can increase the secret key rates [128]. The

framework in [85] uses interpolation within the coherence time to deal with the

nonsimultaneous measurements of RSSI. Both the absolute amplitude and fad-

ing trend of RSSI are multi-bit quantized to address group secret key generation

in star and chain topologies [68].

• The dominant channel taps of a channel impulse response (CIR) can be used

as the randomness source for key generation. The complex channel coefficients

are employed to extract secret keys by taking advantage of the multipath fading

randomness [70]. The impact of the channel sparsity and the correlation be-

tween the main and eavesdropping channels on secret key capacity was studied
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in [31], and the secret key capacity with/without eavesdropper were presented.

The phase information of multipath was considered for key generation in [38],

and the optimal guard intervals were derived to separate quantization regions.

• Multicarrier modulation, such as orthogonal frequency-division multiplexing

(OFDM), is widely used in broadband communication systems. It can provide

higher secrecy key rates by utilizing the channel frequency response (CFR). The

key bits were quantized from the channel response of each individual subcarrier

in [135]. As shown in [67, 120, 122, 127], the key bits can be quantized across

all the subcarriers. An adaptive key generation approach was proposed in [127]

based on the RSS of subcarriers in an OFDM system, where Discrete Cosine

Transformation (DCT) was used to reduce the redundancy of the measured RSS

and inverse DCT was used for RSS reconstruction, and adaptive multi-level

quantization was carried out by exchanging parity information. In [120], both

the real and imaginary parts of CFRs were used for key generation, where the

original and conjugate of the received probing signals were exchanged for chan-

nel estimation. To achieve a higher secret rate, a Channel Gain Complement

(CGC) assisted secret key generation protocol was proposed in [67] based on

the fine-grained channel frequency response in an OFDM system, where the

non-reciprocal components of CFRs were transmitted to enhance the correlation.

The work in [122] proposed a fast secret key extraction protocol named KEEP

based on the amplitude of CFRs, where the universal hash functions were used
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to validate the consistency of keys, and the correlation of near-by subcarriers

was eliminated by key combination after random bit-selection. The precoding

matrix index (PMI)-based secret key generation with a rotation matrix was pro-

posed for MIMO-OFDM systems in [119], where the randomly generated keys

were embedded in transmitted signals as the index of the best procoding matrix,

and the keys from both sides were exchanged secretly.

3.1.2 Scope and Contributions

In this chapter, we study dynamic key generation at the physical layer to provide

secure underwater acoustic (UWA) communications. The research topics in under-

water acoustic systems often lag behind the counterparts in wireless radio systems,

however, there exists large room for exploration, due to the fundamental difference of

underwater acoustic channels from radio channels. Due to the slow speed of sound in

water, 1500 m/s versus the speed of light 3 · 108 m/s, the underwater acoustic channel

is characterized of large propagation delay, low bandwidth, and severe Doppler ef-

fects due to the platform motion and media instability. We are motivated to investigate

whether the physical layer techniques developed for radio channels are applicable to

underwater acoustic systems.

Note that the importance of security concerns in underwater acoustic systems have

been articulated in recent overview papers [33,62]. However, up to now only one work

has investigated the secret key generation in UWA channels by exploring RSSI [74].

The contributions of this chapter are as follows.
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1) We present a secret key generation protocol, which exploits the channel fre-

quency response of OFDM systems in UWA channels. Leveraging the detailed

channel information in the frequency domain, the proposed approach will greatly

speed up the key generation process relative to RSSI based approaches [74] as

more bits are generated in each round of message exchange.

We have implemented part of the protocol in lake tests. By analyzing the col-

lected data sets, we verify the correlation between mutual channels, and validate

the effectiveness of the key generation approach.

2) Based on the lake test results, we further improve the key generation protocol in

UWA systems, by introducing the adaptive pilot signalling module to increase

the correlation and the block-sliced key verification module to deal with channel

dynamics. The simulation results show the feasibility of higher practical key

generation rate. To our knowledge, the concept of adaptive pilot signalling has

not been explored in the literature.

The rest of the chapter is organized as follows. Section 3.2 describes the system

model and the secret key generation protocol using fixed pilots. Section 3.3 presents

the lake test results. Section 3.4 discusses the improved secret key generation protocol

utilizing adaptive pilots for signalling in details. Simulation results are provided in

Section 3.5. Finally, we draw conclusions in Section 3.6.
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Notation: Bold lower case letters and upper case letters denote column vectors

and matrices, respectively. (·)T , (·)∗ and (·)H denote transpose, conjugate, and Her-

mitian transpose, respectively. CN (·) denotes a random variable that follows complex

Gaussian distribution. ⌊·⌋ denotes the floor function. x[m] denotes the mth element of

vector x, and H[m] denotes the mth element of the main diagonal of matrix H. E{·}

denotes the expectation of a random variable.

3.2 System Description

The system configuration is shown in Fig. 8(a). Two nodes, Alice and Bob, aim to

establish a secret key. Eve is the adversary who listens to the communications between

Alice and Bob passively, and hopes to extract the same key. Fig. 8(b) illustrates a

relevant scenario in an underwater network, where Bob acts as a data collection center

and Alice, an autonomous underwater vehicle (AUV), collects data samples to be sent

back to Bob. Eve is another AUV who wants to intercept the data from Alice by

listening to the underwater acoustic transmissions between Alice and Bob.

Bob

Alice

EveHAE

HAB

HBA

HBE

(a) Node topology for key generation

Eve
Bob

Alice

(b) An illustration in an underwater network

Figure 8: System configuration
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3.2.1 System Model

Alice and Bob use the zero-padded OFDM block as the probing signal for channel

estimation [52]. Define z[k] as the frequency-domain measurement on the kth subcar-

rier fk, s[k] as the transmitted symbol on fk, and H[k] as the corresponding channel

response in the frequency domain. The frequency-domain channel input-output rela-

tionship is

z[k] = H[k]s[k] + η[k], k = −K

2
, . . . ,

K

2
− 1 (45)

where K is the number of subcarriers and is assumed to be even, and η[k] contains

the ambient noise and intercarrier interference (ICI) [52]. Using the matrix-vector

notation, the compact form of (45) is

z = Hs + η, (46)

where z, s and η denote the measurements from all subcarriers, transmitted symbols

and noise vector respectively, and H is a diagonal matrix with H[k] being its kth diag-

onal element.

As Fig. 8(a) shows, if Alice and Bob exchange the probing signals in turn, they

would get the noisy observations

zA = HBAsB + ηA, (47)

zB = HABsA + ηB, (48)



42

Alice

Bob

Round  #1

Packet #
OFDM

probing signal
Syndrome

Hash

value

Key 

ACK

Round  #N

.  .  .

.  .  .

Figure 9: Secret key generation protocol using fixed pilots

where HBA is the channel matrix from Bob to Alice, and HAB from Alice to Bob. And

Eve will observe

zE = HAEsA + ηE, (49)

z′E = HBEsB + η′
E, (50)

where HAE and HBE are the channels from Alice and Bob to Eve respectively. Since

Eve stays multiple-wavelengths away from Alice and Bob1 , she experiences different

multipath channels, leading independent channel measurements.

3.2.2 Secret Key Generation Protocol

The secret key generation protocol used in lake tests is shown in Fig. 9. The de-

scription here is based on the used AquaSeNT OFDM modem [4], where three existing

functionalities are called by the higher-layer protocol. First, the modem can send out

a message using its data transmission mode with its own proprietary data processing

1The sound speed in water c is around 1500 m/s. For an acoustic modem with a center frequency

at e.g., fc = 10 kHz and fc = 20 kHz, the wavelength is λ = c/fc = 0.15 m and λ = 0.075 m,

respectively. Hence, this condition can be easily met in underwater acoustic systems when Eve is at

least one meter away from Alice and Bob.
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algorithms [4]. Second, the modem can play a pre-loaded arbitrary waveform using its

waveplay function. Third, the modem can record the incoming signal once properly

configured by a command. The procedure is as follows.

1) Alice first sends out a short message that contains the packet number, using

the data transmission mode of the modem. Then she plays a known probing

signal (for example, one fixed OFDM block in our tests) using the waveplay

function of the modem. Once Bob has decoded the packet number correctly

and receives the probing signal from Alice completely, he replies to Alice with

the same OFDM probing signal immediately, and then the corresponding packet

number he decoded. The packet number here is used for Alice and Bob to pair

the OFDM probing signal due to the packet loss. Bob sends the packet number

after the probing signal, to reduce the interval between the probing signals and

provide the highest correlation between mutual channels.

2) Alice quantizes her observation of the underwater acoustic channel in the fre-

quency domain, and generates the keys herself. Then she sends the syndrome

to Bob based on the error correction code they predefine, aiming to help Bob

recover the sequences that Alice observed. Bob quantizes his channel observa-

tion, then he extracts the keys with the help of the quantized channel frequency

response available and the received syndrome. Step 1) and step 2) will repeat N

times, until the desired length of keys can be extracted.
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3) Bob sends the hash value to Alice where the generated keys are taken as the

source of the hash function. Alice generates another hash value with the same

hash function, and compares it with the value from Bob.

4) If the hash values of Alice and Bob are equal, the secret keys are regarded as

matched and a Key Acknowledgement signal is transmitted to Bob.

3.2.3 Channel Estimation

Channel estimation is carried out based on the received data corresponding to the

probing signal. We adopt the block fading assumption here, which means that the

UWA channel remains quasi-static or slowly varying during probing in each round,

but becomes independent from round to round. For this reason, we drop the index

for the signal probing at different rounds. For each received probing signal, proper

Doppler compensation is still needed to compensate the effect due to platform motion

and medium instability. After Doppler compensation, the equivalent channel at the

baseband can be represented as [52]

h(τ) =

Npa∑

p=1

ξpδ (τ − τp) , (51)

where Npa is the number of paths, ξp and τp are the amplitude and delay of the pth path,

respectively. The channel frequency response of the kth subcarrier can be expressed

as

H[k] =

Npa∑

p=1

ξpe
−j2π k

T
τp . (52)
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Based on the channel model, sparse recovery algorithms with data-driven sparsity

learning descripted in Chapter 2 are used to estimate the channel frequency response.

3.2.4 Channel Quantization

Quantization converts channel measurements into a binary bit stream; see e.g., [43,

131] on the descriptions of different quantization methods used for key generation. In

this chapter, we focus on the quantization method based on the cumulative distribution

function (CDF).

The channel frequency responses of successive frequencies may have high cor-

relation, resulting long runs of zeros or ones after quantization. To reduce the cor-

relation, we only select parts of the equal-spaced frequency response. Suppose that

M frequencies {fp1 , · · · , fpM} are selected, the used frequency measurements are

{H[p1], · · · , H[pM ]}, where p1, · · · , pM are the indexes of the subcarriers.

Different from [67,122] which estimate the mean and variance of the amplitudes of

CFR samples in a time sequence, we estimate the mean and variance of the amplitudes

of CFRs across subcarriers. Then the mean and variance of the amplitudes of CFR are

estimated as:

µH =
1

M

M∑

i=1

|H[pi]| (53)

ε2H =
1

M − 1

M∑

i=1

(|H[pi]| − µH)
2 (54)

The multi-bit CDF based quantization is used to quantize the amplitude of CFR into

binary bits, where the threshold of different quantization intervals is set based on the
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CDF of the amplitudes of CFR. Suppose we would like to extract t bits per mea-

surement, then the amplitude of each subcarrier will be divided into 2t equally likely

regions. The CDF of |H[k]| is defined as F (x) = P (|H(k)| < x). The lth threshold

to space different intervals can be determined by the inverse of the CDF,

ql = F−1

(
l

2t

)

, l = 1, · · · , 2t − 1 (55)

q0 = −∞, q2t = ∞. (56)

Gray coding is constructed and mapped to different intervals. If |H[k]| falls into the lth

interval [ql−1, ql), then the corresponding t-bit code will be used as the extracted bits.

As in [67, 68], we adopt the Gaussian CDF for the quantizer, i.e., assuming that the

CFR amplitudes follow the Gaussian distribution |H[k]| ∼ N (µH, ε
2
H). Note that only

one-bit and two-bit quantizers are used in this chapter, where for the one-bit quantizer,

the CFR amplitudes are simply compared against the mean value.

3.2.5 Key Reconciliation

Let yA and yB denote the binary codewords obtained at Alice and Bob, respec-

tively, from their quantized versions of the channel frequency response. Due to noise

and channel time variation, these two codewords are not identical. A reconciliation

process can be carried out by error correction coding along the principle of Slepian-

Wolf coding [59]. Assume a linear block code such as BCH(n,m) is used, where n is

the length of codeword and m is the length of information word. If the length of yA

and yB is larger than n, the bit sequences used for key extraction are collected in an
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interleaving manner to make the length of each subset equals to n, and then cascade

the bits of each subset to get the final key. As an example where the length of yA is n,

the process is as follows.

1) Alice and Bob have an agreement on the BCH(n,m) code. They share the same

2m information words of length m, {b0, b1, · · · , b2m−1}, the corresponding code

words of length n, {c0, c1, · · · , c2m−1}, the generation matrix G and parity check

matrix P.

2) Alice calculates the syndrome sA of length n − m based on her observation

yA. The syndrome can be obtained by rA = yAPT , or the coset leader eA with

rA = eAPT . The key is the corresponding information word b̂A generated by

Alice

b̂A = argmin
b

‖yA − bG‖, (57)

and

eA = yA − b̂AG. (58)

3) Alice sends the helper information rA to Bob through the public channel. The

effect of sending rA is equivalent to eA, but rA is preferred due to its shorter

length. Though Eve can overhear rA correctly, no information would be leaked

to her due to the high uncorrelation of channels.
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4) Bob recovers the coset leader eA based on the received syndrome rA. Then it

decodes its own key as:

b̂B = argmin
b

‖yB − (eA + bG)‖. (59)

3.3 Lake Test

We conducted four lake tests to examine the performance of the secret key gener-

ation protocol shown in Fig. 9. In particular, we took the OFDM modems with single

transducer as the nodes to represent Alice, Bob and Eve respectively. The bandwidth

of the AquaSeNT OFDM modems is B = 6 kHz, with the frequency band 14 kHz to

20 kHz, and the number of total subcarriers is K = 1024.

Test 1 was the initial test carried out under the Bassetts Bridge of Mansfield Hollow

Lake in Connecticut on Aug. 12, 2014. As Fig. 10(a) shows, the length of the bridge

was about 17 meters. All three nodes were put near the walls of the bridge ends, where

Alice was on the right side of the bridge, while Bob and Eve were on the opposite side,

and 2 meters away from each other. They were deployed about 0.8 meter below the

surface, with the water depth of 2 to 3 meters. Being close to the bridge, the nodes

were deployed without using a boat. The transmission power of Alice and Bob was

set to be −25 dB, where 0 dB refers to the maximum transmission power of 25 Watts

allowed by the modem.

After examining the outputs from Test 1, three follow-on tests were carried out in

the open water at the Mansfield Hollow Lake on Oct. 3, 2014, as shown in Fig. 10(b),

where a boat was used for node deployment. Bob was anchored at a fixed position. In
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test 2, Alice was 48 meters away from Bob. In test 3, Alice was apart from Bob with

93 meters. In both tests 2 and 3, Eve was not anchored and floated away with the water

flow, and its position was not tracked. In test 4, the distance between Alice and Bob

was 179 meters, and Eve was anchored 41 meters away from Bob. In these three tests,

Alice and Bob were deployed about 1.5 meters below the water with the transmission

power to be −20 dB, and Eve was placed about 1 meter below the water.

(a) Test 1 (b) Tests 2-4

Figure 10: Test locations in the Mansfield Hollow Lake, Connecticut, USA

In test 1, Alice sent the packet number and the probing OFDM blocks every 10

seconds. In tests 2-4, they exchanged packets every 15 seconds. Note that a typical

underwater acoustic channel has a coherence time on the order one to several seconds.

Once Bob received the probing signal, he replied immediately with the same probing

signal, followed by another message to denote the corresponding packet number. Eve

listened passively without any interference. In these tests, the syndrome transmission

was not carried out, and off-line processing was conducted on the collected data sets.

Due to some synchronization and decoding failure, the probing signals with a correct

packet number at Alice, Bob and Eve would be used for key generation. In total, we
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collected 92 data sets for test 1, 100 sets for test 2, 64 sets for test 3, and 98 sets for

test 4.

We use the following metrics to evaluate the performance of the key generation

protocol in lake tests.

Bit Match Rate (BitMR): It is defined as the ratio of the number of matched bits to

the total number of extracted bits between two parties. The BitMR between Alice and

Bob demonstrates the reliability and efficiency for key generation, and the best case is

BitMR = 100%. The BitMR between Alice and Eve shows the leaked information.

When BitMR = 50%, the best strategy for Eve to crack the key is by random guess.

Burst Match Rate (BurstMR): The BurstMR is the match rate of bursts, by compar-

ing the secret bits extracted from the 64 subcarrier measurements of each burst.

Randomness: The randomness reveals the distribution pattern of bit streams. The

standard NIST statistical Test Suite [6] will be used for the randomness measurement

of the keys.

3.3.1 Why Amplitudes of CFR?

The amplitude and phase information of channel frequency response (CFR)

has been used for key generation in ground wireless communications, respectively

[67,122]. The real part and imaginary part of CFR are also explored and tested for key

generation [120]. However, the reciprocity of UWA channel is seldom investigated.

Due to the time-varying property, the random sources used in wireless communication

may not be applied to that in UWA channels. Assume that impulse responses of the
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Figure 11: One example plot on the amplitude of the channel impulse responses, lake

test 3

legitimate channels measured at Alice and Bob are identical. However, the data ac-

quisition has some delays due to the imperfect synchronization of OFDM modems. A

time delay introduces phase rotation in the frequency domain. It is hard to correct the

difference of the time delays at two distributed nodes, unless for example the estimates

of the channel impulse response could be collected by a central processing unit for

time alignment. As a result, the correlation between the CFRs of the mutual channels

is very low. It could be worse in half-duplex communication systems by considering

the time-varying UWA channels and the channel estimation errors. On the other hand,

the amplitude correlation is not affected by the time delay, which could provide more

robust performance. Next we verify the reciprocity of the collected UWA channel

estimates by the correlation coefficients between CFR amplitudes.

Fig. 12 shows the cross correlation results of the amplitudes of CFR from lake test

3. Due to the limited space, the correlation between real or imaginary parts is not
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Figure 12: Cross correlation of CFR amplitudes at 64 equal-spaced subcarriers, lake

test 3

shown. If the amplitudes of the CFR are used to compute the correlation coefficients,

from Fig. 12(a) we can see that the diagonal is rather clear, and the average correlation

coefficient ̺ between legitimate channels are 0.62. Meanwhile, Fig. 12(b) shows that

the average correlation coefficient ̺ of the amplitudes of CFR between legitimate chan-

nel and eavesdropped channel is about 0.19. Since the correlation coefficients between

the legitimate users are larger than that between legitimate user and eavesdropper, we

expect secret keys could be extracted from the amplitudes of CFR.

3.3.2 Channel Quantization

The channels between Alice and Bob HAB and HBA, and the channel from Alice to

Eve HAE, are used for key extraction. Although the matrices HAB, HBA, and HAE have

1024 diagonal entries corresponding to 1024 subcarriers, we select M = 64 equal-

spaced subcarriers for key generation. The channel frequency amplitudes in Fig. 13
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and Fig. 14 are scaled and shifted with the mean to be 0, and range from −1 to 1. Due

to the space limitation, only the 1-bit quantization results of test 2 and test 4 are shown.

Fig. 13(a) and 14(a) show the quantization results of the mutual channel in the fre-

quency domain between Alice and Bob for one realization of the two test scenarios.

For the scaled estimated channel in the frequency domain, we can see that they are not

the same, but with some fluctuations. The motion of medium and buoys, and the im-

perfection of the modems also impose the asymmetry on the frequency measurements.

Define the hamming distance as the number of different bits between two sequences.

The Hamming distance shown in Fig. 13(a) is much larger than that in Fig. 14(a), since

the water depth was rather small, only about 2 meters, and there were lots of tall water

plant at the places where Alice and Bob were deployed. The difference between the

quantized HAB and HBA is not as obvious as the unquantized estimates. Part of differ-

ences are eliminated by quantization. The differences of quantized values only exist

when one channel measurement above the threshold while the other below. Fig. 13(b)

and 14(b) show the quantized results of HAB and HAE in the frequency domain. We

can see the huge differences not only lie in the scaled channels, but also in the quan-

tized channels. It verifies the low correlation between the legitimate and eavesdropping

channels, and implies the feasibility of secret key extraction.

3.3.3 Statistical Property of Quantized Channels

The underwater acoustic channel is time-varying. Figs. 15(a) and 16(a) show the

histogram of Hamming distances between quantized HAB and HBA, HAB and HAE
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Figure 13: Scaled channel amplitudes and the corresponding quantized values in the

frequency domain of lake test 2, 1-bit quantization. The dashed line represents the

normalized channel. The solid line represents the quantized channel.

for test 2 and test 4, when 1-bit quantization is adopted. We see that the Hamming

distances between HAB and HBA overlap with the distances between HAB and HAE

for test 2. And the distances between HAB and HBA are below 20 for test 4, while the

Hamming distances between HAB and HAE are larger than 20 for test 4. Figs. 15(b)

and 16(b) show the cumulative probability of Hamming distances for the correspond-

ing channels. It is clear to see the Hamming distances associated with legitimate

and eavesdropping channels for test 4 can be separated, and the Hamming distances

related to Alice and Bob are smaller than that related to Eve, which verifies the mutual

channels have higher correlation, and indicates the possibility to extract secret keys

from the channel frequency response between HAB and HBA. While for quantized

HAB and HAE, the mean values increase to about 30 with the standard deviation to be

about 4.7, which indicates the lack of correlation between the quantized HAB and HAE.
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Figure 14: Scaled channel amplitudes and the corresponding quantized values in the

frequency domain of lake test 4, 1-bit quantization. The dashed line represents the

normalized channel. The solid line represents the quantized channel.

3.3.4 Secret Bits Per Burst

The number of secret bits per burst is determined by the BCH code and the quan-

tization level used in the key generation protocol. The number of secret bits extracted

from the BCH code equals to the number of information bits. Since the error correc-

tion capability of BCH(n,m) code is discrete, only limited options are available. For

each round of information exchange, the number of secret bits can be expressed as

r = ⌊64/n⌋ ×m× q (60)

where q is the number of quantized bits per subcarrier, and q ∈ {1, 2}. The BCH codes

used in this chapter is shown as Fig. 17. The number of secret key bits ranges from are

1 to 56 per burst.
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Figure 15: Test 2 (48 m). 1-bit quantization. The Hamming distances between HAB

and HBA have mean 17.2, standard deviation 6.2. The Hamming distances between

HAB and HAE have mean 30.5, standard deviation 4.6.

3.3.5 Performance Evaluation

Two quantization types are considered for performance comparison. They are

listed as: (i) 1-bit quantization; (ii) 2-bit quantization. We take the results of test 3

as an example to show the impact of quantization. From Fig. 18 we can see that when

64 quantized bits are used for secret key extraction each time, 1-bit quantization pro-

vides higher BurstMR and BitMR than 2-bit quantization, since 1-bit quantization has

better error tolerance than 2-bit quantization but with the price of smaller key genera-

tion rate. The BitMR between legitimate user and eavesdropper stays around 0.5 for

the two quantization methods, which is a great enlightenment for key generation.

Remark 3. From Fig. 18(a) we can see that when the amplitude of CFR is used for

key generation and 22 secret bits are extracted from 64 quantized bits, the correspond-

ing BurstMR is larger than that when 20 secret bits are extracted. It is consistent
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Figure 16: Test 4 (179 m). 1-bit quantization. The Hamming distances between HAB

and HBA have mean 5.9, standard deviation 3.1. The Hamming distances between

HAB and HAE have mean 32.8, standard deviation 4.8.

with the different error correction capability where the corresponding BCH codes are

BCH(31,11) and BCH(15,5).

Fig. 19 shows the performance of all the 4 lake tests under the 2-bit quantization.

We can see the BurstMR between legitimate users in test 4 are almost 100% even when

the key rate is up to 12 bits per 64 quantized bits, while it falls to 40% when the key rate

is 28. The BitMR is quite close to 95% even when the key rate is 28, which indicates

only small portion of key bits are mismatched in test 4. The BurstMR between the

legitimates and Eve drops from 30% to zero quickly, and the corresponding BitMR

are around 50%, which implies that Eve can eavesdrop the secret key hardly. For

tests 1-3, the BurstMRs drop from around 95% to around 10% quickly as the key rate

increases to 20. The BitMRs fall from around 95% to around 75% as the key rate rises

to 28. It indicates the importance to select a proper BCH code for key extraction, since
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Figure 17: The number of secret key bits, under multi-bit quantization of 64-frequency

samples per information exchange

the location of nodes and the environments have a great impact on the BurstMR and

BitMR.

Remark 4. From Fig. 19, we can see that tests 1 and 4 have better results than tests

2 and 3. The intuitive explanation is as follows. Since Alice and Bob in test 4 were

furthest away from each other in the four tests, only the strong paths could be kept

at the receiver side, and the channel would have fewer dominant taps which could be

highly correlated. In tests 2 and 3, Alice and Bob were placed much closer compared

to test 4. Due to the motion of medium and buoys, and the soft bottom of the lake, more

parts of the channel taps might be of low correlation. Test 1 was done in a different

geometry and reflection environment. Due to the short distance and the solid bottom

and pier reflections, the line-of-sight path and a portion of the reflection paths are quite

stable.
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Figure 18: Performance under different quantization methods, lake test 3. Solid lines

for (HAB, HBA); Dotted lines for (HAB, HAE)

3.3.6 Randomness Test

The randomness is a vital metric for the secrecy of keys. The NIST statistical Test

Suite provided in [6] is used to test the randomness of keys generated after information

reconciliation and privacy amplification. (Note that on-line entropy estimation with the

NIST test suite is possible, see e.g., [132], which is out of the scope of this chapter.) If

the p-value for a test is greater than 0.01, the generated keys pass the randomness test.

In this subsection, we generate keys by using the BCH(15,5) code for the randomness
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Figure 19: Performance under 2-bit quantization, lake tests 1-4. Solid lines for

(HAB, HBA); Dotted lines for (HAB, HAE)

test. The collected data are limited; e.g., with the BCH(15,5) code, we have ⌈64/15⌋×

5×2×100 = 4000 bits extracted from test 2. Note that the whole NIST suite provides

15 tests. Some of the tests require a much longer bit sequence to perform a valid test.

Here we only choose 9 tests as shown in Table 1. We adopt the SHA-1 hash function

to increase the randomness, and assume all the generated 128-bit keys can pass the

key verification. Table 1 lists 9 kinds of test results for all the four lake tests. In all

of the tests, we divided each bit sequence into multiple streams. If there’s no specific
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Table 1: Randomness test results by NIST statistical test SUITE for BCH(15,5)

Test 1 Test 2 Test 3 Test 4

3680 bits 4000 bits 2560 bits 3920 bits

Frequency 0.276 0.534 0.534 0.350

Block Frequency (block size = 128) 0.350 0.122 0.213 0.534

FFT 0.122 0.350 0.350 0.534

Approximate Entropy (block size = 2) 0.350 0.122 0.066 0.067

Cumsum-Forward 0.213 0.911 0.122 0.213

Cumsum-Reverse 0.534 0.991 0.534 0.911

Serial (block size = 5) 0.213 0.534 0.911 0.740

0.911 0.740 0.740 0.34

Long Runs of Ones (block size = 8) 0.162 0.067 0.276 0.862

Runs <0.01 0.279 0.834 0.232

requirement, 10 data streams are used. If there is a recommend value (minimum or

maximum) on the block size, the recommended value is used, which leads to more

than 10 data streams. The p-value shown in the table is the aggregated result from the

p-values of the available streams. We can see most of the p-values are larger than 0.01,

indicating that the generated keys pass the randomness test.

3.4 Protocol Improvement

The lake test results shown in Section 3.3 indicate that when Alice and Bob trans-

mit the probing signal directly, the BurstMR and BitMR are quite low when the cor-

relation of mutual channels is low and a high key rate is desired. The level crossing

scheme proposed in [78, 128] made the confirmation of key agreement by exploiting

the authentication code generated from the secret message. The hash values are used

to confirm the key agreement in [3, 117, 122]. However, the short length of keys leads

the key to be cracked easily by exhaustive computation, and longer keys result in low
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key agreement rate. e.g. when BitMR is 0.95 and the desired key length is 128, the

key agreement probability is as low as 0.95128 = 1.4 · 10−3. So the aforementioned

key verification methods fall short of direct practical use.

The improved secret key generation protocol utilizing adaptive pilots to probe the

channels and sliced blocks for key verification is shown in Fig. 20. The procedure is

similar with the protocol using fixed pilots shown in Fig. 9, but with some differences:

1) In the channel probing phase, instead of replying the known probing signal, Bob

forwards a weighted probing signal and the decoded packet number to Alice.

2) In the channel estimation phase, Alice estimates the virtual channel between her

and Bob in the frequency domain, rather than the direct channel between them.

3) Step 1) and step 2) will repeat N times, until the desired length of secret bits

are obtained. Then the secret bits will be divided into multiple blocks of the

same size. Bob generates the hash value of each block, and feeds back the first

half of the hash value to Alice in the public channel for key confirmation. Alice

compares the received hash values to the bits she generates under the same rule.

4) Alice checks the match of the feedback bits to verify the agreement of keys, and

then marks the success and failure of each check. Then Alice sends back the

indexes of the matched blocks and the hash values of the overall key bits. If

the hash values are the same as that generated by Bob, a key acknowledgement

signal will be transmitted to Alice through public channel.
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Figure 20: Secret key generation protocol using adaptive probing signal and sliced

blocks

3.4.1 Adaptively Weighted Probing Signalling

Suppose that Alice transmits a probing signal sA to Bob. After Bob receives the

probing signal, he estimates the channel from Alice to Bob as ĤAB. Instead of trans-

mitting the fixed probing signal sB, Bob weights the probing signal by the conjugate of

the estimated channel ĤAB. The probing signal sent out by Bob has frequency-domain

components as

s̃B = Ĥ
∗
ABsB. (61)

The phase conjugation operation in (61) is motivated by the phase conjugation tech-

niques (also known as time reversal) used for temporal focusing of underwater acoustic

channels; see e.g., [36, 126]. Since the channel is changing from round to round, the

adaptively generated probing signals would be different at different rounds. Alice and

Eve would observe

z̃A = HBAs̃B + ηE =
(

HBAĤ
∗
AB

)

sB + ηE, (62)

z̃′E = HBEs̃B + η′
E =

(

HBEĤ
∗
AB

)

sB + η′
E. (63)
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Bob can get the estimated channel ĤAB from the probing signals and observations.

Since Alice only has the shared pilot information, she can estimate the weighted chan-

nel Ĥ
∗
ABHBA through channel estimation where the Least Squares channel estimator

is used [52]. The estimated weighted channel from Bob to Alice is here expressed as

H̆BA for clarity.

As discussed in Section 3.3.1 that only the amplitude of CFR will be used for

key generation in UWA channels, and the phase information will be ignored. If the

channel is perfectly reciprocal, then |ĤBA| at Alice is identical to |Ĥ∗
AB| at Bob. If the

mutual channels are not reciprocal but correlated, the virtual CFR on the kth subcarrier

between Bob and Alice, as estimated at Alice, is

|H̃BA[k]| =
√

|H̆BA[k]| ≈
√

|Ĥ∗
AB[k]||ĤBA[k]|, (64)

If |ĤBA[k]| at Alice is smaller than |Ĥ∗
AB[k]| at Bob, due to the square root function

of the multiply of the two estimated channels, we would have

|ĤBA[k]| < |H̃BA[k]| < |Ĥ∗
AB[k]|, (65)

which means |H̃BA[k]| at Alice is closer to |Ĥ∗
AB[k]| than |ĤBA[k]|. On the other hand,

if |ĤBA[k]| at Alice is greater than |Ĥ∗
AB[k]| at Bob, we have

|Ĥ∗
AB[k]| < |H̃BA[k]| < |ĤBA[k]|, (66)

and we have the same conclusion that |H̃BA[k]| at Alice is closer to |Ĥ∗
AB[k]|. So we

expect the correlation between |ĤAB[k]| and |H̃BA[k]| would increase.
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Note that Eve has the option of generating the keys from ĤAE or from ĤBE. The

correlation of CFR amplitudes between ĤAB and ĤAE is not affected by adaptive prob-

ing, but the correlation of CFR amplitudes between ĤAB and ĤBE might increase when

Bob’s probing signal incorporates part of the channel information from ĤAB. The ad-

vantage and disadvantage of adaptive probing will be evaluated in Section 3.5 where

Eve generates the keys with ĤBE.

3.4.2 Block-Sliced Key Verification

Although the error correction code BCH(n,m) can reduce the bit mismatch rate,

the legitimate users still need to check the agreement of keys at both parties. Otherwise,

the bit stream cannot be used as secret keys. In this chapter, we introduce the block-

sliced key verification module to handle the channel dynamics, which uses part of hash

values of the extracted information code words to verify the consistency of keys.

After N rounds of mutual communication, Alice and Bob collect mN consecutive

secret bits. The mN bits will be sliced into Nbl blocks of size Ns, where

Nbl =

⌊
mN

Ns

⌋

. (67)

For each block, Bob computes the corresponding 128-bit hash value by using the SHA-

1 hash function, and the first Ns bits of the hash value will be kept as effective bits since

the last 128−Ns bits are redundant as keys. The first Nf bits of the effective bits will

be fed back to Alice for key agreement verification. Alice generates the hash value

of each block with the same criteria as Bob. Then she compares the first Nf-bit hash

value to her received hash value block by block. If they are matched, Alice can claim
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she and Bob share the same block information, and the indexes of the matched blocks

will be recorded. Meanwhile, the remaining Ns −Nf bits will be kept as the keys.

If all the Ns-bit long sequences are of equal probability, the block mismatch prob-

ability between legitimate users is 1 − 1
2Ns−Nf

. Obviously, the longer Nf is, the lower

the false match rate is, but the key generation rate decreases too.

To make sure that the key is hard to crack computationally, the desired length

of the final key Nk should be long enough. Alice cascades the short keys from the

blocks that pass the match check. Once the accumulative key length is larger than Nk,

Alice will truncate the first Nk bits, and send both the indexes of the corresponding

matched blocks and the hash value of the final key to Bob. Bob concatenates the secret

keys from the matched blocks, and derive the corresponding hash values. Then he

compares the hash values from himself to that from Alice. At last Bob will send a key

acknowledgement to Alice, to inform her whether the final keys passed the check or

not. While Eve would extract keys based on the overheard indexes of matched blocks,

regardless of the match of the feedback bits to her observation.

Remark 5. Consider that the secret bits after information reconciliation are matched

with a high probability, and similar bit sequences will result in very different hash

values, so we only use part of the hash value for the block match check at first. Since

hash function would have collisions, we would like to feedback proper amount of bits

to cut down the collisions and reduce the key mismatch rate. Finally we take another

round of hash function to verify the agreement of the Nk-bit key.
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3.5 Numerical Simulations

The parameters of the ZP-OFDM communication system considered for simulation

are as follows: center frequency fc = 13 kHz, bandwidth B = 9.77 kHz, symbol

duration T = 104.86 ms, guard interval Tg = 24.6 ms. The ZP-OFDM system has

K = 1024 subcarriers in total. The simulated UWA channel has 15 discrete paths. The

inter-arrival time of paths is exponentially distributed with mean of 1 ms, resulting a

15-ms channel delay spread on average. The amplitude of each path follows Rayleigh

distribution with an exponential power decay profile, and the attenuation difference

between the beginning and end of the guard time is 20 dB [52]. The UWA channels

are assumed to follow block fading, and the Doppler effect is not considered. A total

of 1000 Monte Carlo runs are carried out for key generation.

Assume that the path delays of Alice and Bob are the same. Define hA,l and hB,l

as the lth channel coefficient of Alice and Bob, respectively. Assume that [hA,l hB,l]
T

follows the correlated complex Gaussian distribution
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where ρ is the correlation coefficient. Then the correlated lth channel coefficient can

be modeled as

hB,l = ρhA,l +
√

1− ρ2ζl, (69)

where hA,l and ζl follow independent complex Gaussian distributed with CN (0, σ2
h).

Note that Fig. 12(a) reports an average correlation between the CFR amplitudes of
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̺ = 0.62. When the correlation of the path amplitudes is ρ = 0, the simulated CFR

amplitudes |HAB[k]| and |HBA[k]| have an average correlation of ̺ = 0.63, due to the

shared channel delay structure. When ρ = 0.5, the average correlation of the CFR

amplitudes increases to ̺ = 0.69.

The channel coefficient of Eve is assumed to have the same but independent dis-

tribution as Alice and Bob, and the path delay of Eve follows the same distribution as

Alice and Bob, but independent. The average correlation between the CFR amplitudes

|HAB[k]| and |HAE[k]| (or between |HAB[k]| and |HBE[k]| when fixed pilots are used)

is ̺ = 0.01.

3.5.1 Metrics

Besides the metrics introduced in Section 3.3, we add one more metric, average key

length, to evaluate the performance of the proposed protocol with adaptive pilots and

block-sliced key verification. The average key length is defined as the key rate agreed

between legitimate users per channel probing, which equals the number of matched

blocks times the number of secret keys per block, then divided by 1000 (the number

of rounds):

L1 = Nblk(Ns −Nf)/1000. (70)

The average key length as in (70) is the common metric that has been used in [67, 86,

122, 127] to show the key generation speed. Compared to the number of secret bits in

Section 3.3.4, the average key length as in (70) reflects the number of bits per channel

probing after considering the impact of information reconciliation and key verification.
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Note that the average key length as in (70) only describes the shared key rate that

legitimate users can agree per channel probing, but it does not account for the potential

information leakage to Eve. Basically, the secrecy rate is the difference between the

mutual information on legitimate channels and the eavesdropping channel [1, 14, 79],

and the maximal secrecy rate is the achievable secrecy capacity [141]. Inspired by the

definition of the secrecy capacity in [141] and the entropy of the final key in [97], we

revise the definition of the average key length, by taking into account the difference of

the entropy on the key bits of the legitimate nodes and eavesdropper as follows.

Denote the binary bits at Alice, Bob and Eve as bA, bB and bE, respectively. The

rate of the secret key bits between legitimate users and eavesdropper can be expressed

as2 [97, 141]:

rs = I(bA; bB)− I(bA; bE) = [H(bA)−H(bA|bB)]− [H(bA)−H(bA|bE)]. (71)

Since bA = bB after key verification, (71) can be simplified to

rs = H(bA|bE) = −E{log p(bA|bE)}. (72)

Expanding (72), we have

rs =
1∑

i,j=0

p(bA = i, bE = j) log
1

p(bA = i|bE = j)
. (73)

The joint probability p(bA = i, bE = j) and conditional probability p(bA = i|bE = j)

can be derived from the data for offline analysis. Then the average key length with

2In order to achieve the rate of (71), a public communication channel of unlimited capacity is

required.
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Nblk blocks that passed the match check is computed as

L2 = Nblk(Ns −Nf)rs/1000. (74)

Since rs ∈ [0, 1], one has L2 ≤ L1, where the equality holds when no information is

leaked to Eve.

3.5.2 Performance Evaluation

In the simulation, we set the channel correlation coefficient between Alice and

Bob to be ρ = 0.5, and the channel correlation coefficient between legitimate users

and Eve to be zero. (The case with ρ = 0 for the channels between Alice and Bob

is also tested and not reported here as the observations are similar.) The signal-to-

noise ratio (SNR) of each channel is 20 dB. The 2-bit quantization across subcarriers

in frequency domain is taken as an example to show the performance. The block size

is set to be Ns = 28, and the number of feedback bits is Nf = 14. So Alice hashes the

28 secret bits, and feedback 14 bits to Bob for key verification, and the remaining 14

bits may be kept as keys if the match check is passed.

Fig. 21 shows the simulation results of the key generation protocol using fixed or

adaptive pilots with/without key verification, respectively. If the key verification pro-

cess is not carried out, the BlockMR is the match rate of blocks between two parties. If

the key verification is adopted, the BlockMR is the ratio of the number of the matched

blocks compared to the number of the check-passed blocks, which reflects the correct

check rate. We can see that both the BlockMR and BitMR under the protocol using

adaptive pilots shows better performance over the protocol using fixed pilots. If key
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Figure 21: Simulation result with ρ = 0.5, 2-bit quantization, under 20 dB. Solid lines

for (HAB, HBA); Dotted lines for (HAB, HBE)

verification is used, the BlockMR and BitMR between legitimate users can increase

to 100%, and the protocol using adaptive pilots is more robust than the protocol using

fixed pilots even when 28 secret bits can be extracted per 64 quantized bits, which

indicates the effectiveness of the improved key verification approach. If the match

check is not carried out, the improvement of BlockMR and BitMR under the protocols

using fixed pilots and adaptive pilots decrease gradually as the key rate grows. The

protocol using adaptive pilots will leak some information to Eve especially when the

key rate is low. However, the leakage (BlockMR and BitMR between legitimate users

and Eve) decreases as the key rate increases, which implies that the protocol using

adaptive pilots enhances the potential to increase the BlockMR, BitMR and key rate

without leaking any information.

Fig. 22 shows the average key length per round under the scheme of fixed and

adaptive pilots. For the average key length as defined in (70), we can see that L1
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Figure 22: Simulation result of mutual channels (HAB, HBA), with ρ = 0.5, 2-bit

quantization, under 20 dB.

using fixed pilots stays around 0.5. The protocol using adaptive pilots provides larger

L1 than that using fixed pilots, since more blocks can pass the match check in the

key verification phase when the weighted probing signalling is used. As more secret

bits can be extracted per 64 quantized bits, the average key length increases at the

beginning due to a higher amount of matched blocks, and then drops because of the

lower error correction ability of BCH codes used and less matched blocks.

For the average key length L2 as defined in (74), we can see that when 1 secret

bit is extracted per 64 bits, the protocol using adaptive pilots has a smaller average

key length than that using fixed pilots, since some of the agreed keys between Alice

and Bob are leaked to Eve. However, as more secret bits can be generated per 64 bits

which means less information are leaked to Eve, the average key length increases to 6
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Table 2: Randomness test results by NIST statistical test SUITE when ρ = 0.5, Ns =
28, Nf = 14, 2-bit quantization, and SNR = 20 dB

BCH(15,1) BCH(31,6) BCH(15,7)

3178 bits 3612 bits 6860 bits

Frequency 0.534 0.637 0.437

Block Frequency (block size = 128) 0.351 0.213 0.350

FFT 0.534 0.067 0.911

Approximate Entropy (block size = 2) 0.739 0.350 0.163

Cumsum-Forward 0.534 0.213 0.350

Cumsum-Reverse 0.534 0.534 0.911

Serial (block size = 5) 0.911 0.350 0.122

0.740 0.350 0.534

Long Runs of Ones (block size = 8) 0.122 0.025 0.063

Runs 0.122 0.437 0.115

bits which indicates the advantage of the key generation protocol using adaptive pilots,

while the average key length with fixed pilots stays around 0.5 bit.

For the protocol with fixed pilots, we can see the average key length under different

definitions are nearly the same, since the eavesdropping channel is uncorrelated to the

legitimate channel. For the protocol with adaptive pilots, L2 is slightly smaller than

L1, since the weighted forwarding signalling would leak some information to Eve.

3.5.3 Randomness Test

We use the NIST statistical Test Suite to test the randomness of keys which are

generated by using three different kinds of BCH codes under the protocol using adap-

tive pilots. Table 2 shows the corresponding p-values of the nine tests. We can see

all the p-values are larger than 0.01, indicating that the keys pass the randomness test

successfully.
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3.6 Conclusion

In this chapter, we first presented a secret key generation approach which uses fixed

pilots to probe the UWA channel. The multi-bit quantization is carried out based on

the statistical information across subcarriers, and the channel frequency responses of

UWA channels are used for key extraction. The lake test results verified the reciprocity

and randomness of the amplitudes of UWA channel frequency responses, and demon-

strated that secret key generation is achievable by selecting proper error correction

codes. However, the low correlation between mutual channels showed in the lake tests

hinders a higher bit match rate when more secret bits are desired. To improve the bit

match rate and make the secret key generation approach more practical, we proposed

an improved key generation approach, which uses weighted forward probing signalling

to improve the correlation of channel frequency response, and adopts the sliced-block

key verification approach to deal with the channel dynamics. Simulation results show

that our proposed approach has better bit match rate, and longer key length when less

information is leaked during the reconciliation phase.



Chapter 4

A Half-Duplex Self-Protection Jamming Approach for

Improving Secrecy of Block Transmissions in

Underwater Acoustic Channels

4.1 Introduction

Security is one critical issue in underwater acoustic (UWA) communications [33].

Due to the broadcast nature of the underwater acoustic channels, the transmitted packet

can be heard by legitimate destinations as well as by eavesdroppers or unauthorized

nodes [54]. In addition to encrypting the information by the secret key generated from

mutual channels, improving the physical layer security by jamming is another impor-

tant way to make sure that the correct information can be delivered to the legitimate

destination while keeping the message protected from the eavesdropper.

In the radio domain, a lot of approaches have been proposed to enhance the phys-

ical layer security, aiming to achieve a large secrecy capacity or secrecy rate. One

75
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interesting approach is to use cooperative relays as helpers to disrupt the eavesdropper.

The work in [73] considered a Gaussian wiretap channel model with a single-antenna

source, destination, and eavesdropper and proposed a nulling scheme to maximize the

system secrecy rate while creating no interference to the destination. The work in [34]

considered another scenario in which the relay was equipped with multiple antennas

and proposed a system design for determining the antenna weights and transmit power

of the source and relay, so that the system secrecy rate was maximized subject to a

total transmit power constraint or the transmit power was minimized subject to a se-

crecy rate constraint. The problem can be extended to the condition that the energy

is harvested from nature [21, 45]. Further, the work in [35] addressed secure commu-

nications considering three cooperative schemes: decode-and-forward (DF), amplify-

and-forward (AF), and cooperative jamming (CJ), and aimed at the determination of

relay weights and the allocation of transmit power.

Recently, using a full-duplex receiver as the jamming source without help from

relays has received some attention. In [63], the approach that the full-duplex legit-

imate receiver could generate artificial noise to jam the eavesdropper was proposed,

and the outage secrecy region was used to analyze the secrecy performance from the

perspective of geometry. The work in [18] proposed to use both the transmitter and

receiver for full duplex beamforming, to improve the throughput and secrecy under

the constraint of the guaranteed secrecy and QoS for legitimate users. The joint time

and power allocation in full-duplex (FD) wireless-powered communication network
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was studied in [57], where the average and peak transmit power were constrained to

maximize the weighted sum-rate.

However, the characteristics of underwater acoustic channels, such as large de-

lay spread, limited acoustic link capacity, and multipath effect have differed the un-

derwater acoustic communication significantly from the ground wireless communica-

tion [19, 20, 61, 75, 140]. The approaches aforementioned are neither applicable nor

effective to protect the underwater communication information. Until now, most work

about underwater communication security is done on the network layer and little at-

tention has been paid on the use of jamming signals to improve the physical layer

security.

In this chapter, we investigate an underwater acoustic system where Alice is trans-

mitting messages to Bob in presence of Eve [53]. Since typical underwater transceivers

are half-duplex, Bob can send jamming signals during the guard intervals between suc-

cessive blocks it receives from Alice. By making use of the large propagation delay in

underwater channels, the interference from the jamming signal will overlap with the

information blocks at Eve, thus preventing the protected message from being eaves-

dropped. The main contributions of this chapter are as follows.

1) We take advantage of the large propagation delay in underwater acoustic chan-

nels so that the jamming signal will collide with the message block to make the

information from Alice corrupted at Eve’s side. In this way, we do not need

to specially design the jamming noise that will cancel out at Bob’s side while

making the biggest interference to Eve.
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2) The destination node (Bob) works on a half-duplex scheme. The proposed proto-

col does not need additional helpers, is easy to implement, and will avoid excess

resources.

Clearly the success of the proposed approach utilized the unique properties of un-

derwater acoustic communications: 1) half-duplex transceiver, and 2) large propaga-

tion delay. This is along the same lines of recent works in [30, 112, 129]. Specifically,

the propagation delay was exploited for interference alignment in underwater acoustic

networks in [30], which proposed computationally efficient scheduling protocols for

a large throughput improvement. Through transmitter selection and timing control,

the signal alignment approach in [112] could increase the communication secrecy in

a distributed antenna system. A distributed interference alignment scheduling algo-

rithm, named Shark-IA, was proposed for a multi-hop underwater acoustic network

with half-duplex communication systems, which improved the network throughput by

exploiting the propagation delays [129].

The organization of the rest of this chapter is as follows: Section 4.2 describes the

proposed half-duplex jamming approach. Section 4.3 provides detailed analysis based

on cyclic-prefixed orthogonal frequency divided multiplexing (OFDM) transmissions.

Simulation results are given in Section 4.4 and conclusions are drawn in Section 4.5.

4.2 The Proposed Half-Duplex Jamming Approach

Consider the basic half-duplex communication system with 3 nodes as Fig. 23

shows. Alice and Bob are two legitimate nodes where Alice sends information to
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Bob. Eve overhears the communication between the legitimate nodes passively. To

hinder Eve from intercepting the transmitted information, usually extra helpers have to

cooperate with Alice, by sending out jamming signals to interfere with the signals sent

by Alice. However, if no helpers are available, the system can adopt a self-protection

scheme to achieve secure communication [138,139]. Considering Bob works in a half-

duplex mode in underwater acoustic communications, and the guard intervals between

successive blocks are typically large, Bob can work as a temporary helper to jam Eve

without affecting his own reception of useful signals.

Bob

Eve

AB
d

BE
d

AE
d

Alice

Figure 23: Jamming topology with a half-duplex receiver

4.2.1 Jamming on Cyclic Prefixed Block Transmissions

Cyclic prefixed block transmissions have been extensively studied under both

single-carrier underwater communications [47,113] and multicarrier underwater com-

munications [2, 10, 29, 40, 42, 60, 94].

Alice sends out one packet to Bob, where the packet consists of one preamble block

and N data blocks. Assume that each block has a duration Td. A cyclic prefix (CP)
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of length Tcp is inserted between consecutive blocks to avoid possible inter-block in-

terference and to facilitate frequency-domain processing at the receiver. This requires

that Tcp is larger than the delay spread τmax,AB of the underwater acoustic channel

hAB(t) between Alice and Bob.

The jamming schedule on block transmission with cyclic prefix of a 3-node com-

munication system is shown in Fig. 24(a). After acquiring the preamble, Bob starts to

receive the data part of the packet. Since the CP part of each block does not need to

be recorded for data decoding, Bob transmits jamming signal during the CP period by

switching the receiver/transmitter mode. If one more jamming block will be transmit-

ted after the last data block is received, there are totally N + 1 jamming blocks that

could help to protect the communication system.

The basic requirement for the half-duplex jamming schedule is to interfere Eve by

the jamming signal from Bob, while taking advantage of the available time TJ,max as

much as possible. Suppose that the switch interval between transmitting mode and re-

ceiving mode of Bob is negligible, the maximal jamming duration that Bob can occupy

is TJ,max = Tcp−τmax,BB, where τmax,BB is the maximum delay spread considering the

reverberation effect of the transmission from Bob himself.

The maximal jamming duration that Eve could suffer is TJ,max + τmax,BE, where

τmax,BE is the delay spread of the channel hBE(t) between Bob and Eve. Due to the

slow sound propagation speed, the jamming from Bob would not be synchronized at

the block level with the original signal from Alice, thus considerably deteriorating the

performance at Eve.
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Figure 24: Jamming protocol for half-duplex block transmission communication sys-

tems with cyclic prefix

4.2.2 Jamming on Zero-Padded Block Transmissions

Zero-padded (ZP) block transmission is another popular way of underwater acous-

tic communications for lower power consumption, such as single-carrier ZP block

transmission [133, 134], and multicarrier transmission in the form of ZP-OFDM

[11, 71, 72, 105, 106, 110, 115].
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Fig. 25(a) shows the jamming schedule on block transmissions with zero padding

of a 3-node communication system, which is similar to the communication systems

with cyclic prefix. Since the CP part is replaced by zero-padding guard interval of

duration Tg, the corresponding jamming schedule for zero padding communication

system is slightly different. The total block duration is Tbl = Td + Tg. Assume the

delay spread τmax,AB of the channel hAB(t) can be estimated from the preamble and

the synchronization works perfect. Since the block processing needs to collect samples

of duration Td + τmax,AB, the maximal time period for jamming that Bob can occupy

is TJ,max = Tg − τmax,AB − τmax,BB. If the length of Tcp is equal to the length of

Tg, then cyclic prefixed block transmission provides longer time duration for jamming

than zero-padded transmission.

In the rest of the chapter, we explore the half-duplex jamming receiver based on

cyclic prefixed OFDM transmissions.

4.2.3 Extension to two-way communications

The main body of this chapter deals with the one way communication from Alice

to Bob, where Bob sends out self-protection jamming signals. To further increase the

security, a two-way or three-way handshaking protocol can be used to establish the

communication between Alice and Bob. After Bob receives a message from Alice,

he will reply with an acknowledgment in response to the successful transmission of

the information. This is the two-way handshaking process. In three-way handshaking,
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Figure 25: Jamming protocol for half-duplex block transmission communication sys-

tems with zero padding

finally Alice will send the acknowledgment back to the Bob, to prevent Bob from send-

ing the acknowledgment again if there is a delayed duplicate synchronized message.

Eve will receive information from both Alice and Bob simultaneously. Both Alice

and Bob can adopt the self-protection jamming scheme when receiving a message

during the handshaking process. This extension is worthy mentioning here, but our

following analysis is based on the one-way communication from Alice to Bob.
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4.3 Secrecy Rate for CP-OFDM

We now analyze the three-node system assuming that the transmitted data blocks

from Alice to Bob are CP-OFDM, and the jamming blocks from Bob to Eve are Gaus-

sian noises with a flat spectrum across the signal band.1

4.3.1 CP-OFDM Transmission

The CP-OFDM signal structure for the data blocks is considered as in [77]. Let Td

denote the symbol duration, Tcp the length of the cyclic prefix. The total CP-OFDM

block duration is Tbl = Td + Tcp. Denote B as the bandwidth and K as the total

number of used subcarriers. The subcarrier spacing is △f = 1/Td = B/K. The mth

subcarrier in passband is

fm = fc +
m

Td

, m = −K

2
, . . . ,

K

2
− 1 (75)

where fc is the center frequency. Let sA[m;n] denote the symbol to be transmitted on

the mth subcarrier of the nth block. Since one packet consists of N data blocks, the

transmitted signal in passband from Alice can be expressed as

x̃A(t) =
N∑

n=1

x̃A(t− (n− 1)Tbl;n), t ∈ [−Tcp, NTbl − Tcp] (76)

where the nth transmitted data block is

x̃A(t;n) = 2Re

{[ K/2−1
∑

m=−K/2

sA[m;n]e
j2π m

Td
t
g(t)

]

ej2πfct

}

, t ∈ [−Tcp, Td] (77)

1Note that the jamming signal could be optimized based on e.g., long term channel statistics. The

secrecy rate would be different with a different jamming signal.
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where g(t) is a rectangular pulse-shaping window,

g(t) =







1, t ∈ [−Tcp, Td],

0, otherwise.

(78)

Assume that the underwater channel for the nth block is modeled as:

h(τ ;n) =

N
(n)
pa∑

p=1

A(n)
p δ

(
τ − τ (n)p

)
(79)

where N
(n)
pa is the number of paths, A

(n)
p and τ

(n)
p are the amplitude and delay of the pth

path, respectively. In other words, the Doppler effect is not considered, and the results

obtained are in an ideal case with calm channel conditions. There are three channels

involved, hAB(τ ;n), hAE(τ ;n), and hBE(τ ;n), which will be specified when used.

4.3.2 Receiver Processing at Bob

As shown in Fig. 23, denote the distances between Alice and Bob as dAB. Let c

denote the sound speed in water, t
(n)
A the starting transmission time of the nth block at

Alice. Then the arrival time of signal at Bob from Alice, as Fig. 24(b) shows, is

ξ
(n)
AB = t

(n)
A + dAB/c, t

(n)
A = t

(1)
A + (n− 1)Tbl. (80)

The channel between Alice and Bob can be denoted as

hAB(τ ;n) =

N
(n)
AB,pa∑

p=1

A
(n)
AB,pδ

(

τ − τ
(n)
AB,p

)

. (81)

Suppose the received signal is perfect synchronized at the desirable start of each

block. The received nth block passband signal at Bob for t ∈ [0, Td] is
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z̃B(t;n) = ỹAB(t+ ξ
(n)
AB;n) + w̃B(t;n), (82)

where

ỹAB(t;n) =

N
(n)
AB,pa∑

p=1

A
(n)
AB,px̃A

(

t− τ
(n)
AB,p;n

)

. (83)

and w̃B(t;n) is the ambient noise for the nth block.

Taking the Fourier transform of (82), the frequency-domain measurement of

z̃B(t;n) on the mth subcarrier becomes

ZB[m;n] =

∫ Td

0

z̃B(t;n)e
−j2πfmtdt

= HAB[m;n]sA[m;n] +WB[m;n]. (84)

where HAB[m;n] is the channel frequency response on the mth subcarrier of the nth

data block, defined as

HAB[m;n] =

∫ Td

0

hAB(τ ;n)e
−j2πfmtdt, (85)

and WB[m;n] is the additive noise on the mth subcarrier of the nth block.

Assume that the additive noise on all the subcarriers is white Gaussian distributed

WB[m;n] ∼ CN (0, σ2
B,W), and each subcarrier has the same symbol energy σ2

S. The

mutual information available at Bob is

CB =
1

KN

N∑

n=1

K/2−1
∑

m=−K/2

log2

(

1 +
|HAB[m;n]|2σ2

S

σ2
B,W

)

. (86)
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4.3.3 Receiver Processing at Eve

The distances between Alice and Eve, and Bob and Eve are denoted as dAE and

dBE, respectively as shown in Fig. 23. Denote t
(n)
B as the transmission start time of the

nth block from Bob. The time-of-arrival of the nth block signal at Eve from Alice and

Bob is

ξ
(n)
AE = t

(n)
A + dAE/c, (87)

ξ
(n)
BE = t

(n)
B + dBE/c, t

(n)
B = t

(1)
B + (n− 1)Tbl. (88)

Denote the channel between Alice and Eve as hAE(τ ;n), and the channel between

Bob and Eve as hBE(τ ;n),

hAE(τ ;n) =

N
(n)
AE,pa∑

p=1

A
(n)
AE,pδ

(

τ − τ
(n)
AE,p

)

, (89)

hBE(τ ;n) =

N
(n)
BE,pa∑

p=1

A
(n)
BE,pδ

(

τ − τ
(n)
BE,p

)

. (90)

Considering the time-of-arrival of data and jamming blocks, the received passband

signal at Eve from Alice and Bob can be given by

ỹAE(t) =
N∑

n=1

ỹAE(t− ξ
(n)
AE;n), (91)

ỹBE(t) =
N+1∑

n=1

ỹBE(t− ξ
(n)
BE ;n), (92)

and the nth received block as

ỹAE(t;n) =

N
(n)
AE,pa∑

p=1

A
(n)
AE,px̃A

(

t− τ
(n)
AE,p;n

)

, (93)

ỹBE(t;n) =

N
(n)
BE,pa∑

p=1

A
(n)
BE,px̃B

(

t− τ
(n)
BE,p;n

)

, (94)
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where x̃B(t;n) is the nth transmitted jamming block from Bob. Then the received

signal at Eve in passband is

ỹE(t) = ỹAE(t) + ỹBE(t) + w̃E(t), (95)

where w̃E(t) is the ambient noise at Eve.

The received signal is synchronized via the preamble. For a specified nth data

block at Eve, the truncated signal z̃E(t;n) for t ∈ [0, Td] can be given by

z̃E(t;n) = ỹE(t+ ξ
(n)
AE;n)

= ỹAE(t+ ξ
(n)
AE;n) +

N+1∑

j=1

ỹBE(t+ ξ
(n)
AE; j) + w̃E(t+ ξ

(n)
AE;n) (96)

where the first item is the eavesdropped nth block signal from Alice, and the second

item is the jamming signal from Bob. Whether the jth block of jamming signal would

interfere the nth data block depends on the location of Bob and Eve.

The [0, Td] portion of the nth CP-OFDM block is used for decoding. By taking

the Fourier transform of the truncated signal, the corresponding frequency-domain
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measurement of z̃E(t;n) on the mth subcarrier becomes

ZE[m;n] =

∫ Td

0

z̃E(t;n)e
−j2πfmtdt

=

∫ Td

0

ỹAE(t+ ξ
(n)
AE;n)e

−j2πfmtdt

+

∫ Td

0

N+1∑

j=1

ỹBE(t+ ξ
(n)
AE; j)e

−j2πfmtdt

︸ ︷︷ ︸

:=IBE[m;n]

+

∫ Td

0

w̃
(n)
E (t+ ξAE;n)e

−j2πfmtdt

︸ ︷︷ ︸

:=WE[m;n]

= HAE[m;n]sA[m;n] + IBE[m;n] +WE[m;n]

(97)

where the channel frequency response on the mth subcarrier of the nth data block is

HAE[m;n] =

∫ Td

0

hAE(τ ;n)e
−j2πfmtdt, (98)

and the second item IBE[m;n] denotes the interference and the last item WE[m;n]

represents the additive noise in frequency domain.

Assume the waveform of the transmitted jamming block follows white Gaussian

distribution. According to the path-based channel model of (79), the path-based wave-

form of the received jamming block is still Gaussian distributed. The challenge here is

to compute the variance of IBE[m;n], which is denoted as σ2
I [m;n].

Suppose that the power spectral density of the ambient noise at Eve is still

white Gaussian distributed with WE[m;n] ∼ CN (0, σ2
E,W). The received signal-to-

interference-and-noise ratio (SINR) of the mth subcarrier of the nth data block at Eve

can be written as

SINRE[m;n] =
|HAE[m;n]|2σ2

S

σ2
I [m;n] + σ2

E,W

. (99)
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The mutual information available at Eve is

CE =
1

KN

N∑

n=1

K/2−1
∑

m=−K/2

log2

(

1 +
|HAE[m;n]|2σ2

S

σ2
I [m;n] + σ2

E,W

)

. (100)

4.3.3.1 Interference Power Computation

Now let us look into jamming patterns at Eve. Fig. 26 shows the two cases that

jamming happens. Case 1): the end time of the jth jamming block lies between the

duration of the nth data block, ξ
(n)
AE + Tcp < ξ

(j)
BE + TJ + τmax,BE < ξ

(n)
AE + Tbl; Case

2): the nth data block covers the starting time of the jth jamming block, ξ
(n)
AE + Tcp <

ξ
(j)
BE < ξ

(n)
AE +Tbl. Combining the two cases, we can see the interference happens when

ξ
(n)
AE and ξ

(j)
BE satisfy

Tcp − TJ − τmax,BE < ξ
(j)
BE − ξ

(n)
AE < Tbl. (101)

Although there are N + 1 jamming blocks transmitted, at most there are two jamming

blocks j and j + 1 that can collide with the nth CP-OFDM data block.

Define T
(n,j)
I,p as the time duration that the nth data block is overlapped by the pth

path of the jth jamming block. Define an indicator function L(ξ
(n)
AE, ξ

(j)
BE) as

L(ξ
(n)
AE, ξ

(j)
BE) =







1, Tcp − TJ − τmax,BE < (ξ
(j)
BE − ξ

(n)
AE) < Tbl

0, otherwise

. (102)

Then T
(n,j)
I,p can be expressed as

T
(n,j)
I,p =

(

min
{

(ξ
(j)
BE + TJ + τ

(j)
BE,p)− (ξ

(n)
AE + Tcp),

(ξ
(n)
AE + Tbl)− (ξ

(j)
BE + τ

(j)
BE,p), TJ

})

L(ξ
(n)
AE, ξ

(j)
BE). (103)
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Figure 26: CP-OFDM jamming cases

For simplicity, we assume that the jamming power on all the subcarriers can be

treated as approximately equal, due to potentially partial overlap between the jamming

blocks and the data block. Hence,

σ2
I [m;n] ≈ σ2

I [n] ∝





N+1∑

j=1

NBE,pa,j∑

p=1

(A
(j)
BE,p)

2
T

(n,j)
I,p

Td



σ2
J (104)

where σ2
J is the nominal variance if a jamming block of duration Td is perfectly aligned

and added to the the received block.

4.3.4 Secrecy Rate

In references [56, 69], the average secrecy rate for a multicarrier system is defined

as

C0 =
1

KN

N∑

n=1

K/2−1
∑

m=−K/2

[

log2(1 + SNRB[m;n])− log2(1 + SINRE[m;n])
]+

, (105)
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where N is the number of data blocks within one packet. This definition is based

on that the encoding is carried out on each subcarrier of block independently. If the

information is encoded across frequencies in our CP-OFDM systems, the secrecy rate

becomes

C1 =
1

KN

N∑

n=1

[ K/2−1
∑

m=−K/2

log2(1 + SNRB[m;n])− log2(1 + SINRE[m;n])

]+

.

(106)

Assume the interference power is white Gaussian distributed across the K subcar-

riers. If we carry out encoding across blocks and subcarriers, the average secrecy rate

of this multicarrier communication systems is defined as

C2 =
1

KN

[ N∑

n=1

K/2−1
∑

m=−K/2

log2(1 + SNRB[m;n])− log2(1 + SINRE[m;n])

]+

(107)

=
1

KN

[ N∑

n=1

K/2−1
∑

m=−K/2

log2

(

1 +
|HAB[m;n]|2σ2

S

σ2
W

)

− log2

(

1 +
|HAE[m;n]|2σ2

S

σ2
I [m;n] + σ2

W

)]+

, (108)

where the secrecy rate of the system is evaluated by averaging the secrecy rate aggre-

gation of all CP-OFDM blocks. From the definition of the three kinds of secrecy rate,

we can see C0 ≥ C1 ≥ C2. In this chapter, we assume that the encoding process is im-

plemented across blocks and frequency, and use (107) as the proper metric for secrecy

rate.
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4.4 Simulation Performance

A single-input single-output (SISO) CP-OFDM communication system is consid-

ered for simulation, with center frequency fc = 13 kHz, bandwidth B = 9.77 kHz,

symbol duration T = 104.86 ms, and CP length of Tcp = 29.6 ms. The CP-OFDM

system has K = 1024 subcarriers in total. Assume the simulated sparse UWA channel

has 15 discrete paths. The inter-arrival time of paths is exponentially distributed with

mean of 1 ms, resulting a 15-ms channel delay spread on average. The amplitude of

each path is Rayleigh distributed with an exponential power decay profile [52]. The

UWA channels are assumed to follow block fading, where the channel does not change

within each block transmission.

The evaluated area is of 3600 m × 3600 m, and divided into numbers of squares

of 10 m × 10 m. The secrecy rate at the midpoint of the squares will be used to

represent the performance of these squares, and the secrecy rate based on the geometry

is obtained by interpolating these squares. Bob is located 1000 m away from Alice,

where the coordinate of Alice is defined as (0,0), and Bob defined as (1000,0). The

received SNR at Bob is set to be 10 dB when the destination is 1000 m away from

Alice. The CP-OFDM data signal and jamming signal are scaled to have the same

transmission power for performance comparison. And the white Gaussian noises at

Bob and Eve are assumed to at the same power level.
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4.4.1 Channel Propagation Model in Simulation

The channel propagation model in UWA communication [103] is similar to that

in wireless communication [23, 24], but with different characteristics. Due to the ab-

sorption loss from water and the spreading loss of signal, the transmission loss A(d, f)

which depends on the transmission distance d and the carrier frequency f , is given

by [103]

A(d, f) = A0d
−δa(f)−d (109)

where A0 is the normalizing constant, the exponent δ models the geometrical spreading

effect, and a(f) represents the absorption coefficient at the frequency f . Empirically,

the spreading factor is δ = 1.5. The equation of one-way transmission loss (TL) is

expressed as

TL(d, f) = 10 logA(d, f)/A0 = 10δ · log(103d) + α(f)d, (110)

where TL is in dB, and d is in km. According to Thorp’s formula, the absorption

coefficient a(f) above a few hundred Hz is approximated as [103]

α(f) = 10 log a(f) = 0.11
f 2

1 + f 2
+ 44

f 2

4100 + f 2
+ 2.75× 10−4f 2 + 0.003 (111)

where the metric of α(f) is in dB/km, and f in kHz.

Approximate the transmission loss of the underwater acoustic channel as a constant

within the bandwidth, since the variation of TL within a certain bandwidth B is small

when the transmission distance is below 5 km [103]. The average channel strength for
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(a) Secrecy rate without jamming (b) Secrecy rate with jamming

(c) Increased secrecy rate with jamming
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Figure 27: Geometry of secrecy rate with standard jamming power, 1000 m distance

between Alice and Bob, 10 jamming blocks within one frame, fc = 13 kHz, jamming

length of 24.6 ms, worked as the reference (“+”: Alice; “×”: Bob).

a multipath channel as in (79) is approximated by

E

{
Npa∑

p=1

A2
p

}

∝ 10−
TL(d,fc)

10 (112)

where d is the line-of-sight distance between transmitter and receiver.
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4.4.2 Performance Evaluation

Fig. 27 shows the secrecy rate based on geometry of Eve with the same data and

jamming transmission power at Alice and Bob, whose distance is 1000 m. Each packet

consists of 10 CP-OFDM blocks. Assume the maximal delay spread of hBB(t;n) is

5 ms, then the jamming length is 24.6 ms where 5 ms of CP duration is used for the

self protection of Bob. All the CP-OFDM data signals and jamming signals are with

the 13 kHz center frequency. Fig. 27(a) shows the secrecy rate without jamming. We

can see the contour of the secrecy rate is a ring, which is zero when Eve lies in the

circle of radius 1000 m, and increases as the distance goes up. With the help of half

duplex jamming system of Bob, we can see from Fig. 27(b) that the zero secrecy rate

shadow becomes a shell-like pattern. There are numbers of parabola-like shadows,

since the most part of jamming signal overlaps the CP part instead of data part of

blocks. Fig. 27(c) shows the increased secrecy rate from the perspective of geometry.

We can see the area near Bob can provide much larger secrecy rate since the attenuation

of jamming power is small, and the left side of Alice is less secure. Fig. 27(d) shows

the profile of secrecy rate when Eve is on the line of Alice and Bob. We can see the

increased secrecy rate decreases monotonously when the distance dAE is above 1000

m, and increases with a large oscillation whose period is about 100 m when Eve gets

close to Bob. The maximal increased average secrecy rate is 3 bits, which depends

on the received SNR at Bob. The null of the oscillation happens periodically when
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2|dAE − dBE|/c = nTbl, which leads to the least overlapping. The same phenomenon

can be found in Fig. 28(c), 28(f), 28(i), and 28(l).

Since the jamming power, the number of jamming blocks within one packet, the

center frequency fc of the system, and the jamming duration TJ affect the overlapping

duration and interference power within a data block, Fig. 28 shows their impact on the

performance of the increased secrecy rate in the half duplex jamming system. We take

Fig. 27 as the reference for performance comparison.

• Jamming Power: Fig. 28(a) and 28(b) indicate that as the jamming power in-

creases, the bright area becomes larger, which implies the secrecy rate is in-

creased. And we can still see ten parabola-like curves between Alice and Bob

whose patterns do not change. Fig. 28(c) demonstrates increasing jamming

power will enlarge the secrecy rate when Eve is on the right side of Alice.

• Number of jamming blocks within a packet: Fig. 28(d) shows the performance

with 5 data blocks within a packet, where the increased secrecy rate of the left

plane is near zero, and 5 parabola-like curves appear on the right plane. When

there are 20 data blocks within a packet, the area of increased secrecy rate is

larger as Fig. 28(e) shows, since it provides longer data duration for the pro-

tection of overlap from Bob. However, Fig. 28(f) shows the increase of block

number within a packet only increases the secrecy rate when Eve is between Al-

ice and Bob. When Eve is on the right of Bob, increasing block number will not

increase secrecy rate because all the blocks have the same overlapping pattern.
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(a) Two times of jamming power (b) Four times of jamming power
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Figure 28: Geometry of increased secrecy rate with different parameters (“+”: Alice;

“×”: Bob).
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• Center frequency: Fig. 28(g) and 28(h) show that the performance of increased

secrecy rate under different center frequencies, the bright area is like a peacock

showing the tail, and we cannot see much difference between these two fig-

ures. Fig. 28(i) indicates increasing the center frequency will not improve the

increased secrecy rate. However, Fig. 29 shows that the unjammed and jammed

secrecy rate will increase as the center frequency increases due to larger atten-

uation brought by higher center frequency. However, if the center frequency

becomes too large, the assumption that the attenuation within the bandwidth is

constant may not be true.

• Jamming length: Fig. 28(j) and Fig. 28(k) show that as the duration of jam-

ming signal increases, the one with longer duration will cover a larger area of

increased secrecy rate. Fig. 28(l) shows the increase of jamming duration im-

proves the increased secrecy rate remarkably when Eve is on the right of Bob.

Specifically when the jamming length is 10.25 ms, there would be some loca-

tions with no increase of secrecy rate, this is due to the length of jamming block

plus the channel length is smaller than the CP length, resulting in no interference.

4.5 Conclusion

This chapter proposed a novel jamming approach for an underwater acoustic com-

munication system with half-duplex transceivers. The receiver sends out jamming

signals during the guard intervals between neighboring blocks, which will collide with
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Figure 29: Profile of jammed and unjammed secrecy rate with different center fre-

quencies.

the data blocks at the eavesdropper. We have simulated the system performance with

various parameters. Our results have shown that this new protocol can increase the

secrecy rate of the system as expected and is feasible for implementation.



Chapter 5

Conclusions

The work in this dissertation aims to improve physical layer security in UWA com-

munication systems. Up to now, limited investigation has been done in this topic. The

dissertation started from UWA acoustic channel estimation, due to its fundamental

role in physical layer security. To set a proper regularization parameter in sparse re-

covery algorithms for channel estimation, we proposed a data-driven sparsity learning

approach which can tune the regularization parameter adaptively. Thus, it can achieve

nearly the same performance as that of the best fixed regularization parameter. To

secure UWA communications by secret keys, a secret key generation protocol based

on the CFR in OFDM system was proposed by exploiting the reciprocity of mutual

channels. We also investigated the half-duplex jamming for block communications in

UWA systems, where the self-protection jamming protocols were proposed by enjoy-

ing the benefit from the large propagation delays of UWA channels. The contributions

of the dissertation are as follows.

101
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• Sparse channel estimation: Instead of setting the regularization parameter in

the sparse recovery algorithms empirically, we proposed a data-driven sparsity

learning method based on the LMMSE equalizer to tune the regularization pa-

rameter adaptively. The decoding performance of different Lq algorithms in the

ICI-ignorant and ICI-aware OFDM receivers were compared with simulated and

experimental data from SPACE08. The result showed it achieves the near best

and robust performance as the best fixed regularization parameter.

• Secret key generation: To counteract information eavesdropping in UWA sys-

tems, a protocol that can generate secret keys dynamically based on the CFR was

developed, by exploiting the channel reciprocity and randomness at the physical

layer. Based on the lake test results that the correlation between mutual channels

is low, we incorporated two modules into the protocol for performance improve-

ment.

• Half-duplex self-protection jamming: To improve the secrecy rate of block trans-

missions in UWA channels, we proposed a self-protection jamming approach,

which relies on the legitimate receiver instead of extra helpers, to generate inter-

ference at the eavesdropper without affecting his/her own reception by exploring

the large propagation delays.
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