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Abstract— Speech recognition is very difficult in the context of
noisy and corrupted speech. Most conventional techniques need
huge databases to estimate speech (or noise) density probabilities
to perform recognition. We discuss the potential of perceptive
speech analysis and processing in combination with biologically
plausible neural network processors. We illustrate the potential of
such non-linear processing of speech by means of a preliminary
test with recognition of French spoken digits from a small speech
database.

I. INTRODUCTION

Statistical approaches like Bayesian networks and Hidden
Markov Models perform reasonably well only when the prob-
ability distributions have been suitably estimated during the
training phase. State of the art speech recognizers first extract
parameter features characteristics of speech signal (analysis
module) and then classify (recognition module), in the feature
space, the input vectors.

The classification is done by comparing the input sequence
vectors with pre-stored models of each word (or sub–word
unit) of the vocabulary1. The speech analysis module usually
extracts every [10–35] ms a vector of Mel Frequency Cepstrum
Coefficients (MFCC) 2. A Markov model is associated to
each sub-word unit in the dictionary. First order Markov
chains with Gaussian mixtures are commonly used. Gaussian
mixture parameters (mean, covariance matrices, mixture coef-
ficients) and transition probabilities of the Markov chains have
to be estimated during training [1], which usually requires
supervised training using huge hand-labelled databases [2]

1Word or sub–word units are syllables, phones, phonemes, etc. depending
on the approach in use.

2MFCC computation:

1) Signal preaccentuation;
2) Hanning windowing;
3) FFT and module extraction;
4) bank of Q-constant filters (usually 24 filters) and extraction of the

filterbank output energies;
5) Logarithm of these energies.
6) Discrete Cosine Transform of the log energies.

and thus these speech recognizers are designed for specific
applications. In fact, for robust speech recognition (noisy
speech and interfering noise), these systems have to be also
trained on noisy databases where different combinations and
configurations of noise or interference should be present.

On the other hand, perceptive and bio-inspired approaches
require less training, can be unsupervised and offer strong
potential even if their use in speech recognition applications
are less mature. In the present work we are interested in a
monophonic bio-inspired approach for speech recognition with
limited training. From preliminary experiments, it is observed
that this kind of approaches could be a good complement to
statistical speech recognizers as they might reach acceptable
results more quickly on very limited training sets.

II. EXPLORATION INSPEECHRECOGNITION

In pattern recognition research, it is well known that signal
analysis and recognition are modules that are tightly related.
For example, very good matching between parameter vector
distributions (such as MFCC) and recognition models (such
as HMM) yields better performance than systems using au-
ditory cues but with mismatched pattern recognizers. Further
discussion is given by M. Hunt in [3], [4].

Research in neuroscience and auditory perception has ad-
vanced, yielding greater understanding of the auditory system
along with more sophisticated tools for the recognition of time-
organized features. See for example the work by Zotkin et
al. [5]

We illustrate here an application in speech recognition
where perceptive signal analysis combined with non-linear
signal processing and spiking neural networks offers a strong
potential. Bio-inspired neuronal networks are well adapted
to signal processing where time is important. They can be
fully unsupervised. Adaptive and unsupervised recognition of
sequences is a crucial property of living neurons. At the
moment, this work does not reflect the full potential of spiking
neurons and is more or less exploratory.
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A. Speech Recognition with Ensemble Interval Histograms

Oded Ghitza proposed in 1994 and 1995 the use of an
auditory peripheral model for speech recognition [6], [7] that
simulates a great number of neurons with different internal
threshold values. O. Ghitza introduced the notion of the
Ensemble Interval Histograms representation (EIH). That rep-
resentation carries information about the spiking time interval
distributions from a population of primary auditory fibers.
Experiments were made on the TIMIT database by using a
mixture of Gaussian Hidden Markov Models. He observed
that the EIH representation is more robust on distorted speech
when compared to MFCC. On clean speech there were no
gains in using his model.

It is important to note that EIH carries information on aver-
aged spiking intervals, thus specific sequences of spikes cannot
be identified inside a population of neurons. Furthermore, the
representation has to be smoothed to be compatible with the
use of a conventional fixed frame pattern recognizer (HMM
with multi-Gaussian). Therefore, fine grained information is
lost. There is, however, increasing evidence that this informa-
tion could be used by the auditory system [8], [9].

We suggest to use a similar front-end as proposed by Ghitza,
but to preserve the time structure organization of spiking
sequences across neurons, without computing the histograms.
As this approach prevents the conventional use of HMM,
we examine potential techniques to recognize specific spiking
sequences. Different coding schemes can be used to perform
the recognition. Here we investigate the Rank Order Coding
scheme (ROC). The ROC scheme has been proposed for visual
categorization by Thorpeet al.[10], [11]

B. Rank Order Coding

Rank Order Coding has been proposed by Simon Thorpe
and his team from CERCO, Toulouse to explain the impressive
performance of our visual system to recognize objects [12],
[13]. The information is distributed through a large population
of neurons and is represented by spikes relative timing in a
single wave of action potentials. The quantity of information
that can be transmitted by this type of code increases with the
number of neurons in the population. For a relatively large
number of neurons, the code transmission power can satisfy
the needs of any visual task [12]. There are advantages in using
the relative order and not the exact spike latency: the strategy
is easier to implement, the system is less subject to changes
in intensity of the stimulus and the information is available as
soon as the first spike is generated.

Perrinet [13] and Thorpe [11] also discuss the importance
of sparse coding and rank order coding for classification of
sequences which is particularly interesting for speech. R. Van-
Rullenet al.also discuss findings for spike-time coding and
their potential generalization to sensory modalities, including
the auditory system. [14]

III. SYSTEMOVERVIEW

We now explore the feasibility of a speech recognizer
based on spiking neurons and rank-order coding. In this

work, we use the temporal order of spikes within peripheral
auditory channels as the basis for the speech recognition.
Spikes are obtained with simple neuron models as fixed input
thresholds, without integration. Different neurons can have a
different threshold, but the leak and the integration from the
conventional Leaky Integrate and Fire neuron model are not
used in this first implementation.

A. Speech Analysis Module

The peripheral auditory system is crudely modeled by
a gammatone filter-bank [15] followed by rectification and
compression with a square-root law. The output of such a sim-
ulation is intended to represent the average firing probability
in primary auditory nerve fibers, without taking into account
adaptation and loss of phase-locking. For each channel, we
then use three neurons with different thresholds (denoted 1, 2
and 3). The firing probability is converted into actual spikes
when it exceeds a neuron’s threshold. After producing a spike,
a neuron becomes inactive for the remaining time of the
stimulus.

Fig. 1. Speech Analysis Module. The signal is filtered by a cochlear
gammatone filter-bank, then each output is rectified and compressed. Finally,
spikes are generated by multiple thresholding in each channel.
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Fig. 2. Spike train generation illustrated on a French digit ’un’. Spikes
(stars) are generated when the signal (French digit 1) amplitude exceeds the
thresholds. The x-axis represents the samples (sampling frequency of 16 KHz)
and the y-axis shows the filter-bank channels. Center frequencies of channels
1 and 20 are respectively equal to 8000 and 100 Hz.



B. Learning and Recognition Modules

During learning a template is generated for each reference
word. The template consists of the sequence of N cochlear
channels indices that are most likely to be activated first. As an
example, with the French digit ”un” pronunciation (figure 2),
the sequence of twenty channels (table I, columnsPosition)
is : 11, 12, 9, 10, 6, 11(2),12(2),10(2), 13, 14, 17, 11(3),13(2),
18, 14(2), 15, 12(3), 16, 13(3)and 19, where the(i)indices
stand for threshold levels 2 or 3 in the corresponding channel.

TABLE I

POSITION IN THE SEQUENCE OF THE FIRST20CHANNELS TO PRODUCE A

SPIKE AND THE GENERATED WEIGHTS

Position Weight (k(i))
Levels Levels

Channel 1 2 3 1 2 3

1
2
3
4
5
6 5 16
7
8
9 3 18
10 4 8 17 13
11 1 6 12 20 15 9
12 2 7 17 19 14 4
13 9 13 19 12 8 2
14 10 15 11 6
15 16 5
16 18 3
17 11 10
18 14 7
19 20 1
20

Afterwards, weightsk(columnWeight, table I) are given
to each of these channels according to Equ. 1.

ki=(N−i)+1, (1)

whereitakes values from1toN. As we can see, the weight
change depends on the channel position in the sequence. The
first channel to generate a spike has the highest weight and
we keep going downwards until we reach theNthchannel.
Since there are more than one neuron per channel, more than
one weight can be given to a single channel (see table I).

To perform isolated word recognition, signals of words to be
recognized are filtered, rectified, compressed and thresholded
(Figure 1) to generate a sequence of spikesS(t)(which con-
tains the channel numbers that generated each corresponding
spike). From this sequence, we keep theN first spikes to
perform a similarity comparison with each existing templates.
This similarity is calculated by adding the weights of the
model for each channel, modified by an inhibition factor that
depends on the channel’s rank in the sequence (Equ. 2) [11].
Finally, the template with the highest similarity to the actual

model output is selected.

Similarity=

N

i=1

ki×I(rank of spike i)−1, (2)

whereIstands for an inhibition factor (lower than or equal
to one) andkifor the corresponding weight of the template
channel and threshold. As an example, with the same French
digit ”un” pronunciation (figure 2) and an inhibition factor of
0.9, the similarity (which is maximum) would be computed as
follows :20×0.90+19×0.91+18×0.92+...+2×0.918+
1×0.919.

IV. EXPERIMENTS ANDRESULTS

A. Speech Database

We performed a proof-of-concept test of speech recognition
with our model, using an in house speech database made
of 10 French digits spoken by 5 men and 4 women. Each
speaker pronounced ten times the same digit (from 0 to 9).
The speakers had a sequence of random numbers to read and
the speech was recorded at 16 KHz using a headset.

B. Training and Recognition for our Prototype

For each digit, two reference models are used for the
recognizer (one pronunciation for each sex). For each digit,
for each sex and for each pronunciation inside the same sex
group, a preliminary comparison between the same digits
is performed. The comparison is made by computing the
similarity measure (Equ. 2) between all pronunciations of the
same digit inside the same sex group. The pronunciation with
the highest similarity will be used as a reference model3.
These reference models possess the highest similarity with
the pronunciations in their respective group (digit, male or
female). It should be noted that for this selection, the impact
of a digit model on the pronunciations of the other digits (e.g.,
false recognition of other digit) is not taken into account.

Recognition has been performed on the ten pronunciations
of each speaker. During recognition and for a given digit, seven
speakers were not in the reference models.

C. Reference System

A conventional MFCC and Hidden Markov Model speech
recognizer has been trained with the same training set than
with the prototype4. The system uses hidden Markov models
with 5 states for each digit (figure 3) and twelve cepstral
coefficients for each time frame. The sliding window length is
32 ms with an overlap of 16 ms. For each state of the HMM,
a mean and a variance are estimated during training. We use
one Gaussian distribution of the observations (instead of the

3For example, the model of digit 1 for the male speakers is obtained: For
j=1 to50do (each digit 1 pronounced by a male – 50 pronunciations):

1) Compute the similarity with the other digits (49 similarities)
2) Compute the average

The pronunciation with the highest average similarity will be the model for
digit ”un” pronounced by the male speakers.

4The same reference pronunciation has been used for each digit.



conventional mixture of Gaussians) to reduce the number of
parameters5to be estimated during training).

Fig. 3. Hidden Markov model.

D. Recognition Scores for Limited Data

TABLE II

RECOGNITION FOR EACH PRONUNCIATION OF THE TENFRENCH DIGITS

OBTAINED WITH OUR PROTOTYPE.

Models %
Number 1 2 3 4 5 6 7 8 9 0 64,89

1 (”un”) 84 1 4 1 93,33
2 (”deux”) 69 2 1 3 13 2 76,67
3 (”trois”) 10 58 18 1 1 2 64,44

4 (”quatre”) 22 68 75,56
5 (”cinq”) 11 1 2 42 21 6 7 46,67
6 (”six”) 1 68 13 2 1 5 75,56
7 (”sept”) 1 1 2 11 49 12 1 1 12 13,33
8 (”huit”) 1 68 16 5 75,56
9 (”neuf”) 4 9 54 23 60
0(”źero”) 15 2 3 3 9 61 67,78

Results from the prototype are reported on table II. Each
row model gives the number of recognized pronunciations;
each line is the pronounced digit to be recognized. The best
score is obtained for digit ”un” (usually short and difficult to
be recognized with conventional speech recognizers). On the
other hand, digits beginning with a similar fricative (”cinq”,
”six” and ”sept”) or plosives (”trois” and ”quatre”) are often
confused. Since the neurons in our prototype fire only once,
the emphasis is generally put on the first milliseconds of the
signal. This could explain the observed confusions.

TABLE III

RECOGNITION FOR EACH PRONUNCIATION OF THE TENFRENCH DIGITS

OBTAINED WITHHMMS.

Models %
Number 1 2 3 4 5 6 7 8 9 0 51,9

1 (”un”) 15 1 20 28 16 16,67
2 (”deux”) 55 11 1 9 14 61,11
3 (”trois”) 42 48 46,67

4 (”quatre”) 33 32 10 15 36,67
5 (”cinq”) 2 81 1 1 5 90
6 (”six”) 13 72 1 4 80
7 (”sept”) 40 8 30 12 33,33
8 (”huit”) 31 5 8 5 38 3 5,56
9 (”neuf”) 4 10 19 3 44 10 48,89
0(”źero”) 90 100

5Approximately 130 parameters for each Markovian Model: Mean and
Variance of a twelve dimensional vector for each state, 5 states and transitions
between states.

The best score for the MFCC-HMM (table III) is obtained
with digit number 5 (relatively long digit) and the worst with
1 (the best with our prototype) and 8. It is clear that digit
model 8 is not correctly trained and that the HMM speech
recognizer did not have enough data to correctly estimate
the HMM parameters (approximately 130 parameters for each
Markovian reference model).

E. Recognition with Bigger Training Set

Of course, with all 9 speakers in the training set, the HMM
recognizer outperforms our Rank Order Coding prototype
yielding an overall recognition rate close to 100%. For our
prototype, the creation of reference models (with Maximum
Likelihood, for example) is not trivial as it requires a new
training rule to be created.

F. Discussion

When we use the same small training set (one pronunciation
per digit and sex), the HMM is not able to converge during
training and yields recognition rates of 50% (table III), while
our speech recognizer prototype sits around 65% (table II).

For some short digits, the prototype yields interesting results
(sometimes higher than with the MFCC-HMM recognizer).
Even if the system is very crude in this initial implementation,
interesting performance is obtained with a very limited training
set. Moreover, good performance is observed for cases that
are typically difficult for HMM recognizers, that is to say
short words. While the HMM recognizer performance can be
improved by increasing the training set, the performance of our
prototype could benefit from various pre- or post-processing
schemes that are currently under investigation (more realistic
spike generation with integrate and fire neurons, learning rule,
...).

The resistance to noise of both presented systems were also
found to be weak.

G. Recognition with Noisy Training Set

To evaluate the resistance to noise, tests at different SNR
have been performed with both systems. The same clean
limited training set selected in subsection IV-D is used and
white noise is added to the recognition data set. In respect to
robustness to noise with a limited training set, our prototype
and the HMM present similar behavior. With an SNR of 20
dB, their averaged recognition rate are reduced by a factor of
50% in comparison to the results obtained with a clean limited
training set. At this early stage, our prototype shows no real
robustness to noise.

V. CONCLUSIONS

Conventional speech analysis and recognition techniques
can yield good performance levels when correctly trained and
when the test conditions match those of the training set. But
for real-life situations, the designer has to train the system on
huge databases that are very costly to implement. On the other
hand, bio-inspired processing schemes can be unsupervised
and generalize relatively well from limited data. They could



efficiently complement conventional speech processing and
recognition techniques.

Due to the intrinsic spiking nature of neurons, suitable
signal representations have to be found to adequately adapt
the signal information to the neural networks. One important
aspect of the bio-inspired prototype presented above is that
it uses spikes trains. This places constraints on the type of
coding that can be performed, and new signal representations
had to be investigated to achieve computational efficiency
and robustness to noise. Combined with conventional speech
processing methods, this new approach could open up new
research directions.

Improvements for our prototype include the use of a more
complex neuron model. Indeed, for each neuron our prototype
uses only the first spike of that neuron (equivalent to an infinite
refractory period). Thus, emphasis is then generally put on the
first milliseconds of the signal. With more complex neuron
models, the produced spike trains could better characterize
each word. The use of sparse representations [16], [17], [18],
[19] could also be investigated for the same goal. In addition,
the way our models are chosen and created is simple and
fast, but it is far from optimized. Synaptic plasticity, as shown
recently by Panchev and Wermter [20], can be used to perform
recognition of sequences and could improve our recognition.
Finally, A. Delorme et al. [21] have implemented a learning
rule based on spike timing (spike timing dependent plasticity)
in a visual framework that shows a great potential for the
rank order coding. This learning rule should naturally be
investigated for the creation of our models.
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