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ABSTRACT

Mathematical analysis of the variable thermophysical features of the three-dimensional flow of a non-Newtonian yield manifesting liquid
with heat and mass transport in the presence of gyrotactic microorganisms over a nonlinear stretched surface is inspected in this exploration.
The phenomenon of heat is presented in view of temperature-dependent thermal conductivity by engaging the traditional heat conduction
law, whereas transport of mass is expressed by capitalizing Fick’s law with temperature dependent mass diffusion. The Buongiorno model
is presented for capturing the involvement of Brownian motion and thermophoresis inspirations. Additionally, the chemical reaction is
considered in themass transport expression. Boundary layer theory is applied to develop the physical problem in the form of partial differential
equations. Appropriate transformation is utilized to convert the developed problem into a dimensionless system of coupled nonlinear ordinary
differential equations. The transformed system is then handled analytically. The convergence analysis of the proposed scheme is presented
through a table, which confirms the reliability of the suggested procedure. Moreover, the validity of the present solution and suggested scheme
is presented and the limiting case of presented findings is in excellent agreement with the available literature. The computed solution of the
physical variables against the influential parameters is presented through graphs. It is worth mentioning that mounting values of the fluid
parameter and magnetic parameter retard the fluid flow.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5118929., s

I. INTRODUCTION

In last few years, the consideration of non-Newtonian fluids has
achieved great attention due to its broad applications in the field

of industry and engineering. Numerous fluids, including ketchup,
drilling mud, paints, polymer solutions, shampoo, and so on, do
not fulfill Newton’s law of viscosity that represents the associa-
tion between stress and strain of given fluids in a nonlinear way.
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Non-Newtonian fluids with a complex nature pose a challenge
to physicists, engineers, and mathematicians. In the literature, for
examination of non-Newtonian fluids, numerous models have been
recommended. There is no precise model containing all features of
non-Newtonian fluids. The effective Maxwell model to prognosti-
cate stress relaxation is treated as a simple viscoelastic model. The
power law model is the most common existing model in the lit-
erature that has the ability to establish both shear thickening and
thinning effects in non-Newtonian fluids. A Casson fluid, which
is another non-Newtonian fluid, gives yield stress. If considerable
shear stress is lesser than stress, then fluid behaves like a solid.
When shear stress is greater than yield stress, then the fluid starts
moving. A few examples of Casson fluids are honey, jelly, tomato
sauce, blood, juice concentration, etc. In the available literature,
the Casson fluid model was used by Aghighi et al.1 to review the
effect of the Rayleigh-Bénard convection numerically by consider-
ing a heated square cavity. Raza2 described the characteristics of
the Casson fluid flow model with slip effects and thermal radiation
on magnetohydrodynamic stagnation point flow along a convected
developing sheet. Ahmad et al.3 critically interpreted the effect of
chemical reaction and slip boundary conditions with mass and heat
transport over a nonlinear stretching sheet of non-Newtonian fluid.
The model of the Casson fluid was used to intensify the character-
istics of non-Newtonian fluid. Similarly, the influence of melting
heat transfer through magnetohydrodynamic (MHD) Casson fluid
flow over a stretching sheet with an effect of thermal radiation in
a porous medium was conferred by Mabood and Das4 to simulate
the behavior of a viscoelastic fluid in a porous regime. The Casson
ferrofluid of magnetite micropolar effect over a shrinking/stretching
sheet by using the Cattaneo-Christov and thermal conductiv-
ity models was scrutinized by Shah et al.5 Mohyud-Din et al.6

studied the squeezed flow of the Casson fluid with heat transport.
Analytical solutions of the modeled physical problem are addressed
via the differential transform procedure. They noticed the signifi-
cant rise in temperature field by escalating the viscous dissipation
parameter.

The transport of heat through the movement of microscopic
electrons and the particle collision within the body is called heat
conduction. This conduction law is termed “Fourier’s law of heat
conduction,” which states that the heat transfer time rate is propor-
tional to the negative temperature gradient and area of that gradient
at right angle. Similarly, the mass transport is the net motion of mass
from one region, usually phase, component, fraction, or stream, to
another location. These phases occur in many mechanisms and pro-
cesses, such as the biomass, food processing, solar cells, fuel cells,
photovoltaic cells, photosynthesis, high capacity cooling processes,
energy systems, absorption, drying, precipitation, evaporation, and
membrane filtration. Due to a vast range of heat and mass trans-
fer applications, the non-Newtonian fluid model has received much
attention from many researchers.7–12 Variable mass diffusion inves-
tigations are presented in the literature (Refs. 13–16 and 38–44),
which also covered the influence of nanoparticles in the fluid flow.

In recent times, due to high costs of materials, energy, and
space, researchers and scientists have introduced critical endeavors
to provide more efficient heat transport equipment to bring down
the cost. As a consequence, they haveminimized the physical dimen-
sions of industrial tools for a specific capability and found inventive
working liquids which are the focus of observations. The effective-

ness of heat transfer in fluids is highly dependent on their phys-
ical features, such as viscosity, density, and thermal conductivity.
Among these, an important factor is thermal conductivity in the heat
transport process. In most of the existing studies, the thermophys-
ical characteristics of the fluids are taken to be constant. However,
in general, the variable thermal conductivity of fluids employed in
industry is a major constraint for heat transport properties. It is
notable that the thermal conductivity may change with tempera-
ture.With this viewpoint, Nawaz et al.17 explored viscous dissipation
and Joule heating effects of MHD axisymmetric Casson fluid flow
with free stream and variable thermal conductivity dependent on
temperature. The swirling flow of the MHD Maxwell fluid through
heat transfer with variable thermal conductivity inspiration over two
coaxially rotating disks was reported by Ahmad et al.18 Heat transfer
and pressure analysis was carried out to study the effects of an axial
magnetic field and temperature dependent thermal conductivity.
The influence of thermal radiation and nanofluid on a Williamson
fluid along a stretching cylinder in the presence of the convective
boundary condition was explored by Bilal et al.19 The variable ther-
mal conductivity is considered during the formulation of the energy
equation. Hamid and Khan20 reported the behavior of the convec-
tive unsteady flow of a Williamson nanofluid with a magnetic effect
and variable thermal conductivity in the heat transfer process. They
observed that the temperature of the fluid significantly rose with
increasing thermal conductivity parameter.

To interpret the magnetohydrodynamic (MHD) flow, it is rel-
evant to study physical aspects of the MHD process. According to
“Lenz’s law of motion” of a conductor in a magnetic field, the mag-
netic field in the conductor is due to the induced electric current.
When current is induced through the magnetic field by the motion
of the conducting fluid, then the Lorentz force acts and changes its
motion. In the MHD process, the field modifies through motion and
vice versa. Recently, several researchers explored and considered the
characteristics of magnetic field in their work (Refs. 21–26 and the
references therein).

At present, bioconvection of nanofluids is the prime focus for
several researchers. Prescribed multiphase flows consist of particles
that are just carried by flow and that are not self-propelled organ-
isms. On the other hand, the bioconvection procedure involved the
suspension of the self-propelled microorganisms. This term was ini-
tiated by Platt.27 The flow patterns were detected in the dense cul-
tures of free-swimming microorganisms, i.e., ciliates, flagellates, and
tetrahymena. These microorganisms resemble Bernard cells but not
the existence of thermal convection. During the bioconvection pro-
cess, microorganisms swam under the ground to raise up the static
medium. When these microorganisms move in the flow field, their
swimming positions are determined by the equilibrium state of vis-
cous drags that result from shear stress. Gravity produced an asym-
metrical diffusion of mass within the organism, and as a result, cells
tend to swim to the swirling fluid segment that refers to gyrotac-
tic mechanisms. Mosayebidorcheh et al.28 examined the behavior
of nano-bioconvection flow containing both gyrotactic microorgan-
isms and nanoparticles by applying the method of modified least
square (MLSM) that is applied on complicated types of boundary
conditions. The impact of gyrotactic microorganisms on nonlinear
thermal radiation and convective mass flux conditions was studied
by Khan et al.29 and Iqbal et al.30 Nanoparticle and microorgan-
ism suspension was analyzed by Qayyum et al.,31 which is stabilized
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through bioconvection to check the surface of a rotating disk of
variable thickness. Heat and mass transport exploration for the bio-
convection flow around a stagnation point was reported by Usman
et al.32 They tackled the governing nonlinear coupled system via the
wavelet procedure. They described that on augmenting the paramet-
ric values of the Brownian motion parameter, dimensionless stress
increases, whereas the heat transfer coefficient diminishes.

For analytical solution, solving nonlinear equations is more dif-
ficult than solving linear ones. Generally, there are two standards for
satisfactory solutions. First, it can always provide analytical approx-
imations efficiently and, second, it can give accurate enough ana-
lytical approximations for all pertinent parameters appearing in the
governing expressions along with associated conditions. By using
these two standard criteria, many numerical and analytical tech-
niques are used to solve nonlinear equations. Among these, the
optimal homotopy analysis method (OHAM) is one of the most
powerful tools for solving nonlinear differential equations. Mostly,
OHAM is applied to boundary layer equations. Recently, the Opti-
mal Homotopy Asymptotic Method (OHAM) was used by Marinca
and Herisanu.33 Few relevant studies concerning the OHAM are
Refs. 34–47 and the references therein.

The main determination of this article is to analyze and explore
thermophysical characteristics of yield exhibiting non-Newtonian
fluid flow over a nonlinear stretched surface in the presence of gyro-
tactic microorganisms. This work is novel and different from the
other work due to the consideration of variable magnetic field, tem-
perature dependent thermal conductivity, and temperature depen-
dent mass diffusion coefficient. The coupled system of nonlinear
partial differential equations is transformed into the nonlinear sys-
tem of coupled ordinary differential equations. These transformed
systems of equations are solved analytically via the Optimal Homo-
topy Analysis Method (OHAM). The results for the given flow field,
velocity, temperature, concentration, and density of motile microor-
ganisms are analyzed graphically. These outcomes show that the
fluid flow is remarkably influenced by various involved parame-
ters. It is anticipated that the results acquired will contribute use-
ful information on many industrial applications and also admirable
previous related research works. This article is organized as
follows.

Introductory discussion is given in Sec. I. Mathematical for-
mulation is discussed in Sec. II. Some quantities of practical and
engineering importance are mentioned in Sec. III. Implementation
of the proposed scheme is presented with convergence in Secs. IV
and V. Moreover, physical analysis is made in Sec. VI. Findings with
remarks are given in Sec. VII.

II. PHYSICAL DESCRIPTION AND PROBLEM
FORMULATION

Steady three-dimensional non-Newtonian bioconvection
boundary layer flow past over a nonlinear stretched surface is

considered. Flow is produced due to the stretching of the bidirec-
tional stretched surface, and it occupies the region z ≥ 0. Variable

magnetic field having strength B(x, y) ≙ B○(x + y) n1−12 is imple-
mented normal to the stretched surface. It is considered that u1≙ a(x + y)n1 , u2 ≙ b(x + y)n1 , u3 = 0 are the velocities along x, y, and
z directions, whereas T ≙ T∞ + T○(x + y)n1 , C ≙ C∞ + C○(x + y)n1 ,
m ≙ m∞ + m○(x + y)n1 are the temperature, concentration, and
density of motile microorganisms at the wall. Physical quantities
far away from the wall are u1 → 0, u2 → 0, T → T∞, C → C∞,
m→m∞. Furthermore, it is worthy tomention that transport of heat
and mass is considered with temperature dependent thermal con-
ductivity and mass diffusion coefficient. The constitutive expression
for the Casson fluid model6,12,17,34,50,51 is

τab ≙

⎛⎜⎝μγ +
Ay

(2π) 12
⎞⎟⎠ 2eab, π > πc & τab ≙ ⎛⎜⎝μγ +

Ay

(2πc) 12
⎞⎟⎠ 2eab,

π < πc, a = b = 1, 2, 3,

(1)

where (μγ) denotes the plastic dynamic viscosity of the non-
Newtonian model, (Ay) denotes the yield stress, eab = ½(∂ua/∂xb
+ ∂ub/∂xa) denotes the deformation rate, (π) denotes the product of
the component of the deformation rate with itself, and (πc) denotes
the critical value of this product.

Using Eq. (1) and the expression of the deformation rate, the
components of tangential and normal stresses are

τxx ≙
⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠ 2∂u1

∂x
, τyx ≙ τxy ≙

⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠(∂u1∂y

+ ∂u2
∂x
),

τxz ≙ τxz ≙
⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠(∂u1∂y

+ ∂u2
∂x
), τyy ≙

⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠ 2∂u2

∂y
,

τyz ≙ τzy ≙
⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠(∂u3∂y

+ ∂u2
∂z
), τzz ≙

⎛
⎝μγ +

Ay

(2π)
1
2

⎞
⎠ 2∂u3

∂z
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The pertinent boundary layer equations which illustrate the physical
happening shown through Fig. 1 are recorded as follows.

A. Continuity equation

Themass conservation principle is engaged which discusses the
mass influx and out flux,

∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
≙ 0. (2)

B. Equation of motion

The principle of force balanced is utilized in order to notice the
motion of fluid particles,

u1
∂u1
∂x

+ u2
∂u1
∂y

+ u3
∂u1
∂z
≙ νa(1 + 1

χ
) ∂

2u1
∂z2
− σ

ρf
B2
○(x, y)u1

+ g[ψ1(T − T∞) + ψ2(T − T∞)2] + g[ψ3(C − C∞) + ψ4(C − C∞)2],
⎞
⎠ (3)
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FIG. 1. Schematic representation of the present considered
physical happening.

u1
∂u2

∂x
+ u2

∂u2

∂y
+ u3

∂u2

∂z
≙ νa(1 + 1

χ
) ∂2u2

∂z2
− σ

ρf
B
2
○(x, y)u2. (4)

C. Energy equation

The thermodynamics first principle is followed to derive the
energy expression

u1
∂T

∂x
+ u2

∂T

∂y
+ u3

∂T

∂z
≙ 1

ρf cp

∂

∂z
(KA(T)∂T

∂z
)

+ τA[DB
∂C

∂z

∂T

∂z
+

DT

T∞
(∂T
∂z
)2]. (5)

D. Species equation

u1
∂C

∂x
+ u2

∂C

∂y
+ u3

∂C

∂z
≙ ∂

∂z
(DA(T)∂C

∂z
) + DT

T∞

∂
2T

∂z2−KC(C − C∞). (6)

E. Gyrotactic microorganism equation

u1
∂m

∂x
+ u2

∂m

∂y
+ u3

∂m

∂z
+ γa

w○

Δ C

∂

∂z
(m∂C

∂z
) ≙ Dm○

∂
2m

∂z2
. (7)

Boundary conditions for the considered physical situation are

u1 ≙ a(x + y)n1 , u2 ≙ b(x + y)n1 , u3 ≙ 0, T ≙ T∞ + T○(x + y)n1 ,
C ≙ C∞ + C○(x + y)n1 , m ≙ m∞ +m○(x + y)n1 at z ≙ 0,

u1 → 0, u2 → 0, T → T∞, C → C∞, m→ m∞ as z →∞.

⎞⎟⎠ (8)

Assume the following similarity transformations:

u1 ≙ a(x + y)n1 f ′(ζ), u2 ≙ a(x + y)n1g′(ζ), u3 ≙ −√aνa(x + y) n1−12 [n1 + 1

2
( f + g) + n1 − 1

2
ζ( f ′ + g′)],

ζ ≙√ a

νa
z(x + y) n1−1

2 , θ1(ζ) ≙ T − T∞
Ts − T∞ , φ1(ζ) ≙ C−C∞

Cs−C∞
, N(ζ) ≙ m −m∞

ms −m∞ ,

B(x, y) ≙ B○(x + y) n1−1

2 , KA(T) ≙ K∞(1 + δ1θ1), DA(T) ≙ D∞(1 + δ2θ1).

⎞⎟⎟⎟⎟⎟⎠
(9)

Equations (2)–(7) take the form

(1 + 1

χ
)f ′′′ −Mf

′ − n1( f ′ + g
′)f ′ + (n1 + 1

2
) ( f + g) f ′′

+πT(1 + BTθ1) θ1 + πT ⌢

N(1 + BCφ1)φ1 ≙ 0, (10)

(1 + 1

χ
) g′′′ + (n1 + 1

2
) ( f + g) g′′ −Mg

′ − n1( f ′ + g
′) g′ ≙ 0, (11)

1

Pr∞
(1 + δ1θ1) θ′′1 +

δ2
Pr∞
(θ′1)2 + (n1 + 1

2
)( f + g)θ′1

+NT(θ′1)2 +NBθ
′
1φ1 ≙ 0, (12)
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1

Sc∞
(1 + δ2θ1)φ′′1 +

1

Sc∞
δ1θ
′
1φ
′
1 +

NT

NB
θ′′1 + (n1 + 1

2
)

× ( f + g)φ′1 − λ1φ1 ≙ 0, (13)

N
′′
+ (n1 + 1

2
)LB( f + g)N′ − PE[N′φ1 + (N + Ω1)φ1] ≙ 0. (14)

The dimensionless boundary conditions32 that manifests the flow
over the strained surface are

f ≙ 0, f ′ ≙ 1, g ≙ 0, g′ ≙ A, θ1 ≙ 1, φ1 ≙ 1, N ≙ 1 at ζ ≙ 0,
f ′ ≙ 0, θ1 ≙ 0, φ1 ≙ 0, N ≙ 0 as ζ →∞.

)
(15)

III. PHYSICAL QUANTITIES OF ENGINEERING
INTEREST

To discuss the fluid flow problems, skin friction coefficients

( ⌢Cfx,
⌢

Cfy) and heat transfer coefficient ( ⌢Nuxy) are of leading

curiosities. Their mathematical expressions are conferred as

⌢

Cfx ≙ ∣τzx∣z≙0
ρU2

w

,
⌢

Cfy ≙ ∣τzy∣z≙0
ρV2

w

,
⌢

Nuxy ≙ ∣(x + y)Qw∣z≙0
K(T − T∞) , (16)

τzx ≙ ⎛⎜⎝μγ +
Ay

(2π) 12
⎞⎟⎠(

∂u3

∂x
+
∂u1

∂z
),

τzy ≙ ⎛⎜⎝μγ +
Ay

(2π) 12
⎞⎟⎠(

∂u3

∂y
+
∂u2

∂z
),

(17)

Qw ≙ −K(T)∇ ⋅ T. (18)

Their dimensionless form is signified as

⌢

Cfx(Rexy) 12 ≙ −(1 + 1

χ
) f ′′(0), ⌢Cfy(A)2(Rexy) 12 ≙ −(1 + 1

χ
) g′′(0),

(19)

⌢

Nuxy(Rexy)− 1
2 ≙ −θ′1(0)(1 + δ1θ1(0)). (20)

In the above expressions, (u1), (u2), and (u3) are velocity compo-
nents in x-, y-, and z-directions, respectively, (νa) is the kinematic
viscosity of liquid, (cp) is the specific heat, (ψ1), (ψ2) are the linear
and nonlinear thermal expansion coefficients, (ψ3, ψ4) are the linear
and nonlinear concentration expansion coefficients, (g) is the mag-
nitude of gravitational acceleration, (χ) is the Casson fluid param-
eter, (Pr∞) is the Prandtl number due to temperature dependent
thermal conductivity, (Sc∞) is the Schmidt number due to temper-
ature dependent mass diffusion, (M) is Hartmann’s number (mag-
netic parameter), (N) is the concentration of microorganisms, (πT)
is the mixed convection parameter, (τA) is the ratio of liquid to
nanoparticle effective heat capacity, (DB) and (DT) are the Brow-
nian and thermophoretic diffusing coefficients, (KC) is the chemi-
cal reaction, (a) and (b) are the stretching rates, (n1) is the power
index, (TS), (T∞) and (CS), (C∞) are the temperature and con-
centration at the sheet and far away from the sheet, respectively,
(LB) is the bioconvection Lewis number, (PE) is the Peclet number,

(λ1) is the chemical reaction parameter, (KA(T)) is the temperature
dependent thermal conductivity, (DA(T)) is the temperature depen-
dent diffusion parameter, (w○) is the maximum cell swimming
speed, (δ1), (δ2) are the small parameters, (γa) is the reaction rate

parameter, ( ⌢N) is the ratio of concentration to thermal buoyancy

forces, (NT) is the thermophoresis parameter, (NB) is the Brown-
ian movement parameter, (BT) is the nonlinear convection param-
eter for temperature, (BC) is the nonlinear convection parameter
for concentration, (A) is the stretching ratio parameter, (Ω1) is the
microorganism concentration difference parameter, (ρf ) is the den-
sity of nanofluid, (ρp) is the density of nanoparticles, and (ρm) is the
density of microorganism particles.

IV. OPTIMAL HOMOTOPY ANALYSIS METHOD

The optimal homotopy procedure is a powerful tool used to
handle the complex nonlinear system of boundary value problems
arising in applied physics and numerous engineering disciplines. To
achieve the successive iterations by OHAM, we first select the initial
guess and linear operator which has the characteristics that they sat-
isfy the given boundary conditions of the considered problem. It has
several advantages over many existing algorithms.

● No small or large parameter is required for it.
● No transform function and its derivatives such as Laplace,

Fourier, and differential transform and reduced differential
procedures are required.

● No stability criteria and discretization are required.
● It treats the linear and nonlinear problems in a similar

fashion. No Adomian polynomial is required.

Therefore, initial guesses and their corresponding linear opera-
tor are listed as

f○ ≙ 1 − 1
eϚ
, g○ ≙ A(1 − 1

eϚ
), (θ1)○ ≙ 1

eϚ
, (φ1)○ ≙ 1

eϚ
,N○ ≙ 1

eϚ
,

L1 ≙ (D3
−D)f ,L2 ≙ (D3

−D)g,L3 ≙ (D2
− 1)θ1,

L4 ≙ (D2
− 1)φ1,L5 ≙ (D2

− 1)N,

⎞⎟⎟⎟⎟⎠
(21)

and these linear operators conform to the following features:

L1[s∗1 + s∗2 e
Ϛ + s∗3 e

−Ϛ] ≙ 0,
L2[s∗4 + s∗5 e

Ϛ + s∗6 e
−Ϛ] ≙ 0,

L3[s∗7 eϚ + s∗8 e
−Ϛ] ≙ 0,

L4[s∗9 eϚ + s∗10e
−Ϛ] ≙ 0,

L5[s∗11eϚ + s∗12e
−Ϛ] ≙ 0,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

where s∗n(n ≙ 1 − 12) are the constants which are to be determined
by utilizing the given boundary conditions.

V. OPTIMAL CONJUNCTION REGULATOR PARAMETER

The nonzero auxiliary parameters in homotopic solutions stan-
dardize the convergence precinct as well as rate of preferred homo-
topic solutions. To take the optimal values of constraining parame-
ters h̵f , hg , h̵θ1 , h̵φ1 , and hN , we have smeared the perception of min-
imization by considering the average squared residual inaccuracies
as recommended by Liao,46
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TABLE I. Error reduction in series solution using OHAM.

r1 Ẽ
∗f
r1 Ẽ

∗g
r1 Ẽ∗θ1r1 Ẽ

∗ϕ1
r1 Ẽ∗Nr1

2 1.0421× 10−2 1.1035× 10−2 1.9136× 10−2 1.8291× 10−2 1.4785× 10−2

4 1.5307× 10−4 1.6103× 10−3 2.1928× 10−3 4.1827× 10−3 2.3792× 10−3

6 3.4065× 10−6 3.8430× 10−4 3.9724× 10−4 1.5189× 10−3 1.1794× 10−3

8 5.0521× 10−7 2.1036× 10−5 4.2395× 10−6 5.1827× 10−4 2.7362× 10−4

10 1.9128× 10−7 4.9283× 10−6 1.1937× 10−7 3.1437× 10−4 1.9526× 10−5

12 3.2501× 10−8 1.9102× 10−8 3.5691× 10−8 3.7834× 10−5 5.3972× 10−6

16 4.5631× 10−9 4.9103× 10−9 2.8491× 10−9 2.8193× 10−6 1.2803× 10−6

20 1.9704× 10−12 3.2017× 10−10 5.9275× 10−10 3.2759× 10−7 3.9275× 10−7

22 1.6208× 10−13 1.4937× 10−12 1.9516× 10−10 1.9172× 10−8 1.8626× 10−7

24 2.1935× 10−14 3.6927× 10−13 4.9315× 10−11 2.4827× 10−9 1.6385× 10−8

26 3.9372× 10−15 5.9814× 10−14 1.5412× 10−11 1.4693× 10−10 2.9238× 10−9

30 3.5731× 10−17 1.9104× 10−15 4.2691× 10−12 2.7105× 10−12 1.8273× 10−10

⌢

E
∗f
r1 ≙ 1

d + 1

d∑
J≙0

⎡⎢⎢⎢⎢⎣
Gf( r1∑

r∗≙0

⌢

f (Ϛ), r1∑
r∗≙0

⌢

g(Ϛ), r1∑
r∗≙0

⌢

θ1(Ϛ), r1∑
r∗≙0

⌢

φ1(Ϛ))
Ϛ≙JδϚ

⎤⎥⎥⎥⎥⎦
2

, (23)

⌢

E
∗g
r1 ≙ 1

d + 1

d∑
J≙0

⎡⎢⎢⎢⎢⎣
Gg( r1∑

r∗≙0

⌢

f (Ϛ), r1∑
r∗≙0

⌢

g(Ϛ))
Ϛ≙JδϚ

⎤⎥⎥⎥⎥⎦
2

, (24)

⌢

E
∗θ1
r1 ≙ 1

d + 1

d∑
J≙0

⎡⎢⎢⎢⎢⎣
Gθ1(

r1∑
r∗≙0

⌢

f (Ϛ), r1∑
r∗≙0

⌢

g(Ϛ), r1∑
r∗≙0

⌢

θ1(Ϛ), r1∑
r∗≙0

⌢

φ1(Ϛ))
ϚJδϚ

⎤⎥⎥⎥⎥⎦
2

, (25)

⌢

E
∗φ1
r1 ≙ 1

d + 1

d∑
J≙0

⎡⎢⎢⎢⎢⎣
Gφ1(

r1∑
r∗≙0

⌢

f (Ϛ), r1∑
r∗≙0

⌢

g(Ϛ), r1∑
I≙0

⌢

θ1(Ϛ), r1∑
I≙0

⌢

φ1(Ϛ))
Ϛ≙JδϚ

⎤⎥⎥⎥⎥⎦
2

, (26)

⌢

E
∗N
r1 ≙ 1

d + 1

d∑
J≙0

⎡⎢⎢⎢⎢⎣
GN( r1∑

r∗≙0

⌢

f (Ϛ), r1∑
r∗≙0

⌢

g(Ϛ), r1∑
r∗≙0

⌢

φ1(Ϛ),
r1∑

r∗≙0

⌢

N(Ϛ))
Ϛ≙JδϚ

⎤⎥⎥⎥⎥⎦
2

. (27)

In view of Liao’s exceptional contributions,46

⌢

E
∗t
r1 ≙ ⌢

E
∗f
r1 +

⌢

E
∗g
r1 +

⌢

E
∗θ1
r1 +

⌢

E
∗φ1
r1 +

⌢

E
∗N
r1 , (28)

where
⌢

E
∗t
r1 attitudes for total squared residual errors.

A. Convergence analysis

Theoretical interpretation for velocity, temperature, concentra-
tion, and density of motile microorganisms is presented. An optimal
homotopic solution is achieved for the overriding resulting physi-
cal system. Table I is prepared for the convergence and reliability of
the homotopic procedure. It presents that error diminishes for the
required solutions by augmenting the order of approximations.

VI. PARAMETRIC ANALYSIS OF ACHIEVED SOLUTIONS
AND PHYSICAL INTERPRETATION

This section focuses on the analysis of effects of active physi-
cal parameters on velocity, temperature, concentration, and density
of motile microorganism profiles graphically by engaging OHAM.
From Figs. 2–11, the influence of various physical parameters such
as the Casson fluid parameter(χ), power index (n), Hartman num-
ber (M), mixed convection parameter (πT), Prandtl number (Pr∞),
Brownian motion parameter (NB), thermophoresis motion param-
eter (NT), microorganism concentration difference parameter (Ω1),
Schmidt number(Sc∞), bioconvection Peclet number (PE), and bio-
convection Lewis number (LB) is discussed. Tables II and III present
the comparative analysis of the applied scheme to the reduced
problem available in the literature, and by noticing the results,
excellent agreement is found.
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FIG. 2. Variation of χ and M on f ′(ζ).

FIG. 3. Effect of χ and M on g′(ζ).

Figures 2 and 3 demonstrate the effect of the Casson fluid
parameter (χ) and Hartman number(M) on velocity profiles f ′(ζ)
and g′(ζ), respectively. It is indicated that a large value of Casson
fluid parameter declines both the momentum and thermal thickness
between the boundary layers. The higher viscous forces on the flow

FIG. 4. Inspiration of n1 and πT f ′(ζ).

FIG. 5. Variation of n1 and πT on g′(ζ).

FIG. 6. Influence of Pr∞ and M on θ1(ζ).

generated due to the rising parameter (χ) ascribed to this cause we
can see decrement in the velocity profiles. Similarly, for increasing
Hartman number (M), a resistive Lorentz force is produced and that
resistive force is accountable for the decline of velocity profiles f ′(ζ)
and g′(ζ). The behavior of velocity profiles g′(ζ) and f ′(ζ) for several

FIG. 7. Effect of NB on θ1(ζ) and φ1(ζ).
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FIG. 8. Behavior of NT on θ1(ζ) and φ1(ζ).

FIG. 9. Variation of M and Sc∞ on φ1(ζ).

values of power index (n1) and mixed convection parameter (πT) is
presented in Figs. 4 and 5, respectively. It is noticed that variations
of the power index (n1) and mixed convection parameter (πT) have
reverse behavior with velocities profiles. Large values of (n1) increase
the nonlinearity of the surface between the fluid layers, and this
decreases resistive force which tends to decrease the velocities. It also

FIG. 10. Influence of Ω1 and LB on N(ζ).

FIG. 11. Variation of PE on N(ζ).

shows that the velocity profiles decrease for several values of mixed
convection parameters (πT). As (πT) increases, it is inversely related
to the Reynolds number, the buoyancy force decreases, and hence
the fluid flow deaccelerates. Figure 6 exhibits that the temperature
profile θ1(ζ) is enhanced with the variation of the Hartman number
(M) and declined with the variation of the Prandtl number (Pr∞).
As expected, increasing values of (Pr∞) reduce the fluid tempera-
ture θ1(ζ) as well as decrease thermal boundary layer thickness. It is
to be observed that large values of (Pr∞) decrease θ1(ζ) significantly
and the boundary layer is squeezed near to the wall. The justification
of this phenomenon is that the Prandtl number is interpreted as the
ratio of the momentum diffusion to thermal diffusion. In the case of
an increment in (M), the temperature profile enhances. It is physi-
cally justified due to Joule heating; with joule heating, the nanopar-
ticle motion increases, which enhances the temperature boundary
layer. The opposite nature of temperature and concentration pro-
file is noticed for large values of the Brownian motion parameter
(NB), as shown in Fig. 7. It is a well known fact that the Brownian
motion is the process of diffusion. The high-rise diffusivity implies
higher temperature, and as a consequence, thermal conductivity also
rises and the effect of Brownian motion in nanofluid is due to the
nanoparticles. In addition to this fact, it enhances the nanoparticle
kinetic energy which is mainly due to the increment in (NB); as a
result, the temperature of nanofluid rises. The concentration profile
φ1(ζ) decreases with an increase in (NB) due to a rise in the kinetic
energy of nanoparticles. The temperature profile θ1(ζ) and concen-
tration profile φ1(ζ) show similar increasing behavior for large values
of the thermophoresis parameter (NT), as seen in Fig. 8. In the pro-
cess of thermophoresis motion, heated particles move away from the
hottest place to the coldest region. For that fact, fluid temperature
θ1(ζ) and concentration profile φ1(ζ) enhance. Figure 9 demon-
strates the performance of the Hartman number (M) and Schmidt
number(Sc∞) on the concentration profile φ1(ζ). φ1(ζ) considerably
rises with an increase in (M). It is mainly the repercussion of ther-
mophoresis boundary condition and Joule heating. With an incre-
ment in (Sc∞), the concentration profile φ1(ζ) diminishes. With an
increasing in (Sc∞), there is a decrement in the molecular diffusivity
of nanoparticles; as a result, concentration boundary layer thickness
reduces. Because of this fact, φ1(ζ) decays with increasing (Sc∞). The
effect of the concentration difference parameter (Ω1) and biocon-
vective Lewis number (LB) on the concentration of microorganisms
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TABLE II. Numerical data of (1 + 1
χ
) f
′′

(0) and (1 + 1
χ
) g′′(0) for different values of n1, A by setting χ =∞, πT = BT = BC

= 0 = M.

(1 + 1
χ
)f ′′(0)48,49 (1 + 1

χ
)g′′(0)48,49 (1 + 1

χ
)f ′′(0) (1 + 1

χ
)g′′(0)

n1 A Shooting bvp5c Shooting bvp5c Present Present

1 0 −1 −1 0 0 −1 0
. . . 0.5 −1.224 745 1.224 742 −0.612 372 −0.612 371 −1.224 745 −0.612 371
. . . 1 −1.414 214 −1.414 214 −1.414 214 −1.414 214 −1.414 214 −1.414 214
3 0 −1.624 356 −1.624 356 0 0 −1.624 356 0
. . . 0.5 −1.989 422 −1.989 422 −0.994 711 −0.994 711 −1.989 421 −0.994 710
. . . 1 −2.297 186 −2.297 182 −2.297 186 −2.297 182 −2.297 186 −2.297 186

TABLE III. Numerical values of the Nusselt number Nu = −θ1
′(0) (1 + δ1θ1(0)) for

numerous values of A, n1, Pr∞ when M = πT = 0 = BT = BC = NT = δ1.

n1 Pr∞ A Nu48 shooting Nu48 bvp5c Nu (present)

1.0 0.7 0.0 0.793 668 0.793 668 0.793 668
. . . . . . 0.5 0.972 033 0.972 029 0.972 031
. . . . . . 1.0 1.122 406 1.122 321 1.122 404
. . . 1.0 0.0 1.000 000 0.999 990 1.000 000
. . . . . . 0.5 1.224 745 1.224 742 1.224 745
. . . . . . 1.0 1.414 214 1.414 214 1.414 214
. . . 7.0 0.0 3.072 250 3.072 251 3.072 250
. . . . . . 0.5 3.762 723 3.762 724 3.762 722
. . . . . . 1.0 4.344 818 4.344 779 4.344 818
3.0 0.7 0.0 1.292 193 1.292 194 1.292 193
. . . . . . 0.5 1.582 607 1.582 607 1.582 605
. . . . . . 1.0 1.827 437 1.827 427 1.827 437
. . . 1.0 0.0 1.624 356 1.624 356 1.624 356
. . . . . . 0.5 1.928 942 2 1.989 422 1.989 422
. . . . . . 1.0 2.297 186 2.297 182 2.297 186
. . . 7.0 0.0 4.968 777 4.968 777 4.968 777
. . . . . . 0.5 6.085 484 6.085 485 6.085 484
. . . . . . 1.0 7.026 912 7.026 913 7.026 911

FIG. 12. Variation of dimensionless stress x-component against n1.

FIG. 13. Variation of dimensionless stress y-component against n1.

N(ζ) is strategized in Fig. 10. For enhancing (Ω1), this increases the
concentration for ambient fluid but decreases the surface concentra-
tion of microorganisms. For increasing values of (LB), the diffusivity
of swimming microorganisms is diminished; thus, the local concen-
tration of microorganisms has been decreased. Figure 11 illustrates
the variation of the concentration of microorganisms N(ζ) for var-
ious values of Peclet numbers (PE). N(ζ) enhances as we increase
the Peclet number (PE), which shows that the buoyancy parameter
is inaugurated to be more assured for a fluid with greater values of
(PE). Dimensionless stresses are plotted through a bar chart as pre-
sented in Figs. 12 and 13 against varying values of indexed number.
It presents that stresses grows as it boosts.

VII. CONCLUDING COMMENTS AND KEY
OBSERVATIONS OF PRESENT DELIBERATION

Bioconvective flow of a Casson fluid with heat and mass trans-
fer over a bidirectional nonlinear stretched surface having a variable
magnetic field, thermal conductivity, and mass diffusion coefficient
is inspected. Boundary layer equations are handled analytically via
the optimal homotopic algorithm. The effect of influential variables
on computed solution is displayed through graphs and tables. The
key findings of the present experiment is listed as follows:

● Nondimensional fluid velocity decreased by escalating the
values of the magnetic parameter, indexed number, mixed
convection parameter, and Casson fluid parameter.
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● Fluid temperature and associated layer thickness increased
by mounting the values of the magnetic parameter and
decreased for greater values of Prandtl numbers.● Dimensionless stresses grow by mounting the values of the
indexed number, which presents the direct relation.● Brownian motion parameter has the opposite impact on
fluid temperature and concentration profiles.● Escalating values of the thermophoresis parameter upsurges
the fluid temperature and concentration and related layer
thickness.● An increase in Schmidt number decreases the fluid con-
centration, whereas it grows for mounting values of the
magnetic parameter.● Motile density profile decreased for mounting values of
the concentration difference parameter and Lewis number,
whereas the Peclet number boosted it.
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