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Abstract—We present a visualization technique for brain fiber tracts from DTI data that provides insight into the structure of

white matter through visual abstraction. We achieve this abstraction by analyzing the local similarity of tract segment directions at

different scales using a stepwise increase of the search range. Next, locally similar tract segments are moved toward each other in

an iterative process, resulting in a local contraction of tracts perpendicular to the local tract direction at a given scale. This not only

leads to the abstraction of the global structure of the white matter as represented by the tracts, but also creates volumetric voids.

This increase of empty space decreases the mutual occlusion of tracts and, consequently, results in a better understanding of the

brain’s three-dimensional fiber tract structure. Our implementation supports an interactive and continuous transition between the

original and the abstracted representations via various scale levels of similarity. We also support the selection of groups of tracts,

which are highlighted and rendered with the abstracted visualization as context.

Index Terms—Diffusion Tensor Imaging (DTI), fiber tracts, visual abstraction, multi-scale representation, illustrative visualization.

✦

1 INTRODUCTION

T HE task of uncovering the functionality of the human

brain in all its detail has engaged researchers for

centuries. Fundamental to gaining such an understanding

is to comprehend the brain’s complex anatomy which

comprises ganglia, blood vessels, grey matter, as well as

white matter. This white matter that contains connections

between nerve cells in the gray matter and that consists

of approximately 105 km of myelinated axons is the focus

of our work. Often, neuroscientists do not only want to

understand its anatomy in general but rather based on patient-

specific data. While modern imaging techniques provide

non-invasive ways to obtain data about the white matter’s

anatomy, it remains difficult to understand the structure

because of its complexity.

We propose a new technique for showing the brain’s

white matter structure using fiber tracts extracted for the

whole brain. Our goal is to represent all extracted fiber

tracts simultaneously and at the same time visually abstract

them so that global patterns become clear for a given

level of scale. Our approach is based on diffusion tensor

imaging (DTI) as one of the non-invasive medical imaging

technologies [2]. DTI records information about anisotropic

physical structures in that it reflects the self-diffusion

• M.H. Everts is with TNO, the Netherlands.

E-mail: maarten.everts@tno.nl.

• E. Begue and H. Bekker are with the University of Groningen, the

Netherlands. E-mail: {ericbeg@gmail.com,h.bekker@rug.nl}.

• J.B.T.M. Roerdink is with the University of Groningen and with the

Neuroimaging Center of the University Medical Center Groningen, the

Netherlands. E-mail: j.b.t.m.roerdink@rug.nl.

• T. Isenberg is with Inria, France. E-mail: tobias.isenberg@inria.fr.

properties of water in fibrous material such as the brain’s

white matter. The resulting tensor field that represents the

anisotropic diffusion is used in a variety of analysis methods,

of which fiber tracking [31] is a popular approach. The

general idea of fiber tracking is, starting from a seed point, to

generate a curve following the main diffusion direction in the

tensor field. Even though the resolution of DTI is not nearly

high enough for tracing individual axons, fiber tracking can

provide useful information about the connectivity of brain

regions and the structure of axon bundles. Such white matter

fiber bundles are typically either tubular-shaped, such as

the cingulum, or sheet-like, such as the body of the corpus

callosum, the corona radiata, and the rostral part of the

corticospinal tract [41], [42].

Placing seeds to initialize fiber tracking is typically done

in a particular region-of-interest or throughout the entire

brain. We use the latter method which produces a huge

collection of dense fiber tracts (typically 104–105) that

pass through the brain in complex ways (Fig. 1(a)). When

visualized in a naı̈ve way, most of the global structure of the

tracts including tube, sheet, or fan formations, is occluded

due to the high density of the tracts. If we look at the tracts

in detail, however, we can observe that many neighboring

tracts follow almost the same path for their entire length,

others follow the same path only for subsections and then

diverge to run in parallel with other tracts. We use this

observation that many tracts are locally virtually parallel as

the basis of our approach.

Specifically, we start by subdividing all tracts into small

segments of equal size. For every pair of consecutive vertices

of nearby tracts we then determine the local tract similarity

based on the direction of incident segments. This processing
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(a) (b) (c)

Fig. 1. DTI fiber tract abstraction based on similarity and proximity (tractography was performed for the complete

brain, but all images show only one hemisphere of the brain). Tracts are colored according to direction [33];

top-down: green; left-right: red; perpendicular to view-plane: blue. Central structure in red: corpus callosum; green

structure directly above the corpus callosum: cingulum. (a) uncontracted; (b) contracted at a scale of 5 mm; (c) a

subset of the contracted structure highlighted.

is done for vertices with a separation less than the targeted

scale. For every vertex pair with a similarity score above a

certain threshold we add an edge to a similarity graph that

connects these vertices and, thus, the fiber tracts. Based on

this graph we carry out an iterative lateral contraction of

tract segments by relocating tract vertices to be closer to

similar ones. The total number of tracts remains unchanged

during the contraction. This process results in a lateral

contraction of fiber tract structures and thus a visually

abstracted representation (Fig. 1(b)).

While the reduction of visual information is useful in

itself, it is also accompanied by the creation of volumetric

voids; space previously occupied by many parallel tract

segments becomes mostly empty through the contraction

process (Fig. 1(b)). These added voids throughout the brain

decrease occlusion of the fiber tract patterns by the fibers

themselves so that it becomes possible to see deeper into

the brain and better interpret its white matter structure.

Full-brain tractography methods are used to get an initial

and unbiased overview of the connectivity structure. Often,

it is a starting point of a more detailed analysis which

involves selecting and analyzing meaningful clusters of the

tracts. One of the main benefits of our technique is that it

removes noise from the large fiber tract datasets, as well

as clarifies the structure, and thus allows for easier fiber

bundle selection.

To further enhance the understanding we allow users to

interactively and continuously move between the original and

the contracted state of the fiber tracts which makes it easier

to relate the two states. Furthermore, we allow users to select

subsets of fibers to explore local patterns in the contracted

state (Fig. 1(c)). We emphasize, however, that before doing

such a local analysis an initial whole-brain fiber computation

is required. Restricting the fiber contraction to a local subset

of fibers would give the contraction process too much

freedom, leading to large displacements of contracted fiber

bundles from their original anatomical locations, especially

at the boundaries of the selected region, which is undesirable.

Of course, despite the inherent tract deformation that

comes with our method, the introduced abstraction needs to

be anatomically meaningful. For this purpose we analyze the

amount of displacement our abstraction scheme introduces

to the location of the fiber tracts and compare this to the

original anatomical locations. The results show that, for up to

a search radius of ≈ 2 mm, the contracted results are located

within the regions occupied by the original fiber tracts with

a high accuracy. However, higher search radii that would

normally lead to anatomical incorrectness can still be useful.

Domain experts pointed out that bundles can be selected

in the contracted state (with some anatomical distortion),

but then analyzed in the uncontracted state. The continuous

movement between the original and the contracted state that

our method supports can help the user to quickly build up

a mental image of the relation between the different states.

We emphasize that our approach differs from the process

of clustering or grouping DTI fiber tracts (sometimes

called fiber bundle identification [45]) into anatomically

correct fiber bundles (corpus callosum, cingulum, etc.). This

process is typically accompanied by a color labeling but

no displacement of the fibers tracts occurs. In contrast, our

goal is to create a simplified visualization of large sets of

fiber tracts; we thus do not aim to identify anatomical fiber

bundles. Our method also bears some similarity to edge

bundling, which determines both a grouping of the edges

and the paths of the edges. The difference is that we displace

only local fiber tract segments, while in edge bundling a

global displacement of the paths occurs. To avoid confusion,

we avoid the term “bundling” when referring to our method

and instead speak about fiber tract contraction.

The remainder of this paper is organized as follows.

Relates work is discussed in Section 2. The creation of

contracted fiber tract configurations is explained in Section 3

and their visualizations in Section 4. Next, we present

our results in Section 5 and analyze the introduced fiber

tract displacement in Section 6. We discuss the merits and

limitations of our technique in Section 7 and conclude the

paper in Section 8.

2 RELATED WORK

There exists a wide variety of techniques for generating

abstractions and visualizations that provide an understanding

of the brain’s white matter structure. The vast majority of

these approaches rely on DTI data because these capture

the local anisotropy of the myelinated axons in the brain.

http://dx.doi.org/10.1109/tvcg.2015.2403323
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One may start from the fractional anisotropy (FA) field

derived from DTI data [3]. The tract-based spatial statistics

approach by Smith et al. [37] produces a 3D volumetric

skeleton from a mean FA volume as an abstract representa-

tion of white matter. A related representation—anisotropy

crease surfaces—was proposed by Kindlmann et al. [23],

also based on the FA values. In a complementary approach,

Schultz et al. [36] analyze the topology of the tensor field

based on probabilistic fiber tracking, thus illustrating the

structurally important information. Another technique by

Kindlmann and Westin [24] represents the tensor field

by glyphs and uses glyph packing to better illustrate the

underlying structure.

In contrast to these techniques and similar to our own

method, many approaches that visualize white matter first

employ deterministic tractography [31] and then visualize

the extracted fiber tracts, possibly processing them further.

The visualization of fiber tracts (e. g., [13], [18], [34], [35],

[38]) is typically done for subsets of tracts because rendering

a large number of fiber tracts not only leads to occlusion and

clutter but also obscures the structurally important aspects

of the data. Methods to determine which tracts to show

include seeding at regions-of-interest and interactive tract

selection [1], [5]. With our technique we can both include

all extracted fiber tracts in the visualization such that the

overall structure is revealed and at the same time make use

of tract selection for emphasis.

The overall goal of our technique is to reveal the structure

of the brain’s white matter by introducing abstraction. A

similar effect can also be achieved by careful tract seeding—

without the need to abstract the locations of fiber tracts.

Such approaches were presented, for instance, by Merhof

et al. [29], Vilanova et al. [40], and Zhang et al. [46],

using streamlines, streamtubes, or streamsurfaces. While

these techniques produce good visual results and need less

geometry, they always only show representations of specific

instances of fiber tracts—as opposed to abstracted tracts

that represent many different extracted paths in the volume.

An important approach for understanding white matter

structure is the use of grouping or clustering [7], [12], [25],

[39]. Here, DTI fiber tracts are classified into anatomically

correct fiber bundles (corpus callosum, cingulum, etc.), often

accompanied by a color labeling [45]. Segmentation of

sheetlike fiber tracts into anatomically meaningful bundles

was considered by Maddah et al. [27], [28]. O’Donnell

et al. [32] proposed the use of a white matter atlas to

learn a model of the common white matter structures

present in a group of subjects. Interaction with the clustered

data can be added to support exploration and navigation

through tractography data [8], [20]. Evaluation of fiber

clustering methods was considered by Moberts et al. [30],

who developed a framework to validate different clustering

methods and different (global) fiber similarity measures by

comparison with a manual classification which was used as

a ground truth.

Clustering relates to our own approach. In both cases

the similarity of tracts is important. Our approach, however,

differs in that, first, clustering approaches do not introduce

a displacement of the fiber tracts which our technique does.

Second, our approach does not aim to identify anatomi-

cal fiber bundles, in the sense of classifying tracts into

anatomical structures; our goal is to obtain an abstraction

of large sets of fiber tracts through simplification by lateral

contraction. Third, while clustering determines the similarity

based on the whole length of the tract, we establish similarity

of fiber tract segments at a local level. This local similarity

aspect relates to the visualization of fiber tract coherence by

Hlawitschka et al. [15] who calculate a coherence measure

based on the deviation of fiber tracts in small neighborhoods.

The resulting scalar field is not only visualized directly,

but also used as a transparency mask to enhance fiber

tract visualization. In contrast, we aim to show the overall

structure while keeping the connectivity intact. This structure

can also be captured in terms of an abstract network [14]

which nicely illustrates the connectivity of regions but loses

the relation to the actual anatomy to some degree.

To study functional brain connectivity, Böttger et al. [6]

apply edge bundling based on resting-state fMRI data. A

method to cluster functional MRI data based on functional

unit maps was proposed by Crippa et al. [10]. For functional

connections, however, the issue of anatomical faithfulness is

less pressing, since there is no one-to-one relation between

anatomical and functional connections in the brain.

In another related paper, Yu et al. [44] introduce hier-

archical streamline bundles to simplify and visualize 3D

flow fields defined on regular grids. Seed placement and

streamline generation occur according to flow saliency.

Spatially neighboring and geometrically similar streamlines

are grouped to construct a hierarchy of streamline bundles

that partitions the flow field. Differences with our approach

are: (i) only a grouping, not a displacement, of streamlines

is determined (like in fiber clustering); (ii) a global, not

a local, metric is used to compute streamline similarity;

and (iii) seeding is selective (saliency based), while ours is

uniform in the volume.

Finally, our approach of fiber tract contraction is related

to techniques used in 2D graph drawing, including force-

directed layouts [11], and, in particular, the graph edge

bundling by Holten et al. for hierarchical [16] and general

graphs [17]. The latter is especially relevant due to its use of

an iterative force-directed approach. An important difference

with our approach is that for the edges in the 2D graph

the path is a feature denoting the connection of two nodes

whose spatial location is completely flexible, whereas for

our fiber tracts the path location is relevant and important as

an anatomical feature, i. e., the deformation of tracts has to

be limited. A common property of both approaches is that

they create spaces between the original edges by displacing

them, so as to improve understandability.

3 FIBER TRACT ANALYSIS & CONTRACTION

Our goal is to visualize DTI fiber tracts in their entirety

such that the depictions assist viewers in understanding the

structure of white matter, at different levels of scale. Our

technique is based on fiber contraction that takes the local

http://dx.doi.org/10.1109/tvcg.2015.2403323
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conditions into account but also considers the location of the

original tracts to provide anatomic relevance. We achieve

these goals through a two-stage process. First, an analysis

stage inspects the fiber tracts to analyze the local similarity

of tract segments with respect to proximity and direction.

Next, an iterative process uses this similarity information

to move fiber tract segments towards similarly oriented

neighboring segments, resulting in a contracted state. In

interactive exploration, scientists can transition between the

uncontracted and the contracted state via several scale levels.

3.1 Analysis of Local Direction Similarity

We consider two tracts to be locally similar if the directions

of the considered tract segments are approximately parallel

and not located far from each other. We capture this

similarity information in a graph whose edges connect fiber

tracts where they are locally similar. Hence, the nodes of

the similarity graph are vertices of the fiber tracts, while the

graph’s edges represent similarity relations between these

vertices and, thus, between tract segments. The goal of the

analysis stage is to create the similarity graph, which will

later be used to inform the contraction stage.

To faithfully describe the local similarity for a set of

fiber tract segments with the similarity graph we rely on the

polygonal fiber tracts being evenly tessellated, i. e., all tract

segments should have the same length. Because the fiber

tracts resulting from tractography typically do not have this

property, we first resample each tract such that each pair

of neighboring vertices on the tract has the same distance

dsample.

Based on the set of resampled tracts we capture their

local similarity. While such similarity can be established for

a more general case of points on two planes [22], we use a

more direct heuristic1 because we only deal with vertices

on linear structures. Similar to Corouge et al. [9] and Ding

et al. [12], we process each pair of fiber tracts A and B to

find, for each vertex on A, its nearest neighbor vertex on

B, and vice versa. This step yields a list L of vertex pairs

of the form (v,nn(v)), where v is a vertex on tract A or

B and nn(v) is v’s nearest neighbor on the other tract. At

this stage, the number of pairs in L is equal to the sum

of the number of vertices in A and B. However, L may

also contain superfluous entries, i. e., a pair (p,q) can be

removed if (q, p) also exists in L.

Next, we filter the entries of L based on three conditions,

a distance condition, an angle condition, and a combinatorial

condition, before creating edges in the similarity graph. We

create an edge if and only if a vertex pair (p,q) in L meets

all of the following conditions:

Condition 1: the distance between p and q is smaller

than a given length dmax;

Condition 2: at least one of the segments incident to p

is approximately parallel to one of the segments incident

to q, where “approximately parallel” means that the angle

1. We experimented with variations of this heuristic but what we describe
here proves to strike a good balance between simplicity and effectiveness.

B1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7
A

Fig. 2. Illustration of how tract vertices are connected

by edges. Only lines with pure dashes connect vertices

that form an edge in the similarity graph, the other vertex

pairs are discarded because of Condition 1 (dots) and

Condition 3 (dash-dot) in Section 3.1.

between the segments is smaller than a predefined angle

θpar;

Condition 3: the nearest-neighbor relation of p and q is

approximately mutual, that is, it holds that |index(nn(q)−
index(p)| ≤ 1 and |index(nn(p))− index(q)| ≤ 1, where the

function index(v) returns the index of v on the tract to which

it belongs.

This last condition requires some additional motivation.

Fig. 2 shows a common configuration of tracts. Assume that

tracts A and B are approximately 3 mm apart, dsample = 1mm

and dmax = 6mm. If only Condition 1 is used then the pairs

(A1,B1), (A1,B2), (A1,B3) would not define an edge because

their distances are all greater than dmax, but the pairs (A1,B4),
(A1,B5), (A1,B6), (A1,B7) would each lead to an edge in

the similarity graph because they satisfy Conditions 1 and

2. Such an edge is undesirable because this would mean

that during the actual contraction process vertices A1 and B4

would move toward each other, A1 towards B5, etc. However,

we only want A1 and B6 to move towards each other and A1

and B7 to move towards each other. Condition 3, therefore,

prevents (A1,B4) and (A1,B5) from being turned into edges

and to cause unwanted edge contraction later on. The value

of 1 in the condition is somewhat arbitrary. It has to be

greater than 0 but not too large, and a value of 1 proved to

work well in our experiments.

Each newly added edge is also given a real-valued

attribute that captures the distance between the pair’s vertices.

This value is later used in the iterative contraction process.

The parameters θpar and dmax can be interactively changed

by the user, depending on the noise level of the data.

3.2 Iterative Contraction of Fiber Tracts

In the second stage, the information in the similarity graph

is used to iteratively move vertices toward each other. This

has the general effect that tract segments move towards

nearby tract segments of similar direction. The process is

realized iteratively because a vertex in the similarity graph

is, in general, connected to multiple other vertices. During

each iteration, we accumulate the influence of all incident

graph edges for each vertex in a combined displacement

vector.

One iteration consists of the following steps. First, the

displacement vector of each vertex is initialized to zero.

Similar to force-directed layouts [11, Ch. 10] we then

calculate the displacement for each graph edge (p,q) that

will move p and q towards each other such that they will

http://dx.doi.org/10.1109/tvcg.2015.2403323
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Fig. 3. Illustration of noise (dents, bulges, steps)

in neighboring tracts. We remove this by applying a

Gaussian filter to the displacements.

Fig. 4. Illustration of diverging tracts (top) and double-

linking in the similarity graph (bottom).

meet halfway, i. e., at (rp + rq)/2, with rp and rq being the

current position vectors of vertices p and q, respectively.

If p and q would not be connected to any other vertices

they would end up at the same position, i. e., both halfway

between rp and rq. However, that will not be the case in

general because p and q are also connected to other vertices.

Because such a simple force-directed approach can poten-

tially lead to run-away situations, we divide the displacement

vector by the number of edges connected to the processed

vertex to compute the average, similar to what is done in the

barycenter force-directed method [11, Ch. 10.2]. In addition,

we remove noise along a fiber tract (as illustrated in Fig. 3)

by applying a small Gaussian kernel to the displacements

along each tract. This smoothing also addresses the issue of

otherwise sudden transitions where merging tract segments

come into the influence range of other tract segments (Fig. 4,

top), and the issue of the occasional double-linking (Fig. 4,

bottom). In a final adjustment, we ensure that vertices can

only be moved perpendicularly to a tract’s local direction, as

obtained from the average orientation of the two tract edges

incident to the processed vertex, and project the accumulated

and filtered displacement vectors onto the orthogonal plane.

After all displacement vectors have been derived, they are

applied to their respective vertices and the next iteration

starts. Several iterations are necessary to achieve a contracted

state; we typically use in the order of 40 iterations.

The contraction process deforms the tracts themselves:

fiber tracts are not simply subjected to rigid transformations

but instead are locally modified. These confined deforma-

tions force tracts to locally follow the same paths. This

process creates voids between sets of fiber tracts, one of

the main goals of the method. However, the amount of

deformation is kept to a minimum by moving vertices

mainly perpendicularly to the tract direction and by applying

Gaussian smoothing.

3.3 Scale-Dependent Abstraction

At this stage, the fiber tract analysis and contraction

incorporate a notion of scale due to the use of dmax to

limit the neighborhood of what is being considered to be

similar. Different values for dmax result in different notions

of scale: only close structures are contracted for small values

of dmax, while larger structures are merged for larger values

of dmax. During contraction, however, we only process graph

edges whose length is smaller than a given dmax,i ∈ [0,dmax],
with i indicating scale. By performing the contraction for

increasing values of dmax,i we can create contracted fiber

tract representations for growing scales. Because we use the

same fiber tract tessellations for each of these computations

we can relate the position of a fiber tract vertex in the

uncontracted state to the position of the same vertex in a

contracted state for any of the computed scales.

To better understand the impact of dmax on the abstraction

that is introduced through the contraction we have explored

dmax values of up to the equivalent of 7 mm and report on

this evaluation in Section 6.

4 VISUALIZATION AND INTERACTION

The result of the contraction process is that for each tract

not only its original vertex positions have been stored but

also the positions of its vertices at the different contraction

scales. Based on this data we provide a visualization that

enables the user to interactively and seamlessly move from

one contraction scale to the next to explore white matter

structure. In addition, we provide means to employ filtering,

a 2D lens tool, and tract selection.

4.1 Visualization at Multiple Scales

In the user interface of our visualization users can in-

teractively control the scale of contraction. Even though

we only compute a discrete number of scales (typically

in 1 mm increments, so for dmax = 5mm we compute 5

discrete contracted representations), we provide a continuous

transition by linearly interpolating the tract vertex positions

between consecutive scales. This continuous transition

prevents sudden jumps of tracts while users are interacting

with the scale slider and helps them to follow the tract

locations across the series of scales.

4.2 Rendering

For rendering we store the tract vertex positions for the

different scales on the graphics card and perform linear

interpolation between consecutive scales in a vertex shader.

We can thus render the tract representation and move

between scales at interactive speeds. The rendering is based

on the depth-dependent halo visualization for dense line

data [13], with one small adaptation. Instead of duplicating

http://dx.doi.org/10.1109/tvcg.2015.2403323
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a line’s vertices to create a view-oriented triangle strip, we

use a geometry shader. The reason is that the creation of the

view-oriented triangle strips depends on the local direction

of the line at each vertex, which was pre-computed in the

original approach. In our case, however, pre-computation is

unfeasible because the interpolation between scales results

in the local direction of the lines depending on the chosen

scale. This problem is solved by calculating the direction

and creating the triangle-strip on the fly in a geometry shader.

This has the additional advantage that it requires much less

data to be transferred to the graphics card.

The complete process employs a vertex shader that

interpolates vertex positions depending on the chosen scale,

then transfers the positions to the geometry shader, which

turns the line strip into a view-oriented triangle strip. The

fragments that result from rasterization are processed in

a fragment shader that assigns white for halos, black for

lines, and performs the depth manipulation as explained by

Everts et al. [13]. The lines can also be colored based on the

direction as is common in DTI-tract visualization [33] (e. g.,

Fig. 1). (Note that color is not used here to label anatomical

fiber bundles, as in fiber bundle identification [45].) The

additional colors assist viewers in distinguishing directions

in dense regions after contraction: in strongly contracted

regions the difference in depth is minimal so that no halo is

generated which would otherwise support depth perception.

4.3 Filtering for Additional Abstraction

The contraction of tracts based on local similarity results in

volumetric voids which reduce occlusion artifacts (e. g.,

Fig. 1(b)). Occlusion can be decreased even more by

interactively filtering out smaller structures that do not have

as many neighboring tracts with similar direction (Fig. 10).

The filtering attribute is the number of similarity graph

edges that are connected to a vertex of a fiber tract. By

passing the vertex degree as an attribute to each vertex, the

filtering can be done in the fragment shader. This has the

added effect that the interpolation done in the rasterization

stage enables filtering over a continuous range.

4.4 Focus+Context with a 2D Lens

We also allow users to explore the effects of scale locally

with a two-dimensional virtual lens [4]. If this lens is placed

over the scene in screen-space (Fig. 11) it affects the scale

value that is used to derive the positions of the vertices

beneath it, while other vertices remain at their normal

position as determined by the global scale setting. We first

check for each rendered vertex’ screen position whether

it is inside the lens and, based on its location inside the

lens, compute an attenuation factor (which is 1 in a center

region and 0 at the perimeter). Next, we reposition affected

vertices to the location determined by the lens scale setting

and the vertex attenuation factor, which ensures a gradual

change from global to local scale. We implemented the

lens in the same vertex shader that is also responsible for

the scale-dependent interpolation of vertices to ensure fast

processing. As a result, users can move the lens over the

Fig. 5. The selected subset of tracts is shown in

its uncontracted state, while the remainder is shown

contracted. In addition, a large amount of filtering was

applied to the context, showing only vertices with a

degree in the similarity graph of more than 210. Notice

the sheet-like nature of the corpus callosum while the

cingulum is in its original state (compare it with its

contracted shape, e. g., in Fig. 1(c)).

scene in screen-space to locally explore the effect of the

contraction.

4.5 Tract Selection

As an additional means of exploring white matter structure

and its connectivity we support a simple interactive selection

of groups of fiber tracts. Selected tracts are highlighted in

the contracted state by rendering the selection with regular

colors while the remaining tracts are rendered with less

vivid colors (Fig. 1(c) and Fig. 5). Specifically, we let the

tract direction affect the color in a range between 20% and

40% of each color channel. This has the effect that the

fiber tracts in the context are considerably darker than the

ones in focus. The context’s subdued color scheme enforces

the emphasis of the selection which still uses vivid colors.

Alternatively, we also permit users to only show selected

tracts or to render selected tracts at their original locations

as shown in Fig. 5.

The interactive selection of fiber tract subsets makes it

easier for viewers to follow the path and position of the

selected tracts and relate these to their contracted state. We

use a sphere as the interaction object that can be placed in

3D space; tracts that pass through it in the uncontracted state

are selected [1], [5]. For the positioning of the sphere we

use an approach similar to that found in many 3D modeling

programs (such as Blender). Users can click on the sphere

and, while the mouse button is down, three lines are drawn

through the center of the sphere (Fig. 6), each representing

one coordinate axis. Upon moving the mouse, the sphere

is moved along the straight line from the original to the

current mouse position. With repeated clicks the sphere can

be positioned anywhere in the dataset. For improved depth

perception of the sphere placement we extend the three

coordinate axis lines to where they intersect the bounding

box of the whole dataset (see Fig. 6).

http://dx.doi.org/10.1109/tvcg.2015.2403323
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Fig. 6. Fiber bundle selection using spheres and

coordinate axes. The blue sphere (partially hidden)

represents the current selection, while the red one is

being moved and will specify a new region of interest.

5 RESULTS

The fiber tract visualizations shown in this paper are based

on DT-MRI data that was acquired on a 3T MRI system

(Philips Intera) from a healthy volunteer whose consent was

obtained prior to scanning. Diffusion Tensor Imaging was

performed using a diffusion weighted spin-echo, echo-planar

imaging technique. The DTI parameters were as follows:

240 mm × 240 mm field of view; 128 × 128 matrix size; 51

slices; 1.85 × 1.85 × 2 mm3 imaging resolution; 5,485 ms

repetition time; 74 ms echo time. In total, 61 volumes were

acquired per subject, one without diffusion weighting (b

= 0 s/mm2) and 60 volumes with diffusion weighting (b

= 800 s/mm2) along 60 noncollinear directions. To correct

for susceptibility artefacts, two acquisitions were used: one

with fat-shift direction in the posterior direction (APP) and

one in the anterior direction (APA). The fiber tracts were

generated by the Diffusion Toolkit program, using the FACT

algorithm [31]. The contraction method, however, does not

depend on the specific method to generate tracts. As an

alternative, for example, one could use an integration with

a fixed step-size as described, e. g., by Zhang et al. [46].

Fig. 1(a) shows the uncontracted fiber tracts of one brain

hemisphere, the color values indicating the tracts’ local

direction. While it is possible to identify certain structures

such as the corpus callosum (the flat bundle of neural fibers

connecting the left and right cerebral hemispheres), much of

the structure of the fiber tracts below and above this region

is hidden by other tracts. Fig. 1(b) shows the same view,

contracted to a scale of 5 mm. Now, the sheet-like structure

of the corpus callosum becomes evident and more detail

is visible for the upper regions. Similarly, the cingulum (a

white matter fiber bundle located above the corpus callosum

and interconnecting limbic structures) is now visualized

as a pronounced structure and tracts emerging from it to

the brain’s outer regions are visible. Also, the structure in

the brain’s central region is shown much more clearly; the

merging and splitting of fiber tract sets is well depicted.

Finally, a selection on the corpus callosum was made in

Fig. 1(c) which shows the fiber tracts in contracted form

emerging from this location. Here we show the whole length

of the tracts in focus, while the context of unselected tracts

is partly removed by a cutting plane.

Fig. 7 further emphasizes that fiber tracts in several major

(a)

(b)

Fig. 7. The sheetness of the underlying tract data in

both (a) the original and (b) the contracted state is

emphasized by using a cutting plane. To further highlight

this characteristic, parts of the fiber tracts close to the

cutting planes are rendered in black.

(a)

(b)

Fig. 8. Two randomly chosen fiber tracts, shown in

red, with the remaining fibers in black and white: (a)

uncontracted; (b) contracted at a scale of 2 mm. In the

uncontracted situation, the red fiber tracts are hardly

visible while the contracted situation gives a good

impression of their global trajectory.

brain white matter structures (body of the corpus callosum,

rostral part of the corticospinal tract) are organized in sheets

rather than tubular bundles [28], [41], [42]. The parts of the

fiber tracts close to an active cutting plane are rendered in

http://dx.doi.org/10.1109/tvcg.2015.2403323
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(a) (b) (c) (d)

Fig. 9. A selection of fiber tracts in the corpus callosum

(a) before and (b) after contraction. In (c) and (d) the

same selection of fiber tracts is shown from a different

viewpoint. Notice that the contraction is done with

respect to all tracts, not only the selection.

black to clearly show where the tracts intersect the planes.

While the uncontracted state in Fig. 7(a) still shows large

regions with intersections, the visualization of the contracted

state in Fig. 7(b) clearly illustrates the sheet-like structure

of many white matter regions. In addition, the added space

that results from the iterative contraction allows us to look

further into the brain in Fig. 7(b), and thus to see smaller

structures such as the ones that emerge from the cingulum.

As we will argue in Section 6, beyond dmax ≈ 2 mm

anatomical distortion becomes significant. Therefore we

investigate the effect of volumetric voids for dmax =2 mm.

To that end we compare two images (Fig. 8), one in the

uncontracted state and the other contracted at a scale of

2 mm. Two fairly randomly chosen tracts are shown in red. In

the uncontracted state these tracts are almost invisible, while

in the contracted state the behaviour of the tracts is much

clearer. This shows that, even at a fairly low contraction

scale of 2 mm, enough ‘volumetric voids’ are created which

facilitate a deeper look into the white matter structure.

Fig. 9 shows a selection of tracts in the corpus callosum

both (a) before and (b) after contraction with dmax=5 mm.

Note that the selection of tracts only affects the rendering,

not the contraction itself which is still done for all fiber

tracts. Therefore, the selection provides a nice example

for the sheet-like structure of the corpus callosum in the

neighborhood of the selected tracts, apparent in particular

in the rotated view in Fig. 9(c).

As stated above, the volumetric voids created by our

contraction approach assist in reducing occlusion. The

application of filtering based on the degree of the vertices in

the similarity graph decreases the occlusion even more, see

Fig. 10. As the average vertex degree is ≈ 200 (approx.

4 · 108 edges, 2 · 106 vertices) a significant reduction is

achieved by filtering with a threshold as shown in Fig. 10.

Fig. 10(b) and (c) show filtering with a vertex degree

threshold of 160 and 560, respectively. Notice how only the

major structures of the white matter remain in Fig. 10(c).

The 2D lens interaction described in Section 4.4 is shown

in Fig. 11. One mode shown in Fig. 11(a) shows the tracts

under the lens in the original positions while the remainder

of the tracts is in its contracted state. The other mode

shown in Fig. 11(b) is the reverse: now the context is in its

uncontracted state and the lens allows the user to see the

contracted state of the tracts inside the lens.

(a) (b)

Fig. 11. Lens interaction with the contracted fiber tracts.

The lens can have two modes, one (a) where the lens

reveals the original state with the rest of the tracts in the

contracted state, and one (b) that does the reverse.

6 EVALUATION AND VALIDATION

We need to understand the kinds of changes that are being

introduced by the contraction process. Specifically, it is

important to determine to what extent brain structures are

being deformed, how much—for a given contraction scale—

tracts are moved on average, and how well brain structures

in the contracted state still coincide with their corresponding

non-deformed fiber tracts. We thus analyzed the introduced

contraction changes quantitatively as well as visually, and

present the results of the analysis in this section.

6.1 Visual Evaluation of the Contraction Process

During the abstraction process, the contraction of the fiber

tract paths is primarily due to a lateral movement of

the vertices on each of the fiber tracts. Insight into the

contraction process can thus be gained by visualizing the

effects of this lateral motion. Hence, we specifically evaluate

the contraction process in a 2D space that best portrays this

lateral motion. For this purpose we determine and visualize

the intersections of the contracted or uncontracted fiber

tracts with skull-like surfaces at different depths in the

brain, allowing us to easily perceive how the fibers behave

under the contraction process. Thus we avoid the problems

that would be introduced by comparing directly against

3D structures such as fiber bundles identified by clustering

methods, or FA skeletons [37].

First, the approximate surface S of the skull is extracted

using the upper part of a near-zero iso-surface of the FA

data. The resulting triangulated surface is smoothed and

the number of triangles is reduced to about 2 000. Next,

we determine three scaled-down instances Si (i = 1,2,3)

of S at different depths of the brain (at 4 mm, 28 mm, and

58 mm (± 3 mm), respectively; see Fig. 12). We use a point

in the middle of the brain (near the brain stem; but the exact

location is not too critical) as the center of the scaling to

achieve both a reduction in size and the desired displacement.

We then texture-map the respective local FA value in gray-

scale onto Si as a reference and then proceed to indicate

the intersection points of the fiber tracts. For every tract t,

the point of intersection of t and Si is rendered as a red dot

on Si, as shown in Fig. 13.

When transitioning seamlessly from the uncontracted

to the fully contracted state, the intersection points start

http://dx.doi.org/10.1109/tvcg.2015.2403323
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(a) (b) (c)

Fig. 10. Filtering on vertex degree in the similarity graph reduces occlusion more. Here we show tracts (a)

unfiltered, (b) with a filter threshold of 160, and (c) with a filter threshold of 560.

Fig. 12. Three skull-like surfaces Si used as reference

surfaces to visualize the effects of contraction.

FA-textured
surface Si

Fiber tracts

Intersections

FA image as 
anatomical reference

Fig. 13. Fiber tracts are intersected with a surface of

interest Si. The surface is textured with the local FA

values and the intersection points are visualized.

moving towards each other, forming clusters of points on

Si, as shown in Fig. 14. Generally, each tract intersects a

given surface Si only once. Only sporadically does a tract

which used to intersect the surface in the uncontracted state

no longer intersect it in a more contracted state, or the other

way around. Such cases, however, do not pose a problem

due to the large number of tracts used in our case (roughly

77 400 fiber tracts).

Fig. 14 shows four stages of the contraction process for

S1 for dmax = 0, 1, 3, and 7 mm, respectively. Fig. 14(a)

(i. e., dmax = 0 mm) shows the uncontracted stage in which

the intersection points cover the white FA areas. Next, for

dmax = 1 mm (Fig. 14(b)) the intersection points start to

cluster and coincide very well with the white FA areas. At

the same time, voids between contracted fiber tracts emerge.

At dmax = 3 mm (Fig. 14(c)), the contraction becomes

stronger but this happens at the cost of distortion, i. e.,

the shape of many sets of contracted fiber tracts deviates

somewhat from the shape of the corresponding FA areas.

Finally, at dmax = 7 mm (Fig. 14(d)) the contraction is so

strong that contracted fiber tracts end up far away from their

(a) (b)

(c) (d)

Fig. 14. The contraction process visualized on a skull-

like surface for dmax = 0, 1, 3, and 7 mm, resp. The

1 mm contraction results correspond well to the FA

field, while the contraction with 3 mm and higher values

results in increasingly distorted sets of fiber tracts.
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(d)

Fig. 15. Histograms of the vertex displacement (to the

uncontracted positions) for four contraction distances,

based on a given dmax ((a) 1 mm, (b) 2 mm, (c) 3 mm,

and (d) 7 mm) and for every tract-vertex combination.

corresponding FA areas and the shape of the contracted fiber

sets deviates strongly from their corresponding FA areas.

We can conclude that for the first approx. 30% of the

contraction (i. e., 0 ≤ dmax ≤ 2 mm) the position and shape

of the generated fiber tract sets correspond well with FA

http://dx.doi.org/10.1109/tvcg.2015.2403323
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TABLE 1

Displacement statistics for Fig. 15’s contraction data.

dmax (mm) mean (mm) var (mm) max (mm)

1 0.2072 0.0244 1.9573

2 1.0082 0.3088 4.2964

3 2.0089 1.1120 8.0925

7 4.5832 5.6305 19.2375

position and shape. As we increase dmax beyond 2 mm, fiber

tract sets move increasingly to unrealistic positions and

become distorted. While we only reported results for the

skull-like surface S1, our experiments show that the same

conclusions may be drawn for the contraction visualizations

on S2 and S3.

6.2 Quantitative Analysis

The analysis described in the previous section relies on

visual inspection and, thus, is still subjective to some degree.

To better understand the effects of the contraction we also

analyzed the introduced displacement quantitatively.

For a number of stages of the contraction process (i. e.,

for dmax =1, 2, 3, 7 mm) and for every vertex v of every

fiber tract, we calculated the distance δv between the vertex

position in the contracted and the uncontracted states. In

Fig. 15 we show the histograms of these distances, grouped

by 20 bins of equal width. The position of the last bin was

determined by the largest observed value of δv for the dmax

under consideration. Since tracts mainly move in the lateral

direction, we can consider the displacement of a vertex on a

fiber tract to be a measure for this lateral tract displacement.

The distances in the histograms, therefore, can be interpreted

as a signature of the local lateral tract displacement.

Because the shape of the histograms in Fig. 15(b)–

(d) is roughly the same, we can deduce that the relative

displacement distribution does not depend strongly on dmax,

apart from a linear scaling of the displacement. The peak

of each distribution is at ≈ dmax/2, and the probability that

a point on a fiber tract is moved by more than dmax is less

than ≈ 20%. Moreover, Table 1 shows that the maximum

displacement is less than 3 ·dmax in all cases.

6.3 Expert Feedback

We presented our fiber tract contraction approach to a

neuroscientist (6 years of professional experience). His

initial reaction was enthusiastic, he could clearly distinguish,

for example, the cingulum bundle which he found clearly

separated from the corpus callosum. However, he found

the lateral parts more difficult to interpret and could not

really distinguish specific bundles. To a large extent this is

not surprising as we did not design our method to identify

and label the anatomical fiber bundles. He did, however,

appreciate the contracted visualization of a selection of tracts,

as shown in Fig. 9(b), stating it nicely conveyed the sheet-

like nature of several white matter structures. Furthermore,

he was interested in seeing our visualization together with

FA slices and would like to compare it to the FA skeleton

by Smith et al. [37].

6.4 Focus Group with Neuroscientists

In addition to this informal feedback, we also conducted

a focus group (e. g., [26]) with three neuroscientists (also,

a research intern was present who did not contribute to

the discussion) to discuss the benefits and problems of

our technique and the utility of full-brain fiber tracking in

general. One was a neuroscience researcher (R (male); 40

years old; 19 years of professional experience), while the

other two were neuroscience research engineers (E1 (female)

and E2 (male); ages 28 and 32 years, resp.; 4 and 7 years of

professional experience, resp.). R reported to work on brain

connectivity data on a weekly basis, E1 several times daily,

and E2 on a monthly basis. R also works with full-brain

tractography data on a weekly basis, while E1 and E2 work

with it several times a year. One of the authors met with

them at their research institute, first explained our approach

using images and videos, and then lead a semi-structured

interview on the benefits and limitations/problems of our

approach. The participants were specifically instructed to

voice both positive and negative comments. The session

took approx. 90 minutes and was video-recorded to be able

to verify and complete the written notes.

First, we addressed the usefulness of full-brain tractog-

raphy in today’s neurological research. The participants

stated that full-brain tractography (both deterministic and

probabilistic) is actively being used in connectomics research

and is a fundamental technique; “it is often best practice”

to get an overview of the connectivity structure (R: “It’s

often the first step.”; E2: “This is less biased than putting

your seeds somewhere and then doing tracking.”). However,

full-brain tractography is typically not used much for “pure

visualization” purposes but as a starting point of a detailed

analysis; in particular if the task is to select and analyze

“meaningful clusters of the tracts” (R). So while the experts

felt that our approach would probably not be applicable in

much of clinical practice by itself (even though full-brain

tractography is sometimes used in surgery as was pointed

out), it would be quite useful in neurological research.

In fact, the focus group stated that our technique is appli-

cable to both deterministic and probabilistic tractography

since both approaches rely on tracing fiber tracts. Only some

frequently employed software such as FSL2 [19] does not

provide views of individual fibers. Moreover, they pointed

out that our technique would likely be particularly suitable

to the fiber tracts generated in probabilistic fiber tracking

because it is likely to show the crossing fibers well.3

Our participants also emphasized that a main benefit of

our approach is its removal of noise from the large fiber

tract datasets which currently prevents the use of full-brain

tractography. This removal of noise is essential to understand

the data—it would also allow researchers to check their

datasets for errors which are invisible in the original data.

The noise removal and the resulting abstraction, the

experts stated, thus open exciting possibilities for easy

2. http://fsl.fmrib.ox.ac.uk/

3. The choice of deterministic vs. probabilistic tracking is independent
from that of single-fiber vs. crossing-fiber models: both crossing-fiber
deterministic tracking and single-fiber probabilistic tracking exist.

http://dx.doi.org/10.1109/tvcg.2015.2403323
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fiber bundle selection (E1: “We don’t see spaghetti, we see

bundles!”). After bundles are thus selected in the contracted

state, they could then be analyzed in the uncontracted state.

This selection in the contracted state can even be done

at dmax ranges that would normally lead to anatomical

incorrectness: at these contraction stages more noise is

removed and the larger-scale bundle structure becomes even

more apparent, making the selection of certain structures

easier. One exciting next step would thus be to automatically

extract a bundle representation from the contracted fiber

tracts, i. e., an analytic three-dimensional model of bundle

sheets that split and possibly merge. Such a representation

would be very useful for bundle selection, in a similar way

that Jianu et al. [21] use abstracted 2D connectivity maps.

Based on such an analytic representation, the focus group

pointed out that another very promising application domain

for our method would be the registration of different patient’s

datasets. Here, high (and anatomically inaccurate) dmax

ranges would not be a problem since larger-scale fiber bundle

structures are of importance. Such an approach would be

similar to MRI dataset registration techniques that rely on

the (also anatomically incorrect) mapping of an individual’s

brain surface on a spherical unit surface [43] for brain

registration, as currently done with tools such as FreeSurfer4.

To address the anatomical incorrectness issue, the domain

experts suggested to use the FA field in the contraction

process, as opposed to only the locations of neighboring fiber

tracts—such an extended approach could ensure anatomical

correctness for dmax values of more than 2 mm. Alternatively,

they suggested to explore approaches that can extract the

distortion field with respect to the anatomically correct fiber

tract locations and then to warp the FA field or extracted

anatomical structures (e. g., tumors) accordingly. This would

provide a frame of reference even for highly abstracted

representations of the fiber tracts.

The focus group also emphasized (on their own accord,

without being prompted by us) that it would be extremely

interesting for them to apply our technique to specific local

regions, as opposed to only the whole brain. They stated

that, in particular, deep-brain tractography of regions such

as the brain stem (for which data is available, e. g., from

7 T scans) would be interesting to be examined with our

method because their structure is not yet understood.

Finally, the researchers stated that a software tool that

would provide our fiber tract contraction technique as well as

the functionality suggested by them would be highly useful

and would be much appreciated in neuroscience research.

7 DISCUSSION

Next we discuss the evaluation and our visualization choices,

report on performance, review the specific parameters that

we used, and mention a number of limitations.

7.1 Evaluation/Validation Results

Both the quantitative evaluation and the subjective observa-

tions of the contraction process indicate that the abstraction

4. http://surfer.nmr.mgh.harvard.edu/

introduced by the contraction is successful. While it is

difficult to formulate objective criteria for the quality

of contraction without specifying the precise purpose or

application domain, our results have shown that it is realistic

to use the contracted representation for up to dmax ≈ 2 mm

for purposes that require good anatomical precision. This is

a positive result since already at this small value range for

dmax we can achieve a significant level of abstraction (see

Fig. 14(b)). Beyond that value, the contracted representation

can still be used, e. g., to study the connections of the brain

in a more schematic manner, and can also serve as context

for small groups of uncontracted tracts. Specifically the

smooth interactive transition between an uncontracted and

a contracted representation as enabled by our technique can

enhance insight in the brain connectivity structure.

7.2 Visualization Choices

Our visualization relies on view-oriented triangle strips

combined with the depth-depended-halos rendering tech-

nique [13]. Thus, individual fibers are depicted as surfaces,

even though these surfaces do not exist in reality. One could

argue that this defeats the purpose of revealing the spatial

structure of fiber tracts, and that it would be better to use

shading to give insight into the spatial structure. We think,

however, that this would be a bad choice: The tracts are

very close to each other and shading would require to use

tubes which would heavily overlap. Moreover, we allow the

user to interactively transition between the uncontracted and

contracted states, thus requiring a visualization technique

that also works well for depicting a dense set of individual

lines. The use of depth-depended-halos combined with

direction-dependent color depicts the spatial layering well,

still provides cues on the direction of the fibers as can

be seen, e. g., in Fig. 10(b), and facilitates an interactive

transition between contracted and uncontracted stages.

7.3 Performance and Parameters

Both the graph generation and the edge contraction algo-

rithms were written in C while the visualization program was

written in Python, making extensive use of shaders, vertex

arrays, and vertex buffer objects. The latter part, therefore, is

interactive, but the graph generation and contraction stages

are done in a pre-processing step.

The first part of this preprocessing, the graph generation

process, is easy to parallelize since each pair of tracts can be

compared independently. We chose a simple thread-based ap-

proach for parallelization and achieved a near-linear speedup

with an increasing number of CPU cores. Nevertheless, due

to the amount of data and the computational complexity

of our approach, both the graph generation and iterative

contraction take a considerable amount of time.

The generation of the similarity graph requires that each

tract is compared to each other tract, so the number of

tract comparisons is quadratic with respect to the number of

tracts. For each pair, finding the nearest neighbor for each

vertex requires a quadratic amount of operations with respect

to the number of vertices in both tracts. This amounts to

http://dx.doi.org/10.1109/tvcg.2015.2403323
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Fig. 16. Similarity graph edge # as a function of dmax.

a computational complexity of O(N2M2), where N is the

number of tracts and M the average number of vertices

per tract. We improved the computational complexity and,

consequently, the run time of our implementation in three

ways: (a) by using a grid search for the distance Condition

1 in Section 3.1; (b) by avoiding multiple angle calculations

for segment pairs for Condition 2; and (c) by using, for

Condition 3, a linear sweep algorithm running along two

tracts simultaneously. We ran the naı̈ve O(N2M2) algorithm

as well as the improved algorithm on a machine on which

up to 4 Intel® Xeon® X7350 processors could be used,

each with 4 cores, running at 2.93 GHz and using 128 GiB

of memory. The test data set consisted of 77 389 tracts

with a total of 1 944 570 vertices, and dsample was set

to 1 mm. On this setup and using 4 threads, the naı̈ve

graph generation implementation took 76 minutes, while

the improved implementation took 15 minutes.

An iteration of the contraction process is linear in the

number of edges in the similarity graph, but the number of

edges in the graph is typically large. In the given example, a

similarity graph with approx. 345 ·106 edges was generated,

using a direction similarity threshold θpar of 11.48 ◦ and a

maximum search range dmax of 5 mm. With this graph we

created 5 scale levels, each with dmax increased by 1 mm.

This computation took 4 hours and 45 minutes on a single

core of the aforementioned machine.

Fig. 16 shows a graph of the number of edges in the

graph as a function of dmax. It can be observed that over

a range of approximately 1–6 mm the size of the graph

grows more or less linearly. This is probably caused by

two opposing effects of increasing dmax. On average, the

number of edges in the graph increases quadratically with

dmax. But this effect is canceled out by the fact that edges

with a large distance are less likely to be parallel.

7.4 Limitations

One important limitation of our technique is the compu-

tational complexity of the graph generation and iterative

contraction, in terms of running time and memory usage, as

reported in Section 7.3. While the improved algorithm for

the similarity graph generation reduced the running time to

around 15 minutes for our test data, the computation time

of the iterative contraction process is still in the order of

hours. Options to improve this situation include reducing

the number of edges in the similarity graph, not calculating

the displacement vector in each iteration, experimenting

with the parameters for the contraction (e. g.scaling of the

A B A' B'

a

b

p

Fig. 17. Potential topology changes during contraction.

displacement vector and the number of iterations), and

restructuring the algorithm to allow for parallelization and

better cache coherency.

Also, topological properties may change as a result of

contraction. For example, consider two ribbon-shaped fiber

groups A and B (see Fig. 17) which intersect each other

perpendicularly (such cases would not occur in FACT-based

DTI fiber tracking but should be considered for fiber tracking

algorithms that can produce intersections). Assume that

the leftmost tract b of B intersects some tract a in A in

point p, i. e., a and b have the point p in common. During

contraction, the tracts do not affect each other because of

the perpendicular arrangement, but the width of each of

the ribbons decreases while their overall spatial positions

remain more or less the same. So it is reasonable to assume

that the contracted ribbons A′ and B′ do not intersect

anymore, that is, the tracts a′ and b′ do not have a point

in common. This shows that contraction may change the

property ‘a and b have a point in common.’ In the same

way, properties like ‘between’ and ‘in front of’ may change

under contraction. When answering topological questions

of this kind it is advisable to make a number of transitions

between contracted and original state and determine what

the situation is in the original state.

8 CONCLUSION

We have presented a visualization method for DTI fiber

tracts that can help users to understand white matter structure

through visual abstraction. It differs from previous work

in that we are able to process and visualize all fiber tracts

extracted for a brain, deriving an abstracted representation

through neighborhood similarity analysis based on local

tract orientation and iterative contraction. The resulting

representation of the fiber tracts enables a better insight into

the structure of the white matter of the brain. Increased voids

between the contracted tracts not only reduce the occlusion

normally arising from visualizing a large number of fibers

but also reveal the sheet-like structure of several major white

matter structures [28], [41], [42]. Even for abstractions

in which the anatomical location of the fiber tracts is

distorted too much, the abstract representations can be used

as a context for displaying a subsection of the original,

uncontracted fibers to be examined in detail. While the pre-

processing requires a considerable amount of time, it only

needs to be done once for a given dataset after which it is

possible to explore the resulting data interactively. Moreover,

the runtime of the algorithm depends on dmax: a lower value

http://dx.doi.org/10.1109/tvcg.2015.2403323


TO APPEAR IN IEEE TVCG; DOI 10.1109/tvcg.2015.2403323 13

means faster processing, thus using the suggested 2 mm

instead of 7 mm saves a significant amount of time. Because

we compute the contraction for a number of stages for

increasing neighborhood sizes, users can make a seamless

transition between the different scales of abstraction. In

addition, we support filtering, tract selection, and a lens as

interactive tools to explore the effects of the contraction.

Our technique can be applied, in particular, in neurological

research and the exploration of new datasets. For example,

selected subsets of fibers with their correct anatomy can be

examined in the abstracted context of all fibers. Moreover,

feedback from domain experts in the neurosciences suggests

that our approach can be useful for error checking of datasets

and for effective fiber bundle selection and registration.

Future work includes improving the running time of the

pre-processing steps, as mentioned in Section 7.4. This

would also make it easier to further explore the effect of

parameter settings on the contraction. Furthermore, our

method needs more validation with the help of neuroscien-

tists. Finally, we are planning to combine our contraction

approach with fiber tract clustering techniques, as reviewed

in Section 2, which could yield interesting results.
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