
UNIVERSITY OF OSLO
Department of Informatics

Exploration of UML
State Machine
implementations in
Java

Master thesis

Morten Olav Hansen

February 15, 2011

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Methods . 9

1.3 Chapter overview . 9

2 UML State Machines 10

2.1 Introduction . 10

2.2 The meta-model classes . 10

2.2.1 StateMachine . 11

2.2.2 Region . 12

2.2.3 Vertex . 13

2.2.4 State . 13

2.2.5 Transition . 14

2.2.6 Pseudostate . 16

2.2.7 FinalState . 18

2.3 A basic state machine . 19

2.3.1 Sample run . 19

2.4 A switch state machine . 20

2.4.1 Sample run . 21

2.5 A choice state machine . 22

2.5.1 Sample run . 22

2.6 A forking state machine . 23

2.6.1 Sample run . 24

2.7 A deep history based state machine 24

2.7.1 Sample run . 25

3 Related Work 27

3.1 Introduction . 27

3.1.1 Statecharts . 27

3.1.2 UML state machines . 28

3.2 State machines at runtime . 29

3.2.1 Language extension . 29

3.2.2 Executable state machines 30

2 CONTENTS

3.2.3 W3C State Chart XML . 30

3.2.4 Northstate Framework 31

3.3 Conclusion . 32

4 The State Pattern 33

4.1 Introduction . 33

4.2 Overview . 33

4.3 Basic implementation of a switch 35

4.4 Extending the switch with behaviors 37

4.5 Extending the switch with guards 39

4.6 Conclusion . 42

5 A Java Framework for UML State Machines 44

5.1 Introduction . 44

5.2 The state machine classes . 44

5.2.1 Semantic and SemanticException 45

5.2.2 Node . 45

5.2.3 Behavior . 45

5.2.4 Vertex . 46

5.2.5 ConnectionPointReference 46

5.2.6 Constraint . 47

5.2.7 Event . 47

5.2.8 Trigger . 48

5.2.9 FinalState . 49

5.2.10 PseudoState and PseudoStateKind 49

5.2.11 Region . 50

5.2.12 State . 50

5.2.13 StateMachine . 51

5.2.14 Transition and TransitionKind 51

5.2.15 The XMI importer . 52

5.3 Runtime system . 53

5.3.1 RTNode . 53

5.3.2 RT . 55

5.3.3 RTConnectionPointReference 56

5.3.4 RTFinalState . 56

5.3.5 RTPseudoStateChoice . 56

5.3.6 RTPseudoStateDeepHistory 57

5.3.7 RTPseudoStateEntryPoint 57

5.3.8 RTPseudoStateExitPoint 57

5.3.9 RTPseudoStateFork . 57

5.3.10 RTPseudoStateInitial . 57

5.3.11 RTPseudoStateJoin . 57

5.3.12 RTPseudoStateJunction 57

5.3.13 RTPseudoStateShallowHistory 58

3 CONTENTS

5.3.14 RTPseudoStateTerminate 58

5.3.15 RTRegion . 58

5.3.16 RTStateComposite . 58

5.3.17 RTStateMachine . 59

5.3.18 RTStateSimple . 59

5.3.19 RTStateSubmachine . 59

5.3.20 RTTransitionExternal . 59

5.3.21 RTTransitionInternal . 59

5.3.22 RTTransitionLocal . 59

5.4 Examples . 60

5.4.1 Standard setup of the runtime system 60

5.4.2 A basic state machine . 61

5.4.3 A switch state machine 62

5.4.4 A choice state machine 63

5.4.5 A forking state machine 64

5.4.6 A deep history based state machine 66

5.4.7 Using the XMI importer 67

5.5 Conclusion . 68

6 Extended Java 71

6.1 Introduction . 71

6.2 Tools . 71

6.2.1 Bytecode implementation 71

6.2.2 Source-to-source translation 72

6.2.3 ANTLR v3 and StringTemplate 72

6.3 Design of the language . 73

6.3.1 smjava keywords . 74

6.3.2 API for interfacing with state machine based classes 76

6.4 Implementation . 77

6.4.1 SMJavaRewriter - A preprocessor tool for smjava . . 77

6.4.2 Identifiers in the converted source 78

6.4.3 The augmented classBodyDeclaration rule 78

6.4.4 Rule regionDecl . 80

6.4.5 Rule stateDecl . 82

6.4.6 Rule finalstateDecl . 85

6.4.7 Rule entryDecl . 85

6.4.8 Rule exitDecl . 86

6.4.9 Rule psinitialDecl . 86

6.4.10 Rule psdeephistoryDecl 87

6.4.11 Rule pshistoryDecl . 88

6.4.12 Rule transitionDecl . 88

6.4.13 Rule effectDecl . 91

6.4.14 Rule guardDecl . 92

6.4.15 Rule triggerDecl . 92

4 CONTENTS

6.5 Examples . 93

6.5.1 Basic setup . 93

6.5.2 A basic state machine . 94

6.5.3 A switch state machine 95

6.5.4 A deep history based state machine 96

6.6 Conclusion . 98

7 Conclusion and Future Work 101

7.1 Overview . 101

7.2 Future work . 102

7.2.1 Extended Java / State Pattern 102

7.2.2 Java Framework . 102

Bibliography 106

Appendices 108

A Instructions for the included source code 109

A.1 The source directory . 109

A.2 Running the examples . 110

A.2.1 Compiling and running smlib examples 110

A.2.2 Compiling and running smjava examples 111

B Processed Basic.smjava example 112

List of Tables

2.1 Important properties of StateMachine 11

2.2 Important properties of Region 13

2.3 Important properties on Vertex 14

2.4 Important properties of State 15

2.5 Important properties of Transition 17

2.6 Important properties on Pseudostate 18

5.1 Table of the fields on Node . 46

5.2 Table of the fields on Vertex . 46

5.3 Table of the fields on ConnectionPointReference 47

5.4 Table of the included constraints 47

5.5 Table of the Event methods . 48

5.6 Table of the fields on Trigger 48

5.7 Table of the different kinds of PseudoStateKind 49

5.8 Table of the fields on PseudoState 50

5.9 Table of the fields on Region 50

5.10 Table of the types of states . 51

5.11 Table of the fields on State . 51

5.12 Table of the fields on StateMachine 52

5.13 Table of the fields on Transition 52

5.14 Table of the different kinds of TransitionKind 52

5.15 Table of the possible modes of a Node 55

6.1 Scope fields for regionDecl . 81

List of Figures

2.1 Meta-model for UML state machines 11

2.2 Cutout of the StateMachine class 12

2.3 Cutout of the Region class . 12

2.4 Cutout of the Vertex class . 13

2.5 Cutout of the State class . 15

2.6 Cutout of the Transition class 16

2.7 Cutout of the Pseudostate class 18

2.8 Cutout of the FinalState class 19

2.9 Diagram of a basic state machine 20

2.10 Diagram of a switch . 21

2.11 Diagram of the choice state machine 22

2.12 Diagram of the forking orthogonal 23

2.13 Diagram of shallow history . 25

3.1 Example of AND/XOR . 28

4.1 Connection between the main classes in the state pattern . 34

5.1 Example for describing levels 55

6.1 The connection between the Context class and the statema-

chine interface . 77

6.2 Railroad diagram for classBodyDeclaration 79

6.3 Railroad diagram for regionDecl 80

6.4 Railroad diagram for stateDecl 83

6.5 Railroad diagram for finalstateDecl 85

6.6 Railroad diagram for entryDecl 86

6.7 Railroad diagram for exitDecl 86

6.8 Railroad diagram for psinitialDecl 87

6.9 Railroad diagram for psdeephistoryDecl 87

6.10 Railroad diagram for pshistoryDecl 88

6.11 Railroad diagram for transitionDecl 89

6.12 Railroad diagram for effectDecl 91

6.13 Railroad diagram for guardDecl 92

7 LIST OF FIGURES

6.14 Railroad diagram for triggerDecl 93

Chapter 1

Introduction

This thesis will explore the possibilities for implementing the UML state

machine specification [14] into the Java language. Several approaches

will be explored, from going the software route with state patterns and

the creation of a framework, to extending the language with new key-

words.

State machines are used to describe the reactive properties of a sys-

tem, a reactive system is a system that responds to internal and external

events.

One of the recurring examples used in this thesis is a simple switch,

this switch has two possible modes of operation, it is on or off. The

events in this system would be the external influences that causes the

switch to change mode.

1.1 Motivation

The motivation for this thesis was the lack of exploration when it comes

to the integration of UML state machines into the Java language. While

there have been several articles [9, 18] about extending languages with

the state pattern [5], the language of choice was not Java, and while the

state pattern shares some properties with state machines, it can at best

be called a poor mans state machine.

9 Introduction

1.2 Methods

Three approaches has been selected, and can be described as evolution-

ary exploration.

The exploration will start with the state pattern even if it (as men-

tioned before) can at best be called a subset of UML state machines, it is

still a widely used pattern for creating reactive systems in Java.

Next up is the development of a Java framework that strictly follows

the meta-model for state machines as defined by UML. Some simplifi-

cation has been made due to time constraints, but it will create a solid

foundation which can be built upon.

The last approach is extending the Java language, a special pre-processor

will be built to allow for adding new keywords to the language, the out-

put from this tool will be code that runs on the framework from the last

method. It will not be built upon the work done by [9, 18] since it was

decided that these approaches does not bring enough features from UML

state machines into the language.

1.3 Chapter overview

Chapter 2, Introduction to UML State Machines will give a short intro-

duction to UML state machines with a series of examples. In Chapter

3, Related Work gives a look into what kind of work has already been

done in this area. Chapter 4, The State Pattern takes a look at state

patterns and how they can be extended to be more like UML state ma-

chines. In Chapter 5, A Java Framework for UML State Machines intro-

duces a framework for creating UML state machines in code. Chapter

6, Extended Java shows how the Java language can be extended to di-

rectly support UML state machines. This thesis will end in Chapter 7,

Conclusion with an conclusion.

Chapter 2

UML State Machines

2.1 Introduction

The UML specification defines a meta-model for state machines, this

meta-model1 can be seen in Figure 2.1 on the facing page. The meta-

model consist of a set of classes for describing the nodes, edges and

properties that makes up the state machine graph. The state machine

graph is a higraph [7] which adds the notion of depth and orthogonality.

The examples introduced in this chapter will be reused in later chap-

ters. Every example will bring something new to the state machine graph.

The only kind of state machines that will be considered are behav-

ioral state machines, protocol state machines are outside the scope of

this thesis.

For a more thorough explanation of UML state machines, there are

several UML books [17, 3, 15, 16, 12] with their own state machine chap-

ter. The specification can be considered the authoritative source for the

standard, but it is not a good starting point since knowledge of state

machines are assumed and there are very few examples.

2.2 The meta-model classes

This section will describe all the meta-model classes that are used by the

state machine graphs made in this chapter.

1For the remainder of this chapter, a simpler version of this meta-model will be

used

11 UML State Machines

Figure 2.1: Meta-model for UML state machines

2.2.1 StateMachine

A state machine models the behavior of a system, or a part of a system.

A state machine that is not used as a submachine should be seen as the

top-level element of the state machine graph.

The most important fields are listed in Table 2.1 and the class rela-

tionship is shown in Figure 2.2 on the following page.

Table 2.1: Important properties of StateMachine

region The regions that are owned by the state ma-

chine.

12 UML State Machines

Figure 2.2: Cutout of the StateMachine class

Behavior

StateMachine

Region

0..1

1..*

2.2.2 Region

A region represents a containment of vertices and the transitions be-

tween them.

The most important fields and restrictions are listed in Table 2.2 on

the next page and the class relationship is shown in Figure 2.3.

Figure 2.3: Cutout of the Region class

StateMachine

Region

isComposite() : Boolean

isOrthogonal() : Boolean

isSimple() : Boolean

isSubmachineState() : Boolean

State

kind : TransitionKind

TransitionVertex

0..1

1..*

0..1

* 1

*
*

0..1

13 UML State Machines

Table 2.2: Important properties of Region

transition The set of transitions owned by the region.

subvertex The set of vertices owned by the region.

statemachine The StateMachine that owns the region.

state The state that owns the region.

restrictions

• There can be at most one initial pseu-

dostate.

• There can be at most one deep history

pseudostate.

• There can be at most one shallow his-

tory pseudostate.

• It can not be owned by both a state and

a state machine, only one of them.

2.2.3 Vertex

A vertex is the common superclass for all classes that acts as targets for

transitions.

The most important fields are listed in Table 2.3 on the next page

and the class relationship is shown in Figure 2.4.

Figure 2.4: Cutout of the Vertex class

Region

kind : TransitionKind

TransitionVertex
0..1

* 1

*

1

1

*

*

2.2.4 State

A state represents a condition of an object at some point in time. A

typical example could be a simple switch, it has two possible conditions,

14 UML State Machines

Table 2.3: Important properties on Vertex

incoming The set of transitions incoming from the ver-

tex.

outgoing The set of transitions going out from the ver-

tex.

container The owner of the vertex.

it is either on or off, but it can never be both at the same time.

There are three kinds of states; simple, composite, and submachine

states. Unlike transitions and pseudostates there is no kind attribute

here. The kind of state is determined by the configuration of the state

itself.

simple A simple state is a state that have no regions, and no submachine

connected to it.

composite A composite state is a state with one or more regions. If it

has at least two regions, it can also be called an orthogonal state

(since the regions are orthogonal).

When more than two regions is at play in the same state, the re-

gions are considered concurrent to each other.

submachine A submachine state is a state witch contains another state

machine, communication with the submachine is done using Con-

nectionPointReferences and exit / entry pseudostates.

All states have optional behaviors executed when entered, exited and

while active.

The most important fields are listed in Table 2.4 on the next page

and the class relationship is shown in Figure 2.5 on the facing page.

2.2.5 Transition

A transition is responsible for moving the state machine from a source

vertex to a target vertex. Transitions can be said to be compound tran-

sition if transition moves the state machine from one complete configu-

15 UML State Machines

Figure 2.5: Cutout of the State class

Region

isComposite() : Boolean

isOrthogonal() : Boolean

isSimple() : Boolean

isSubmachineState() : Boolean

State

kind : TransitionKind

TransitionVertex
0..1

* 1

*

*

0..1

Behavior

0..1

0..1 {exit}

0..1 {doActivity}

0..1

0..1 {entry}

0..1

Table 2.4: Important properties of State

region The regions owned by the state.

doActivity An optional behavior that is executed while

being in the state.

entry An optional behavior that is executed when-

ever this state is entered regardless of the

transition taken to reach the state.

exit An optional behavior that is executed when-

ever this state is exited regardless of which

transition was taken out of the state.

ration to another one, e.g. a transition from one state to another state is

a compound transition, a transition from a state to a pseudostate is not.

There are three kinds of transitions, external, local and internal. The

external kind is the default, and the semantics are quite simple, when an

external transition is triggered, the source state is completely exited.

The most important fields and restrictions are listed in Table 2.5 on

page 17 and the class relationship is shown in Figure 2.6 on the following

page.

16 UML State Machines

Figure 2.6: Cutout of the Transition class

Region
kind : TransitionKind

Transition

internal

local

external

<<enumeration>>

TransitionKind

Vertex
0..1

* 1

*

*

*

Behavior

Constraint

0..1

0..1 {guard}

Trigger

0..1 {effect}

0..1 0..1 0..1

*

2.2.6 Pseudostate

A pseudostate is a state that is used to control the flow between com-

pound transitions. There are several kinds of pseudostates, and the ones

that are used in the examples are described below.

initial The starting vertex in a region unless there was an explicit transi-

tion to another state. The transition going out from a initial pseu-

dostate can have an effect, but no trigger or guard.

shallowHistory and deepHistory Unless a final state made the region

completed, the most recent state configuration is saved when the

region is exited.

The history pseudostates are used to re-enter a saved state con-

figuration. E.g. if the current state is A.B.C.D (current state is D,

contained in C, which is contained in B, and so on), and the next

17 UML State Machines

Table 2.5: Important properties of Transition

kind The type of transition this node represents.

source The source vertex of the transition.

target The target vertex of the transition.

guard The constraint that decides if this transition

is enabled or not.

effect The behavior that is executed when the tran-

sition is fired.

trigger The triggers that may fire this transition.

container The owner of the transition.

restrictions

• A pseudostate of kind fork or join must

not have guards or triggers.

• A pseudostate of kind fork must always

target a state.

• A pseudostate of kind join must always

come from a state.

• No pseudostates can have triggers on

their transitions, except for the initial

pseudostate which can have a trigger

with the “create” stereotype, but only

when in the region of state machine.

transition goes from D back to state A, then a entry into a shal-

low history pseudostate would enter the B state, if a deep history

pseudostate is entered, it would go all the way to state D.

fork Used to split one incoming transitions into two or more outgoing

transitions which targets different regions in a orthogonal state.

The outgoing transitions can have effects, but no triggers or guards.

join Used to merge two or more incoming transitions into one outgoing

transitions. The incoming transitions are coming from different

regions in the same orthogonal state. The incoming transitions

can have effects, but no triggers or guards.

18 UML State Machines

choice Used to represent a dynamic conditional branch, which splits

one or more incoming transitions into one or more outgoing transi-

tions. The outgoing transitions must have guards have at least one

transitions that evaluated to true, if more than one guard evaluates

to true, a random one is selected. If all guards evaluate to false, the

state machine is considered ill-formed. An optional else guard can

be supplied to be the default transition if no other guards are true.

The most important fields are listed in Table 2.6 and the class rela-

tionship is shown in Figure 2.7.

Figure 2.7: Cutout of the Pseudostate class

initial

deepHistory

shallowHistory

join

fork

junction

choice

entryPoint

exitPoint

terminate

<<enumeration>>

PseudostateKind

kind : PseudostateKind

Pseudostate Vertex

Table 2.6: Important properties on Pseudostate

kind The type of pseudostate this represents.

2.2.7 FinalState

This subclass of state is used to mark the containing region complete.

If the region is directly contained in a state machine, and there are no

other regions, the state machine is also complete.

19 UML State Machines

A final state can not have any outgoing transitions, regions, reference

a submachine, entry/exit/doActivity behavior.

The class relationship is shown in Figure 2.8.

Figure 2.8: Cutout of the FinalState class

isComposite() : Boolean

isOrthogonal() : Boolean

isSimple() : Boolean

isSubmachineState() : Boolean

State

FinalState

2.3 A basic state machine

This very basic state machine captures the model of a system that has

only one state.

The state is named idle and the machine is designed purely for

demonstration of the basic building blocks of a state machine graph.

It has one event called end, that will trigger the transitions out of the

idle state.

The graph can be seen in Figure 2.9 on the following page and a

sample run is described in section 2.3.1.

2.3.1 Sample run

A sample run of this state machine is listed below:

1. When this state machine is entered, the initial pseudostate is en-

tered.

2. The transition out of this pseudostate does not have any triggers,

so the move to the next state will happen immediately.

20 UML State Machines

Figure 2.9: Diagram of a basic state machine

3. The state machine has now moved to its next complete configura-

tion, with idle as its active state.

4. The event end is now sent to the state machine. This event reaches

the idle state and its transitions are checked for matches to this

event. The only transition matches this event.

5. The state machine now moves to the next complete configuration

which is in the final state. This final state ends the region, and since

this region is the only region contained by this state machine, the

state machine ends.

2.4 A switch state machine

This state machines models the behavior or a simple switch. This switch

has two states, on and off. The state machine starts out with the off

state, and has three events that will trigger a change of the currently

active configuration:

• Event end: This will trigger the transition to the final state and will

end the state machine. This event is only valid when the current

active state of the state machine is off.

• Event off : This event is only valid if the current active state is the

on state, and will trigger the transition to the off state.

• Event on: This event is only valid if the current active state is the

off state, and will trigger the transition to the on state.

21 UML State Machines

The graph can be seen in Figure 2.10 and a sample run is described

in section 2.4.1.

Figure 2.10: Diagram of a switch

2.4.1 Sample run

A sample run of this state machine is listed below:

1. When this state machine is entered, the initial pseudostate is en-

tered.

2. The transition out of this pseudostate does not have any triggers,

so the move to the next state will happen immediately.

3. The state machine has now moved to its next complete configura-

tion, with off as its active state.

4. The event on is now sent to the state machine, and this will trigger

the move to the complete state machine configuration with on as

the active state.

5. The event off is now sent to the state machine, and this will trigger

the move to the complete state machine configuration with off as

the active state.

6. The event end is now sent to the state machine, and this will trigger

the move to the final state of this region, and signals the end of this

22 UML State Machines

region. Since the state machine does not have any other regions,

this will complete the state machine.

2.5 A choice state machine

This example models a state machine that will have its flow determined

by a set of dynamic guards. The state machine have only one event called

end which will end the state machine. The transition out of the choice

pseudostate is guarded by guard that is false at the first evaluation, and

then switches back and forth between true and false on every evaluation.

The graph can be seen in Figure 2.11 and a sample run is described

in section 2.5.1.

Figure 2.11: Diagram of the choice state machine

2.5.1 Sample run

A sample run of this state machine is listed below:

1. When this state machine is entered, the initial pseudostate is en-

tered.

2. The transition out of this pseudostate does not have any triggers,

so it will move immediately to the next state, which is the choice

pseudostate.

23 UML State Machines

3. This pseudostate has two possible routes to take, and they are both

guarded. Since the else guard has a special meaning, the only guard

that is really evaluated is the switch guard. This guards starts out

as false, so this route will not be chosen.

4. Since the switch guard did not pass, the else guard will be chosen,

and this will lead to the next state machine configuration with the

idle state as the current state.

5. The event end is sent to the state machine and this triggers the

move to the pseudostate again. This time the switch guard will be

true, and this path will be chosen.

6. Since the last event triggered the move to the final state, this region

is now complete, and since the state machine only have one region,

the state machine is also complete.

2.6 A forking state machine

This example introduces pseudostates for splitting the flow into several

concurrent regions, and then joining them back together.

The graph can be seen in Figure 2.12, and a sample run is described

in section 2.6.1 on the next page.

Figure 2.12: Diagram of the forking orthogonal

24 UML State Machines

2.6.1 Sample run

A sample run of this state machine is listed below:

1. When this state machine is entered, the initial pseudostate is en-

tered.

2. The transition out of this pseudostate does not have any triggers,

so the move to the next state will happen immediately.

3. The state machine has now moved into the fork pseudostate, and

since there can not be any guards or triggers on the transitions out

of the fork, the pathways are simply followed. This means that

we now have two active states, state idle1 on region 0, and state

idle1 on region 1 (both on the orthogonal state).

4. The event continue1 is now sent to the state machine, and idle1

from region 0 triggers on this event, and moves to idle2.

5. The event continue2 is now sent to the state machine, and both

states triggers on this. The region that is currently in state idle2

triggers to the join pseudostate and waits there for the rest of the

incomming transitions. The region that is currently in state idle1

moves to state idle2.

6. The event continue3 is now sent to the state machine, and this

triggers the move from idle2 to the join pseudostate. This pseu-

dostate is now complete, and it moves to the final state. This final

state completes the region, and since this state machine only have

one region, it will complete the state machine.

2.7 A deep history based state machine

This example introduces pseudostates for resuming a state machine con-

figuration after a transition makes the state machine move out of its cur-

rent configuration. The machine will use a deep history pseudostate for

this, which means it will recursively enter the states until the exact same

configuration is resumed.

The graph can be seen in Figure 2.13 on the facing page, and a sample

run is described in section 2.7.1 on the next page.

25 UML State Machines

Figure 2.13: Diagram of shallow history

2.7.1 Sample run

A sample run of this state machine is listed below:

1. When this state machine is entered, the initial pseudostate is en-

tered.

2. The transition out of this pseudostate does not have any triggers,

so the move to the next state will happen immediately.

3. Since this state is a composite state, the region will be entered, and

the initial pseudostate will start. The pseudostate will then initiate

the move to the state idle1.

4. The event continue1 is sent to the state machine, and the machine

moves to state idle2.

5. The event suspend is sent to the state machine, and this triggers

the move to the state pause, the state idle2 is marked as the last

active state on the composite state.

6. The event resume is now sent to the state machine, and this trig-

gers the move to the shallow history pseudostate.

26 UML State Machines

7. This pseudostate will make the move to the last active state in the

composite state, and this means that that the current active state

machine configuration is the idle2 state. If this would have been

shallow history, it would have only entered the composite state.

8. The event continue2 is now sent to the state machine, and this

triggers the move to the final state of the composite state. This

marks the region as complete, but since the containing state has

two transitions out, it will not auto-complete this state.

9. The event finish is now sent to the state machine, and this triggers

the move to the final state of the state machine. This marks the

region as complete, and since this state machine does not have any

more regions, it will also be complete.

Chapter 3

Related Work

3.1 Introduction

This section will introduce some of the papers that have been influential

to the development of the UML state machine specification [14] and also

serves as the background material for this thesis.

3.1.1 Statecharts

David Harel introduced in 1984 a paper called “Statecharts: A visual

formalism for complex systems.” [6].

This paper introduces a visual notation for describing reactive sys-

tems. A reactive system, is a system that reacts to events from both

outside and inside stimuli.

Some of the more important points of this paper was:

Hierarchical machines Harel introduced the concept of hierarchical state

machines. An hierarchical state machine is composed of several

sub-states, which also can contain more sub-states.

AND/XOR Harel also introduced orthogonal state machines, and with

that the possiblity of a state machine to be in two or more states

at the same time. This relationship is described using the boolean

properties AND/XOR.

In a non-hierarchical state machine, the operator XOR would make

sure that in the same grouping of states, there would only be one

28 Related Work

active state at any point in time. E.g. in a group with states A, B

only one of them could be active at once.

The AND operator introduced the possibility of having more than

one active state at once, but not in the same hierarchical group.

This can be seen more clearly in Figure 3.1, in this figure there are

four possible configurations, (A,C), (A,D), (B,C), (B,D).

Figure 3.1: Example of AND/XOR

StateMachine

C

BA

D

This can also be expressed as (A, B)x(C,D), i.e. the cartesian prod-

uct of the two sets of states.

Actions and activities Another concept that was formalized was the ad-

dition of executable actions and activities that was based on work

by Mealy [11], and Moore [13].

This addition allowed the user to add actions to not only transi-

tions, but also when a state was entered, exited, and while it re-

mained active.

3.1.2 UML state machines

State machines as defined by the UML specification [14] is an object

based variant of Harel’s statecharts. State machines has been part of

the specification since 1.x, but only the somewhat revised 2.2 version is

used in this thesis.

29 Related Work

3.2 State machines at runtime

3.2.1 Language extension

While there have been written several books about patterns [5, 4], there

have not been a lot of work done in the integration of state patterns and

programming languages.

Taivalsaari [18] introduced the notion of modes (which are basically

the same as states) which had automatic transitions between them.

Taivalsaari used something called dynamic inheritance that would

allow the actual implementation part of an object to be swapped out

during runtime. This is similar to how prototypal inheritance works in

e.g. JavaScript.

Taivalsaari also introduced a simple system for doing automatic tran-

sitions, e.g. a transitions could be made automatically if a certain prop-

erty had a certain value, see Listing 3.1 for an example of how this looks

in the language presented. The full example can be seen in [18] on page

28.

Listing 3.1: Simple example of automatic transitions

1 TRANSITION IS

2 empty WHEN i = 0;

3 full WHEN i = 10;

4 non-empty OTHERWISE;

5 ENDTRANS;

In ’99 Madsen published the article “Towards integration of state ma-

chines and object-oriented languages” [9] which describes at method for

integrating the BETA language [10] with the state pattern. While the goal

of the article is stated as:

The goal of this paper is to obtain a one-to-one correspon-

dence between state machines as e.g. used in UML and object-

oriented programming languages.

The actual end result is the integration of state patterns and BETA

using dynamic inheritance (as in Taivalsaari) which allows for changing

the implementation of an object at runtime (it should be said that inheri-

tance and composition is also explored). In this paper, all the transitions

were explicit.

30 Related Work

While both of these papers took an interesting approach to extend-

ing a language with the notion of state, they have some properties that

makes them less than ideal for this thesis. First, as said they are not

using the UML state machine meta-model for the extension which means

that a lot of features are missing, second they are not using Java which

is the language chosen for this thesis.

3.2.2 Executable state machines

While there have not been a lot of work done into integration of the

full UML state machine specification [14] into programming languages,

there have been some work done turning state machine diagrams into

executable diagrams.

In a follow up to his ’84 [6] article, Harel [8] published an article

about the creation of executable statecharts. They present a visual nota-

tion for class and object diagrams called O-chart, which together with

statecharts creates a complex framework for developing executable state

machines.

A tool called O-mate was created to allow for the development of dia-

grams based on statecharts and O-charts, the behaviors and constraints

were then created using the C++ language. For executing the statecharts,

a code-generation step was supported that would output C++ code.

There have also been some work by Barbier [1] that uses UML state

machine diagrams (described in XMI) as the basis for the Java runtime.

These diagrams are then transformed into executable Java code. The

framework itself is tightly integrated into the Topcased MDA platform,

which makes it less than ideal for the purposes of this thesis.

3.2.3 W3C State Chart XML

W3C1 delivered the first draft of the SCXML specification in July 2005 2

and is a XML format for specifying state machines.

The specification says it is based on statecharts as described by Harel

[6] rather than using the UML specification, this is clearly visible in the

structure of the XML tags (which are not based on the UML meta-model).

1http://www.w3c.org
2http://www.w3.org/TR/2005/WD-scxml-20050705/

http://www.w3c.org
http://www.w3.org/TR/2005/WD-scxml-20050705/

31 Related Work

E.g. see Listing 3.2 for an example of a simple state, in this example the

hello state is both the initial state, the actual state of the context, and

also serves as the final state3.

Listing 3.2: SCXML example

1 <scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0"

initialstate="hello">

2 <state id="hello" final="true">

3 <onentry>

4 <log expr="’hello world’" />

5 </onentry>

6 </state>

7 </scxml>

The latest draft was released 16 december 2010, and the standard is

still under development.

A couple of known runtime implementations exist for SXCML, Com-

mons SXCML4 for Java, and Qt State Machine Framework5 for C++.

3.2.4 Northstate Framework

NSF (Northstate Framework) is a proprietary framework for state ma-

chines, and it describes itself as:

The North State Framework (NSF) is a robust, Microsoft .Net

class library that simplifies the process of creating highly-

extensible, object-oriented code from a UML State Machine

diagram.

And although the development seemed to have stopped in 2008, the

framework is the most complete state machine framework out there.

One big caveat of the framework is that it does not use the classes from

the UML specification, e.g. the initial pseudostate is created using the

NSFInitialState class and not a Pseudostate class with the initial

kind.

3This example was taken from http://commons.apache.org/scxml/guide/

scxml-documents.html
4http://commons.apache.org/scxml/
5http://doc.qt.nokia.com/4.7/statemachine-api.html

http://commons.apache.org/scxml/guide/scxml-documents.html
http://commons.apache.org/scxml/guide/scxml-documents.html
http://commons.apache.org/scxml/
http://doc.qt.nokia.com/4.7/statemachine-api.html

32 Related Work

3.3 Conclusion

While there have been plenty of research on executable state machines,

the focus has been on either frameworks together with tight tool-integration,

or simple language extensions using state patterns. There have been lit-

tle or no work looking into the expansion of the Java language to allow

for the full specification of UML state machines.

Chapter 4

The State Pattern

4.1 Introduction

Design patterns have a long history in the art of software engineering,

and can be conceptualized as recipes for software engineering. The best

known book about design patterns, and also the book where most of

them are formalized is the book Design Patterns: Elements of Reusable

Object-Oriented Software [5]. This book, released in ’94 was the result

of several years of gathering solutions to common problems in software

engineering.

The pattern explained and extended in this chapter is the pattern

known as the state pattern, the book defines the intent of this pattern

as:

“Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.”

This makes it fit well within the definition of UML State Machines,

although simplified.

4.2 Overview

The state pattern defines three major participants in the state pattern:

context

This is the interface for the user, and all possible interaction of

34 The State Pattern

interest with the state should be managed through this interface.

All interactions that are based on the current state, will be sent to

the state object, if the state object needs to make modifications to

the context, it can send itself as a parameter.

state

This is the catch-all interface for possible state interactions. A

catch-all interface is a interface where all possible state changes

(methods) are included, so in our case (which will be described

later) we have two possible state changes, on and off, and so the

catch-all interface would have on and off methods. This will be

clearer when the actual code is described.

concrete sub-classes of state

This is the concrete definition of a state, and is based on the state

interface.

The relation can also be seen in Figure 4.1.

Figure 4.1: Connection between the main classes in the state pattern

state : State

Context

State

On Off

The book defines several possible variations on the state pattern

theme, but some simplification has been made to the pattern (and to

better fit with the extensions later on).

So the rules for the state pattern are as follows:

1. No external libraries or frameworks may be used, only standard

Java.

2. Annotations and reflection are not allowed (these are better suited

for a framework implementation). The only exception to this rule

is when implementing the singleton pattern later on.

35 The State Pattern

3. States are created on demand, but are using the singleton pattern

[5] so there will always be at most one instance of the particular

state class. This implies that all states are stateful (but there will

be introduced ways to remedy this later).

4. The context will send itself as a parameter for every interaction

with the state methods.

5. Except for the initial construction of the context object, it is the

responsibility of the state object to change the state of the context.

6. There will be no context / state interfaces, instead the context will

be directly implemented, and states will have a common abstract

superclass.

The example that will be used is a simplified version of the switch

from section 2.4 on page 20, see Figure 2.10 on page 21 for a graphical

representation.

The switch has two possible states, on and off, and the semantics:

1. The switch always starts in the off state.

2. When the switch is off, the only legal transition is to the on state.

3. When the switch is on, the only legal transition is to the off state.

The first implementation will be based on the basic state pattern [5],

and the following examples will extend with features from UML State

Machines.

4.3 Basic implementation of a switch

In this first example, all the rules from list 4.2 on the facing page will be

applied.

Listing 4.1: SwitchState

1 abstract class SwitchState {

2 public void on(SwitchContext ctx) { }

3 public void off(SwitchContext ctx) { }

4 }

36 The State Pattern

We define the SwitchState as an abstract class so that it can not be

instantiated. The on and off methods are the two possible state triggers

available for the context.

Listing 4.2: OnState and OffState

1 class OffState extends SwitchState {

2 static private SwitchState self;

3

4 static public SwitchState instance() {

5 if (null == self) {

6 self = new OffState();

7 }

8

9 return self;

10 }

11

12 @Override

13 public void on(SwitchContext ctx) {

14 ctx.changeState(OnState.instance());

15 }

16 }

17

18 class OnState extends SwitchState {

19 static private SwitchState self;

20

21 static public SwitchState instance() {

22 if (null == self) {

23 self = new OnState();

24 }

25

26 return self;

27 }

28

29 @Override

30 public void off(SwitchContext ctx) {

31 ctx.changeState(OffState.instance());

32 }

33 }

Both of these classes are extensions of the SwitchState ABC1 defined

earlier. The classes implement the methods that they can handle, and is

responsible for changing the state object on the context object.

1Abstract base class.

37 The State Pattern

Another responsibility is returning a singleton object for this class,

this is handled through the instance method, and is a very simple (and

non thread-safe) implementation of the pattern.

Listing 4.3: SwitchContext

1 class SwitchContext {

2 public SwitchContext() {

3 changeState(OffState.instance());

4 }

5

6 public void on() {

7 state().on(this);

8 }

9

10 public void off() {

11 state().off(this);

12 }

13

14 public void changeState(SwitchState state) {

15 this._state = state;

16 }

17

18 public SwitchState state() {

19 return this._state;

20 }

21

22 private SwitchState _state;

23 }

The last participant in the switch is the actual context, this class

implements the same state triggers as the SwitchState ABC, but also has

a couple of its own. For changing the current state, the class has the

changeState method (this will be extended later), and a simple getter is

available through the state method.

4.4 Extending the switch with behaviors

In this first extension, the pattern will be extended using the behaviors

from a simple state (from UML State Machine). What this means, is that

we will add optional entry and exit methods to the pattern. This makes

the state objects optionally stateless (if the programmer cleans up on

38 The State Pattern

exit).

The singleton pattern will also be extended, making the state imple-

mentation easier (by moving the singleton from the state object to the

context object), this introduces elements from the reflection API, but

nothing that should cause the programmer any headache.

Listing 4.4: SwitchState

1 abstract class SwitchState {

2 public void on(SwitchContext ctx) { }

3 public void off(SwitchContext ctx) { }

4

5 public void entry() { }

6 public void exit() { }

7 }

The entry and exit methods have been added here with their de-

fault implementations. It is up to the implementor if he wants to imple-

ment these.

Listing 4.5: OnState

1 class OnState extends SwitchState {

2 @Override public void entry() { }

3 @Override public void exit() { }

4

5 @Override

6 public void off(SwitchContext ctx) {

7 ctx.changeState(OffState.class);

8 }

9 }

Here the OnState class have added the two methods defined above.

This only serves as an example, and they do nothing useful.

Listing 4.6: SwitchContext

1 class SwitchContext {

2 private Map<Class<? extends SwitchState>, SwitchState> states

3 = new HashMap<Class<? extends SwitchState>, SwitchState>();

4

5 public SwitchContext() {

6 changeState(OffState.class);

7 }

8

39 The State Pattern

9 public void on() {

10 state().on(this);

11 }

12

13 public void off() {

14 state().off(this);

15 }

16

17 public void changeState(Class<? extends SwitchState> c) {

18 if (null != _state) _state.exit();

19

20 if (states.containsKey(c)) {

21 _state = (SwitchState) states.get(c);

22 } else {

23 try {

24 _state = (SwitchState) c.newInstance();

25 } catch(Exception e) { }

26

27 states.put(c, _state);

28 }

29

30 _state.entry();

31 }

32

33 public SwitchState state() { return this._state; }

34

35 private SwitchState _state;

36 }

The main focus of the new implementation is in changeState. Us-

ing a simple Map, we can directly connect classes with their singleton

instances. This takes all the singleton work out of the state object, and

makes implementing new states much easier. When a state change oc-

curs, this method will make sure that the exit method is called on the

last state, and that the entry method is run on the new state instance.

4.5 Extending the switch with guards

Building on the code from the last section, in this section there will be

added guards to our state changes.

There will be two kinds of guards introduced:

40 The State Pattern

state transition guard

This guard is for guarding transitions that are legal, just not for

this particular state configuration. This is implemented as a simple

guard method on the state object, and the changeState method

will check for this value, and only change the state object if the

guard passes.

illegal transition guard

This guard is for guarding transitions that are not legal, a simple

example would be calling the off method on a OffState object. This

is implemented as a extension of the Exception class.

Listing 4.7: IllegalStateTransitionException

1 class IllegalStateTransitionException extends Exception { }

This is the exception class for when illegal transitions are called.

Listing 4.8: SwitchState

1 abstract class SwitchState {

2 public void on(SwitchContext ctx) throws

IllegalStateTransitionException {

3 throw new IllegalStateTransitionException();

4 }

5

6 public void off(SwitchContext ctx) throws

IllegalStateTransitionException {

7 throw new IllegalStateTransitionException();

8 }

9

10 public void entry(SwitchContext ctx) { }

11 public void exit(SwitchContext ctx) { }

12

13 public boolean guard(SwitchContext ctx) { return true; }

14 }

These are the default implementations of on and off which both

are declared to throw the newly defined IllegalStateTransitionException

exception by default.

A guard method that always returns true has also been added.

Listing 4.9: OnState

41 The State Pattern

1 class OnState extends SwitchState {

2 private boolean sw = true;

3

4 @Override public void entry(SwitchContext ctx) { }

5 @Override public void exit(SwitchContext ctx) { sw = true; }

6

7 @Override public boolean guard(SwitchContext ctx) {

8 sw = !sw;

9 return sw;

10 }

11

12 @Override

13 public void off(SwitchContext ctx) {

14 ctx.changeState(OffState.class);

15 }

16 }

This is a simple implementation of a guard in the OnState class, it

will return false at first try, and then true at the second try. Since this

is a stateful class, we reset the affected values when the exit method is

run.

Listing 4.10: SwitchContext

1 class SwitchContext {

2 private Map<Class<? extends SwitchState>, SwitchState> states

3 = new HashMap<Class<? extends SwitchState>, SwitchState>();

4

5 public SwitchContext() { changeState(OffState.class); }

6 public void on() throws IllegalStateTransitionException {

7 state().on(this);

8 }

9

10 public void off() throws IllegalStateTransitionException {

11 state().off(this);

12 }

13

14 public void changeState(Class<? extends SwitchState> c) {

15 SwitchState tmpState = null;

16

17 if (states.containsKey(c)) {

18 tmpState = (SwitchState) states.get(c);

19 } else {

20 try {

21 tmpState = (SwitchState) c.newInstance();

42 The State Pattern

22 } catch(Exception e) { }

23

24 states.put(c, tmpState);

25 }

26

27 if(!tmpState.guard(this)) {

28 return;

29 }

30

31 if (null != _state) _state.exit(this);

32

33 _state = tmpState;

34 _state.entry(this);

35 }

36

37 public SwitchState state() { return this._state; }

38

39 private SwitchState _state;

40 }

In this new implementation of changeState we now get the wanted

state object first, and then run the guard on it. If it passes, we continue

as normal. If it does not pass, we just return from the method.

We also continue mimicking the SwitchState class, and adds the throws

clause to our two state-changing methods on and off.

4.6 Conclusion

The use of the state pattern might seem like a good solution at first, it

has all the characteristics that would make it seem like the ideal candi-

date:

1. It is well known in the software engineering community, and has

implementations in most (if not all) programming languages.

2. The pattern itself is documented in several books [5, 4].

3. It’s simple, so implementation should never lead to any problems.

The real problem here is point number 3. It’s maybe too simple, as

it only gives the very basic features of what you would want, and leaves

all the details up to the implementer. So when we start implementing

43 The State Pattern

features that expand the pattern, it has already given you what it can,

and you are on your own implementing the rest.

The pattern could of course be expanded as it has already been

shown, state behaviors, guards, etc. all could be described in the pat-

tern, but that would work against the pattern, and not for it, since it

would end up too complex and nobody would use it.

Another problem with using this approach (and this is a problem with

patterns in general), is that unless you make the pattern into a frame-

work you end up mixing the pattern and the other parts of your code

that is not really relevant to the logic of the state pattern. An impor-

tant principle in software engineering is the separation of concerns [2],

and using a pattern for anything but the very basic building blocks of a

program works against this principle.

Chapter 5

A Java Framework for UML

State Machines

5.1 Introduction

The framework presented here is an implementation in Java of the state

machine meta-model, semantics and constraints from the UML 2.2 spec-

ification [14].

The API and the runtime of the framework has gone through a com-

plete rewrite from the first version. The first version used threading and

stacks (for level-management) which in hindsight was a bit overkill for a

prototype implementation.

The current runtime system uses multiplexing instead of threads,

which means that there is no true concurrency in the system (but for

our purposes that is not important). A simple integer-based level system

instead of stacks, these will both be more explained later.

This chapter starts with a introduction to the meta-model based API,

and then continues with the runtime system.

For more information about the semantics, constraints and a general

overview of UML state machines please see chapter 2 on page 10.

5.2 The state machine classes

This section will explain all the important fields and methods on the

classes that are related to the building of the state machine graph.

45 A Java Framework for UML State Machines

All the classes are located in the smlib.uml2 package, and are docu-

mented with information from the specification itself.

The classes in the API are implemented with compliance in mind, so

all the constructors will do their best to make it impossible to create a

non-conforming state machine graph. It is still possible to create state

machines that are not conformant, so a validator based on the constrains

and static semantics from the specification has been implemented. The

run of the validator is forced in the runtime system, but it is optional if

only using the graph API.

In the smlib.uml2.xmi package, an importer for XMI 2.1 files has been

implemented. This importer allows the user to create a state machine

either in handwritten XMI, or using a modeling tool like Eclipse. This al-

lows for rapid development, and rapid changes to a state machine graph.

Using Eclipse will also result in state machines that are always compli-

ant.

5.2.1 Semantic and SemanticException

For validation of the static semantics of the current state machine setup,

all the classes in the runtime system implements an interface called Se-

mantic. This interface contains a validate method which checks the

current setup, and reports on the errors it occurs.

When a semantic error is found, an instance of the SemanticException

class is thrown with a description of the error.

5.2.2 Node

This class is the super class for all nodes in the class hierarchy (except

the classes dealing with constraints and semantics). Its main responsi-

bility is making sure every node has an id and a name.

The important fields are listed in Table 5.1 on the following page.

5.2.3 Behavior

This class represents an executable behavior specification, there are four

places in the system where these are needed, for transition effects and

for all actions associated with state change (enter, do, exit).

46 A Java Framework for UML State Machines

Table 5.1: Table of the fields on Node

id A unique ID for this node. If one is not given

when creating this node, a unique ID will be

generated using UUID1.

name A name for this node (not unique). If

one is not given, it will get one using

getClass().getName().

REGISTER Provides a register of all the IDs in the system,

and their mapping to node objects.

Since Java do not support closures yet, the class implements the

command pattern [5] and has one method called run that must be im-

plemented in all sub-classes. This method is run when the behavior is

entered.

There is no support for more advanced behaviors in the state ma-

chine graph, like state machines or activity diagrams as behaviors.

5.2.4 Vertex

The abstract Vertex class is a super-class for everything in the state ma-

chine that needs to be connected to each other. It has lists for incoming

/ outgoing transitions and is also responsible for the container (region).

See Table 5.2 for the important fields in this class.

Table 5.2: Table of the fields on Vertex

incoming All edges (transitions) entering this vertex.

outgoing All edges (transitions) departing from this

vertex.

region The regions that owns this vertex.

5.2.5 ConnectionPointReference

This class represents entries and exits into a submachine. Support for

this is not implemented in the runtime system, but the API has support

47 A Java Framework for UML State Machines

for it.

See Table 5.3 for important fields on this class.

Table 5.3: Table of the fields on ConnectionPointReference

state The owner of the connection point reference.

entries Entries into the sub-machine.

exits Exits out of the sub-machine.

5.2.6 Constraint

This class represents a constraint (guard) in the state machine graph.

Since there is no closure support in Java, a command pattern has

been implemented. The class demands the implementation of a method

called check which is a boolean method.

Both dynamic and static constraints are represented in the runtime

system, but the graph API treats them alike.

A set of contraints have already been defined for usage in the graph,

these constraints are listed in Table 5.4.

Table 5.4: Table of the included constraints

Constraint.TRUE Constraint that always passes.

Constraint.FALSE Constraint that never passes.

Constraint.ELSE Constraint for when no other guards passes.

Constraint.SWITCH Constraint that switches between being true

and false (start outs as false).

5.2.7 Event

This interface is for defining custom events in the state machine. The

interface is very simple and it extends Comparable2.

The interface it extends has only one method, and it is used for com-

paring two classes which both implement this interface.

2http://download.oracle.com/javase/6/docs/api/java/lang/Comparable.

html

http://download.oracle.com/javase/6/docs/api/java/lang/Comparable.html
http://download.oracle.com/javase/6/docs/api/java/lang/Comparable.html

48 A Java Framework for UML State Machines

The framework supplies one sub-class of this interface, the StringEvent

class which allows for events based on strings.

See Table 5.5 for details.

Table 5.5: Table of the Event methods

compareTo A compare method that takes an Event in-

stance as a parameter. The semantics of the

return value is as follow:

return 0 If the event instance is a match.

return -1 If the value of this is smaller than

the event instance.

return 1 If the value of this is larger than

the event instance.

Any value besides 0 indicates that the the

event in testing did not match the event it was

tested against.

5.2.8 Trigger

This class represents a possible event trigger for an edge (transition) in

the graph. Every edge can have multiple triggers, and it is wise to choose

triggers that have different events (there is no well defined semantics if

an event matches the triggers of multiple transitions).

The fields on Trigger are all explained in Table 5.6.

Table 5.6: Table of the fields on Trigger

targetState The target of the transition if this trigger is

triggered.

event The event for this trigger (explained in the

previous section).

49 A Java Framework for UML State Machines

5.2.9 FinalState

This sub-class of State offers nothing new in features, but is more con-

strained than the normal State. These new constraints are checked for

in the validator.

When this class is reached it means that the enclosing region is fin-

ished, and if this region is contained in a state machine, the machine is

also finished.

5.2.10 PseudoState and PseudoStateKind

The PseudoState class is used to represent all the different kinds of pseu-

dostates in the state machine graph. If you give no PseudoStateKind

when creating the node, the default is “initial”, but this can be reconfig-

ured to using another kind or you can give the kind at construction.

All the different kinds of pseudostates are listed in Table 5.7 and all

the important fields on PseudoState is explained in Table 5.8 on the next

page.

Table 5.7: Table of the different kinds of PseudoStateKind

PseudoStateKind.initial Represents a “initial” vertex node.

PseudoStateKind.deepHistory Represents a “deepHistory” vertex node.

PseudoStateKind.shallowHistory Represents a “shallowHistory” vertex node.

PseudoStateKind.join Represents a “join” vertex node.

PseudoStateKind.fork Represents a “fork” vertex node.

PseudoStateKind.junction Represents a “junction” vertex node.

PseudoStateKind.choice Represents a “choice” vertex node.

PseudoStateKind.entryPoint Represents a “entryPoint” vertex node.

PseudoStateKind.exitPoint Represents a “exitPoint” vertex node.

PseudoStateKind.terminate Represents a “terminate” vertex node.

50 A Java Framework for UML State Machines

Table 5.8: Table of the fields on PseudoState

kind The kind of pseudostate this instance repre-

sents. Default is PseudoStateKind.initial

stateMachine The containing state machine, if this pseu-

dostate represents kind entryPoint or exit-

Point.

state The owning state.

5.2.11 Region

This class represents an containment of nodes (vertices) and edges (tran-

sitions). There might be sibling regions, but that part is further ex-

plained in the runtime section.

The most important fields are explained in Table 5.9.

Table 5.9: Table of the fields on Region

stateMachine If this is not null then the region is owned by

a state machine.

state If this is not null then the region is owned by

a state.

subVertices The list of sub-vertices owned by this region.

transitions The list of edges connection the sub-vertices

in this region.

5.2.12 State

An object of the State class represents a state in the state machine graph,

it can be any of the three types of possible states (simple, composite,

orthogonal, see Table 5.10 on the next page).

It uses Behavior for entry, exit and do actions.

The most important fields are explained in Table 5.11 on the facing

page.

51 A Java Framework for UML State Machines

Table 5.10: Table of the types of states

simple This is a state with no regions. Use the

isSimple method to test for this.

composite This is a state with at least one region. Use

the isComposite method to test for this.

orthogonal This is a state with more than one concurrent

regions. Use the isOrthogonal method to

test for this.

Table 5.11: Table of the fields on State

regions List of regions owned by this state.

connections Connection points in and out of the subma-

chine state.

connectionPoints Connection points in and out of the compos-

ite state.

submachine The state machine that this state represents.

entry The Behavior to run when this state is en-

tered.

exit The Behavior to run when this state is exited.

doActivity The Behavior to run while this state is active

(this is a blocking method, use with caution).

5.2.13 StateMachine

This class represents a containment of regions. The graph API supports

state machines both as a standalone machine, and when being used as

a sub-machine. A default region will always be created when creating a

state machine, and as such, the state machine can be seen as a composite

state.

The most important fields on State is explained in Table 5.12 on the

next page.

5.2.14 Transition and TransitionKind

This class represents edges (transitions) in the graph and are responsi-

ble for connecting the nodes in the graph. A transition always have a

52 A Java Framework for UML State Machines

Table 5.12: Table of the fields on StateMachine

regions The regions owned by this state machine.

connectionPoints When used as a submachine, these represents

the point in and out the the state machine.

submachineStates List of states where this machine is used as a

submachine.

source and a target vertex, and together with triggers handles the tran-

sitions between them.

The most important fields are explained in Table 5.13 and the different

kinds of TransitionKind are listed on Table 5.14.

Table 5.13: Table of the fields on Transition

kind The kind of transition this is. The default is

TransitionKind.external.

source The source vertex for this transition.

target The target vertex for this transition.

container The containing region.

guard The guard for this transition. Can be null.

effect The effect for this transition. Can be null.

triggers List of triggers for this transition.

Table 5.14: Table of the different kinds of TransitionKind

TransitionKind.internal Represents a “internal” transition.

TransitionKind.local Represents a “local” transition.

TransitionKind.external Represents a “external” transition.

5.2.15 The XMI importer

To support rapid development of state machines, an XMI importer has

been added to the framework. The importer supports most of the fea-

53 A Java Framework for UML State Machines

tures of XMI 2.1.13 (related to state machines), but have only been tested

in Eclipse (Galileo) using the UML 2 Tools project. In theory, XMI files

exported from other tools should work just as well, but that depends on

how well they are following the standard.

The importer uses what it can from the XMI file, which means both id

and name are taken from there. No support for sub-machines exists in

the importer (in XMI these will span several files, and this is not currently

supported).

The usage of the importer was made to be very simple, and should

cause no problem as long as the XMI is standards compliant.

Listing 5.1: Example of Import class

1 StateMachine stateMachine = new Import().parse("/path/to/model.uml");

For a more elaborate example, please see the examples section 5.4 on

page 60.

5.3 Runtime system

This section will explain all the runtime classes that are located in the

smlib.runtime.v2 package. These are all the classes that are responsi-

ble for traversing the state machine graph, and executing transitions,

concurrency (emulated), guards, events, etc.

5.3.1 RTNode

This abstract class is the super class of every node in the runtime sys-

tem. It’s important to not confuse these nodes with nodes in the state

machine graph, these nodes are only for the runtime system and so they

do not follow any rules from the state machine specification.

It has several responsibilities which will be explained below:

modes

All nodes in the runtime system starts out as inactive, and the each

individual nodes are themselves responsible for changing its mode.

3http://www.omg.org/spec/XMI/2.1.1/

http://www.omg.org/spec/XMI/2.1.1/

54 A Java Framework for UML State Machines

This should not be confused with modes in a state machine, in the

runtime system; all nodes (edges and nodes) can be active or not.

In a state machine, only the states are active.

All the available modes are listed in table 5.15 on the next page.

stepping

The runtime system is using the method step for running the ma-

chine. This method is implemented in the RTNode class, and is

responsible for running the correct methods in the node. If the

current mode is inactive then enter will be run, if its active then

active will be run, and if its leaving then leave will be run.

It should be noted that this does not represent a RTC step in the

state machine, one RTC step can be made up of many runtime

steps. Also, the actions enter, active and leave does not rep-

resent state behaviors, but rather the lifecycle of a node in the

runtime system.

leveling

For supporting hierarchical machines, a simple level system has

been implemented. The root machine is at level 0, and its region is

at level 1. For every new node on top of this, the level indicator is

incremented. The leveling is not something the user should need

to worry about (but the current level can be queried if needed), but

it is heavily used by the two leveling methods in RTNode.

levelUp This takes care of going from one level, and up to another

level. The important part here is the stepping, which will make

sure that every new level entered will have the correct mode.

It will recurse until the current level equals the wanted level.

This is often used for jumping into the wanted resumeState,

which is used for history pseudostates.

levelDown This is the opposite of levelUp, and the main differ-

ence is that this function forcibly sets the mode on the node.

This is for making sure that levels that are higher than the

wanted level are made inactive.

For an example of levels, see Figure 5.1 on the facing page. In this

55 A Java Framework for UML State Machines

figure the state machine is at level 0, the two regions at level 1, and

everything else at level 2.

Figure 5.1: Example for describing levels

ExampleSM

C

BA

D

Table 5.15: Table of the possible modes of a Node

RTNode.Mode.INACTIVE The node is currently not active. No stepping

will be performed on this.

RTNode.Mode.ACTIVE The node is currently active. When the ma-

chine is stepped, this node will be invoked.

RTNode.Mode.LEAVING The node is currently leaving and the next

step will make sure everything is cleaned up

before entering state inactive.

5.3.2 RT

The RT class is the main runtime class. It implements the Runnable

interface and is intended to be run in its own thread.

This class has three main responsibilities:

preparation / caching

When the state machine graph has been created and the state ma-

chine is validated, the next step is calling the prepare method.

This method calls the method on every class in the runtime graph,

and the responsibility of this method is making sure that every

runtime class has been instantiated, and that all the static prop-

erties of the runtime has been cached. An example of this is the

static decisions for a Junction node.

56 A Java Framework for UML State Machines

If the developer does not call this method explicitly it will be run

when the runtime is started.

events

The runtime has a very simple system of events, and the RT class

is responsible for this system. The queue itself is implemented as

a BlockingQueue and is accessible for the user through the method

getEventQueue.

main loop

As explained before, this class implements the Runnable interface

and therefore has the method run. This method is responsible for

the main loop for the system.

The main loop has three main concerns:

1. Make sure the preparation stage has been run, if not, run it.

2. Step through the machine until the machine is inactive or if

the machine is terminating.

3. Check for new events in the event queue, and push these

through the machine.

For an example of how to use this class, please see the example 5.4.1

on page 60.

5.3.3 RTConnectionPointReference

Placeholder class for future support of ConnectionPointReference.

5.3.4 RTFinalState

This marks the end of the region, and the implementation itself is mostly

empty. When node is leaving, it will make sure that the activeNodes

and the resumeState of the parent region is empty.

5.3.5 RTPseudoStateChoice

This pseudostate class will choose where to go in the state machine

based on running the guards that are connected with the Transition

57 A Java Framework for UML State Machines

class. If the guard is one of the ones pre-defined in Table 5.4 on page 47

then the actual guard is not run (except for Constraint.SWITCH which

must be evaluated on every turn).

5.3.6 RTPseudoStateDeepHistory

This class is responsible for resuming a suspended node, or if there are

no suspended nodes available, it will find the initial pseudostate for the

region and start this.

5.3.7 RTPseudoStateEntryPoint

Placeholder class for future support of PseudoStateKind.entryPoint.

5.3.8 RTPseudoStateExitPoint

Placeholder class for future support of PseudoStateKind.exitPoint.

5.3.9 RTPseudoStateFork

This class is responsible for starting several concurrent regions. In the

active part, it will create the list of target states, and these will be set

as targets when the leave method runs.

5.3.10 RTPseudoStateInitial

Since only one transition out is legal from this, when the method enter

the leave method it will set this as the activeNode.

5.3.11 RTPseudoStateJoin

This class sits and waits for all incoming transitions from two or more

concurrent regions (started with RTPseudoStateFork) before continuing.

5.3.12 RTPseudoStateJunction

This class decides (statically) which transition to use during the prepare

method.

58 A Java Framework for UML State Machines

5.3.13 RTPseudoStateShallowHistory

This class is responsible for resuming a suspended node, or if there are

no suspended nodes available, it will find the initial pseudostate for the

region and start this.

5.3.14 RTPseudoStateTerminate

This class has one responsibility, and that is setting the shouldTerminate

flag on the RTNode class. This will make the main loop exit during the

next iteration.

5.3.15 RTRegion

The RTRegion class is one of the main classes in the runtime system,

and has several responsibilities:

prepare

In the preparation stage, this class is responsible for creating all

the nodes that it contains, and also calling the prepare method on

these nodes.

active

In this stage, the class makes sure that every active node in the

region is stepped.

leave

This means that the region is finished, so all active nodes are cleared.

resumeState

The resumeState is always pointing to the last touched node. If

this is null then the final state has been reached, and there is

nothing to resume.

5.3.16 RTStateComposite

This class is responsible for handling of concurrent regions. During the

enter phase it will make sure that all regions are have their targetStates

correctly set. In the active phase, it will step through all the regions,

59 A Java Framework for UML State Machines

and also make sure that if all the regions have finished, then exit out of

this state. This class is used for all states that have one or more regions.

5.3.17 RTStateMachine

This class is responsible for stepping one or more regions that are di-

rectly contained in the StateMachine.

5.3.18 RTStateSimple

This class is responsible for executing the behavior that is associated

with the state. It also checks the guards on the outgoing transitions, and

will block the transition if the guard does not pass.

One more important feature of this class is that during the leave

stage, it will set itself as the resumeState. This makes sure that if the

transition crosses the level boundary, it will resume the correct state if

one of the history pseudostate nodes are entered.

5.3.19 RTStateSubmachine

Placeholder class for future support of State of type submachine.

5.3.20 RTTransitionExternal

The main responsibilities of this class is to take care of leveling when the

transition is from one level to another level, it does this by checking the

current and the target level, and then using the levelUp / levelDown

methods (from RTNode) to do the actual leveling.

If the target of the transition is a RTPseudoStateJoin then it will in-

crease the incoming count on this node, since this node waits for all

incoming before continuing.

5.3.21 RTTransitionInternal

Placeholder class for future support of TransitionKind.internal.

5.3.22 RTTransitionLocal

Placeholder class for future support of TransitionKind.local.

60 A Java Framework for UML State Machines

5.4 Examples

This section will consist of a series of examples of creating UML State

Machines by code. We will also look into using the XMI 2.1 importer.

5.4.1 Standard setup of the runtime system

Before showing how to create state machines using the framework, a

basic setup for running the examples will be shown. All the examples

are built around the same Event called StringEvent which is just a

simple sub-class of Event which uses strings as the input event-change.

The events themselves will be pushed into the system by using a simple

Console4.

Listing 5.2: Basic runtime setup

1 RT runtime = new RT(stateMachine);

2 runtime.prepare();

3

4 Thread runtimeThread = new Thread(runtime);

5 runtimeThread.start();

6

7 Console c = System.console();

8 BlockingQueue<Event> eventQue = runtime.getEventQue();

9

10 while (runtimeThread.isAlive()) {

11 Thread.sleep(200);

12

13 System.out.print("> ");

14 String e = (c == null ? "" : c.readLine());

15

16 if (e.isEmpty()) {

17 continue;

18 }

19

20 eventQue.add(new StringEvent(e));

21 }

The basic steps for using the runtime system are simple and always

follows the same pattern.

1. Create an instance of smlib.runtime.v2.RT

4http://download.oracle.com/javase/6/docs/api/java/io/Console.html

http://download.oracle.com/javase/6/docs/api/java/io/Console.html

61 A Java Framework for UML State Machines

2. Create a Thread 5 for the runtime instance.

3. Start this thread. The machine will now run until it needs an event

input.

4. In your main thread, add code for handling events from your sys-

tem (in our case it will always be from the console, and always

strings). Get the event queue, and start giving it your events.

5. When your runtime thread is dead, your machine has now reached

a FinalState from where it can now longer continue.

5.4.2 A basic state machine

Please see section 2.3 on page 19 for a description of the semantics and

the constraints for this state machine, and see Figure 2.9 on page 20 for

a graphical representation.

Listing 5.3: BasicSM.java

1 StateMachine stateMachine = new StateMachine("Basic");

2 Region r = stateMachine.getRegions().get(0);

3

4 PseudoState start = new PseudoState(r);

5 State idle = new State(r);

6 FinalState end = new FinalState(r);

7

8 Transition t0 = new Transition(start, idle, r);

9 Transition t1 = new Transition(idle, end, r);

10

11 new Trigger(t1, new StringEvent("end"));

12

13 stateMachine.validate();

Line 1 Creates a new empty state machine with one region.

Line 2 Sets a local variable to point to region 0.

Lines 4 - 6 Creates the initial state, idle state, and final state with region

0 as the container.

5http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html

62 A Java Framework for UML State Machines

Lines 8 - 9 Sets up connection from start to idle and from idle to end,

both using region 0 as their container.

Line 11 Creates a new trigger for StringEvent “end” that is connected

to transition t1 (from idle state to end state).

5.4.3 A switch state machine

Please see section 2.4 on page 20 for a description of the semantics and

the constraints for this state machine, and see Figure 2.10 on page 21

for a graphical representation.

Listing 5.4: OnOffSM.java

1 StateMachine stateMachine = new StateMachine("OnOff");

2 Region r = stateMachine.getRegions().get(0);

3

4 PseudoState start = new PseudoState(r);

5 State on = new State(r);

6 State off = new State(r);

7 FinalState end = new FinalState(r);

8

9 Transition t0 = new Transition(start, off, r);

10 Transition t1 = new Transition(off, on, r);

11 Transition t2 = new Transition(on, off, r);

12 Transition t3 = new Transition(off, end, r);

13

14 new Trigger(t1, new StringEvent("on"));

15 new Trigger(t2, new StringEvent("off"));

16 new Trigger(t3, new StringEvent("end"));

17

18 stateMachine.validate();

Line 1 Creates a new empty state machine with one region.

Line 2 Sets a local variable to point to region 0.

Lines 4 - 7 Creates the initial state, on state, off state, and the final state

with region 0 as their container.

Lines 9 - 12 Setup connections from initial state to off state, off state to

on state, on state to off state, and off state to final state.

63 A Java Framework for UML State Machines

Line 14 Creates a new trigger for StringEvent “on” that is connected

to transition t1 (from off state to on state).

Line 15 Creates a new trigger for StringEvent “off” that is connected

to transition t2 (from on state to off state).

Line 16 Creates a new trigger for StringEvent “end” that is connected

to transition t3 (from off state to end state).

5.4.4 A choice state machine

Please see section 2.5 on page 22 for a description of the semantics and

the constraints for this state machine, and see Figure 2.11 on page 22

for a graphical representation.

Listing 5.5: ChoiceSM.java

1 StateMachine stateMachine = new StateMachine("Choice");

2 Region r = stateMachine.getRegions().get(0);

3

4 PseudoState start = new PseudoState(r);

5 PseudoState choice = new PseudoState(PseudoStateKind.choice, r);

6 State idle = new State(r);

7 FinalState end = new FinalState(r);

8

9 Transition t0 = new Transition(start, choice, r);

10 Transition t1 = new Transition(choice, end, r);

11 Transition t2 = new Transition(choice, idle, r);

12 Transition t3 = new Transition(idle, choice, r);

13

14 new Trigger(t3, new StringEvent("end"));

15

16 t2.setGuard(Constraint.SWITCH);

17 t1.setGuard(Constraint.ELSE);

18

19 stateMachine.validate();

Line 1 Creates a new empty state machine with one region.

Line 2 Sets a local variable to point to region 0.

Lines 4 - 7 Creates the initial pseudostate, choice pseudostate, idle state,

and the final state.

64 A Java Framework for UML State Machines

Lines 9 - 12 Setup connections from initial pseudostate to choice pseu-

dostate,choice pseudostate to final state, choice pseudostate to idle

state, and from idle state to choice pseudostate.

Line 14 Creates a new trigger for StringEvent “end” that is connected

to transition t3 (from idle state to choice pseudostate).

Lines 16 - 17 Setup a guard on t1 and t2, the Constraint.SWITCH is false

initially and then turns true, the Constraint.ELSE pathway is chosen

when the switch is false.

5.4.5 A forking state machine

Please see section 2.6 on page 23 for a description of the semantics and

the constraints for this state machine, and see Figure 2.12 on page 23

for a graphical representation.

Listing 5.6: ForkOrthogonalSM.java

1 StateMachine stateMachine = new StateMachine("ForkOrthogonal");

2 Region r = stateMachine.getRegions().get(0);

3

4 PseudoState start = new PseudoState(r);

5 State orthogonal = new State(r);

6 FinalState end = new FinalState(r);

7

8 PseudoState fork = new PseudoState(PseudoStateKind.fork, r);

9 PseudoState join = new PseudoState(PseudoStateKind.join, r);

10

11 Region c_r0 = new Region(orthogonal);

12 State c_r0_idle1 = new State(c_r0);

13 State c_r0_idle2 = new State(c_r0);

14

15 Transition c_r0_t2 = new Transition(c_r0_idle1, c_r0_idle2, c_r0);

16 c_r0_t2.getTriggers().add(new Trigger(new StringEvent("continue1")));

17

18 Region c_r1 = new Region(orthogonal);

19 State c_r1_idle1 = new State(c_r1);

20 State c_r1_idle2 = new State(c_r1);

21

22 Transition c_r1_t2 = new Transition(c_r1_idle1, c_r1_idle2, c_r1);

23 c_r1_t2.getTriggers().add(new Trigger(new StringEvent("continue2")));

24

65 A Java Framework for UML State Machines

25 Transition t1 = new Transition(start, fork, r);

26 Transition t2 = new Transition(join, end, r);

27

28 Transition t3 = new Transition(fork, c_r0_idle1, c_r0);

29 Transition t4 = new Transition(fork, c_r1_idle1, c_r1);

30

31 Transition t5 = new Transition(c_r0_idle2, join, r);

32 Transition t6 = new Transition(c_r1_idle2, join, r);

33

34 stateMachine.validate();

Line 1 Creates a new empty state machine with one region.

Line 2 Sets a local variable to point to region 0.

Line 4 Defines the starting node for this state machine.

Line 5 Defines the state that will later be expanded into an orthogonal

state.

Line 6 Defines the ending node for this state machine.

Line 8 Defines a forking node.

Line 9 Defines a join node.

Lines 11 - 23 Defines the two regions that will make up the orthogonal

state. Both regions is made up of two states, and the transition

between them is triggered by the StringEvent “continue1” for re-

gion 0, and “continue2” for region 1.

Lines 25 - 26 Connects the initial node with the forking node, and the

join node with the final node.

Lines 28 - 29 Connects the two outgoing transitions comming out of the

fork, and into their places in the orthogonal state.

Lines 31 - 32 Connects the two transitions comming from the two states

in the orthogonal state.

66 A Java Framework for UML State Machines

5.4.6 A deep history based state machine

Please see section 2.7 on page 24 for a description of the semantics and

the constraints for this state machine, and see Figure 2.13 on page 25

for a graphical representation.

Listing 5.7: DeepHistorySM.java

1 StateMachine stateMachine = new StateMachine("DeepHistory");

2 Region r = stateMachine.getRegions().get(0);

3

4 PseudoState start = new PseudoState(r);

5 State composite = new State(r);

6 State pause = new State(r);

7 PseudoState history = new PseudoState(PseudoStateKind.deepHistory, r)

;

8 FinalState end = new FinalState(r);

9

10 Transition t0 = new Transition(start, composite, r);

11 Transition t1 = new Transition(composite, end, r);

12 Transition t2 = new Transition(composite, pause, r);

13 Transition t3 = new Transition(pause, history, r);

14 Transition t4 = new Transition(history, start, r);

15

16 Region c_region = new Region(composite);

17

18 PseudoState c_start = new PseudoState(c_region);

19 State c_idle1 = new State(c_region);

20 State c_idle2 = new State(c_region);

21 FinalState c_end = new FinalState(c_region);

22

23 Transition c_t0 = new Transition(c_start, c_idle1, c_region);

24 Transition c_t1 = new Transition(c_idle1, c_idle2, c_region);

25 Transition c_t2 = new Transition(c_idle2, c_end, c_region);

26

27 new Trigger(c_t1, new StringEvent("continue1"));

28 new Trigger(c_t2, new StringEvent("continue2"));

29

30 new Trigger(t1, new StringEvent("finish"));

31 new Trigger(t2, new StringEvent("suspend"));

32 new Trigger(t3, new StringEvent("resume"));

33

34 stateMachine.validate();

Line 1 Creates a new empty state machine with one region.

67 A Java Framework for UML State Machines

Line 2 Sets a local variable to point to region 0.

Lines 4 - 8 Creates the initial pseudostate, composite state, pause state,

deep history pseudostate, and the final state.

Lines 10 - 14 Setup connections from initial pseudostate to composite

state, composite state to final state, composite state to pause state,

pause state to deep history pseudostate, deep history to initial

pseudostate.

Line 16 Creates a new region in the “composite” state, this converts the

state from a simple state to a composite state.

Lines 18 - 25 Creates and connect a simple composite state with nodes

going from initial to idle1, idle2 and ending with the final state.

Line 27 Creates a new trigger for StringEvent “continue1” that is con-

nected to transition c_t1 (from c_idle1 state to c_idle2 state).

Line 28 Creates a new trigger for StringEvent “continue2” that is con-

nected to transition c_t2 (from c_idle2 state to c_end state).

Line 30 Creates a new trigger for StringEvent “finish” that is connected

to transition t1 (from composite state to end state).

Line 31 Creates a new trigger for StringEvent “suspend” that is con-

nected to transition t2 (from composite state to pause state).

Line 32 Creates a new trigger for StringEvent “resume” that is con-

nected to transition t3 (from pause state to start pseudostate).

5.4.7 Using the XMI importer

This example will be based on Figure 2.10 on page 21 from one of the

previous examples. Only this time the diagram will be loaded at run-

time using the xmi.Import class. For convenience you should always use

names on your models since this will make it easier to get nodes out of

the graph. To set the name, right click on a diagram element and select

“Show properties view”, here you can set the wanted name.

68 A Java Framework for UML State Machines

Listing 5.8: OnOffXMI.java

1 StateMachine stateMachine = new Import().parse("/OnOff.uml");

2 Region r0 = stateMachine.getRegions().get(0);

3

4 Transition t1 = r0.getTransition("t1");

5 Transition t2 = r0.getTransition("t2");

6 Transition t3 = r0.getTransition("t3");

7

8 new Trigger(t1, new StringEvent("on"));

9 new Trigger(t2, new StringEvent("off"));

10 new Trigger(t3, new StringEvent("end"));

11

12 stateMachine.validate();

Line 1 Creates a new state machine based on the XMI model “OnOff.uml”.

Line 2 Sets a local variable to point to region 0.

Line 4 - 6 Creates local variables for the transitions on the graph.

Line 8 Creates a trigger on the event “on”, and adds this to the transition

t1.

Line 9 Creates a trigger on the event “off”, and adds this to the transi-

tion t2.

Line 10 Creates a trigger on the event “end”, and adds this to the tran-

sition t3.

5.5 Conclusion

Creating a framework for UML state machines where you are constrained

by strict adherence to the UML specification is a task that is both feasible

and frustrating. Feasible since the OO design of your classes has already

been made for you, and you are left with very little choice when nodes

in the graph are implemented. It has also been a frustrating task, since

the specification have not been designed for simplicity in mind, and the

framework get unnecessary complex at several points:

Behaviors as classes

The behaviors in the system (entrys, exits, etc.) are all implemented

69 A Java Framework for UML State Machines

by means of the the command pattern [5], and clutters the user

code with an unnecessary amount of classes.

In the extreme, every single transition and state in the state ma-

chine could have 1 - 3 classes associated with them, this is not a

problem in a state machine with few states, but looking at more

complex systems with maybe hundreds of states it very soon get

unnecessarily complex.

Constraints as classes

The same problem relates to constraints, what should be a simple

one-line evaluation of the current state of the state machine turns

into yet another class.

Even with these added complexities the task was mostly completed,

and the framework enabled the implementation of most of the UML

state machine specification as shown in the examples in section 5.4 on

page 60.

Another bi-product of using the UML specification directly is tool

support. Using XMI files as a possible means for creating state machines,

and since the XMI file format is used natively by Eclipse UML2 Tools

project (other tools also export support for this format), state machines

created with this tool can be directly imported into the state machine

framework.

This has several advantages:

Rapid development

Using XMI files at the interchange format between the framework

and the modeling tool opens up the possibility for rapid develop-

ment, a composite state with several sub-states can be easily cre-

ated in the tool and gives a clear overview of the state machine.

With todays tools, some parts of the state machines would still

have to be hard-coded, but this is getting better all the time, and

a framework plugin for Eclipse would be possible to complement

the support already there.

Enabling the involvement of the domain experts

By using a more graphical approach to state machines, the domain

70 A Java Framework for UML State Machines

experts can be much more involved in the design of the machine,

and can even change parts of the state machine if it is needed with-

out ever touching any code.

Documentation

An Achilles’ heel of any software frameworks is the level of focus

on documentation, and in modeling this is and even bigger prob-

lem since there should always be a one-to-one relation between the

model and the code.

The model serves as both a reference for implementers, and doc-

umentation for the system at large. The problem arises when the

code moves away from the model, and discrepancies makes the

two move more and more apart.

A solution to this has for a long time been to generate code from

the model, but the same problem can exist here, what if you are

not happy with the generated code and start editing it?

This problem can be solved using the model as the basis of the

state machine nodes, and the developer can use his or hers time

instead implementing the code that uses the state machine.

Even without using the graphical approach, the framework has shown

to be a good solution to implementing state machines without getting

too much in the way. Besides the obvious documentation disadvantages

of not using a model, the framework is very usable and get the job done

nicely.

Chapter 6

Extended Java

6.1 Introduction

This chapter will explore the possibilities for extending the Java lan-

guage with state machine specific keywords related to the UML State Ma-

chine specification. It will start by looking into the tools used for actually

extending the Java language, and then go on to the implementation of

the state based extension.

At the end of the chapter more examples in the language will be

shown, and a conclusion drawn.

6.2 Tools

For extending Java, there are several tools available, and also at least two

ways of doing the actual implementation. These two approaches will be

explained here together with the reasoning for the choice made.

6.2.1 Bytecode implementation

The first approach is a bytecode implementation of the state machine

language. This would give us full access to every low level instruction in

the Java language, and would end up in a implementation that would be

tightly coupled with the Java language.

This approach was considered for a while using excellent libraries

72 Extended Java

like BCEL1, but this would also introduce a massive complexity to the

implementation, especially considering the tools that was chosen for the

task (see section 6.2.3) only parses the language, and does not come

with any kind of support for generating bytecode for the language. The

implementation would then have to create a complete template for every

part of the Java language. Even if a subset was chosen, it would take too

much focus away from the actual task, which was defining a language

extension for Java.

6.2.2 Source-to-source translation

Another approach to extending a language is using source-to-source ap-

proach where one would write in the extended language, and when it

was time for compiling the source code, the source would first be pre-

processed with a tool to create a source that is compilable with the stan-

dard language tools accompanying the language. Since a framework for

state machines has already been created (see section 5 on page 44) this

approach was soon considered a far better option than the bytecode

implementation since it would allow for focus on the extension of the

language, and not on the language itself.

Another similar approach was used when the Java language in ver-

sion 1.5 implemented generics to the language. The approach they choose

was a source-to-source implementation, coupled with a type erasure pro-

cess 2.

6.2.3 ANTLR v3 and StringTemplate

There are several tools available for writing scanners and parsers, most

of them have been around for decades and has been doing a good job

at generating scanners and parsers. The tool that was chosen, was the

ANTLR v33 scanner / parser generator which describes itself as:

“ANTLR, ANother Tool for Language Recognition, is a lan-

guage tool that provides a framework for constructing recog-

1http://jakarta.apache.org/bcel/
2http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
3http://www.antlr.org

http://jakarta.apache.org/bcel/
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://www.antlr.org

73 Extended Java

nizers, compilers, and translators from grammatical descrip-

tions containing actions in a variety of target languages.”

There are several reasons for choosing this tool, but the important

parts are:

• Support for extended Backus-Naur form (EBNF), which is a notation

for describing languages. EBNF has the advantage over BNF (that a

lot of other tools support) that is has options and repetitions.

• Good 3rd party integration with the Eclipse IDE. The tool used for

this thesis is ANTLRide4.

• Template language that has deep integration with the ANTLR gram-

mar file. This template language is called StringTemplate5 and also

has good documentation.

• A mode called “rewrite” which basically means that it can target

specific parts of the grammar, and at the same time let everything

else be just as it is. This is perfect for doing source to source

translation, since only the interesting bits are targeted (every rule

related to the smjava language).

• Active community, which means plenty of freely available docu-

mentation and grammar files.

• In the source distribution, a grammar file for Java 1.5 is included

and this was the basis for the smjava implementation.

6.3 Design of the language

The design of the state-based Java language proved to be a simple task,

since the actual structure of the language was already described in the

specification. Given a region there is only a finite set of elements that

can follow (transitions, states, etc.).

4http://antlrv3ide.sourceforge.net/
5http://www.stringtemplate.org

http://antlrv3ide.sourceforge.net/
http://www.stringtemplate.org

74 Extended Java

Not every feature of the UML specification has been implemented,

but rather a subset that was considered essential. Further feature devel-

opment should be easy to implement, considering that the foundation

has already been implemented.

The name smjava was decided as the name of the language exten-

sion, and the filename extension smjava was chosen to separate it from

normal Java files.

6.3.1 smjava keywords

region

A region block defines a region in the state machine, this is an

important keyword as it declares that a class is state machine con-

trolled. If one or more of these are present in a class, it will be

considered a state machine. There are two places where a region

can be defined, after the class block starts, and after the state block

starts.

If more than two regions are defined in the same block, they will

be run concurrent.

After the keyword and before the block, you are allowed to enter an

identifier if desired, they will not have any affect on the operation,

but can serve as documentation.

Example usage:

Listing 6.1: The two points where region can be defined

1 class TestRegionSM {

2 region {

3 state s { region { ... } }

4 }

5 region RegionWithID { ... }

6 }

state

The state keyword defines a state in the state machine and can be

defined in every region block. If a state also has a block defined,

it can also include entry and exit actions. If a state contains one

75 Extended Java

region, it is considered an composite state and if it has more than

one regions, it is considered a orthogonal state.

Example usage:

Listing 6.2: Example usage of the state keyword

1 region {

2 state simpleState;

3 state simpleState2 {

4 entry { ... }

5 exit { ... }

6 }

7 state compositeState {

8 region { ... }

9 }

10 state orthogonalState {

11 region { ... }

12 region { ... }

13 }

14 }

entry and exit

The entry and exit keywords are used to defined methods that

are run whenever a state is entered or exited. They can only be

defined in a state block.

For example usage see the examples from state on page 74.

transition(from, to)

The transition keyword is used to defined a transition from one

vertex, to another vertex in the state machine.

Listing 6.3: Example usage of the transition keyword

1 region {

2 state on; state off;

3 transition(on, off) {

4 trigger("off");

5 effect { ... }

6 guard { ... }

7 }

8 transition(off, on) { trigger("on"); }

9 }

76 Extended Java

The parameters to and from maps the source and target of the

vertex class in UML state machines.

trigger, effect, and guard

The trigger, effect and guard keywords are all used to defined

extended functionality in a transition. trigger for defining a

triggering event for this transition. effect for a transition

effect. guard for checking whether this transition should occur.

psinitial

The psinitial keyword is used to define a starting point in a re-

gion. It can only be defined inside a region block.

finalstate

The finalstate keyword is used to define a ending point for a

region. It can only be defined inside a region block.

pshistory and psdeephistory

The pshistory and psdeephistory keywords are used to define

shallow and deep history in the state machine. They can both be

defined at most one time per region block.

6.3.2 API for interfacing with state machine based classes

The interface that is created for state machines is very simple, and

should provide all that the developer needs to care about. The inter-

face is exposed through the sm field in a class that is defined as a state

machine, this can be seen in Figure 6.1 on the next page.

The interface is defined as:

Listing 6.4: Interface for state machines

1 interface statemachine

2 {

3 public void start();

4 public boolean isAlive();

5 public void push(Event e);

6 }

77 Extended Java

Figure 6.1: The connection between the Context class and the statema-

chine interface

ExampleSM

State1 State2

State1 State2

start

Starts the state machine. There is no stop method, since the state

machine will run to completion.

isAlive

Is the state machine currently running? After the state machine

has been started, this can be used to tell when the state machine

has finished.

push(Event e)

Push an event into the state machine.

Example usage of this API can be found in section 6.5 on page 93.

6.4 Implementation

This section will describe all the grammar and tools related to the smjava

implementation. A simple tool for rewriting the smjava files will also be

explained.

6.4.1 SMJavaRewriter - A preprocessor tool for smjava

The SMJavaRewriter tool can be found in the package net.mortenoh.smjava

package and is a tool for rewriting smjava files to their Java equivalent.

78 Extended Java

The rewriter uses the smlib framework (see chapter 5 on page 44) for

creating and connecting the state machine that was described by the

smjava file.

A shell-script for running the rewriter is included in the source/sm-

java directory, and is called smjavac. The tool is run with ./smjavac

<filename> and the output is a file with the smjava extension replaced

by a Java extension.

6.4.2 Identifiers in the converted source

To avoid namespace collision, all the identifiers in the translated source

is generated from UUID. So the generated parser is augmented with a

createUUID method:

1 @parser::members {

2 protected String createUUID() {

3 return "id" + Math.abs(UUID.randomUUID().getMostSignificantBits()

);

4 }

5 }

This method generates a random UUID and gets the most significant

bits in it (since the actual UUID contains dashes). This number is then

prefixed with “id”.

6.4.3 The augmented classBodyDeclaration rule

The first rule we are going to look at, is the point at where classes are de-

clared in the grammar. This declaration is the classBodyDeclaration.

Listing 6.5: Augmented classBodyDeclaration

1 classBodyDeclaration

2 : ’;’

3 | ’static’? block

4 | regions+=regionDecl+

5 -> statemachine(regions={$regions})

6 | modifiers memberDecl

7 ;

This is the augmented version where support for regions are added.

Regions will be built up as a list and sent to the template as a parameter

called regions.

79 Extended Java

Figure 6.2: Railroad diagram for classBodyDeclaration

The template definition for statemachine(region) is the largest of

the templates, and is also the starting point for generating the rewritten

code.

The steps in the template are:

1. Define the statemachine interface.

2. Define an implementation of the statemachine interface. This im-

plementation is called _impl_statemachine.

3. This class has two important methods (described below) that are

called from the constructor of the class, and also includes the

methods from the statemachine interface. These methods will

not be described since they are directly calling methods from my

state machine framework.

_create_statemachine This method is responsible for using the

region list (which was given as a argument) for calling the

region-template in a iterative way (basically a for-loop).

_create_runtime This method is responsible for creating a new in-

stance of the runtime class, and also creating a new thread

(but not starting it) with the runtime as the Runnable.

4. Define the field sm which is an instance of the _impl_statemachine

class described before. The field uses the statemachine interface

as the type.

80 Extended Java

6.4.4 Rule regionDecl

The first rule we are going to dissect is the regionDecl rule, this rules

defines the region keyword.

Figure 6.3: Railroad diagram for regionDecl

Listing 6.6: regionDecl

1 regionDecl

2 scope {

3 java.util.Map<String, String> vertexMap;

4 boolean hasInitial;

5 boolean hasFinalState;

6 boolean hasHistory;

7 boolean hasDeepHistory;

8 }

We start by defining 5 scope-based fields. By defining them as scope-

based we make sure that the actual fields are defined in the regionDecl

part of the generated parser.

The fields are responsible for:

Listing 6.7: regionDecl

1 @init {

2 $regionDecl::vertexMap = new java.util.LinkedHashMap<String,

String>();

3 $regionDecl::hasInitial = false;

4 $regionDecl::hasFinalState = false;

5 $regionDecl::hasHistory = false;

6 $regionDecl::hasDeepHistory = false; }

Since the scope-based fields are used for every regionDecl, they

need to be re-initialized every time a regionDecl rule is entered.

81 Extended Java

Table 6.1: Scope fields for regionDecl

vertexMap This is used as a symbol table for making

sure that the to and from arguments on

transitions are defines as vertices.

hasInitial This field is for making sure that there are at

most one psinitial state in the region.

hasFinalState This field is for making sure that there are at

most one finalstate state in the region.

hasHistory This field is for making sure that there are at

most one pshistory state in the region.

hasDeepHistory This field is for making sure that there are at

most one psdeephistory state in the region.

Listing 6.8: regionDecl

1 : ’region’ ID=Identifier? ’{’

2 (

3 {!$regionDecl::hasInitial}? psinitial=psinitialDecl {

$regionDecl::hasInitial = true;}

4 | {!$regionDecl::hasFinalState}? finalstate=finalstateDecl {

$regionDecl::hasFinalState = true;}

5 | {!$regionDecl::hasHistory}? pshistory=pshistoryDecl {

$regionDecl::hasHistory = true;}

6 | {!$regionDecl::hasDeepHistory}? psdeephistory=

psdeephistoryDecl {$regionDecl::hasDeepHistory = true;}

7 | states+=stateDecl

8 | transitions+=transitionDecl

9)*

10 ’}’ ’;’?

11 -> template(id={createUUID()}, psinitial={$psinitial.st},

finalstate={$finalstate.st},

12 pshistory={$pshistory.st}, psdeephistory={$psdeephistory.st

},

13 states={$states}, transitions={$transitions}) ""

14 ;

This is the grammar part of the regionDecl rule. It is mostly straight

forward, but some care has been made to disable the possibility of more

than one of certain keywords.

Line 1 Defines the region keyword, with an optional identifier.

82 Extended Java

Lines 3 - 6 These lines are basically the same, so only one of them will

be described. The line starting on line 3 uses what in ANTLR is

called a predicate test, and in this case it simple tests to check

whether the hasInitial flag is true. If it is, throw a FailedPredicateException.

If the field is not true, go on matching the psinitialDecl declara-

tion. After the match is finished, set the hasInitial to true. This

makes sure that the keywords that are only allowed one match, are

correctly rejected by the parser if more than one of them appears.

Lines 7 - 8 Builds up a list of stateDecl and transitionDecl.

Lines 10 - 14 Inline template that sends all the synthesized templates

one level up (to the classBodyDeclaration).

Listing 6.9: regionDecl

1 catch [FailedPredicateException e] {

2 StringBuffer b = new StringBuffer();

3 b.append("ERR: Syntax error in line " + e.line + " at position " +

e.charPositionInLine + ".\n");

4 b.append("ERR: Failed predicate: " + e.predicateText + ".");

5 b.append("\nTIP: Remember, psinitial, finalstate, pshistory and

psdeephistory can only appear once per region.\n");

6 System.err.println(b.toString());

7 System.exit(-8);

8 }

When a predicate test fails, the standard ANTLR way to handle it is to

backtrack and try to continue. This behaviour doesn’t work well in the

rewrite mode, since we are ending up with an output that is essentially

missing all the parts where the predicate failed (and the parser itself

returns ’ok’).

The way this is handled is by catching the FailedPredicateException

exception, and then write some debug information out to the user, and

then quit the parser. In a full featured parser this would not suffice, but

the focus is on the language and not the tools.

6.4.5 Rule stateDecl

The next rule we are looking into is the stateDecl rule, it is the rule

that handles all variants of the state keyword.

83 Extended Java

Figure 6.4: Railroad diagram for stateDecl

Listing 6.10: stateDecl

1 stateDecl

2 scope {

3 boolean hasEntry;

4 boolean hasExit;

5 }

These scope-based fields are used in the predicate tests to make sure

that there will at most be only one of entry and exit keywords.

Listing 6.11: stateDecl

1 @init {

2 $stateDecl::hasEntry = false;

3 $stateDecl::hasExit = false;

4 }

Initialize the scope-based fields to their default value (false).

Listing 6.12: stateDecl

1 : ’state’ ID=Identifier ’;’

2 { $regionDecl::vertexMap.put($ID.text, createUUID()); }

3 -> template(id={$regionDecl::vertexMap.get($ID.text)}) ""

In this first state rule, we declare a state keyword that can only

have an identifier. After this rule has been matched, the identifier is put

into the scope-based vertexMap, so that it can be matched later when

transitions are declared.

Listing 6.13: stateDecl

1 | ’state’ ID=Identifier ’{’

2 (

84 Extended Java

3 {!$stateDecl::hasEntry}? entry=entryDecl {$stateDecl::

hasEntry = true;}

4 | {!$stateDecl::hasExit}? exit=exitDecl {$stateDecl::hasExit =

true;}

5 | regions+=regionDecl

6)*

7 ’}’ ’;’?

8 { $regionDecl::vertexMap.put($ID.text, createUUID()); }

9 -> template(id={$regionDecl::vertexMap.get($ID.text)},

10 regions={$regions},

11 entry={$entry.st},

12 exit={$exit.st}) ""

13 ;

In this second rule, we add blocks to the state keyword.

Lines 1 - 2 Same as rule #1, the state keyword followed by an identifier.

We also start the block here.

Line 3 Has an entry action already been defined? if so, throw an Failed-

PredicateException and quit. If it has not been defined, match this

rule and set hasEntry to true.

Line 4 Has an exit action already been defined? if so, throw an Failed-

PredicateException and quit. If it has not been defined, match this

rule and set hasExit to true.

Line 5 Match one or more regions, build up as a list.

Line 7 End the block here, with an optional semicolon.

Line 8 Put the identifier into the scope-based vertexMap.

Lines 9 - 12 Synthesize the template for this grammar rule, use all col-

lected attributes.

Listing 6.14: stateDecl

1 catch [FailedPredicateException e] {

2 StringBuffer b = new StringBuffer();

3 b.append("ERR: Syntax error in line " + e.line + " at position " +

e.charPositionInLine + ".\n");

4 b.append("ERR: Failed predicate: " + e.predicateText + ".");

85 Extended Java

5 b.append("\nTIP: Remember, entry and exit can only appear once per

state.\n");

6 System.err.println(b.toString());

7 System.exit(-8);

8 }

Same error situation as in the regionDecl rule.

6.4.6 Rule finalstateDecl

Figure 6.5: Railroad diagram for finalstateDecl

Listing 6.15: finalstateDecl

1 finalstateDecl

2 : ’finalstate’ ID=Identifier ’;’

3 {

4 $regionDecl::vertexMap.put($ID.text, createUUID());

5 }

6 -> template(id={$regionDecl::vertexMap.get($ID.text)}) ""

7 ;

Line 2 Declare the finalstate keyword with an identifier.

Line 4 Put the identifier into the vertexMap, mapped to an UUID.

Line 6 Synthesize the attributes for this level.

6.4.7 Rule entryDecl

Listing 6.16: entryDecl

1 entryDecl

2 : ’entry’ b=methodBody ’;’?

3 -> template(id={createUUID()},

4 body={$b.text}) ""

5 ;

86 Extended Java

Figure 6.6: Railroad diagram for entryDecl

Line 2 Defines the entry keyword with a methodBody and ending in an

optional semicolon.

Lines 3 - 4 Synthesize attributes for this rule.

6.4.8 Rule exitDecl

Figure 6.7: Railroad diagram for exitDecl

Listing 6.17: exitDecl

1 exitDecl

2 : ’exit’ b=methodBody ’;’?

3 -> template(id={createUUID()},

4 body={$b.text}) ""

5 ;

Line 2 Defines the exit keyword with a methodBody and ending in an

optional semicolon.

Lines 3 - 4 Synthesize attributes for this rule.

6.4.9 Rule psinitialDecl

87 Extended Java

Figure 6.8: Railroad diagram for psinitialDecl

Listing 6.18: psinitialDecl

1 psinitialDecl

2 : ’psinitial’ ID=Identifier ’;’

3 {

4 $regionDecl::vertexMap.put($ID.text, createUUID());

5 }

6 -> template(id={$regionDecl::vertexMap.get($ID.text)}) ""

7 ;

Line 2 Declare the psinitial keyword with an identifier and ending in

a semicolon.

Line 4 Put the identifier into the vertexMap, mapped to an UUID.

Line 6 Synthesize the attributes for this rule.

6.4.10 Rule psdeephistoryDecl

Figure 6.9: Railroad diagram for psdeephistoryDecl

Listing 6.19: psdeephistoryDecl

1 psdeephistoryDecl

2 : ’psdeephistory’ ID=Identifier ’;’

3 {

4 $regionDecl::vertexMap.put($ID.text, createUUID());

5 }

6 -> template(id={$regionDecl::vertexMap.get($ID.text)}) ""

7 ;

88 Extended Java

Line 2 Declare the psdeephistory keyword with an identifier and end-

ing in a semicolon.

Line 4 Put the identifier into the vertexMap, mapped to an UUID.

Line 6 Synthesize the attributes for this rule.

6.4.11 Rule pshistoryDecl

Figure 6.10: Railroad diagram for pshistoryDecl

Listing 6.20: pshistoryDecl

1 pshistoryDecl

2 : ’pshistory’ ID=Identifier ’;’

3 {

4 $regionDecl::vertexMap.put($ID.text, createUUID());

5 }

6 -> template(id={$regionDecl::vertexMap.get($ID.text)}) ""

7 ;

Line 2 Declare the pshistory keyword with an identifier and ending in

a semicolon.

Line 4 Put the identifier into the vertexMap, mapped to an UUID.

Line 6 Synthesize the attributes for this rule.

6.4.12 Rule transitionDecl

Listing 6.21: transitionDecl

1 scope {

2 boolean hasEffect;

3 boolean hasGuard;

4 }

89 Extended Java

Figure 6.11: Railroad diagram for transitionDecl

These scope-based fields are used in the predicate tests to make sure

that there will at most be only one of effect and guard keywords.

Listing 6.22: transitionDecl

1 @init {

2 $transitionDecl::hasEffect = false;

3 $transitionDecl::hasGuard = false;

4 }

Initialize the scope-based fields to their default value (false).

Listing 6.23: transitionDecl

1 transitionDecl

2 : ’transition’ ’(’ from=Identifier ’,’ to=Identifier ’)’ ’;’

3 {

4 if(!$regionDecl::vertexMap.containsKey($from.text)) {

5 throw new RuntimeException("transition: state " + $from.text

+ " does not exist.");

6 }

7

8 if(!$regionDecl::vertexMap.containsKey($to.text)) {

9 throw new RuntimeException("transition: state " + $to.text +

" does not exist.");

10 }

11 }

12 -> template(id={createUUID()},

13 from={$regionDecl::vertexMap.get($from.text)},

14 to={$regionDecl::vertexMap.get($to.text)}) ""

Line 2 Defines the transition keyword. This keyword has two param-

eters, one for where the transition start (source), and one for where

the transition ends (target).

90 Extended Java

Lines 4 - 6 Checks the vertexMap to check if the from vertex has been

defined, if it has not, throw a RuntimeException and exit.

Lines 8 - 10 Checks the vertexMap to check if the to vertex has been

defined, if it has not, throw a RuntimeException and exit.

Lines 12 - 14 Synthesize the attributes for this rule.

Listing 6.24: transitionDecl

1 | ’transition’ ’(’ from=Identifier ’,’ to=Identifier ’)’ ’{’ (

2 {!$transitionDecl::hasEffect}? effect=effectDecl {

$transitionDecl::hasEffect = true;}|

3 {!$transitionDecl::hasGuard}? guard=guardDecl {$transitionDecl

::hasGuard = true;}|

4 triggers+=triggerDecl

5)* ’}’ ’;’?

6 {

7 if(!$regionDecl::vertexMap.containsKey($from.text)) {

8 throw new RuntimeException("transition: state " + $from.text +

" does not exist.");

9 }

10

11 if(!$regionDecl::vertexMap.containsKey($to.text)) {

12 throw new RuntimeException("transition: state " + $to.text + "

does not exist.");

13 }

14 }

15 -> template(id={createUUID()},

16 from={$regionDecl::vertexMap.get($from.text)},

17 to={$regionDecl::vertexMap.get($to.text)},

18 effect={$effect.st},

19 guard={$guard.st},

20 triggers={$triggers}) ""

Line 1 Defines the transition keyword. This keyword has two param-

eters, one for where the transition start (source), and one for where

the transition ends (target).

Line 2 Uses a predicate to see if the hasEffect flag has been set, if

it has, then throw the FailedPredicateException. If not, match the

effectDecl declaration and set the flag to true.

91 Extended Java

Line 3 Uses a predicate to see if the hasGuard flag has been set, if it

has, then throw the FailedPredicateException. If not, match the

guardDecl declaration and set the flag to true.

Line 4 Matches zero-or-more of triggerDecl, and creates a list of trig-

gers.

Lines 7 - 9 Checks the vertexMap to check if the from vertex has been

defined, if it has not, throw a RuntimeException and exit.

Lines 11 - 13 Checks the vertexMap to check if the to vertex has been

defined, if it has not, throw a RuntimeException and exit.

Lines 15 - 20 Synthesize the attributes for this rule.

Listing 6.25: transitionDecl

1 catch [FailedPredicateException e] {

2 StringBuffer b = new StringBuffer();

3 b.append("ERR: Syntax error in line " + e.line + " at position " +

e.charPositionInLine + ".\n");

4 b.append("ERR: Failed predicate: " + e.predicateText + ".");

5 b.append("\nTIP: Remember, effect and guard can only appear once

per state.\n");

6 System.err.println(b.toString());

7 System.exit(-8);

8 }

6.4.13 Rule effectDecl

Figure 6.12: Railroad diagram for effectDecl

Listing 6.26: effectDecl

1 effectDecl

92 Extended Java

2 : ’effect’ b=methodBody ’;’?

3 -> template(id={createUUID()},

4 body={$b.text}) ""

5 ;

Line 2 Defines the effect keyword with a methodBody and ending in

an optional semicolon.

Lines 3 - 4 Synthesize attributes for this rule.

6.4.14 Rule guardDecl

Figure 6.13: Railroad diagram for guardDecl

Listing 6.27: guardDecl

1 guardDecl

2 : ’guard’ b=methodBody ’;’?

3 -> template(id={createUUID()},

4 body={$b.text}) ""

5 ;

Line 2 Define the guard keyword with a methodBody and ending in an

optional semicolon.

Lines 3 - 4 Synthesize attributes for this rule.

6.4.15 Rule triggerDecl

Listing 6.28: triggerDecl

1 triggerDecl

2 : ’trigger’ ’(’ event=StringLiteral ’)’ ’;’

3 -> template(id={createUUID()},

4 event={$event.text}) ""

5 ;

93 Extended Java

Figure 6.14: Railroad diagram for triggerDecl

Line 2 Define the trigger keyword with a StringLiteral as event,

and ending in a semicolon. This will be translated into an StringEvent

as explained before.

Lines 3 - 4 Synthesize attributes for this rule.

6.5 Examples

This section will consist of examples of basic usage of the smjava lan-

guage.

6.5.1 Basic setup

All the examples in this section follows the same pattern, and therefore

it will be explained once in this section and not included in the following

examples. The examples will emulate pushing events into the machine

using a simple Queue6.

The basic setup is as follows:

Listing 6.29: Basic setup of smjava examples

1 import java.util.LinkedList;

2 import java.util.Queue;

3

4 import smlib.uml2.Event;

5 import smlib.uml2.StringEvent;

6

7 public class CLASS_NAME {

8 // INSERT EXAMPLE CODE HERE

9

10 public static void main(String[] args) throws Exception

11 {

6http://download.oracle.com/javase/6/docs/api/java/util/Queue.html

http://download.oracle.com/javase/6/docs/api/java/util/Queue.html

94 Extended Java

12 <{ CLASS_NAME }> class_instance = new <{ CLASS_NAME }>();

13 class_instance.sm.start();

14

15 Queue<Event> events = new LinkedList<Event>();

16 events.add(new StringEvent("event1"));

17 events.add(new StringEvent("event2"));

18 events.add(new StringEvent("event3"));

19

20 while(class_instance.sm.isAlive()) {

21 Event e = events.poll();

22

23 if(e != null) {

24 class_instance.sm.push(e);

25 }

26 }

27 }

28 }

Lines 1 - 5 Import all necessary packages.

Line 7 Define the class that has the state machine.

Line 8 This is the point where all the example code will be located.

Lines 12 - 13 Create a new instance of the class. Start the machine using

the start method.

Lines 15 - 18 Define a set of events to be pushed into the state machine.

The actual events will be different for every example.

Line 20 Defines a loop that will run until the state machine has com-

pleted, this is checked using the isAlive method.

Line 21

Get a new event from the event-queue.

Lines 23 - 25 If there was an event waiting, push this into the machine

with the push method.

6.5.2 A basic state machine

Please see section 2.3 on page 19 for a description of the semantics and

the constraints for this state machine, and see Figure 2.9 on page 20 for

a graphical representation.

95 Extended Java

The processed version of this file is included in appendix B.

Listing 6.30: Basic.smjava

1 region {

2 psinitial start;

3 finalstate end;

4

5 state idle;

6

7 transition(start, idle);

8 transition(idle, end) {

9 trigger("end");

10 }

11 }

Line 1 Define a new region.

Lines 2 - 3 Defines a starting and a end point.

Line 5 Define a simple state. No entry or exit points.

Line 7 Defines a transition from initial to the idle state.

Lines 8 - 9 Defines a transition from idle to the final state. This transi-

tion also has a trigger associated with it, this trigger is a StringEvent

called “end”.

6.5.3 A switch state machine

Please see section 2.4 on page 20 for a description of the semantics and

the constraints for this state machine, and see Figure 2.10 on page 21

for a graphical representation.

Listing 6.31: OnOff.smjava

1 region {

2 psinitial start;

3 finalstate end;

4

5 state on;

6 state off;

7

8 transition(start, off);

96 Extended Java

9

10 transition(off, on) {

11 trigger("on");

12 }

13

14 transition(off, end) {

15 trigger("end");

16 }

17

18 transition(on, off) {

19 trigger("off");

20 }

21 }

Line 1 Define a new region.

Lines 2 - 3 Defines a starting and a end point.

Lines 5 - 6 Defines two simple states, no entry or exit points.

Line 8 Define a transition from the starting point to the default state.

Lines 10 - 12 Define a transition from off to on with the StringEvent

trigger on.

Lines 14 - 16 Defines a transition from the off state to the finalstate.

This ends the state machine.

Lines 18 - 20 Define a transition from on to off with the StringEvent

trigger off.

6.5.4 A deep history based state machine

Please see section 2.7 on page 24 for a description of the semantics and

the constraints for this state machine, and see Figure 2.13 on page 25

for a graphical representation.

Listing 6.32: DeepHistory.smjava

1 region {

2 psinitial start;

3 finalstate end;

4

97 Extended Java

5 psdeephistory history;

6 state pause;

7

8 state composite {

9 region {

10 psinitial start;

11 finalstate end;

12

13 state idle1;

14 state idle2;

15

16 transition(start, idle1);

17 transition(idle1, idle2) {

18 trigger("continue1");

19 }

20

21 transition(idle2, end) {

22 trigger("continue2");

23 }

24 }

25 }

26

27 transition(start, composite);

28

29 transition(composite, end) {

30 trigger("finish");

31 }

32

33 transition(composite, pause) {

34 trigger("suspend");

35 }

36

37 transition(pause, history) {

38 trigger("resume");

39 }

40

41 transition(history, start);

42 }

Line 1 Define a new region.

Lines 2 - 3 Defines a starting and a end point.

Line 5 Creates a deep history state. Will be used to resume the state

machine when paused.

98 Extended Java

Line 6 The state in which the state machine is paused.

Lines 8 - 25 Definition of the composite state. The inner block resem-

bles the Basic state machine of the first example. The only dif-

ference is that the transition from idle1 to idle2 trigger on the

StringEvent continue1 and the transitions from idle2 to end

trigger on the StringEvent continue2.

Line 27 Defines a transition from start to composite.

Lines 29 - 31 Defines a transition from composite to end with the StringEvent

finish.

Lines 33 - 35 Defines a transition from composite to pause with the

StringEvent suspend.

Lines 37 - 39 Defines a transition from pause to history with the StringEvent

resume.

Line 41 Defines a transition from history to start.

6.6 Conclusion

Extending a well-established language with new keywords is not some-

thing that can be done without some level of controversy. Keywords in a

language should be just that, words that are key to the operation of the

language, and for everything else there are frameworks.

As with the framework that was developed, an extension of the Java

language with the UML specification in mind has little room for exploring

different solutions to the same problem. And as such, the keywords in

the smjava language quite naturally exposed themselves.

The implementation clearly shows that it is possible to extend the

language with features from UML state machines, although not all fea-

tures were implemented, it doesn’t take much imagination to implement

the rest of the features.

There are however some points that should be explored further:

Language clutter

In the current version of the smjava language there has been added

99 Extended Java

12 new keywords. This is not even the full set of features from the

UML specification, and with the 50 keywords 7 already defined in

Java, adding these would increase the amount of keywords with

24%.

It’s quite clear that a JSR8 describing these keywords would never

be approved, since it messes too much with the language, and al-

though there are plenty of use-cases for state machines, this will

never be something every application needs.

An approach taken by several frameworks that extend the language

today, is using an extra pre-processing step that takes away all

the non-java parts and replacing them with their Java equivalents

(often done at the bytecode level). This was how AspectJ9 was able

to implement support for aspect oriented programming in Java.

This is somewhat related to the source-to-source translation that

was done in this chapter, just using source-to-bytecode translation

instead.

DSL for UML state machines

A possible solution to the keyword problem is creating a textual

DSL for state machines instead. This DSL could act as a intermedi-

ary step between the model and the code implementation. In this

DSL one would be free to add all the required keywords without

cluttering the Java language. A code-generation step could then

be added to make sure that the DSL is translated into actual code.

Since this DSL would be small and compact, it could also open up

the possibility for a two-way conversation between the model and

the DSL.

smjava translated to framework code

Since the smjava language was implemented using a translator,

it is quite obvious that the addition of UML state machine to the

language would simply be syntactic sugaring, and not really some-

thing that demands the implementation of new keywords. A frame-

work could easily been used instead of extending the language.

7http://download.oracle.com/javase/tutorial/java/nutsandbolts/

_keywords.html
8http://jcp.org/en/jsr/overview
9http://www.eclipse.org/aspectj/

http://download.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://download.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://jcp.org/en/jsr/overview
http://www.eclipse.org/aspectj/

100 Extended Java

Even if the new language might not be a perfect candidate for inclu-

sion in the Java language, for our uses it served its purpose well. The

development of a Java extension for state machines gives a much clearer

syntax for developing state machines in code, and would be a great help

for developing at the code level.

Chapter 7

Conclusion and Future Work

7.1 Overview

This section will give a short overview of the conclusions made in this

thesis.

State Pattern In chapter 4 it was shown that state patterns can be eas-

ily extended to gain some of the more common properties of state

machines (guards, behaviors). But when it comes to the more ad-

vanced features of state machines (orthogonality, sub-states, etc.)

the pattern quickly becomes too cluttered, and loses its most im-

portant feature; simplicity.

Java Framework In chapter 5 it was shown that a fully capable frame-

work for creating and running state machines can be created in

Java. The framework follows the UML meta-model and this adds a

level of complexity that might hinder the adoption of this method.

There was also developed an importer for XMI files, which opens

up the possibility for using e.g. the Eclipse UML2 Tools project for

modeling state machines.

Extended Java In chapter 6 it was shown that extending the Java lan-

guage with features from the UML state machine specification [14]

is not a difficult task, the nature of the state machine meta-model

makes it easy to directly map keywords from UML into Java.

While this is true, the resulting language is in the best case grown

102 Conclusion and Future Work

by 24% and makes the language unnecessary cluttered with state

machine specific keywords.

For full featured UML state machine support, it has been shown that

using a framework is the only approach that gives us full support with-

out compromise, like limiting us to a pattern, or by using pre-processors

for extending the language.

7.2 Future work

This section will further look into possible improvements of the ap-

proaches that was chosen. Special care will we taken with the framework

approach since that was concluded as the best approach.

7.2.1 Extended Java / State Pattern

It has already been shown [18, 9] that extending languages with features

from state patterns is a task that can be done without interfering too

much with the language, and I believe this is something that can also be

implemented in the Java language. As it has been shown in this thesis,

extending a language with the full feature set of UML state machines

adds too much clutter to a language, and a state pattern approach might

allow for a simpler implementation of the notion of reactive systems in

Java.

7.2.2 Java Framework

For full UML state machine support in Java, it has been shown that the

currently best approach is using a framework based on the UML meta-

model.

There are quite a few improvements that can be made to the current

framework:

Thread support As it was stated in the beginning of the framework

chapter, the approach that was chosen when it comes to concur-

rency in the runtime system is a simple multiplexing system which

means that in reality only one action can happen at any time.

103 Conclusion and Future Work

What this actually means, is that if we have two concurrent regions,

all stepping will be finished in region 0, before region 1 is stepped

at all.

The framework should be restructured so that every orthogonal

state puts its regions into their own thread. Special care has to be

made to make sure that the system remains thread-safe, and this

will also give some burden to the implementor. If e.g. we have two

behaviors in two different regions both accessing the same variable

from the context class at the same time, it will have to be protected

by the synchronized flag.

Fluent Builder Since most of the classes in the meta-model needs a

number of properties before they can be constructed, a number

of constructors exists for every class. E.g. the Transition class

has 11 constructors, covering every possible combination of prop-

erties for a transition.

This could be fixed by using a common design pattern called a

fluent builder, this is a variant of the normal builder [5] and it

makes the code almost self-describing (if done correctly).

The fluent builder works by having a separate class for defining the

instance you want. E.g. for the Transition class, there would be a

TransitionBuilder class, with a static method called transition

which creates a builder, and then a separate method called build

or create that actually makes the configured object.

Consider the Transition class again, a normal usage of this would

be:

new Transition("t1", on, off, r);

Using a fluent builder wouldn’t necessarily make the code shorter,

but would make it more clear:

transition("t1").from(on).to(off).onRegion(r).build();

The actual build process at the end should throw an exception for

classes that violate semantic rules and constraints.

104 Conclusion and Future Work

Sub-machine support One feature that is clearly lacking from the frame-

work, is sub-machines. Sub-machines allow state machines to be

composed by several state machines, and helps in both in reduc-

ing the complexity of the state machine, and also support reuse of

state machine (although this has more limited scope).

Tool support Another feature that is missing is good support from tools.

A custom tool could be created that would help in bridging the gap

between the programming language (the framework) and the dia-

gram itself.

Some notable features of this tool would be:

• Ability to create UML state machine diagrams based on the

meta-model.

• The tool should be able to save the diagrams in a simple for-

mat that would be imported directly by the framework, thereby

skipping over the entire code-generation step. It would be

ideal if the tool could also generate the code, if the project

was supposed to continue living without using a graphical no-

tation.

• Using a tool like EMFText1 to create on-the-fly EMF represen-

tations of the classes in the project, like the context class, the

events, and such.

The diagram tool could then use this information to directly

bind events / behaviors (from the context) onto states and

transitions.

Constraint language A simple side-effect free Java-like language should

be created to enable simpler implementation of the constraints in

the system. The language should be able to access the context

objects properties and operations.

State machines as behaviors Today, all behaviors must be implemented

as the command pattern (using the Behavior interface). This should

be extended to more closely follow the meta-model, this would

1http://www.emftext.org

http://www.emftext.org

105 Conclusion and Future Work

mean that the StateMachine class would implement the Behav-

ior interface, and as a result would be allowed to be used for all

the behaviors in the system.

Bibliography

[1] Franck Barbier. Support the uml state machine diagrams at runtime.

Model Driven Architecture - Foundations and Applications, Lecture

notes in Computer Science, 5095/2008:338–348, 2008.

[2] Edsger W. Dijkstra. Selected Writings on Computing: A Personal

Perspective. Springer, 1st edition, October 25, 1982.

[3] Martin Fowler. UML Distilled: A Brief Guide to the Standard Ob-

ject Modeling Language. Addison-Wesley Professional, 3rd edition,

September 25, 2003.

[4] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head

First Design Patterns. O’Reilly Media, 1st edition, October 25, 2004.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, 1st edition, November 10, 1994.

[6] David Harel. Statecharts: A visual formalism for complex systems.

Sci. Comput. Program., 8:231–274, June 1987.

[7] David Harel. On visual formalisms. Communications of the ACM,

31:514–530, May 1988.

[8] David Harel and Eran Gery. Executable object modeling with state-

charts. In Proceedings of the 18th international conference on Soft-

ware engineering, ICSE ’96, pages 246–257, Washington, DC, USA,

1996. IEEE Computer Society.

[9] Ole Lehrmann Madsen. Towards integration of state machines

and object-oriented languages. Technology of Object-Oriented Lan-

107 BIBLIOGRAPHY

guages and Systems, 1999. Proceedings of, pages 261–274, July

1999.

[10] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Ny-

gaard. Object-Oriented Programming in the BETA Programming

Language. Addison-Wesley, June 1993.

[11] George H. Mealy. A method for synthesizing sequential circuits. Bell

Systems Technical Journal, 34:1045–1079, September, 1955.

[12] Russ Miles and Kim Hamilton. Learning UML 2.0. O’Reilly Media,

1st edition, April, 2006.

[13] Edward F. Moore. Gedanken-experiments on sequential machines.

Automata Studies, 34:129–153, April 1, 1956.

[14] OMG. OMG Unified Modeling Language (tm) (OMG UML), Superstruc-

ture. OMG, 2.2 edition, February 2, 2009.

[15] Dan Pilone. UML 2.0 Pocket Reference. O’Reilly Media, 1st edition,

March, 2006.

[16] Dan Pilone and Neil Pitman. UML 2.0 In A Nutshell. O’Reilly Media,

1st edition, July, 2005.

[17] James Rumbaugh, Ivar Jacobsen, and Grady Booch. Unified Modeling

Language User Guide. Addison-Wesley Professional, 2nd edition,

May 29, 2005.

[18] A Taivalsaari. Object-oriented programming with modes. Journal

of object-oriented programming, 6:25–32, 1993.

Appendices

Appendix A

Instructions for the included

source code

This appendix will show a brief summary of the included source code,

and how to run it.

The source code can be found on:

For download:

http://folk.uio.no/~morteoh/source.tar.gz

For browsing:

http://folk.uio.no/~morteoh/source

A.1 The source directory

This section will give a overview of where files are located in the source

directory.

Directory “extlib” This directory contains the ANTLR 3 jar file (used for

processing smjava files)

Directory “misc” This directory contains the statepattern examples from

chapter 4.

Directory “smexamples” This directory contains the different examples

used in the tutorial in chapter 2, and should be openend in Eclipse

Galileo (3.5)1.

1http://www.eclipse.org/galileo/

http://folk.uio.no/~morteoh/source.tar.gz
http://folk.uio.no/~morteoh/source

110 Instructions for the included source code

This directory can be imported into Eclipse as an existing project.

Directory “smjava” This directory contains all the files for the smjava

pre-processor.

In the base of this directory, the “smjava.stg” StringTemplate file

can be found. The directory examples contains all the examples

from the smjava chapter. In the directory src/main/antlr3/ the

grammar file for ANTLR 3 can be found. In the directory src/main/-

java/net/mortenoh/smjava/ the source for the pre-processor can

be found.

This directory can be imported into Eclipse as an existing project.

Directory “smlib” This directory contains all the project files for the

state machine framework.

The directory src/main/java/net/mortenoh/smlib/examples/ con-

tains the smlib version of the tutorial examples. The directory

src/main/java/net/mortenoh/smlib/runtime/ contains all the run-

time files. The directory src/main/java/net/mortenoh/smlib/uml2/

contains all files for the meta-model.

This directory can be imported into Eclipse as an existing project.

A.2 Running the examples

This section will explain how to compile and run the examples for the

smlib and smjava chapters. Running the source from the statepattern

chapter will not be explained since these are just plain Java files. Com-

mands needed to input events to the examples are not given, since ex-

ample of this have already been given.

You will need a working Java installation and Maven 2 for this to

work and this has only been tested on OS X and Linux. For running on

Windows, there will be a need to manually replace the smjavac shell

script (should not be too difficult).

A.2.1 Compiling and running smlib examples

The source for the framework can be compiled with “mvn package” com-

mand, and this will result in a file called smlib-1.0-SNAPSHOT.jar in the

111 Instructions for the included source code

“target” directory.

The examples can be run with:

1 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

basic.BasicSM

2 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

choice.ChoiceSM

3 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

history.DeepHistorySM

4 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

onoff.OnOffSM

5 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

onoff.OnOffXMI

6 java -cp target/smlib-1.0-SNAPSHOT.jar net.mortenoh.smlib.examples.

orthogonal.ForkOrthogonalSM

A.2.2 Compiling and running smjava examples

These files are already compiled for convenience. The output from the

ANTLR tool is placed in the src-gen directory.

Before trying to compile and run these examples, please make sure

that the framework is packaged first.

Listing A.1: Processing the examples

1 ./smjavac examples/Basic.smjava

2 ./smjavac examples/OnOff.smjava

3 ./smjavac examples/DeepHistory.smjava

Listing A.2: Compiling the processed examples

1 javac -classpath ../smlib/target/smlib-1.0-SNAPSHOT.jar examples/

Basic.java

2 javac -classpath ../smlib/target/smlib-1.0-SNAPSHOT.jar examples/

OnOff.java

3 javac -classpath ../smlib/target/smlib-1.0-SNAPSHOT.jar examples/

DeepHistory.java

Listing A.3: Running the processed examples

1 java -cp ../smlib/target/smlib-1.0-SNAPSHOT.jar:examples Basic

2 java -cp ../smlib/target/smlib-1.0-SNAPSHOT.jar:examples OnOff

3 java -cp ../smlib/target/smlib-1.0-SNAPSHOT.jar:examples DeepHistory

Appendix B

Processed Basic.smjava

example

This appendix shows how the “Basic.smjava” file looks processed, the

rest of the processed files are located in the “source/smjava/examples”

directory of the included source.

Listing B.1: Unprocessed Basic.smjava

1 import java.util.LinkedList;

2 import java.util.Queue;

3

4 import net.mortenoh.smlib.uml2.Event;

5 import net.mortenoh.smlib.uml2.StringEvent;

6

7 public class Basic {

8 region {

9 psinitial start;

10 finalstate end;

11

12 state idle;

13

14 transition(start, idle);

15 transition(idle, end) {

16 trigger("end");

17 }

18 }

19

20 public static void main(String[] args) {

21 Basic basic = new Basic();

113 Processed Basic.smjava example

22 basic.sm.start();

23

24 Queue<Event> events = new LinkedList<Event>();

25 events.add(new StringEvent("end"));

26

27 while(basic.sm.isAlive()) {

28 Event e = events.poll();

29

30 if(e != null) {

31 basic.sm.push(e);

32 }

33 }

34 }

35 }

Listing B.2: Processed Basic.smjava (Basic.java)

1 import java.util.LinkedList;

2 import java.util.Queue;

3

4 import net.mortenoh.smlib.uml2.Event;

5 import net.mortenoh.smlib.uml2.StringEvent;

6

7 public class Basic {

8

9 public static interface statemachine

10 {

11 public void start();

12 public boolean isAlive();

13 public void push(net.mortenoh.smlib.uml2.Event e);

14 }

15

16 public statemachine sm = new _impl_statemachine();

17

18 @SuppressWarnings("unused")

19 private final class _impl_statemachine implements statemachine

20 {

21 private net.mortenoh.smlib.runtime.v2.RT _runtime;

22 private net.mortenoh.smlib.uml2.StateMachine _stateMachine;

23

24 private java.util.concurrent.BlockingQueue<net.mortenoh.smlib.

uml2.Event> _runtime_queue;

25 private java.lang.Thread _runtime_thread;

26

27 public _impl_statemachine() {

114 Processed Basic.smjava example

28 _create_statemachine();

29 _statemachine_validate();

30 _create_runtime();

31 }

32

33 private void _create_statemachine()

34 {

35 _stateMachine = new net.mortenoh.smlib.uml2.StateMachine();

36 net.mortenoh.smlib.uml2.Region id5148537001872048123 =

_stateMachine.getRegions().get(0);

37 net.mortenoh.smlib.uml2.PseudoState id7390234900874313665 = new

net.mortenoh.smlib.uml2.PseudoState(id5148537001872048123)

;

38 net.mortenoh.smlib.uml2.FinalState id8045455508827321486 = new

net.mortenoh.smlib.uml2.FinalState(id5148537001872048123);

39 net.mortenoh.smlib.uml2.State id9032382805906406051 = new net.

mortenoh.smlib.uml2.State("id9032382805906406051",

id5148537001872048123);

40

41

42 net.mortenoh.smlib.uml2.Transition id2424066601685896859 = new

net.mortenoh.smlib.uml2.Transition("id2424066601685896859",

id7390234900874313665, id9032382805906406051,

id5148537001872048123);

43

44

45 net.mortenoh.smlib.uml2.Transition id3674477414337365959 = new

net.mortenoh.smlib.uml2.Transition("id3674477414337365959",

id9032382805906406051, id8045455508827321486,

id5148537001872048123);

46

47 net.mortenoh.smlib.uml2.Trigger id7110958751908446737 = new net

.mortenoh.smlib.uml2.Trigger(id3674477414337365959, new net

.mortenoh.smlib.uml2.StringEvent("end"));

48 }

49

50 private void _create_runtime()

51 {

52 _runtime = new net.mortenoh.smlib.runtime.v2.RT(_stateMachine);

53 _runtime.prepare();

54

55 _runtime_thread = new java.lang.Thread(_runtime);

56 _runtime_queue = _runtime.getEventQueue();

57 }

115 Processed Basic.smjava example

58

59 private void _statemachine_validate()

60 {

61 try {

62 _stateMachine.validate();

63 } catch (net.mortenoh.smlib.uml2.SemanticException e) {

64 e.printStackTrace();

65 }

66 }

67

68 private void _runtime_push_event(net.mortenoh.smlib.uml2.Event e)

69 {

70 _runtime_queue.add(e);

71 }

72

73 private void _runtime_start()

74 {

75 _runtime_thread.start();

76 }

77

78 public void start()

79 {

80 _runtime_start();

81 }

82

83 public boolean isAlive()

84 {

85 return _runtime_thread.isAlive();

86 }

87

88 public void push(net.mortenoh.smlib.uml2.Event e)

89 {

90 _runtime_push_event(e);

91 }

92 }

93

94 public static void main(String[] args) {

95 Basic basic = new Basic();

96 basic.sm.start();

97

98 Queue<Event> events = new LinkedList<Event>();

99 events.add(new StringEvent("end"));

100

101 while(basic.sm.isAlive()) {

116 Processed Basic.smjava example

102 Event e = events.poll();

103

104 if(e != null) {

105 basic.sm.push(e);

106 }

107 }

108 }

109 }

	1 Introduction
	1.1 Motivation
	1.2 Methods
	1.3 Chapter overview

	2 UML State Machines
	2.1 Introduction
	2.2 The meta-model classes
	2.2.1 StateMachine
	2.2.2 Region
	2.2.3 Vertex
	2.2.4 State
	2.2.5 Transition
	2.2.6 Pseudostate
	2.2.7 FinalState

	2.3 A basic state machine
	2.3.1 Sample run

	2.4 A switch state machine
	2.4.1 Sample run

	2.5 A choice state machine
	2.5.1 Sample run

	2.6 A forking state machine
	2.6.1 Sample run

	2.7 A deep history based state machine
	2.7.1 Sample run

	3 Related Work
	3.1 Introduction
	3.1.1 Statecharts
	3.1.2 UML state machines

	3.2 State machines at runtime
	3.2.1 Language extension
	3.2.2 Executable state machines
	3.2.3 W3C State Chart XML
	3.2.4 Northstate Framework

	3.3 Conclusion

	4 The State Pattern
	4.1 Introduction
	4.2 Overview
	4.3 Basic implementation of a switch
	4.4 Extending the switch with behaviors
	4.5 Extending the switch with guards
	4.6 Conclusion

	5 A Java Framework for UML State Machines
	5.1 Introduction
	5.2 The state machine classes
	5.2.1 Semantic and SemanticException
	5.2.2 Node
	5.2.3 Behavior
	5.2.4 Vertex
	5.2.5 ConnectionPointReference
	5.2.6 Constraint
	5.2.7 Event
	5.2.8 Trigger
	5.2.9 FinalState
	5.2.10 PseudoState and PseudoStateKind
	5.2.11 Region
	5.2.12 State
	5.2.13 StateMachine
	5.2.14 Transition and TransitionKind
	5.2.15 The XMI importer

	5.3 Runtime system
	5.3.1 RTNode
	5.3.2 RT
	5.3.3 RTConnectionPointReference
	5.3.4 RTFinalState
	5.3.5 RTPseudoStateChoice
	5.3.6 RTPseudoStateDeepHistory
	5.3.7 RTPseudoStateEntryPoint
	5.3.8 RTPseudoStateExitPoint
	5.3.9 RTPseudoStateFork
	5.3.10 RTPseudoStateInitial
	5.3.11 RTPseudoStateJoin
	5.3.12 RTPseudoStateJunction
	5.3.13 RTPseudoStateShallowHistory
	5.3.14 RTPseudoStateTerminate
	5.3.15 RTRegion
	5.3.16 RTStateComposite
	5.3.17 RTStateMachine
	5.3.18 RTStateSimple
	5.3.19 RTStateSubmachine
	5.3.20 RTTransitionExternal
	5.3.21 RTTransitionInternal
	5.3.22 RTTransitionLocal

	5.4 Examples
	5.4.1 Standard setup of the runtime system
	5.4.2 A basic state machine
	5.4.3 A switch state machine
	5.4.4 A choice state machine
	5.4.5 A forking state machine
	5.4.6 A deep history based state machine
	5.4.7 Using the XMI importer

	5.5 Conclusion

	6 Extended Java
	6.1 Introduction
	6.2 Tools
	6.2.1 Bytecode implementation
	6.2.2 Source-to-source translation
	6.2.3 ANTLR v3 and StringTemplate

	6.3 Design of the language
	6.3.1 smjava keywords
	6.3.2 API for interfacing with state machine based classes

	6.4 Implementation
	6.4.1 SMJavaRewriter - A preprocessor tool for smjava
	6.4.2 Identifiers in the converted source
	6.4.3 The augmented classBodyDeclaration rule
	6.4.4 Rule regionDecl
	6.4.5 Rule stateDecl
	6.4.6 Rule finalstateDecl
	6.4.7 Rule entryDecl
	6.4.8 Rule exitDecl
	6.4.9 Rule psinitialDecl
	6.4.10 Rule psdeephistoryDecl
	6.4.11 Rule pshistoryDecl
	6.4.12 Rule transitionDecl
	6.4.13 Rule effectDecl
	6.4.14 Rule guardDecl
	6.4.15 Rule triggerDecl

	6.5 Examples
	6.5.1 Basic setup
	6.5.2 A basic state machine
	6.5.3 A switch state machine
	6.5.4 A deep history based state machine

	6.6 Conclusion

	7 Conclusion and Future Work
	7.1 Overview
	7.2 Future work
	7.2.1 Extended Java / State Pattern
	7.2.2 Java Framework

	Bibliography
	Appendices
	A Instructions for the included source code
	A.1 The source directory
	A.2 Running the examples
	A.2.1 Compiling and running smlib examples
	A.2.2 Compiling and running smjava examples

	B Processed Basic.smjava example

