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apparent missing heritability8. One approach to find 
this missing heritability is to investigate rare highly-
damaging (RHdv) and novel variants (Nv) which are 
not routinely considered in GWAS analyses. Several 
research groups have undertaken this quest using 
next-generation sequencing (NGS)9. One limitation 
could be that RHdv and Nv are potentially population-
specific10,11. The collection of genetic variation in 
Mexican populations is still an ongoing and incipient 
endeavor, particularly for RHdv and Nv12. This study 
aimed to explore by NGS the presence of novel and 
damaging variants for 184 genes in 19 Mexican pa-
tients diagnosed with dementia or SCZ.

METHODS

Study population

Nineteen individuals from the Geriatric Clinic at the 
Psychiatric Hospital “Fray Bernardino Alvarez” and the 
Group of Medical and Family Studies Carracci in Mex-
ico City, Mexico, were invited between 2011 and 
2013 to participate. Of them, seven were diagnosed 
with late-onset dementia of probable Alzheimer’s 
type (DAT) and 12 with SCZ. All patients were invited 
to participate and signed informed consent. The study 
protocol complied with the Helsinki Declaration and 
was approved by the Ethics and Research Committee 
at the National Institute of Genomic Medicine (No. 
IMG/DI/136/2014).

DAT patients filled a demographic questionnaire and 
were evaluated by a geriatric psychiatrist at the Psy-
chiatric Hospital “Fray Bernardino Alvarez.” Dementia 
was diagnosed based on the DSM-IVR criteria since 
our study group found memory impairment and at 
least one other cortical function affected13. All the 
patients had a family history of Alzheimer’s disease 
in at least one, first, or second degree relative, and 
fulfilled the criteria for probable Alzheimer’s diagnosis 
according to the National Institute of Neurological 
Disorders and Stroke and the Alzheimer’s Disease Re-
lated Disorders Association14. The patients were eval-
uated using the following scales: mini-mental state 
examination (MMSE), NEUROPSI, clock-drawing test, 
DIPAD, and the clinical dementia rating15-20.

Patients with paranoid SCZ were recruited from the 
Group of Medical Studies Carracci; all patients had a 

family history of at least one-, first-, or second-de-
gree relative diagnosed with SCZ. Patients were eval-
uated with a diagnostic interview for genetic stud-
ies21, which is a structured interview, including the 
disorders contained in the Axis I of the DSM-IVR. In 
this respect, little changes have been made in the lat-
est version of DSM for SCZ diagnosis22. Furthermore, 
when the medical record of the patient was available, 
we included a structured sequence of the response to 
the consumed medications. We established criteria 
for treatment-resistance, as previously published23. 
Positive and negative symptoms were evaluated with 
SAPS and SANS scales, and cognitive function was 
evaluated with the MMSE24. APOE-E4 variant is the 
most extensively validated among the genetic mark-
ers associated with cognitive decline. To consider this 
variation, all the included individuals (i.e. 7 DAT and 
12 SCZ) were negative for the E4 allele of the APOE; 
the APOE status was determined by real-time PCR, as 
previously described25.

Targeted NGS

Genomic DNA was extracted from peripheral leuko-
cytes using the Gentra Puregene commercial kit (QIA-
GEN, USA). We designed synthetic probes for NGS, 
targeting genes associated with dementia, SCZ, and 
several pharmacogenetic targets. The selection of 
genes was based on a literature search for published 
works reporting an effect of common variations or 
rare variants in SCZ, dementia or drug response to 
different antipsychotics or antidementia drugs6,7,26-36; 
a list of the captured genes is reported in Supplemen-
tary Table 1. Gene capture was performed using the 
Haloplex target enrichment system (Agilent Tech-
nologies, USA) with 1.51Mb with 40754 amplicons. 
Sequencing libraries were generated according to the 
manufacturer’s protocol (version D.5, May 2013). 
Briefly, all DNA samples (a total of 225 ng for each 
sample) were digested with 8-paired restriction en-
zymes; fragmentation pattern was analyzed in a 
2100 Bioanalyzer (Agilent Technologies, USA). DNA 
fragments were hybridized with Haloplex synthetic 
probes for library enrichment, and adapters were li-
gated by PCR. Then, library qualities for fragment size 
and concentration were assessed using a 2100 Bio-
analyzer, as previously described37. Sequencing was 
performed using a NextSeq500 system (Illumina, 
USA), aiming for 200x depth coverage in paired-end 
reads.
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Bioinformatic analyses

First, for quality control, we utilized trimmomatic to 
eliminate reads with a quality score Phred-QS <25 
and length below 55 bp; indexes, adaptors, and 5 bp 
at both read ends were trimmed according to general 
practices38. We then aligned reads to the human ge-
nome using BWA39 and SMALT with GRCh37/hg19 as 
reference40. InDel realignment, base recalibration, and 
variant calling were done following the GATK best-
practices recommendations41,42. HaplotypeCaller was 
used for SNV detection, and copy number variants 
(CNV) were detected using the pipeline implemented 
by XHMM43. A total of 1274 variants were called by 
both aligners, which were used for the following anal-
yses. Variants were confirmed visually in the integra-
tive genomic viewer IGV, and also, annotated using 
dbSNP version 14737,44.

Analysis of rare and novel  
damaging variants selection

Variants were registered if detected in at least one 
SCZ or DAT patient, as heterozygous or homozygous. 
Variants were annotated utilizing different databases 

including: dbSNP, OMIC, ClinVar, GnomAD, rebuild, 
and 1000 Genomes, with Variant Effect Predictor45, 
allowing the prediction of the functional impact, with 
queries to different algorithms and databases (SIFT, 
Polyphen-2, FATHMM, CADD, gene splicer, and splice 
region)46-53. As possible pathogenic variants, we se-
lected loss-of-function (LoF) variants (frame shift, 
stop gained, splice-site acceptor, and splice-site do-
nor) and missense variants if the three algorithms 
predicted the variants to be damaging (i.e., SIFT, 
FATHMM, and polyphen-2), and coding synonymous 
variants and non-coding variants were selected if the 
CADD score was higher than 25 (CADD). After filter-
ing these variants, we included all the Nv, and for 
previously reported ones, we only included rare muta-
tions (minor allele frequency <0.1%) using the Ge-
nome Aggregation Consortium (GnomAD) and the 
1000 Genomes projects databases as reference for 
population allelic frequency. ClinVar, OMIM (Online 
Mendelian Inheritance in Man), and an own search in 
PubMed databases were used as reference for the 
clinical significance and disease-associated variants. 
Furthermore, a novel variation (Nv) was considered 
when it had not been reported. We used the Human 
Genome Variation Society (HGVS) nomenclature using 

Table 1. Rare or novel damaging variants detected in patients diagnosed with Dementia of the Alzheimer’s type

Variant dbSNP Gene Reference  
MAFA

MendelianB Complexc

Missense variants

NP_004792.1: 
p.Pro108Ala

rs199784029 NRXN1 0.0008 Pitt-Hopkins-like 
syndrome-255,56

Autism spectrum 
disorder60-64 and 
schizophrenia65

NP_742054.1: 
p.Val33Met

rs765679790 KCNH2 0.000008 Long QT Syndrome 257,58 Schizophrenia treatment 
response66,67 and lower 
intellectual coefficient  
in schizophrenia68

NP_000515.2: 
p.Ala155Gly

rs145641566 HTR1A 0.0005 Periodic fever, menstrual  
cycle-dependent59

Alcohol and nicotine 
dependence69,70  
and Alzheimer’s disease  
with alcohol dependence 
comorbidity69

NP_001748.1: 
p.Gly195Arg

rs146758729 CBR1 0.0015 NR Drug toxicity71,72

Non-coding variants

NT_187607.1: 
g.1782677C>T

rs28363996 ABCC1 0.0003 NR Drug resistance73-76

AReference MAF: Minor allele frequency reported in the GnomAD or the 1000 Genomes Project. BLoF variant reported to be disease-causing of 
Mendelian inheritance disorder. CCommon or rare variants reported to be associated to neuropsychiatric disorder. NR: Not reported.
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the web-tool mutalyzer54, and included the “rs” dbSNP 
(version 147) identifier for the nonNv.

RESULTS

Summary of the total detected  
variants in the sample

Bioinformatic analyses detected 1274 variants on 
184 genes, with an average depth of 96x (range: 
55X-120X), and 91.2% coverage. Of these, 1148 
were SNVs, 126 indels, and only one CNV on RELN 
gene. A total of 149 variants (11.7%) were located 
in coding regions and 1125 (88.3%) in non-coding 
regions. Frequency analyses showed that more than 
half of all variants (735 variants) were common (mi-
nor allele frequency >5%). In total, we also identified 
86 Nv not previously reported. The genes with the 
highest number of Nv were PTGER3 (21 Nv), SLC6A3 
(5 Nv), and ADD1 (5 Nv).

Rare and Nv in patients with DAT

In three of seven DAT patients (42.9%), we detected 
five damaging variants in five genes (NRXN1, HTR1A, 

KCNH2, CBR1, and ABCC1) (Table 1). Novel or LoF 
variations were not observed. Four variants were mis-
sense: NRXN1 (p.Pro108Ser), HTR1A (p.Ala155Gly), 
KCNH2 (p.Val33Met), and CBR1 (p.Gly195Arg), and 
one intronic ABCC1 (g.1782677C>T). LoF variation 
in three genes (NRXN1, KCNH2, and HTR1A) has 
been reported to be causal of some syndromes with 
Mendelian inheritance type (Pitt-Hopkins-like syn-
drome-2, Long QT Syndrome 2, and menstrual cycle-
dependent periodic fever), while CBR1 and ABCC1 
have been reported in drug response. Furthermore, 
common variation in genes NRXN1 and KCNH2 has 
been previously associated to neuropsychiatric disor-
ders (SCZ, autism spectrum disorder, and drug abuse 
and dependence), and only common variation on 
HTR1A has been previously associated to DAT. One 
single DAT patient, DAT 1, carried three of the seven 
damaging variants, on NRXN1, KCNH2, and ABCC1. 

This patient obtained the lowest scores in the MMSE 
= 7 (i.e., affecting almost all his cognitive areas). A 
summary of some sociodemographic and clinical char-
acteristics of patients carrying the variants is shown in 
Supplementary Table 2.

Rare and Nv in patients with SCZ

In schizophrenic patients, we identified 13 variants on 
13 genes: ANK2, CYP3A4, RELN, HTR7, DISC1, TYMS, 

CYP2B6, MTHFR, NRG1, SLC6A5, BDNF, GRIN2B, and 
ABCC1 (Table 2). Of these, four were LoF on ANK2, 

CYP3A4, RELN, and HTR7; three were missense on 
DISC1, TYMS, and CYP2B6; and six were coding syn-
onymous or non-codng on MTHFR, NRG1, SLC6A5, 

BDNF, GRIN2B, and ABCC1. We identified six Nv, 
which represented almost half of all variants detected 
for this patient group. In these patients, 10 of the 12 
(83.33%) included individuals was a carrier of a dam-
aging variant. Previously, LoF variants in ANK2, RELN, 

SLC6A5, MTHFR, and GRIN2B have been reported to 
cause syndromes with Mendelian inheritance (Table 
2). Interestingly, the patient carrier of the variants in 
DISC1 had the lowest cognitive function (mini-mental 
state = 15), and a patient carrier of the LoF in CY-

P3A4 had treatment-resistant SCZ. A summary of 
genetic variations and clinical and sociodemographic 
data of patients with SCZ are presented in Supple-
mentary Table 3.

DISCUSSION

Here, we present a next-generation genome se-
quencing analysis to explore the existence of rare 
and novel damaging variants in patients with SCZ or 
DAT. Clearly, one of the main limitations of this study 
is the low number of patients included. However, as 
an exploratory study, we obtained interesting results 
that could prompt future studies with larger sample 
sizes. To the best of our knowledge, there are no 
reports using NGS to identify rare and novel gene 
variation for neuropsychiatric disorders in Mexican 
patients.

Our analyses showed that almost 10% of the tar-
geted genes were carriers of one rare or novel damag-
ing variant. For example, genes coding for drug-me-
tabolizing enzymes (DME) (CBR1, CYP3A4, TYMS, 

CYP2B6, and MTHFR), and genes involved in neurode-
velopmental processes (ANK2, RELN, DISC1, NRNX1, 

NRG1, and BDNF) were the two main pathways ob-
served in this study with relevant variation in these 
patients. Variants on genes ANK2, RELN, and NRNX1 
have been associated with some syndromes with 
Mendelian inheritance affecting neurodevelopmental 
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mechanisms, which suggests that they may have a 
strong influence on the etiology of DAT or SCZ. The 
overall effect of these variants on the etiology of 
neuropsychiatric disorders is still under study, al-
though some hypotheses have been proposed. For 
instance, a recent WES and WGS analysis of neuro-
psychiatric patients has proposed that an increase 
of damaging variants on these genes could decrease 

the age of Alzheimer’s onset109, and that the age of 
onset of SCZ and autism-spectrum disorders could 
be influenced by the accumulation of de novo vari-
ants in genes involved in neurodevelopmental pro-
cesses110,111.

The effect of DME on brain processes has been un-
derstudied. Nevertheless, some, including CYP1A, 

Table 2. Rare or novel damaging variants detected in patients diagnosed with Schizophrenia

Variant dbSNP Gene Reference  
MAFA

MendelianB Complexc

LoF

NP_001139.3: 
p.Thr3457Hisfs

rs750143580 ANK2 0.00006 Long QT syndrome 477  
and Cardiac Arrythmia 
(Ankyrin-B-related)78

Bipolar disorder with  
binge-eating89

NC_000007.13: 
g.103130984_ 
103474463del

NR RELN NR Lissencephaly 279,80  
and Familial Temporal 
Lobe Epilepsy 781

Schizophrenia, autism 
spectrum disorder90 and 
Alzheimer’s disease91,92

NP_059488.2:p. 
Pro488Thrfs

rs67666821 CYP3A4 0.0002 NR Treatment response in 
schizophrenia28

NC_000010.10: 
g.92617169_ 
92617170ins

NR HTR7 NR NR Alzheimer’s disease93

Missense variants

NP_001158010.1: 
p.Arg418His

rs144959108 DISC1 0.0007 NR Schizophrenia94,95 and 
Alzheimer’s disease70

NP_001062.1: 
p.Gly246Ala

NR TYMS NR NR Alzheimer’s disease96

NP_000758.1: 
p.Lys139Glu

rs12721655 CYP2B6 0.0023 NR Nicotine dependence97

Coding synonymous and non-coding variants

NP_001305298.1: 
p.Ala282=

rs77029901 SLC6A5 0.0003 Hyperekplexia 382,83 Schizophrenia98

NP_005948.3: 
p.Thr139=

rs2066466 MTHFR 0.0032 Homocystinuria due  
to MTHFR deficiency84

Neural tube defects99,100  
and schizophrenia101,102.

NC_000012.11:g. 
13769306G>A

NR GRIN2B NR Autosomal dominant 
mental retardation85-87 
and early infantile 
epileptic 
encephalopathy85,88

Schizophrenia and autism 
spectrum disorder103

NC_000008.10:g. 
32405771T>C

NR NRG1 NR NR Schizophrenia61,104-107

NC_000011.9: 
g.27722838A>G

rs79141432 BDNF 0.0024 NR Schizophrenia108

NC_000012.11: 
g.16228314T>C

NR ABCC1 NR NR Drug resistance73-76

AReference MAF: Minor allele frequency reported in the GnomAD or in the 1000 Genomes Project. BLoF variant reported to be disease-causing 
of Mendelian inheritance disorder. CCommon or rare variants reported to be associated to neuropsychiatric disorders. NR: No reported.  
LoF: Loss-of-function variants.
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CYP2B, CYP2C, and CYP3A, have been functionally 
linked to brain development112,113. Our observations 
regarding DME include that among schizophrenic pa-
tients, two were carriers of the CYP3A4*20 

(rs67666821) allele as homozygous, and this vari-
ant was present in a patient with treatment-resis-
tant SCZ23. CYP3A4*20 is an allele previously identi-
fied in the Brazilian population114, and it has been 
found at high allele frequency in the Spanish popula-
tion (minor allele frequency = 0.012)115, but at low 
frequency in other European populations. This allele 
has been reported to affect the metabolism of clo-
zapine, also associated with treatment-resistant 
SCZ116.

In relation to carriage of damaging variants in neuro-
developmental genes that could affect SCZ and cogni-
tive ability, two patients diagnosed with SCZ were 
carriers of the DISC1 missense rare variant 
(p.Arg418His) and clearly manifested a cognitive dis-
ability. DISC1 gene has been involved in the neurode-
velopmental process and the development of normal 
cognitive function31. The product of this gene is 
greatly involved in brain cortex development, includ-
ing symmetry and orientation of neurons117-120. Fur-
thermore, a common variation in the DISC1 gene has 
been associated with Alzheimer’s disease, reinforcing 
the notion that this gene could have a strong effect 
on cognitive development.

An interesting finding was that ABCC1 (ATP-binding 
cassette, subfamily C, and member 1 gene) was the 
only gene where two patients in each group shared a 
variant. The patient diagnosed with DAT who was a 
carrier of the ABCC1 variant had a rapid cognitive 
decline, with severe manifestations of cognitive im-
pairment. Likewise, the patient diagnosed with SCZ 
and was a carrier of a variant in this gene had a cog-
nitive disability, mainly affecting memory function. 
ABCC1 has previously been implicated in the increased 
accumulation of amyloid-β, dependent on its expres-
sion in a mouse model of early Alzheimer’s disease121. 
However, the effect of the observed novel and rare 
damaging variants in disease etiology would be under 
the scope of future studies. The development of NGS 
technologies has enabled the screening of many ge-
netic variants, finding a large number that has not 
been previously reported. The substantial number of 
Nv found makes impractical to functionally validate 
each one; in this sense, computer methods have been 

developed to anticipate the effect of a variant at the 
molecular level. Here, we presented a sequencing data 
analysis utilizing different algorithms to prioritize the 
damaging effect of variants. We focused on those 
with a higher impact on disease etiology, based on 
distinct algorithms.

Our results may be limited by the small sample size; 
however, we explored genetic variation in 184 genes 
previously associated with neurodegenerative diseas-
es and drug treatment. We located some rare and 
novel damaging variants on 18 genes formerly known 
to be involved in neuropsychiatric disorders in a Mex-
ican population, and we discussed their potential role 
in these diseases. Future endeavors should focus on 
validating these observations.
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