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EXPLORATORY BI-FACTOR ANALYSIS

ROBERT I. JENNRICH AND PETER M. BENTLER
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Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The
bi-factor model has a general factor and a number of group factors. The purpose of this article is to
introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is
that one need not provide a specific bi-factor model a priori. The result of an exploratory bi-factor analysis,
however, can be used as an aid in defining a specific bi-factor model. Our exploratory bi-factor analysis
is simply exploratory factor analysis using a bi-factor rotation criterion. This is a criterion designed to
approximate perfect cluster structure in all but the first column of a rotated loading matrix. Examples are
given to show how exploratory bi-factor analysis can be used with ideal and real data. The relation of
exploratory bi-factor analysis to the Schmid–Leiman method is discussed.

Key words: bi-factor rotation, general factor, group factor, gradient projection algorithms, Holzinger’s
bi-factor method, Schmid–Leiman method.

1. Introduction

Bi-factor analysis is confirmatory factor analysis using a factor loading matrix of the form

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0
∗ 0 ∗
∗ 0 ∗
∗ 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

More precisely, the loadings in the first column are free parameters; and after the first column the
loading matrix has at most one free parameter in each row. In bi-factor analysis the first factor is
called a general factor and the remaining factors are called group factors.

Bi-factor analysis is a fairly extensively used form of confirmatory factor analysis. Recent
references include Chen, West, and Sousa (2006), Patrick, Hicks, Nichol, and Krueger (2007),
Pomplun (2007), and Simms, Grös, Watson, and O’Hara (2008). Bi-factor models have also
become important in the field of item response theory, (e.g., Reise, Morizot, & Hays, 2007)
where the group factors are used to explain departures from unidimensionality.

It is our purpose to introduce an exploratory form of bi-factor analysis. This is done by using
exploratory factor analysis with a rotation criterion that loads on the first factor and encourages
perfect cluster structure for the loadings on the remaining factors. Exploratory bi-factor analysis
is simply exploratory factor analysis using a bi-factor rotation criterion. As such, it involves a
minor change to an exploratory factor analysis program.

Though it generally is not, bi-factor analysis might also be called confirmatory bi-factor
analysis. This terminology may sometimes be used to emphasize its difference from exploratory
bi-factor analysis.
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Model building in confirmatory bi-factor analysis consists of separating items into groups.
This is usually done using prior knowledge from the field under investigation. But this knowl-
edge is not always available or perhaps is not complete. In these cases exploratory factor analysis
methods such as the second-order Schmid and Leiman (1957) method have been used to aid in
defining the required groups. Exploratory bi-factor analysis provides a more direct and satisfac-
tory approach to bi-factor model building.

2. Holzinger’s Bi-factor Method: An Historical Note

Those more interested in the future than the past or more interested in keeping this article as
easy to read as possible should proceed to the next section. Holzinger’s methods are no longer
used and have not been for some time.

Bi-factor models and methods were introduced by Holzinger. The most accessible reference
is Holzinger and Swineford (1937). Holzinger’s method for estimating the parameters in a bi-
factor model proceeds as follows.

Assume a covariance matrix has the structure

Σ = ΛΛ′ + Ψ

where Ψ is diagonal and Λ has bi-factor structure. Holzinger shows that the loadings λ on the
general factor can be expressed in the form

λ = Q1(Σ)/Q2(Σ)

where Q1(Σ) and Q2(Σ) are quadratic functions of Σ . Replacing Σ by a sample covariance
matrix S gives an estimate λ̂ of λ based on S.

Let λr be the unconstrained part of the loadings on the r th group factor. Holzinger shows
that

λr = Q1r (Ω)/Q2r (Ω)

where Ω = Σ − λλ′, and Q1r (Ω) and Q2r (Ω) are quadratic functions of Ω . An estimate λ̂r of
λr is obtained by replacing Ω by S − λ̂λ̂′.

Holzinger’s estimation algorithm is fairly complex, but does not require iteration or even
matrix inversion. Today, of course, one fits bi-factor models by using a CFA program or an SEM
program. These use iterative minimum deviance algorithms for estimation.

3. Bi-factor Rotation

Bi-factor rotation is simply rotation using a bi-factor rotation criterion. We define a bi-factor
rotation criterion as an index that measures the departure of a loading matrix from bi-factor
structure. Using it for rotation will hopefully produce rotated loading matrices with approximate
bi-factor structure.

A p × k loading matrix Λ has bi-factor structure if each row of Λ has at most one nonzero
element in its last k − 1 columns. Note that bi-factor models generate loading matrices with
bi-factor structure.

Definition 1. A rotation criterion B(Λ) measures the departure of Λ from bi-factor structure if
any loading matrix with bi-factor structure minimizes B and all minimizers of B have bi-factor
structure.
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Definition 2. A rotation criterion B(Λ) that measures the departure of Λ from bi-factor structure
will be called a bi-factor rotation criterion.

Theorem 1. If Λ is an arbitrary p × k loading matrix and

Bq(Λ) = qmin(Λ2)

where Λ2 is the sub-matrix of Λ containing its last k − 1 columns and qmin is the quartimin
rotation criterion, then Bq is a bi-factor rotation criterion.

Proof: Let Λ be an arbitrary p × k loading matrix. Then

qmin(Λ) =
p∑

i=1

k∑
r=1

k∑
s=r+1

λ2
irλ

2
is (1)

A loading matrix Λ has perfect cluster structure if and only if qmin(Λ) = 0. To see this note
that all the terms λ2

irλ
2
is on the right in (1) have r �= s. If Λ has perfect cluster structure these

terms are all zero and qmin(Λ) = 0. Conversely if qmin(Λ) = 0 all the terms λ2
r λ

2
s must be zero

and Λ must have perfect cluster structure. Thus Λ has perfect cluster structure if and only if
qmin(Λ) = 0.

Turning now to the Λ and Λ2 in the definition of B , note that B(Λ) = 0 if and only if
qmin(Λ2) = 0, and qmin(Λ2) = 0 if and only if Λ2 has perfect cluster structure; and this happens
if and only if Λ has bi-factor structure. Thus, B(Λ) measures the departure of Λ from bi-factor
structure and hence is a bi-factor rotation criterion. �

The criterion Bq in Theorem 1 will be called the bi-quartimin criterion. Although Bq(Λ)

does not depend on the first column of Λ, when Bq(Λ) is used for rotation, it is all columns of
Λ, including its first, that are rotated.

Let A be an initial loading matrix and let Λ̂ minimize a bi-factor rotation criterion B over
all rotations of A. Then Λ̂ will be called a bi-factor rotation of A corresponding to B . One might
use orthogonal or oblique rotation, but unless otherwise stated we will consider only orthogonal
rotation in this article.

An analysis using a deviance function to extract an initial loading matrix A from a sample
covariance matrix S followed by a bi-factor rotation of A will be called an exploratory bi-factor
analysis (EBFA) of S.

Unless otherwise stated, in what follows the deviance function will be the normal deviance
function, the rotation criterion will be the bi-quartimin criterion, and the rotation method will be
orthogonal.

Some care must be used in defining bi-factor rotation criteria to ensure they measure depar-
ture from bi-factor structure. Bernaards and Jennrich (2003) show that if there is an orthogonal
rotation Λ of an initial loading matrix A that has perfect cluster structure, then Λ maximizes the
varimax criterion over all orthogonal rotations of A. This might motivate one to use

Bv(Λ) = −vmax(Λ2),

where vmax is the varimax rotation criterion, as a criterion for finding bi-factor structure. The
problem with using Bv for this purpose is that Bv does not measure departure from bi-facture
because −vmax does not measure departure from perfect cluster structure. To see the latter, note
that

vmax(Λ) = 1

n

k∑
r=1

(
p∑

i=1

(
λ2

ir − 1

n

p∑
i=1

λ2
ir

)2)
(2)
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Let Λ have perfect cluster structure and vmax(Λ) be different from zero. For any scalar α let

Λα = αΛ

Then Λα has perfect cluster structure for all α. Moreover

vmax(Λα) = α4vmax(Λ)

Since this is not a constant function of α, at least one Λα must fail to minimize −vmax; and,
hence, −vmax does not measure departure from perfect cluster structure.

Since Bv(Λ) does not measure the departure of Λ from bi-factor structure, one might suspect
its ability to recover bi-factor structure may be limited. An example in the next section shows it
can fail to recover bi-factor structure.

For the computations in this article the Matlab program factoran was used for the extraction
of an initial loading matrix A, and the gradient projection algorithm of Jennrich (2001) was used
for rotation. This algorithm can be found at http://www.stat.ucla.edu/research/gpa where it is
called GPForth.

For those who may be interested in computing formulas for evaluating the bi-quartimin
criterion and its derivative, these are given in the appendix. Please do not view these as part of
the definition of bi-factor rotation. The definition is that given above. Also given in the appendix
is Matlab code for implementing the computing formulas and one additional line of Matlab code
that can be used to perform bi-quartimin rotation.

The quartimin and varimax formulas in (1) and (2) may be found in Harman (1976).

3.1. An Example

Let an initial loading matrix A be the principal components rotation of

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0
2 1 0
1 1 0
2 0 1
1 0 1
2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

That is, A is an orthogonal rotation of Λ such that A′A is diagonal. A is called a principal
components rotation because the columns of A are principal components of AA′. In this example

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.17 0.78 0.18
2.08 0.78 −0.22
1.17 0.78 0.18
2.15 −0.62 −0.08
1.23 −0.62 0.32
2.15 −0.62 −0.08

⎞
⎟⎟⎟⎟⎟⎟⎠

Using the gradient projection algorithm of Jennrich (2001) to minimize the bi-quartimin criterion
over all orthogonal rotations of A gives

Λ̂q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 1.00 0
2.00 1.00 0
1.00 1.00 0
2.00 0 1.00
1.00 0 1.00
2.00 0 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠

http://www.stat.ucla.edu/research/gpa
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which is a nice result because it is equal to Λ to the precision displayed. Actually, corresponding
elements of Λ̂q and Λ agree to at least 7.42 decimal places.

Turning to the varimax problem, using the criterion Bv to rotate A gave

Λ̂v =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.28 0.53 0.29
1.81 1.31 −0.04
1.28 0.53 0.29
0.67 2.13 0.08
0.14 1.35 0.40
0.67 2.13 0.08

⎞
⎟⎟⎟⎟⎟⎟⎠

which has poor bi-factor structure.

4. Real Data Examples

4.1. The 24 Psychological Tests Data

This is a very well known data set that can be found in Harman (1976, p. 124). Harman
conducted a confirmatory bi-factor analysis of it using Holzinger’s method. To our knowledge
these data have never been analyzed using a bi-factor model and modern confirmatory methods.

An exploratory bi-factor analysis of Harman’s data gave the loading matrix

Λ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.68 −0.06 −0.28 −0.14

0.41 −0.02 −0.21 −0.08

0.46 −0.00 −0.37 −0.10

0.51 0.07 −0.24 −0.14

0.54 0.59 0.07 −0.02

0.51 0.64 −0.05 0.08

0.51 0.67 0.03 −0.09

0.59 0.39 −0.00 −0.09

0.51 0.69 −0.07 0.08

0.49 −0.02 0.72 −0.00

0.56 −0.00 0.32 0.17

0.57 −0.20 0.43 −0.15

0.67 −0.05 0.14 −0.21

0.36 0.12 0.02 0.44

0.37 0.03 −0.03 0.41

0.54 −0.08 −0.22 0.32

0.44 0.03 0.12 0.43

0.57 −0.15 0.06 0.24

0.44 0.02 −0.03 0.21

0.58 0.22 −0.15 0.09

0.63 −0.04 0.10 −0.03

0.57 0.20 −0.15 0.09

0.68 0.16 −0.12 −0.03

0.61 0.18 0.29 0.09

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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To simplify viewing this, all loadings with absolute value less than 0.3 were set equal to zero
giving the rounded loading matrix

Λ̂r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.68 0 0 0

0.41 0 0 0

0.46 0 −0.37 0

0.51 0 0 0

0.54 0.59 0 0

0.51 0.64 0 0

0.51 0.67 0 0

0.59 0.39 0 0

0.51 0.69 0 0

0.49 0 0.72 0

0.56 0 0.32 0

0.57 0 0.43 0

0.67 0 0 0

0.36 0 0 0.44

0.37 0 0 0.41

0.54 0 0 0.32

0.44 0 0 0.43

0.57 0 0 0

0.44 0 0 0

0.58 0 0 0

0.63 0 0 0

0.57 0 0 0

0.68 0 0 0

0.61 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This suggests that the tests are divided into four distinct groups. One loads only on a general
factor and the other three load on the first factor and on only one additional factor. We will not
attempt to explain in psychological terms what this says about the 24 psychological tests.

4.1.1. The Corresponding Confirmatory Solution It is of interest to consider a modern
confirmatory solution corresponding to the previous exploratory solution. More precisely con-
sider a confirmatory bi-factor analysis using the rounded exploratory bi-factor loadings above
to define the required groups and using minimization of the corresponding maximum likelihood
deviance function for estimation. Table 1 gives the resulting rounded confirmatory loadings Λ̂cr

and the rounded exploratory loadings Λ̂r .
The confirmatory and exploratory solutions are quite similar. In this example one might view

the confirmatory solution as polish for the exploratory solution.
Although we are not prepared to discuss an oblique form of EBFA at this point, the editor, the

associate editor, and a reviewer have asked us to at least show the results for the 24 psychological
tests data when using oblique rotation. This gave the rounded loading matrix
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TABLE 1.
Confirmatory and exploratory bi-factor loadings for the 24 psychological tests data.

Confirmatory Λ̂cr

0.64 0 0 0
0.41 0 0 0
0.48 0 0.34 0
0.51 0 0 0
0.57 0.57 0 0
0.55 0.61 0 0
0.54 0.64 0 0
0.62 0.36 0 0
0.56 0.64 0 0
0.44 0 0.82 0
0.53 0 0.32 0
0.49 0 0.45 0
0.62 0 0 0
0.37 0 0 0.54
0.35 0 0 0.46
0.52 0 0 0.36
0.43 0 0 0.33
0.54 0 0 0
0.47 0 0 0
0.61 0 0 0
0.63 0 0 0
0.62 0 0 0
0.71 0 0 0
0.63 0 0 0

Exploratory Λ̂r

0.68 0 0 0
0.41 0 0 0
0.46 0 0.37 0
0.51 0 0 0
0.54 0.59 0 0
0.51 0.64 0 0
0.51 0.67 0 0
0.59 0.39 0 0
0.51 0.69 0 0
0.49 0 0.72 0
0.56 0 0.32 0
0.57 0 0.43 0
0.67 0 0 0
0.36 0 0 0.44
0.37 0 0 0.41
0.54 0 0 0.32
0.44 0 0 0.43
0.57 0 0 0
0.44 0 0 0
0.58 0 0 0
0.63 0 0 0
0.57 0 0 0
0.68 0 0 0
0.61 0 0 0

Λ̂oblq r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.65 0 0.37 0
0.39 0 0 0
0.42 0 0.43 0
0.49 0 0.31 0
0.54 0.60 0 0
0.51 0.64 0 0
0.51 0.68 0 0
0.59 0.40 0 0
0.50 0.69 0 0
0.56 0 −0.66 0
0.59 0 0 0
0.61 0 −0.33 0
0.69 0 0 0
0.35 0 0 0.45
0.35 0 0 0.43
0.50 0 0 0.36
0.43 0 0 0.44
0.56 0 0 0
0.43 0 0 0
0.55 0 0 0
0.64 0 0 0
0.55 0 0 0
0.67 0 0 0
0.64 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Except for the third factor, the rounded orthogonal loading matrix Λ̂r and the rounded
oblique loading matrix Λ̂oblqr are quite similar. We will not attempt to state which matrix suggests
a more appropriate bi-factor model for the 24 psychological tests data.

We are currently working on a paper on oblique EBFA that defines it carefully, deals with a
number of technical issues that do not arise in the orthogonal case, and compares its performance
with that of the orthogonal case on both constructed and real data examples.

4.2. The Chen et al. (2006) Data

Chen et al. give a confirmatory bi-factor analysis using a quality of life data set. An ex-
ploratory bi-factor analysis of their data gives the loading matrix

Λ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.47 0.51 −0.03 −0.08 −0.04
0.38 0.36 0.05 −0.03 0.02
0.48 0.57 0.02 0.05 0.03
0.38 0.57 0.01 0.02 −0.01
0.51 0.52 −0.02 −0.02 −0.01
0.52 0.01 0.36 −0.00 −0.07
0.51 −0.03 0.29 −0.01 0.02
0.54 0.03 0.38 −0.08 −0.01
0.55 −0.03 0.31 0.17 −0.02
0.55 −0.00 −0.05 0.34 0.03
0.67 −0.04 −0.11 0.07 0.01
0.54 −0.05 0.04 0.30 −0.00
0.61 0.16 −0.07 0.02 0.04
0.73 −0.02 −0.14 −0.06 −0.13
0.65 −0.00 −0.07 −0.07 0.55
0.63 −0.01 0.08 0.02 0.39
0.58 −0.01 0.02 0.07 0.54

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To simplify viewing this, all numbers with absolute value less than 0.2 were set to zero
giving the rounded loading matrix

Λ̂r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.47 0.51 0 0 0
0.38 0.36 0 0 0
0.48 0.57 0 0 0
0.38 0.57 0 0 0
0.51 0.52 0 0 0
0.52 0 0.36 0 0
0.51 0 0.29 0 0
0.54 0 0.38 0 0
0.55 0 0.31 0 0
0.55 0 0 0.34 0
0.67 0 0 o 0
0.54 0 0 0.30 0
0.61 0 0 o 0
0.73 0 0 o 0
0.65 0 0 0 0.55
0.63 0 0 0 0.39
0.58 0 0 0 0.54

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Chen et al. used a standard bi-factor model based on earlier studies of quality of life data.
The bi-factor model suggested by Λ̂r agrees exactly with this standard model except for the
three loadings on the third factor denoted by small o. These were free loadings in the Chen et
al. model. In Chen et al.’s confirmatory analysis the loading estimates in these three positions
were “insignificant”. This motivated Chen et al. to suggest that the third group factor might be
absorbed by the general factor and dropped. An alternative suggested by Λ̂r would be to retain
the third group factor but add the restriction that the loadings in the positions containing small o
be zero.

4.3. Local Minima

All results thus far were those corresponding to the best of 10 random starts of the rotation
algorithm. Only the first example produced a non-unique local minimizer. It, however, suggests
that a general purpose exploratory bi-factor analysis program should have the option of reporting
the best of a number of random starts.

5. The Schmid–Leiman Method

At present, the primary exploratory method for building bi-factor models is the Schmid–
Leiman (SL) method and hence this is the primary competitor to our EBFA method. See Reise,
Moore and Haviland (2010) and Chen et al. (2006) for a discussion of using the SL method for
building bi-factor models.

The SL method proceeds as follows.

Step 1: Perform an oblique EFA of a sample covariance matrix S to produce factor loadings Λ,
factor correlations Φ , and unique variances Ψ .

Step 2: Perform a single factor EFA of Φ to produce a loading vector γ and unique variances Δ.
Step 3: Let

ΛSL = (
Λγ,ΛΔ1/2) (3)

Then ΛSL and Ψ are called a SL orthogonalization of the oblique analysis in Step 1.

As noted above, the SL method has been used to build bi-factor models. This is done by
looking at ΛSL and hoping to find approximate bi-factor structure.

There is a serious problem here, however. Note that the first column of ΛSL is a linear
combination of its remaining columns. If the data are generated by a bi-factor model whose
loading matrix does not satisfy this condition, it is not at all clear that ΛSL will have approximate
bi-factor structure. As shown in the next section, ΛSL may not even come close to having bi-
factor structure.

For a general discussion of SL and other methodologies, see Yung, Thissen, and McLeod
(1999). The only SL methodology used in this article is that outlined above, which can be found
in the Reise, Moore, and Haviland (2010) and Chen et al. (2006) papers cited there.

To compare the Schmid–Leiman and exploratory bi-factor methods for building bi-factor
models, we will consider some numerical examples. In these examples quartimin rotation is used
in Step 1 of the SL method to produce the factor correlation matrix that is factored in Step 2.
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5.1. The Schmid–Leiman Method Can Fail Seriously

Consider an orthogonal bi-factor model defined by the loading matrix

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.70 0.50 0.00 0.00
0.70 0.00 0.00 0.00
0.70 −0.50 0.00 0.00
0.70 0.00 0.50 0.00
0.70 0.00 0.00 0.00
0.70 0.00 −0.50 0.00
0.70 0.00 0.00 0.50
0.70 0.00 0.00 0.00
0.70 0.00 0.00 −0.50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the assumption that its covariance matrix Σ is a correlation matrix. Because the first column
of Λ is not a linear combination of its remaining columns, a Schmid–Leiman analysis based on
data generated by this model cannot consistently estimate Λ; and this may compromise its ability
to identify a bi-factor model.

A Schmid–Leiman analysis of S = Σ gave

ΛSL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.59 0.27 0.50 0.27
0.59 0.27 0.00 0.27
0.59 0.27 −0.50 0.27
0.56 0.26 0.00 0.26
0.59 0.27 0.00 0.27
0.56 0.26 0.00 0.26
0.59 0.63 0.00 −0.09
0.59 0.27 0.00 0.27
0.59 −0.08 0.00 0.63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This has far from bi-factor structure. In this example the Schmid–Leiman method does not even
come close to suggesting an appropriate bi-factor model.

When EBFA is applied to S = Σ it recovers Λ to more than eight decimal places. Thus,
in this example EBFA performs much better than the Schmid–Leiman method for building an
appropriate bi-factor model. This may not, of course, be true in general. For example, if the
first column of Λ were approximately a linear combination of its remaining columns, one might
expect ΛSL to approximate Λ.

In general, however, it seems reasonable to use EBFA for building bi-factor models and
Schmid–Leiman methods for other purposes, such as building second-order factor analysis mod-
els.

5.2. Applying Schmid–Leiman to the Chen et al. Data

Applied to the Chen et al. data the Schmid–Leiman method with four primary factors gave
the rounded Schmid–Leiman loading matrix
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ΛSLr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.45 0.53 0 0 0
0.37 0.37 0 0 0
0.48 0.55 0 0 0
0.38 0.56 0 0 0
0.50 0.53 0 0 0
0.49 0 0.41 0 0
0.48 0 0.34 0 0
0.49 0 0.42 0 0
0.53 0 0.35 0 0
0.55 0 0 0 0
0.64 0 0 0 0
0.53 0 0 0 0
0.59 0 0 0 0
0.64 0 0 0 0
0.64 0 0 0 0.56
0.62 0 0 0 0.41
0.59 0 0 0 0.53

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, all loadings with absolute values less than 0.3 have been set to zero. This Schmid–Leiman
matrix suggests that no items should be assigned to the third group. This is consistent with the
comment by Chen et al. that the third group factor might be absorbed by the general factor in
future analyses.

We now have three possible models for the Chen et al. data. Chen et al.’s original model, the
bi-factor model corresponding to the EBFA in Section 4.2, and that suggested by the SL analysis
above.

If one does not prefer a particular model, one might use confirmatory methods to help decide.

6. Discussion

If nothing else it would seem quite reasonable to add a bi-factor rotation criterion such as
the bi-quartimin criterion to libraries of rotation criteria and to add bi-factor rotation as an option
in general purpose exploratory factor analysis programs such as those found in SAS, SPSS and
STATA. This would make exploratory bi-factor analysis immediately available to data analysts.

Except for one, our EBFA examples have all used orthogonal rotation. One might, however,
consider using oblique rotation instead, and we are presently looking into the problems that arise
when doing this.

We have used only the maximum likelihood deviance function for extracting initial loadings.
One might also consider other deviance functions, such as least squares or weighted least squares,
for this purpose.

We have considered only one specific bi-factor rotation criterion namely the bi-quartimin
criterion. We have not identified others, but one candidate might be a criterion based on minimum
entropy. This issue needs further investigation.

A reviewer has suggested considering statistical properties of bi-factor loadings, for exam-
ple, the loading standard errors. This issue also needs further investigation.

It should be mentioned that Carroll (see Harman, 1976) has used the name Bi-Quartimin for
a rotation criterion that differs from our bi-quartimin criterion. This might motivate us to change
the name of our criterion, but bi-quartimin is too appropriate a name for us to do this.

Most authors, including Holzinger, require that in a bi-factor model each row of the loading
matrix must have a free loading in its first column and exactly one free loading in the remaining
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columns. We require at most one free loading in the remaining columns. Chen et al. (2006) call
such models incomplete bi-factor models. In this terminology our bi-factor models include both
complete and incomplete bi-factor models.

The Schmid–Leiman method has been used to design bi-factor models, but this is problem-
atic. The Schmid–Leiman method is designed to identify two-stage models, not bi-factor models.
We have shown that its use for the latter purpose can fail. The advantage of EBFA is that it is
designed to identify bi-factor models directly and in examples does so quite well. Moreover, it
is very simple. EBFA is simply standard exploratory factor analysis using a bi-factor rotation
criterion.
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Appendix

Here we give computing formulas to show how the bi-quartimin criterion might be evaluated
and used for rotation. Let

B(Λ) = qmin(Λ2)

where qmin(Λ2) is the value of the quartimin criterion at Λ2. A simple computing formula for
this is given by

qmin(Λ2) = 〈
Λ2

2,Λ
2
2N

〉

where Λ2
2 is the element-wise square of Λ2, N is a (k − 1) × (k − 1) matrix with zeros on the

diagonal and ones elsewhere, and 〈A,B〉 is the Frobenius product of two equal sized matrices A

and B . In the formulas

〈A,B〉 =
∑

i

∑
j

AijBij

In addition to code to evaluate the rotation criterion, most general purpose rotation programs also
require code to evaluate its derivative. For the bi-quartimin criterion this is

dB

dΛ
= 4

(
0,Λ2 · (Λ2N)

)

where 0 is a zero column vector and A ·B is the element-wise product of two equal sized matrices
A and B .

For performing the rotation one may use any general purpose rotation algorithm. As noted
we have used the gradient projection algorithm GPForth which requires code for evaluating B(Λ)

and dB/dΛ.
The Matlab code for computing the value v and gradient G of the bi-quartimin criterion at

L is
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function [v,G]=vGqmin(L)
[p,k]=size(L);
L2=L.^2;
N=ones(k,k)-eye(k);
v=sum(sum(L2.*(L2*N)));
G=4*L.*(L2*N);

function [v,G]=vGbqmin(L)
[p,k]=size(L);
L2=L(:,[2:k]);
[v,G]=vGqmin(L2);
G=[zeros(p,1) G];

To rotate a matrix A, download GPForth from http://www.stat.ucla.edu/research/gpa and
write the code:

Lh=GPForth(@vGbqmin,A,T);

where T is any k × k orthogonal matrix. When this is executed Lh will be the bi-quartimin
rotation of A.
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