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Abstract: Smartphone-based activity recognition (SP-AR) recognizes users’ activities

using the embedded accelerometer sensor. Only a small number of previous works can

be classified as online systems, i.e., the whole process (pre-processing, feature extraction,

and classification) is performed on the device. Most of these online systems use either a

high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting

in short battery life or delayed system response, respectively. This paper introduces a

real-time/online SP-AR system that solves this problem. Exploratory data analysis was

performed on acceleration signals of 6 activities, collected from 30 subjects, to show that

these signals are generated by an autoregressive (AR) process, and an accurate AR-model

in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within

class variance resulting from placing the phone at different positions was reduced using

kernel discriminant analysis to achieve position-independent recognition. Neural networks

were used as classifiers. Unlike previous works, true subject-independent evaluation was

performed, where 10 new subjects evaluated the system at their homes for 1 week. The

results show that our features outperformed three commonly used features by 40% in terms

of accuracy for the given SR and DW.
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1. Introduction

Context-awareness is an essential part of ubiquitous computing, and human activity recognition

(HAR) has emerged as an important tool to identify the user’s context for automatic service delivery

in ubiquitous application. For example, in the case of ubiquitous healthcare applications, recognition of

everyday activities could enable such systems to watch and learn any changes in daily behavior of an

elderly person that might be the indicators of developing physical or mental medical conditions.

The first step towards achieving the goal of recognizing the activities of daily living is to equip HAR

systems with sensing capabilities. Two main approaches have been employed for this purpose: external

(in which devices are fixed to predetermined points of interest) and wearable sensors (in which devices

are attached to the user). Smart-homes equipped with sensors embedded in everyday objects [1–3] and

HAR by means of video cameras [4,5] fall in the category of external sensors. The main problem with

an external approach is its lack of pervasiveness, i.e., it forces the user to stay within a perimeter defined

by the position and capabilities of the sensors.

As for a wearable approach, a range of wearable sensors has been used to capture and analyze human

movement in free-living subjects [6]. Of these sensors, accelerometers are becoming widely accepted as

useful tools for the assessment of human motion in clinical settings and free-living environments [6].

In spite of the fact that accelerometery has emerged as an inexpensive and reliable means of HAR, the

majority of accelerometer-based HAR systems developed have used a separate sensor device attached

to subjects’ bodies [6–18]. However, this solution is obtrusive and very few people would like to have

sensors attached to their bodies, or wear special t-shirts, bracelets or belts for that purpose.

These days, smartphones come equipped with a variety of sensors, including accelerometers.

These devices are part of people’s daily lives. People carry smartphones nearly everywhere they go.

Consequently, such devices can be employed in creating valid and reliable measures of physical activity

continuously over longer periods of time during free-living conditions. Recently, many studies have

incorporated accelerometer-enabled smartphones for the sake of HAR, such as [19–29]. However,

most of these works have employed smartphones as mere data collection devices, which sent data to

an accompanying device (such as PC) for further processing.

Feature extraction plays a vital role in any accelerometer-based HAR system. Since mobile phones

are generally energy constrained and extending phone battery life is an essential requirement, using

smartphones for HAR thus requires features that are both light-weight (energy efficient) and accurate

(possess high discriminating power) to preserve battery life and ensure high accuracy. A large number

of frequency and time domain features has been investigated in the past with varying success rates. The

most widely used time domain features include: mean [8–10], variance or standard deviation [8,10],

energy [8–10], entropy [9], correlation between axes [8–10], signal magnitude area [11], tilt angle [11],
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autoregressive (AR) coefficients [12], and so on. The most popular frequency domain features used so far

are the Fast Fourier Transform (FFT) [13,30,31] and Discrete Cosine Transform (DCT) coefficients [32].

Frequency domain features require higher components to discriminate between different activities.

Their calculation requires longer time windows, and thus they increase computational cost and are not

suitable for real-time applications. On the other hand, time domain features can be easily extracted in

real-time. Therefore, they are popular in many practical accelerometer-based HAR systems. Although

activity recognition using time domain features was successful to some extent, the recognition results

using these features have not had a high success rate because such methods assume that activity

acceleration signals are deterministic. Therefore, it is still desireable to investigate what could be the

best features for real-time smartphone-based HAR.

In our previous work in this field, we proposed an artificial neural network based hierarchical

classification scheme that used a mix of different features to classify 15 activities with a high

accuracy [33]. The data in this system were collected using a commercial accelerometer device attached

to a subject’s chest. Though the system provided high accuracy, it was an off-line system in the sense that

the data were transferred to a computer by means of a bluetooth where further processing was carried

out. Moreover, it was not a truly subject-independent system as the same subjects took part in both

training and testing.

Accordingly, the contributions of this research are fourfold. Firstly, this work implements an

online HAR-system in which the whole recognition process (preprocessing, feature extraction and

classification) is done on a smartphone with a built-in accelerometer. Secondly, this study performs

exploratory data analysis of the 3-axes acceleration signals captured from the phone to find features that

are not only robust in representing these signals across multiple subjects but could also be computed in

real-time using small time windows and low sampling rate. Thirdly, it allows users to carry their phones

freely at 3 different positions. Lastly, the system was evaluated in a true subject-independent method,

using subjects that were not part of the training process, and at different sampling rates to find the most

accurate and light-weight features.

The rest of the paper is organized as follows. Section 2 discusses some related work. Section 3

explains the way this research study was carried out. Section 4 describes the data collection scheme.

Section 5 explains the algorithms that are used at different stages of our system. Section 6 summarizes the

implementation details, and experimental results. Section 7 provides some discussion, whereas Section 8

concludes the paper.

2. Related Work

HAR-using mobile phones with embedded accelerometers can be divided into two categories. The

first case is where the data is collected using a mobile phone and the activity recognition is done

afterwards on a PC/server [19–21,23–26,34,35]. The second case (which comprises of very few

studies) is where the complete activity recognition system runs purely on the smartphone (online

systems) [22,27–29]. The focus of this paper is the latter case.

Among the above mentioned server-based approaches, [34,35] implemented real-time HAR systems

on smartphones using the Thin-Client approach. Meaning, the raw acceleration data are sent to
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the server in real-time for feature extraction and classification. The classified labels are either sent

back to the mobile device, or stored on the server for later use. A server is expected to have better

processing, storage, and energy capabilities, which allows the use of more complex feature extraction

and classification methods. However, running a HAR system solely on a mobile device brings important

benefits. For example, it reduces the energy expenditures, as the system does not require the raw data to

be continuously transmitted to the server for processing. Such a system is more robust and responsive,

as it does not depend on unreliable wireless communication links that may be unavailable or error-prone.

This is a very important requirement for systems that require real-time decision making, such as medical

or military applications. Finally, a mobile HAR system is more scalable, as performing the feature

extraction and classification computations locally on the mobile device alleviates the server load.

In [28], Frank et al. introduced a system for activity and gait recognition for smartphones. The

presented system is capable of performing the classification in real-time and can be trained on a

smartphone. For their recognition system, the authors used geometric template matching as the feature

extraction technique and support vector machines as the classifier. Though the paper claims that the

presented system is capable of building new models and performing classification in real-time without

drastically reducing phones battery life, the article does not include crucial information such as sampling

frequency and classification rates, which makes it difficult to evaluate their system.

Kwapisz et al. [22] introduced a system that uses phone-based accelerometers to recognize six

activities with a very high accuracy. They used a total of 43 features. The data were collected from

29 subjects using a custom-build Android application. During data collection, subjects carried their

phones in their pants leg pockets. Each phone was configured to provide acceleration data at a sampling

frequency of 20 Hz. However, given a small sampling frequency, the authors had to select a longer

data-window (10 s) to obtain a high accuracy. Moreover, same subjects were used for both training and

testing the system.

In [29], the authors have presented a personalized mobile activity recognition system for smartphones.

Their system is capable of building and continuously updating the classification model on-board the

mobile device using data stream mining. However, just like [28], the paper has no mention of the overall

accuracy and the authors did not provide any details about the kind of features and the sampling rates

used in their work, which makes it difficult to evaluate their system.

Finally, in [27], a real-time mobile phone-based activity recognition system is introduced in which

both the model building and the classification task is performed on the device. The system was trained

using a total of 42 time domain features, and two classifiers (quadratic discriminant analysis and

k-nearest neighbors) were compared to recognize 5 activities. In this experiment, phones were configured

to provide raw acceleration data at a rate of 40 Hz. Though the system achieved good accuracy in online

experiments, it used a data-window of 7.5 s (slow response).

In conclusion, some excellent online approaches for smartphone-based activity recognition have been

developed by researchers in the past; however, 4 problems can be identified. Firstly, some works have

used high sampling rates whereas others have employed long data-windows to achieve a good accuracy.

Secondly, features were selected without any formal analysis of the acceleration data. Thirdly, these

works lacked experimental studies to see the effect of changing the sampling rate on the performance of

these features. Lastly, most of the works have used the same subjects for both training and testing their
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systems, and have tried to limit the phone to a certain position. Accordingly, we have tried to resolve

these issues in this work.

3. Methodology

This research work was carried out as following: (1) Activity acceleration data were collected from

30 subjects using 6 different sampling rates, and 3 different phone positions; (2) Exploratory data

analysis was performed on this data to find features that are both lightweight and efficient to ensure long

battery-life, fast response, and high recognition accuracy; (3) An accelerometer’s output can vary for

the same activity when carried in different positions, resulting in high within-class variance; therefore,

to enable activity recognition for different positions, a method was needed after feature extraction that

would suppress this variance. Several methods were studied for this purpose before selecting the Kernel

discriminant analysis (KDA); (4) All the algorithms (feature extraction, KDA, and the classifier) were

implemented in Java; (5) Classifiers were trained offline, and transferred to smartphones; (6) Lastly,

real-time evaluations were performed on phones using 10 new subjects.

4. Data Collection

For this research work, activity data were collected from 30 healthy subjects (18 males and

12 females) between the ages of 26 and 35 years old, with an average height of 172.4 cm and

average weight of 64 kg. Six common activities were selected: standing, walking, walking-upstairs,

walking-downstairs, running, and hopping. The smartphone used in this data collection was an Android

operating system based mobile phone called the LG Nexus 4. It is a smartphone from LG, equipped with

a built-in triaxial accelerometer. A custom build application was used for data collection and annotation.

The application had an added feature to adjust the sampling rate of the phone’s accelerometer sensor

prior to the data collection. Subjects were trained on the use of this application before data collection.

Subjects were also requested to perform the activities in a natural way, without any fixed duration or

seuqence. Each subject then collected the activity data at their homes in 6 sessions with a sampling rate

of 20 Hz, 40 Hz, 60 Hz, 80 Hz, 100 Hz, and 120 Hz, respectively. 20 Hz was selected as the base case

for model identification, validation and classification accuracy comparison. During the data collection,

the subjects were told to place the smartphone in the following 3 positions: pants’ left and right front

pockets, pants’ left and right back pockets, and jacket’s inner pocket. They were instructed to collect

roughly the same amount of data from each position. Initially the data were stored on the SD cards.

Later they were moved to a computer for further analysis in MATLAB.

5. System Algorithms

5.1. Preprocessing

A 3-axes accelerometer embedded in a mobile phone carried by a user registers 2 kinds of acceleration

along 3 dimensions (x, y, and z): a constant acceleration due to gravity, and any acceleration the mobile

device is subjected to by the user. In order to calculate the real acceleration of the device, the effect
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of gravity must be eliminated. This was be done by applying a low-pass filter which builds a weighted

average from all the history values. Thus, an abrupt peak will only push the mean value slowly. This

helps in isolating the constant acceleration due to gravity which can then be simply subtracted from the

sensor value to obtain the real acceleration of the device.

5.2. Exploratory Data Analysis (EDA) of Activity Data

EDA is a data analysis method that employs a variety of techniques (mostly graphical) to: maximize

insight into a data set; uncover underlying structure; extract important variables; detect outliers and

anomalies; test underlying assumptions; develop parsimonious models; and determine optimal factor

settings [36]. Most EDA techniques are graphical in nature and are quite simple. These include scatter

plots, lag plots, histograms, autocorrealtion plots, etc. These graphical tools are the shortest path to

gaining insight into a dataset in terms of model selection, model validation, relationship identification

and so on. In this work, the following EDA techniques were employed to find the model that can best

describe activity acceleration signals:

• Autocorrelation plot: Autocorrelation plots are commonly used tools for identifying a model that

can best describe a given time-series. Autocorrelation is the average of the product of a data sample

with a version of itself advanced by a lag. The autocorrelation plot can provide answers to the

following questions: (1) Is an observation related to adjacent observation? (2) Is the observed time

series white noise? (3) Is the observed time series autoregressive? The autocorrelation function is

described by the equation below,

rxx[k] =
1

N

N−k
∑

n=1

x[n] x[n+ k] (1)

where rxx[k] is the autocorrelation value of x at sample delay k, and N is the number of data

points. For a very small advance, the values of the two signals at any given instant will be very

similar. As the lag increases, the difference between the two values becomes larger. If a signal has

both a periodic and a random component, the latter gradually disappears as the lag increases. This

property is useful for extracting periodic signals from random noise [36].

• Lag plot: A lag plot performs the randomness check. In other words, it checks if a given time series

or signal is random or not. Random data do not exhibit any structure whereas non-random data

exhibit some sort of correlation in the lag plot [36]. A lag refers to a fixed time displacement.

For example, given a time series Y1, Y2, ..., YN , a plot of lag 1 is a plot of the values of Yi

versus Yi−1.

Figures 1 and 2 show the lag plots and autocorrelation plots for the 3 axes of standing, and walking.

(As for walking-upstairs, walking-downstairs, running, and hopping, please refer to Figures A1–A4 in

the appendix). For the lag plots, see the tight clustering of the data points along the diagonal for almost all

the activities. Such a behavior is a signature of a process with strong positive autocorrelation [36]. These

processes exhibit highly non-random behavior. In other words, there is a strong association between

an observation and a succeeding observation. Meaning, if you know Yi−1 you can make a strong guess
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as to what Yi will be. For autocorrelation plots, one can see (in most cases) a high autocorrelation at

lag 1 that slowly decreases. The decreasing autocorrelation is generally linear with some noise. Such an

autocorrelation plot siginifies the presence of strong autocorrelation in the data [36]. In conclusion, both

the lag plots and the autocorrelation plots show strong positive autocorrelation that suggests that the data

come from an underlying autoregressive process [37].

Figure 1. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of standing, showing strong positive autocorrelation, suggesting

that the data come from an underlying AR process.
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Figure 2. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of walking, showing strong positive autocorrelation, suggesting

that the data come from an underlying AR process.
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5.3. Noise Reduction

The lag plots and autocorrelation plots not only suggest that the activity acceleration signals exhibit

strong corrleation, but they also show the presence of some outliers (noise). Therefore, to remove this

noise a moving average filter of order 3 was employed in this work.

5.4. Data Modeling

5.4.1. Autoregressive (AR) Modeling

Since EDA showed that the activity acceleration signals are generated by an AR process, AR models

were used to model these signals. AR modeling utilizes the time history of a signal to extract important

information hidden in the signal. It is superior to many other methods, especially in biomedical signal

processing, as it can take advantage of the noise inherent in a biological system and extract information

from propagation of that noise in a signal.

An AR model predicts the current values of a time series from the past values of the same series.

Basically, the AR model may be regarded as a set of autocorrelation functions. AR modeling of a time

series is based on the assumption that the most recent data points contain more information than the

other data points, and that each value of the series can be predicted as a weighted sum of the previous

values of the same series plus an error term. The AR model is defined by

x[n] =
M
∑

i=1

aix[n− i] + ε[n] (2)

where x[n] is the current value of the time series which in our case is the activity acceleration-signal,

a1...aM are predictor (weighting) coefficients, M is the model order that indicates the number of past

values used to predict the current value, and ε[n] represents a one-step prediction error, i.e., the difference

between the predicted value and the current value at this point. Further details on AR modeling of a time

series can be found in [16].

5.4.2. Model Order and Window Length

There is no straightforward way to determine the correct AR model order. A proper order would yield

a good data fitting effect, while retaining a high data compression ratio. In order to determine the optimal

AR model order, we adapted the Akaike Information Criteria (AIC) [38].

Although, the root mean square error is generally used to achieve a good estimate of an AR model

order, it is still not the most appropriate. AIC is a measure of goodness of fit of an estimated model.

Based on the concept of entropy, AIC offers a relative measure of information lost when a given model

is used to describe a given time series. Given a dataset, several models are fitted and ranked according

to their AIC. The one having the lowest AIC is usually the best model for describing the dataset. AIC is

defined by

AIC = − 2Lm + 2m (3)

where Lm is the maximized log-likelihood and m is the number of parameters in the model. The index

takes into account both the statistical goodness of fit and the number of parameters that have to be
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estimated to achieve this particular degree of fit, by imposing a penalty for increasing the number of

parameters. Lower values of the index indicate the preferred model, as the one with the fewest parameters

that still provides an adequate fit to the data [38].

Before computing AIC for different orders, one must choose the window-length. Since the most

appropriate window-length is not known at this point, AIC values for different orders were computed

using a window-length of 1 s. Figure 3 shows the AIC plots for the 6 activities. Each AIC value in these

plots represents an average of the AIC values for the 3 axes. It can be seen that the AIC curves for almost

all the activities even out near the model order 10, i.e., 10 coefficients per axis, suggesting that 10 is the

most appropriate model order in this case.

Figure 3. The average AIC values for 3-axes plotted against model order for the 6 activities.

AIC curves for all activities tend to even out near 10, suggesting that 10 is the appropriate

model order in this case.
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The criteria used for selecting the most suitable window-length for the chosen model order, in this

work, is signal-to-noise ratio (SNR). For each activity, an AR-model of order 10 was fitted for windows

of different length (shortest window: 1 s, longest window: 10 s) for each axis. In each case, the model

was then used to generate a simulated signal and the SNR was computed for both the original and the

simulated signals as following:

SNR = 10 log

∑N

i=1
(v(i))2

∑N

i=1
(v(i)− v̄(i))2

(4)

where v(i) and v̄(i) are the original and the simulated signal at the i-th instant, and N is the length of

the modeled signal. The average SNR values for 3 axes, for 6 activities, and for different windows are

summarized in Figure 4. It can be seen that the SNR curves for almost all the activities even out near the

window-size of 3 s. After this point, no significant gain in the SNR values were obtained. Thus, it can
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be easily concluded that the window-size of 3 s, i.e., 60 samples per axis is the most appropriate, as it

offers the same goodness of fit as larger windows, and it is not too long to result in a delayed-response,

which is desirable considering the real-time requirements of a smartphone-based HAR system.

Figure 4. The average SNR values for 3 axes plotted against window-length for the

6 activities. SNR curves for all activities tend to even out near the window-size of 3 s

(10 per axis) suggesting that it is the appropriate window-length in this case.
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5.4.3. Model Validation

Once the model has been identified, its validity must be checked. The primary tool for model

diagnostic checking is the analysis of the residuals, i.e., the prediction error sequence. If the chosen

model is a good model for the data, the residuals should be white noise, drawn from a fixed distribution

with a constant mean and variance [37]. To validate whether the selected AR model of order 10, given a

window-length of 3 s, is a good model, this validation criteria was employed.

To validate the chosen model, the AR coefficients were estimated for each activity for a subject using

a certain sample. These parameters were then used to create copies of the modeled signals, which were

compared with the original data for the same activity from the same subject but from a different sample

to collect the residuals. Different samples were chosen to analyze how well a model estimated using a

certain sample can be used to fit data from a different sample.

Figure 5 shows the 3-axes lag plots and the autocorrelation plots for the residuals of walking for

1 subject. Both the lag plots and autocorrelation plots show that the data are random as they exhibit no

structure or correlation. In other words, one cannot infer the next value Yi from a current value Yi−1.

This indicates that the chosen AR model of order 10 is a good model.
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Figure 5. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes residuals of

walking show no structure or autocorrelation, suggesting that the data are white noise.
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5.5. Kernel Discriminant Analysis (KDA)

An accelerometers output is very sensitive to the position of the human body in which it is placed.

Figure 6 shows the activity acceleration signals for 5 phone-positions (trousers’ front pockets, trousers’

back pockets, and jacket’s inner pocket). These signals were captured while a subject walked along an

L-shaped corridor, carrying 5 phones (1 in each position). It clearly shows how different the output

of a smartphone’s accelerometer can be, for the same activity, when carried in different positions.

Such differences result in high within-class variance, which could lead to low classification accuracy.

Meaning, though AR coefficients show promise in serving as light-weight and efficient features for

smartphone-based HAR, the presence of high within-class variance limits their application. Therefore,

KDA was used to overcome this problem.

KDA is a non-linear discriminating approach, which seeks non-linear discriminating features using

kernel techniques. Suppose we have a set of m feature vectors x1,x2, · · · ,xm ∈ R3p belonging to C

activity classes where p is the AR-model order. Let

xi = [ax1, ax2, · · · , axp, ay1, ay2, · · · , ayp, az1, az2, · · · , azp]
T

(5)

where axi, ayi, and azi are the AR coefficients for 3 axes. We considered the problem in a feature space F

induced by some non-linear mapping ϕ : R3p → F . ϕ was chosen to be the radial basis function. For a

properly chosen ϕ, an inner product 〈, 〉 can be defined in F which makes for the so called reproducing the

kernel Hilbert space. More specifically, 〈ϕ (xi) , ϕ (xj)〉 = K(xi,xj) holds where K (., .) is a positive
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semi-definite kernel function. To find the linear discriminant in F , the following criterion needs to

be maximized

J(ω) =
ωTS

ϕ
b ω

ωTS
ϕ
wω

(6)

where ω is the KDA basis vector, S
ϕ
b and Sϕ

ware the between-class and within-class scatter matrices in

F , and are defined as

S
ϕ
b =

C
∑

k=1

mk(µ
k
ϕ − µϕ)(µ

k
ϕ − µϕ)

T (7)

Sϕ
w =

C
∑

k=1

(

mk
∑

i=1

(

ϕ
(

xk
i

)

− µk
ϕ

) (

ϕ
(

xk
i

)

− µk
ϕ

)T

)

(8)

where µk
ϕ and µϕ are the mean of the k-th class and the global mean, respectively. mk is the number of

samples in the k-th class. The solution to Equation (6) is a linear combination of ϕ(xi) with coefficients

αi such that

ω =
m
∑

i=1

αiϕ(xi) (9)

Let α = [α1, · · · , αm]
T

, and it can be proved that Equation (4) is equivalent to

J(α) =
αT

KWKα

αTKKα
(10)

and the optimal α(s) are given by the eigen vectors with respect to the maximum eigen values of

KWKα = λKKα (11)

where K is the kernel matrix (Kij = K(xi,xj)) and W is defined as

Wij =

{

1/mk, if xi and xj belong to k−th class

0, otherwise
(12)

For a new pattern x, its projection onto a KDA basis vector ω in F is calculated as

(ω, ϕ(x)) = αT
K(:,x) (13)

where

K(:,x) = [K(x1,x), · · · ,K(xm,x)]
T

(14)

For more details on KDA please refer to [39].
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Figure 6. Activity acceleration signals for walking from 5 different positions.
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5.6. Classifier

As for the classifier, we decided to use the standard, feed-forward, and backpropagation artificial

neural networks (ANNs) based on the findings of our previous study [12]. In that study, the

performance of several automatic classification methods, including decision trees [40] nearest neighbor

and Bayesian Networks [41] and ANNs [42], were compared. Finally, the ANNs were selected for their

better performance.

6. Experimental Results

The performance of using the AR coefficients as features for real-time/online activity recognition

was compared against 3 feature extraction methods: FFT and DCT coefficients (the 2 most commonly

used frequency domain features in traditional wearable accelerometer based AR systems), and a

42-dimensional time domain (TD) feature used in [27] (a smartphone based AR system).

These comparisons were performed using a subject-independent recognition test. Under this setting,

10 new subjects (6 males and 4 females) were recruited. These subjects belonged to different age groups:

2 subjects had the same age group as the subjects who collected the training data, 2 were aged between

18–20 years old, whereas the rest of the 6 subjects were between the ages of 45–50 years old. Moreover,

they also had different physical characteristics, i.e., height, weight, and built. The goal was to have our

models trained using data from a certain age group, and have them tested for subjects from different

age groups, and with different physical characteristics. The subjects carried phones with a custom-built

Android application for capturing the acceleration data, computing the features, classifying the activity,

and storing the true label, as well as the classified label, in a database.



Sensors 2013, 13 13112

Burg’s method [43], also called maximum entropy method, was implemented in Java for computing

the AR coefficients. FFT features were computed using FFTW [44], which is a C subroutine library for

computing the discrete Fourier transform (DFT). As for the DCT, we implemented the algorithm of Fast

Discrete Cosine Transform (FDCT) in Java. For TD features, a Java program was implemented following

the instructions provided in [27]. During training, features were computed offline using the dataset

described in Section 4. The same window-length, i.e., 3 s was used for computing each feature set.

KDA was implemented in Java, and applied to each feature set, and the resulting features were

used to train the ANNs. The ANNs were implemented using Neuroph, which is a Java neural network

framework. There were 24 ANNs in total: 6 ANNs, corresponding to 6 different sampling rates, for the

4 feature extraction methods. Each network had n input neurons (where n corresponds to the dimentions

of the feature vector after KDA), 1 hidden layer with 3 neurons, and 6 output neurons corresponding to

the 6 activities. A different number of hidden layers and neurons was tested for each ANN to optimize

the accuracy, and at the end, the given settings were chosen. Once trained, the ANNs were transferred to

the SD cards. Following 4 experiments were then performed to evaluate the proposed system.

6.1. First Experiment

In this experiment, each subject performed the same activities in a random order in 5 different sessions

over a period of one week. Each session was 20 min long. During this experiment, the phones were

configured to provide data at the sampling rate of 20 Hz. Four ANNs trained with KDA features, for the

4 feature extraction methods, using the 20 Hz training-data were used for classification. The

classification results were stored in a database. Finally, the recognition accuracy was evaluated by

comparing the recognized lables for the activities with their true lables. The recognition results for

FFT, DCT, TD, and AR-features are summarized in Tables 1–4, with an average accuracy of 45.41%,

48.55% , 67.58%, and 87.1%, respectively.

Table 1. The Confusion Matrix for ANN (20 Hz) with FFT-features (Unit: %).

Activity Standing Walking Running Upstairs Downstairs Hopping

Standing 40.5 12.6 7.5 12 13.4 11

Walking 9.6 44.4 13 9.5 12.5 12

Running 4.4 14.6 45 11.3 10.1 14.6

Upstairs 4 10.2 14 51 10.8 10

Downstairs 12.3 17.7 10 9.5 40.5 10

Hopping 7.5 10 9.3 9.5 12.7 51

Mean 45.41
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Table 2. The Confusion Matrix for ANN (20 Hz) with DCT-features (Unit: %).

Activity Standing Walking Running Upstairs Downstairs Hopping

Standing 49.5 10.6 5.5 9.2 12.6 12.6

Walking 8.5 46.5 10 9.5 12.5 13

Running 4 12.6 50 10.1 7.9 15.4

Upstairs 4 10.2 11 55.8 9 10

Downstairs 9 20 10 9 41.5 10.5

Hopping 6 10.5 12 10.5 13 48

Mean 48.55

Table 3. The Confusion Matrix for ANN (20 Hz) with TD-features (Unit: %).

Activity Standing Walking Running Upstairs Downstairs Hopping

Standing 94 2 0 1 1 2

Walking 2 56.5 5.5 14 15 7

Running 2 8 70 7 7 6

Upstairs 3 14 5 58 15 5

Downstairs 2 16 5 14 57 6

Hopping 2 6 9 6 7 70

Mean 67.58

Table 4. The Confusion Matrix for ANN (20 Hz) with AR-features (Unit: %).

Activity Standing Walking Running Upstairs Downstairs Hopping

Standing 95 1 0 0 4 0

Walking 1 86.1 3 1 6 2.9

Running 0 2 90 3 0 5

Upstairs 0 3.5 5 83.5 3 5

Downstairs 4 5.5 3 2 82.5 3

Hopping 2 2 5 2 3 86

Mean 87.1

6.2. Second Experiment

In this experiment, we studied the effect of increasing the sampling rate on the recognition accuracy

of each feature. The same 10 subjects performed 5 evaluation sessions (each 20 min long) with sampling

rates of 40 Hz, 60 Hz, 80 Hz, 100 Hz, and 120 Hz, respectively. In each evaluation session, the ANNs
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corresponding to the used sampling rate were used for classification. It should be noted that during the

first experiment, to get a fair comparision, first 10 FFT and DCT features were extracted from each axis

of the acceleration data before the application of KDA (just like the AR coefficients). However, for this

experiment, different number of features were extracted for both FFT and DCT, i.e., 40 per axis for FFT

and 48 per axis for DCT, as per the findings of [31,32], respectively. The number of TD features, on the

other hand, was kept constant in each experiment, i.e., 42. The classification results for this experiment

are summarized in Figure 7.

Figure 7. A comparison of the classification accuracies of AR, FFT, and DCT features for

different sampling rates. It can be seen that the AR-coefficients provided almost the same

accuracy for small and large sampling rates, whereas the other 3 needed a sampling rate of

almost 100 Hz (about 5-times the sampling rate for AR-features) to achieve a close accuracy.
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6.3. Third Experiment

In this experiment, we calculated the the energy consumption (in Joules) for different sampling rates

and features, for our representative phone: LG Nexus 4. The results are summarized in Figure 8.

The network interfaces and the display were powered off while obtaining these readings.

6.4. Fourth Experiment

As mentioned earlier, in this work KDA was used to overcome the with-in class variability caused

by placing the phones at different positions. In this experiment, we evaluated the advantage of using

this method. The same 10 subjects performed 5 evaluation sessions, corresponding to 5 positions. Each

session was 20 min long. Their phones were equipped with 2 ANNs: the first ANN was trained with AR

features (without KDA), whereas the second ANN was trained with KDA features that were obtained by

applying KDA on AR features. The sampling rate was 20 Hz. In all 5-evaluation sessions, the subjects

performed the same routine that consisted of a random sequence of the 6 activities, while choosing a

different position each time. The average recognition accuracies for different positions for all activities,
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and for all subjects (with and without KDA) are summarized in Table 5, which prove the advantage of

using this method.

Figure 8. Energy consumption for LG Nexus 4 for different sampling rates and feature

extraction methods.
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Table 5. The overall average recognition accuracies for 5 positions for all activities, and for

all subjects, using AR features at 20 Hz with and without KDA (Unit: %).

Position With KDA Without KDA

Pants’ front pocket (left) 87.1 74

Pants’ front pocket (right) 87.3 74.2

Pants’ back pocket (left) 87.2 73.6

Pants’ back pocket (right) 87 73.1

Jacket’s inner pocket 86.3 68.2

Mean 86.98 72.62

7. Discussions

It can be seen that the recognition rates for FFT, DCT, and TD features were low as compared to

AR features in the first experiment (the base case, with a sampling rate of 20 Hz). It does not mean

that these methods are not suitable for accelerometer-sensor based HAR. High recognition rates have

been achieved in the past using these methods when coupled with high sampling rates and large data

windows [27,31,32]. The findings of the second experiment support this fact, where the classification

accuracy using the AR-features changed by just 3% with the increase in the sampling rate; however,

the accuracy of FFT, DCT, and TD features improved significantly, and a comparable accuracy (though

still lower than that of the AR-features) was achieved with high sampling rates. However, such settings
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are not suitable for smartphone-based HAR systems, as employing high sampling rates increases energy

consumption (as shown in Figure 8), thereby reducing the battery life.

We can easily make the following observations from Figure 8: (1) The energy overhead in continuous

activity recognition on smartphones clearly increases with sampling rate; (2) It is less expensive to

utilize AR features, at almost all the sampling rates, as opposed to DCT and FFT features; (3) The

energy overhead of using TD features is almost the same as that of AR features; however, to achieve

a good recognition accuracy with TD features one must use a high sampling rate, coupled with long

data windows, which makes them more expensive than AR features. Thus the intensity and frequency

characteristics of activity acceleration signals, use of small time windows (3 s), low sampling rate

(20 Hz), and high recognition accuracy show the feasibility of using the AR coefficients as features

for subject-independent real-time smartphone-based HAR.

It should be noted that the training of ANN and the calculations of KDA basis vectors were done

offline, which were then transferred to the mobile device. During online recognition on the device,

KDA basis vectors and ANNs were simply used for data projection and classification, respectively. This

process is significantly light-weight as compared to the training phase, which happens offline. It is

the feature extraction that always happens on the device, and that is why this study focused on finding

light-weight and accurate features for online activity recognition on the phone.

When compared with some existing techniques, the recognition accuracy in this work (87.1%)

appears to be a bit lower. For example, [27] achieved an accuracy of 95.8% and 93.9% using quadratic

discriminant analysis and k-nearest neighbors, respectively. However, that is not the case. This difference

in accuracies can be attributed to 4 factors. Firstly, they employed a sampling rate of 40 Hz, which

is twice as much as the one used in our base case, i.e., 20 Hz. Secondly, the features in their work

were computed using a data-window of 7.5 s which is twice as big as the one used in this work, i.e.,

3 s. Thirdly, they used only pants’ front pockets to hold the device, whereas in our case, subjects

were allowed to carry their phones in 3 different positions. It should be noted that 5 out of 6 activities

considered in this work involve movement of the legs and choosing a pocket far from the legs (such as

a jacket’s inner pocket) can alter the output of the acceleration signal significantly, thereby introducing

a large within-class variance that can lead to a high number of misclassification. Finally, they used

7 subjects for online evaluation of their system, and only 3 of these subjects were those whose data

were not used to train the recognition model. On the other hand, in this study, online evaluation was

performed using 10 subjects none of who took part in training data collection. Moreover, these subjects

belonged to 3 different age groups, and had different physical characteristics. Given all these factors, an

accuracy of 87.1% appears to be very reasonable, especially given a low sampling rate of 20 Hz and a

small data-window of 3 s.

Though the implemented system works for different positions, it is still not ideal for a real-life

scenario as in real-life users can carry the phones anywhere while performing an activity, such as

holding the device in the hands, in a bag, or in a jacket’s side pockets, etc. Implementing such a system

requires features that are position/orientation independent. One possible solution could be to design

a standard/global reference coordinate space, project the original data (which might be coming from

different positions, each with its own local coordinate system) onto this reference space for the sake

of standardization, and then continue with feature extraction. However, this is just a hypothesis whose



Sensors 2013, 13 13117

evaluations require time. It will also need a large amount of acceleration data collected from various

different positions using a large number of subjects. Therefore, we plan to examine this hypothesis in

future studies.

Finally, though the system provides reasonable accuracy for subject-independent recognition, it is

still desirable to find ways to increase this accuracy further. One possibility could be to use the data

collected during the usage-state (when a phone with a trained classifier is being used by a new user for

online recognition) to improve the recognition rate for the new user. However, implementation of such

approaches becomes challenging in terms of computational complexity, and we plan to investigate this

issue in our future work.

8. Conclusions

This paper aims to show the suitability of using AR modeling as a feature extraction technique for

real-time subject-independent human activity recognition on a smartphone with a built-in accelerometer.

Acceleration data for 6 activities collected from multiple subjects, of different gender and age, were

analyzed to show that these signals are generated by an AR process, which makes AR coefficients a

suitable choice in representing them in the feature space.

It is shown that not only these models are robust in describing these signals across multiple subjects;

they do not require longer time windows and high sampling rate for their computation, too. This helps

in achieving fast/real-time response and preserving phone’s battery life. Moreover, the classification

results for our real-time subject-independent classification (using the subjects which were not part of the

training data) show that the chosen features outperformed the other commonly used methods by up to

40% in terms of accuracy for a sampling rate and a window-size of 20 Hz and 3 s, respectively.
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23. Győrbı́ró, N.; Fábián, Á.; Hományi, G. An activity recognition system for mobile phones. Mob.

Netw. Appl. 2009, 14, 82–91.

24. Lu, H.; Yang, J.; Liu, Z.; Lane, N.D.; Choudhury, T.; Campbell, A.T. The Jigsaw Continuous

Sensing Engine for Mobile Phone Applications. In Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, Zurich, Switzerland, 3–5 November 2010; pp. 71–84.

25. Sun, L.; Zhang, D.; Li, B.; Guo, B.; Li, S. Activity Recognition on an Accelerometer Embedded

Mobile Phone with Varying Positions and Orientations. In Proceedings of the 7th International

Conference on Ubiquitous Intelligence and Computing, Xi’an, China, 26–29 October 2010;

pp. 548–562.

26. Wang, S.; Chen, C.; Ma, J. Accelerometer Based Transportation Mode Recognition on Mobile

Phones. In Proceedings of the 2010 Asia-Pacific Conference on Wearable Computing Systems,

Shenzhen, China, 17–18 April 2010; pp. 44–46.
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Appendix

A. Lag and Autocorrelation Plots for Upstairs, Downstairs, Running, and Hopping

Figure A1. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of upstairs, showing strong positive autocorrelation (with some

noise), suggesting that the data come from an underlying AR process.
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Figure A2. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of downstairs, showing strong positive autocorrelation,

suggesting that the data come from an underlying AR process.
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Figure A3. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of running, showing strong positive autocorrelation (except for

the x-axis, which shows some noise), suggesting that the data come from an underlying

AR process.
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Figure A4. Lag plots (row 1) and autocorrelation plots (row 2) for the 3-axes

activity-acceleration signals of hopping, showing strong positive autocorrelation (except for

the z-axis, which shows some outliers), suggesting that the data come from an underlying

AR process.
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