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ABSTRACT

Dimension reduction is widely used and often necessary to make network analyses and their

interpretation tractable by reducing high-dimensional data to a small number of underlying

variables. Techniques such as exploratory factor analysis (EFA) are used by neuroscientists to

reduce measurements from a large number of brain regions to a tractable number of factors.

However, dimension reduction often ignores relevant a priori knowledge about the structure

of the data. For example, it is well established that the brain is highly symmetric. In this

paper, we (a) show the adverse consequences of ignoring a priori structure in factor analysis,

(b) propose a technique to accommodate structure in EFA by using structured residuals

(EFAST), and (c) apply this technique to three large and varied brain-imaging network

datasets, demonstrating the superior fit and interpretability of our approach. We provide

an R software package to enable researchers to apply EFAST to other suitable datasets.

INTRODUCTION

Using modern imaging techniques, it is possible to investigate brain networks involving many

regions, across different modalities such as grey matter volume, white matter tracts, and func-

tional connectivity. To examine the relation of these networks with external variables of interest,

it is often necessary to summarize them, using a small number of dimensions, often called

factors or components. These low-dimensional components representing the networks can be

tracked over the lifespan (de Mooij, Henson, Waldorp, & Kievit, 2018; DuPre & Spreng, 2017),

compared to behavioural measures (Colibazzi et al., 2008), or related to phenotypes such as

intelligence (Ferguson, Anderson, & Spreng, 2017). In the fields of statistics and mathematics,

suchmethods for making analyses tractable and interpretable are collectively called dimension

reduction.

Many popular dimension reduction techniques make use of covariance. For example, prin-

cipal components analysis (PCA) can be estimated using only a decomposition of the covari-

ance matrix. Covariance underlies many brain imaging and network analysis approaches, too:

in analysis of structural connectivity, regions of grey matter volume or white matter tractog-

raphy which covary across individuals may constitute connected networks (Alexander-Bloch,

Giedd, & Bullmore, 2013; Mechelli, Friston, Frackowiak, & Price, 2005), and in resting-state

fMRI analysis, regions which covary within an individual over time are considered to have a

functional connection (Van Den Heuvel & Pol, 2010). Thus, dimension reduction on the basis

of covariance matrices is directly applicable to the field of network neuroscience.
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Exploratory factor analysis with structure for brain network data

Exploratory factor analysis (EFA) is one such method for dimension reduction based onDimension reduction:
Summarizing a set of variables by
using a smaller set of components
or factors.

covariance. EFA models the observed covariance matrix of a set of P variables by assuming

there are M < P factors, which predict the values on the observed variables. Although other

techniques such as PCA and independent component analysis (ICA) are more common in neu-

roimaging analysis, EFA has been used since the early days of MRI (see McIntosh & Protzner,

2012, for a review and Machado, Gee, & Campos, 2004 for an early methodological investi-

gation). For instance, Tien et al. (1996) performed an EFA on 60 controls and 44 schizophrenia

patients for a selection of regions of interest, explicitly noting the high degree of left/right sym-

metry and a disruption of this symmetry in patients. Similarly early studies used EFA to model

morphology (Stievenart et al., 1997) and width (Denenberg, Kertesz, & Cowell, 1991) of the

corpus callosum. Some approaches combined structural equation modeling (SEM) and PCA toStructural equation model:
Method for estimating latent
variables and their relations by
using observed covariances,
assuming linearity and normally
distributed residuals.

model latent factors of grey matter structure in clinical populations (Yeh et al., 2010). These

approaches have also been used to study typical population of children and adults (Colibazzi

et al., 2008). More recently, EFA has been used to reduce individual differences in white matter

microstructure in clinical populations (Herbert et al., 2018), as well as (extremely) large-scale

population studies (Cox et al., 2016). Hybrid approaches have combined exploratory and

confirmatory factor analysis approaches (Baskin-Sommers, Neumann, Cope, & Kiehl, 2016;Confirmatory factor analysis:
Factor model where the factor
loading structure is predefined based
on theory; typically, each factor only
predicts a subset of the observed
variables.

de Mooij et al., 2018) and used EFA in multimodal structural acquisitions (Mancini et al.,

2016). EFA has also been used for functional imaging, including both fMRI (e.g., James et al.,

2009) and EEG (Scharf & Nestler, 2018; Tucker & Roth, 1984). Most excitingly, recent work has

used EFA to compare and contrast patterns of individual differences in brain structure at base-

line with individual differences in developmental change over time, noting striking differences

in dimensionality of change versus cross-sectional differences (Cox et al., 2020). Although the

above is not intended to be a comprehensive review, it shows that EFA has been used widely

in the imaging literature since early days.

Many related dimension reduction techniques exist beyond EFA, including partial least

squares (PLS), ICA, spectral decomposition, and many more beyond our current scope

(see Roweis & Ghahramani, 1999; Sorzano, Vargas, & Montano, 2014). All of these tech-

niques aim to approximate the observed data by means of a lower dimensional representation.

These techniques, although powerful, share a particular limitation, at least in their canonical

implementations, namely that they cannot easily integrate prior knowledge of (additional) co-

variance structure present in the data. In other words, all observed covariation is modeled by

the underlying factor structure.

This limitation is relevant in the context of structural and functional brain connectivity data

because of symmetry: Much like other body parts, contralateral (left/right) brain regions are

highly correlated due to developmental and genetic mechanisms which govern the gross mor-

phology of the brain. Ignoring this prior information will adversely affect the dimension re-

duction step, leading to worse representation of the high-dimensional data by the extracted

factors. Simple workarounds, such as averaging left and right into a single index per region,

have other drawbacks: they throw away information, preclude the discovery of (predominantly)

lateralized factors, and prevent the study of (a)symmetry as a topic of interest in and of itself.

Other classes of techniques, developed largely within psychometrics, can naturally ac-

commodate additional covariance structure such as symmetry. These techniques started with

multitrait-multimethod (MTMM) matrices (Campbell & Fiske, 1959) and later confirmatory fac-
Multitrait-multimethod model:
Factor model which also assumes
there is residual covariance between
some variables because they are
measured using the same method.

tor analysis (CFA) with residual covariances (e.g., Kenny, 1976). MTMM is designed to extract

factors when these factors are measured in different ways: whenmeasuring personality through

a self-report questionnaire and behaviour ratings, there are factors that explain correlation
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Exploratory factor analysis with structure for brain network data

among items corresponding to a specific trait such as “extraversion,” and there are factorsResidual covariance:
Covariance among unexplained parts
of variables, after taking into account
the model (in this case the factors).

that explain additional correlation between items because they are gathered using the same

methods (self-report and behavioural ratings). Thus MTMM techniques separate the correlation

matrix into two distinct, summative parts: correlation due to the underlying traits (factors) of

central interest, and correlation due residual structure in the measurements. However, MTMM

requires a priori knowledge of the trait structure (e.g., the OCEAN model of personality) for

estimation.

In this paper, we combine dimension reduction (e.g., across many brain regions) and prior

structure knowledge (e.g., symmetry) by introducing EFA with structured residuals (EFAST).

EFAST builds on standard implementations of EFA, CFA, and MTMM, but goes beyond these

techniques by simultaneously allowing for exploration and the incorporation of residual struc-

ture.We show that EFAST outperforms EFA in empirically plausible scenarios, and that ignoring

the problem of structured residuals in these scenarios adversely affects inferences.

This paper is structured as follows. First, we explain why using standard EFA or CFA for

brain imaging data may lead to undesirable results, and we develop EFAST based on novel

techniques from SEM. Then, we show that EFAST performs well in simulations, demonstrating

superior performance compared to EFA in terms of factor recovery, factor covariance estima-

tion, and the number of extracted factors when dealing with symmetry. Third, we illustrate

EFAST in a large neuroimaging cohort (Cam-CAN; Shafto et al., 2014). We illustrate EFAST for

three distinct datasets: grey matter volume, white matter microstructure, and within-subject

fMRI functional connectivity. We show how EFAST outperforms EFA both conceptually and

statistically in all three datasets, showing the generality of our technique. We conclude with

an overview and suggestions for further research.

Accompanying this paper, we provide tools for researchers to use and expand upon with

their own datasets. These tools take the form of (a) an R package called EFAST and a tutorial with

example code (van Kesteren & Kievit, 2020a), and (b) synthetic data and code to reproduce

the empirical examples and simulations (van Kesteren & Kievit, 2020b).

FACTOR ANALYSIS WITH STRUCTURED RESIDUALS

In this section, we compare and contrast existing approaches in their ability to perform factor

analysis in an exploratory way while at the same time accounting for residual structure. We

discuss new developments in the field of exploratory structural equation modeling (ESEM) that

enable simultaneous estimation of exploratory factors and structured residuals, after which

we develop the EFAST model as an ESEM with a single exploratory block. We will use brain

morphology data with bilateral symmetry as our working example throughout, although the

principles here can be generalized to datasets with similar properties.

EFA, as implemented in software programs such as SPSS, R, andMplus, models the observed

correlation matrix through two summative components: the factor loading matrix Λ, relating

the predefined number M of factors to the observed variables, and a diagonal residual variance

matrix Θ, signifying the variance in the observed variables unexplained by the factors. Using

maximum likelihood, principal axis factoring, or least squares (Harman & Jones, 1966), the

factor loadings and residual variances are estimated such that the implied correlation matrix
Factor loadings:
Weights matrix indicating the
strength of the association between
each latent factor and each
observed variable.

Σ = ΛΛ
T +Θ best approximates the observed correlation matrix S. After estimation, the factor

loadings are rotated to their final interpretable solution by using objectives such as oblimin,

varimax, or geomin (Bernaards & Jennrich, 2005).
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Exploratory factor analysis with structure for brain network data

Figure 1. Example observed correlation matrix and its associated decomposition according to EFA
(top) and according to CFA (bottom) into a factor-implied correlation component (ΛΨΛ

T), residual
variance component Θ, and—in CFA with residual structure only—residual structure component.

We illustrate the challenge and the rationale behind our approach in Figure 1. The true

correlation matrix is highlighted on the left, with correlations due to three factors shown as

diagonal blocks. However, there is also considerable off-diagonal structure: the secondary

diagonals show a symmetry pattern similar to that observed in real-world brain structure data

(Taylor et al., 2017). The top panel of Figure 1 shows that a traditional EFA approach will

separate this data matrix into two components: (a) covariance due to the hypothesized factor

structure and (b) the diagonal residual matrix. The key challenge is that EFA will attempt to

approximate all the off-diagonal elements of the correlation matrix through the factors, even

if this adversely affects the recovery of the true factor structure. Performing EFA with such a

symmetry pattern may affect the factor solution in a variety of ways. For instance, in this toy

example, the EFA model requires more than 12 factors to represent the data, instead of the

3 factors specified (see Supporting Information Figure S1). In other words, in such cases it is

essential to incorporate the known residual structure via a set of additional assumptions.

As an alternative to EFA, we may implement a CFA instead. In contrast to EFA, CFA im-

poses a priori constraints on the Λ matrix: some observed variables do not load on some

factors. Moreover, in contrast to standard EFA approaches, residual structure can be easily im-

plemented in CFA by using standard SEM software such as lavaan (Rosseel, 2012). In other

words, CFA would allow us to tackle the problem in Figure 1: We can allow for the residual

structure known a priori to be present in the data. By allowing for the residual structure in the

data, a CFA yields the implied matrices shown in the bottom panel of Figure 1, retrieving the

correct factor loadings, residual variance, and residual structure. However, this is only possible

because in this toy example we know the factor structure. In many empirical situations this is

precisely what we wish to discover. In the absence of theory about the underlying factors, it is

thus not possible to benefit from these features of CFA.

As such, we need an approach that can combine the strengths of EFA (estimating the fac-

tor structure in the absence of strong a priori theory) with those from CFA (the potential to
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Exploratory factor analysis with structure for brain network data

allow for a priori residual structure). Here, we propose a hybrid between the two, which we

call exploratory factor analysis with structured residuals, or EFAST. In order to implement and

estimate these models, we make use of recent developments in the field of SEM. In the next

section, we explain how these developments make EFAST estimation possible.

Exploratory SEM

Exploratory SEM (ESEM) is an extension to SEM which allows for blocks of exploratory fac-

tor analysis within the framework of confirmatory SEM (Asparouhov & Muthén, 2009; Brown,

2006; Guàrdia-Olmos, Peró-Cebollero, Benítez-Borrego, & Fox, 2009; Jöreskog, 1969; Marsh,

Morin, Parker, & Kaur, 2014; Rosseel, 2019). ESEM is a two-step procedure. In the first step,

a regular SEM model is estimated, where each of the EFA blocks have a diagonal latent co-

variance matrix Ψ and the Λ matrix of each block is of transposed echelon form, meaning all

elements above the diagonal are constrained to 0. For a nine-variable, three-factor EFA block

b the matrices would then be:

Ψb =







1 0 0

0 1 0

0 0 1






, Λb =





































λ11 0 0

λ21 λ22 0

λ31 λ32 λ33

λ41 λ42 λ43

λ51 λ52 λ53

λ61 λ62 λ63

λ71 λ72 λ73

λ81 λ82 λ83

λ91 λ92 λ93





































Thismeans there are M2
b constraints for each EFA block b. This is the same number of constraints

as conventional EFA (Asparouhov & Muthén, 2009). The second step in ESEM is to rotate the

solution by using a rotation matrix H. Just as in regular EFA, this rotation matrix is constructed

using objectives such as geomin or oblimin. In ESEM, the rotation affects the factor loadings

and latent covariances of the EFA blocks, but also almost all other parameters in the model

(Asparouhov & Muthén, 2009) provide an overview of how rotation changes these parameter

estimates). Despite these changes, a key property of ESEM is that different rotation solutions

lead to the same overall model fit.

ESEM has long been available only in Mplus (Asparouhov & Muthén, 2009; Muthén &

Muthén, 1998). More recently, it has become available in open sourced R packages psych (for

specific models, Revelle, 2018) as well as lavaan (since version 0.6-4, Rosseel, 2019)—a

comprehensive package for structural equation modeling. An example of a basic EFA model

using lavaan syntax with three latent variables and nine observed variables is the following:

efa(‘‘block1’’)*F1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

efa(‘‘block1’’)*F2 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

efa(‘‘block1’’)*F3 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

In effect, this model specifies three latent variables (F1, F2, and F3) which are each indi-

cated by all nine observed variables (x1 to x9). The efa(‘‘block1’’) part is a modifier for

this model which imposes the constraints on Ψ and Λ mentioned above. For a more detailed

explanation of the lavaan syntax, see Rosseel (2012). Figure 2 shows a comparison of the

factor loadings obtained using conventional factor analysis (factanal() in R) and lavaan’s

Network Neuroscience 5
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Exploratory factor analysis with structure for brain network data

Figure 2. Exploratory factor analysis of nine variables in the Holzinger and Swineford (1939)
dataset. On the y-axis are the estimated factor loadings using the oblimin rotation functionality in
lavaan version 0.6-4, and the loadings on the x-axis are derived from factanal with oblimin
rotation from the GPArotation package (Bernaards & Jennrich, 2005). The loadings are all on the
diagonal with a correlation of 1, meaning the solutions obtained from these different methods are
equal.

efa() modifier. As shown, the solution obtained is exactly the same, with perfect correlation

among the loadings for each of the factors.

With this tool as the basis for model estimation, the next section provides a detailed devel-

opment of the construction of EFAST models.

EFAST Models

We propose using EFA with corrections for contralateral covariance within the ESEM frame-

work. The corrections we propose are the same as in MTMM models or CFA with residual co-

variance. In EFAST the method factors use CFA, and the remaining correlations are explained

by EFA. Thus, unlike standard MTMM methods, EFAST contains exploratory factor analysis on

the trait side, as the factor structure of the traits is unknown beforehand: the goal of the analysis

is to extract an underlying low-dimensional set of features which explain the observed corre-

lations as well as possible. For our running example of brain imaging data with contralateral

symmetry, we consider each region of interest (ROI) a “method” factor, loading on only two

regions. Note that in the context of brain imaging, Lövdén et al. (2013, Figure 1, model A) have

had similar ideas, but their factor analysis operates on the level of left-right combined ROIs

rather than individual ROIs.

The EFAST model has M exploratory factors in a single EFA block, and one method factor

per homologous ROI pair, each with loadings constrained to 1 and its own variance estimated.

The estimated variance of the method factors then represents the amount of covariance due to

symmetry, over and above the covariance represented by the traits. In Figure 3, the model is

displayed graphically for a simplified example with six ROIs in each hemisphere.

An alternative parametrization for this model is also available. Specifically, we can use the

correlations between the residuals of the observed variables instead of method factors with

freely estimated variances. In the SEM framework, this would amount to moving the symmetry

structure from the factor-explained matrix (ΛΨΛ
T) to the residual covariance matrix Θ. This

model is exactly equivalent, meaning the same correlation matrix decomposition, the same

factor structure, and the samemodel fit will be obtained. However, we favour the method factor

parametrization as it is closer to MTMM-style models, it is easier to extract potentially relevant

Network Neuroscience 6
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Exploratory factor analysis with structure for brain network data

Figure 3. EFAST model with morphology of six regions of interest measured in the left hemisphere
(LH) and right hemisphere (RH). The dashed lines indicate fixed loadings, and the two-headed ar-
rows indicate variance/covariance parameters. Themethod factors are constrained to be orthogonal,
and the loadings of the M traits are estimated in an exploratory way.

metrics such as a “lateralisation coefficient,” and easier to extend to other data situations where

multiple indicators load on each method factor.

To implement the EFAST model we use the package lavaan, which allows for easy scaling

of the input data, different estimation methods, missing data handling through full informa-

tion maximum likelihood, and more. Estimation of the model in Figure 3 can be done with a

variety of methods. Here we use the default maximum likelihood estimation method as im-

plemented in lavaan. Accompanying this paper, we are making available a convenient R

package called efast that can fit EFAST models for datasets with residual structure due to

symmetry. For more implementation details, the package and its documentation can be found

at https://github.com/vankesteren/efast.

In the next section, we show how our implementation of EFAST compares to regular EFA

in terms of factor loading estimation, factor covariance estimation, as well as the estimated

number of factors.

SIMULATIONS

In this section, we use simulated data to examine different properties of EFAST models when

compared to regular EFA in controlled conditions. The purpose of this simulation is not an

exhaustive investigation, but rather a pragmatically focused study of data properties (neuro)

scientists wishing to use this technique are likely to encounter. First, we explain how data

were simulated to follow a specific correlation structure, approximating the general structure

of empirical data such as that in the Cam-CAN study (see Empirical Examples section). Then,

we investigate the effects of structured residuals on the extracted factors from EFA and EFAST:

in several different conditions, we investigate how the estimation of factor loadings, the co-

variances between factors, and the number of factors changes with increasing symmetry.

Network Neuroscience 7
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Exploratory factor analysis with structure for brain network data

Data Generation

Data were generated following a controlled population correlation matrix Σtrue. This matrix

represents the true correlation between measurements of brain structure in 17 left-hemisphere

and 17 right-hemisphere ROIs. An example correlation matrix from our data-generating mech-

anism is shown in Figure 4.

Σtrue was constructed through the summation of three separate matrices, as in the lower

panel of Figure 1:

1. The factor component Σ f actor is constructed as ΛΨΛ
T, where the underlying factor co-

variance matrix Ψ can be either an identity matrix (orthogonal factors) or a matrix with

nonzero off-diagonal elements (oblique factors). There are four true underlying factors

in this simulation. One of the factors is completely lateralized (top left, highlighted in

green), meaning that it loads only on ROIs in the left hemisphere. An additional illustra-

tion of this left-hemisphere factor is shown in Figure 5. The remaining three factors have

both left- and right-hemisphere indicators.

2. The structure component matrix is a matrix with all 0 elements except on the second-

ary diagonal, that is, the diagonal elements of the bottom left and top right quadrant

are nonzero. The values of these secondary diagonals determine the strength of the

symmetry.

3. The residual variance component matrix is a diagonal matrix where the elements are

chosen such that the diagonal of Σtrue is 1.

Figure 4. Example covariance matrix of the data-generating mechanism used in the simulations.
This matrix results from simulated data of 650 brain images, with a factor loading of .595 for the
lateralized factor, a loading of .7 for the remaining factors, a factor correlation of .5, and a symmetry
correlation of .2. The first 17 variables indicate regions of interest (ROIs) in the left hemisphere, and
the remaining variables indicate their contralateral homologues. Note the secondary diagonals,
indicating contralateral symmetry, and the block of eight variables in the top left resulting from the
lateralized factor.
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Exploratory factor analysis with structure for brain network data

Figure 5. Example lateralized factor (the first factor in the simulation). Grey matter volume in eight
left-hemisphere regions of interest are predicted by the value on this factor.

For the following sections, data were generated with a sample size of 650, 130, or 65, a

latent correlation of either 0 or 0.5, bilateral factor loadings of 0.5 or 0.7, lateral factor loadings

of .425 or .595, and contralateral homology correlations of either 0 (pure EFA), 0.2 (minor

symmetry), or 0.4 (major symmetry). These conditions were chosen to be plausible scenarios,

similar to the observed data from our empirical examples. In each condition, 120 datasets

were generated on which EFA and EFAST models with four factors were estimated. Thus, in

each analysis the true number of factors is correctly specified before estimation. In the last

simulation we then explore different criteria for the choice of number of factors in the case of

contralateral symmetry.

Effect of Structured Residuals on Factor Loadings

In this section, we compare estimated factor loadings from EFA and EFAST to the true factor

loadings from the simulation’s data-generating process. For each condition, 120 datasets were

generated, to which both EFA and EFAST models were fit. The factor loading matrix for each

model was then extracted, the columns reordered to best fit the true matrix, and the mean

absolute error of the factor loadings per factor was calculated.Mean absolute error:
In a simulation study, the absolute
difference between the estimated
and the true parameter values.

As hypothesized, allowing structured residuals affects how well the factor loadings are es-

timated from the datasets. Notably, as shown in Figure 6 when performing regular EFA, the

estimation error of the factor loadings increases when the symmetry becomes stronger, whereas

the factor loading estimation error for the EFASTmodel remains at the level of regular EFAwhen

there is no symmetry. Looking at the lateralized factor in particular, the adverse effect of omit-

ting symmetry in dimension reduction becomes even stronger: in EFA, the lateralized factor

becomes bilateral, leading to a larger error and an incorrect inference regarding the nature

of the thus estimated factor. Although Figure 6 shows only the condition with a sample size

of 650, factor loadings of 0.5, and factor covariance of 0.5, the pattern is similar for different
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Exploratory factor analysis with structure for brain network data

Figure 6. Mean absolute error for factor loadings of EFA versus EFAST models with increasing
amounts of contralateral symmetry correlation. This plot comes from the condition where the sam-
ple size is 650, the covariance of the latent variables is 0.5, and the factor loadings are 0.5. The
plot shows that for both bilateral and lateralised factors, EFA starts to exhibit more error as sym-
metry increases, more so for the lateral factor, whereas EFAST performance is nominal over these
conditions. Error bars indicate 95% Wald-type confidence intervals.

sample sizes, different factor loading strengths, and with no factor covariance (see Supporting

Information Figures S2 and S3).

In addition, sample size analysis shows that EFAST and EFA show moderate to high con-

vergence rates for small (65) to moderate (130) sample sizes (see Supporting Information

Figure S4). Although other drawbacks of smaller sample sizes remain (e.g., imprecise esti-

mates, favouring of insufficiently complex models), this shows the feasibility, in principle, of

using such analyses in commonly available sample sizes. To assess whether a particular com-

bination of sample size, atlas dimensionality (i.e., number of regions) and strength of factor

loadings is feasible for analysis using EFAST, we recommend a simulation approach. Software

packages such as lavaan offer versatile tools to generate data under various specifications, al-

lowing researchers to see whether a particular analysis is in principle feasible under certain

idealized conditions before proceeding with real data.

Results from this section suggest that for the purpose of factor loading estimation, EFA and

EFAST perform equally well in the case where a model without residual structure is the true

underlying model, but EFAST outperforms EFA when residual structure in the observed data

becomes stronger. In other words, implementing EFAST in the absence of residual structure

does not seem to have negative consequences for estimation error, suggesting it may also be a

useful default if a specific residual structure is thought, but not known, to exist. This is in line

with Cole, Ciesla, and Steiger (2007), who argue that in many situations including correlated

residuals does not have adverse effects, but omitting them does.
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Exploratory factor analysis with structure for brain network data

Effect of Structured Residuals on Factor Covariances

Here, we compare how well EFA and EFAST retrieve the true factor covariance values. For both

methods, we used geomin rotation with an epsilon value of 0.01 as implemented in lavaan

0.6.4 (Rosseel, 2019). The matrix product of the obtained rotation matrix H then represents

the estimated factor covariance structure of the EFA factors: ΨEFA = HT H (Asparouhov &

Muthén, 2009, eq. 22).

The mean of the off-diagonal elements of the ΨEFA matrix were then compared to the true

value of 0.5 for increasing symmetry strength. The results are shown graphically in Figure 7.

Here, it can be seen that with this rotation method the latent covariance is underestimated in

all cases, although less so with stronger factor loadings. Furthermore, EFA performs worse as

the symmetry increases, whereas the performance of EFAST remains stable regardless of the

degree of contralateral homology, again suggesting no adverse effects to implementing EFAST

in the absence of contralateral correlations. In the case of uncorrelated factors (not shown),

the two methods perform similarly well.

The results from this section show that in addition to better factor recovery for EFAST, the

recovery of factor covariance is also improved relative to EFA. Again, even when the data-

generating mechanism does not contain symmetry, EFAST performs at least at the level of the

EFA model. Note that in this case the overall model fit in terms of AIC and BIC is slightly

better for the EFA model, as it has fewer parameters: for factor loadings of .5 and no symmetry,

the mean AIC is 60148 (EFA) versus 60164 (EFAST), and BIC is 60882 (EFA) versus 60974

(EFAST). This, together with the comparable convergence rates for most conditions (Supporting

Information Figure S4), suggests that it is viable to use EFAST as a “keep it maximal” strategy

Figure 7. Latent covariance estimates for different levels of contralateral homology correlation.
The true underlying latent covariance is 0.5; both methods underestimate the latent covariance but
EFA becomes more biased as symmetry increases. Error bars indicate 95% Wald-type confidence
intervals.
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Exploratory factor analysis with structure for brain network data

(Barr, Levy, Scheepers, & Tily, 2013), where EFAST can be used initially with no drawbacks,

but one can use model evidence to favour classical EFA instead.

Effect of Structured Residuals on Model Fit

In the above analyses, the number of factors was specified correctly for each model estimation

(using either EFA or EFAST). However, in empirical applications the number of factors will

rarely be known beforehand, so has to be decided on the basis of some criterion. A common

approach to extracting the number of factors, aside from computationally expensive strategies

such as parallel analysis (Horn, 1965), is model comparison through information criteria suchInformation criterion:
An indicator weighing model fit
(likelihood) and model complexity
(number of parameters); lower
values indicate better models.

as the AIC or BIC (e.g., Vrieze, 2012). In this procedure, models with increasing numbers of

factors are estimated, and the best fitting model in terms of these criteria is chosen.

In this simulation, we generated 100 datasets as in Figure 4, i.e., strong loadings andmedium

symmetry, and we fit EFA and EFAST models with 2 to 10 factors. Across these solutions we

then compute the information criteria of interest. Here we choose the two most common infor-

mation criteria (the AIC and BIC) as well as the sample size adjusted–BIC (SSABIC), as this is the

default in the ESEM function of the psych package (Revelle, 2018). The results of this proce-

dure are shown in Figure 8. Each point indicates a fitted model. The means of the information

criteria are indicated by the solid lines.

The plot in Figure 8 shows that across all factor solutions, EFAST shows better fit than EFA,

suggesting the improvement in model fit outweighs the additionally estimated parameters.

As the number of requested factors increases beyond optimality, this model fit improvement

diminishes as EFA explains more of the symmetry structure through the additional factors.

In general, the Akaike information criterion (AIC) tends to overextract factors, the Bayesian

information criterion (BIC) slightly underextracts, and the SSABIC shows the best extraction

Figure 8. AIC and BIC values for increasing number of factors with EFA and EFAST models. Lines
indicate expectations: the vertices are at the mean values for these criteria. The true number of
factors is 4 (dashed vertical line).
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Exploratory factor analysis with structure for brain network data

performance (see also Supporting Information Figure S5). In practice, therefore, we suggest us-

ing SSABIC for determining the number of factors when model fit is of primary concern. Note

that a researcher may also wish to determine the number of factors based on other considera-

tions, such as usability in further analysis, estimation tractability, or theory.

EFAST IN PRACTICE: MODELING BRAIN IMAGING DATA

In the field of cognitive neuroscience, a large body of work has demonstrated close ties be-

tween individual differences in brain structure and concurrent individual differences in cogni-

tive performance such as intelligence tasks (e.g., Basten, Hilger, & Fiebach, 2015). Moreover,

different aspects of brain structure can be sensitive to clinical and preclinical conditions such

as grey matter for multiple sclerosis (Eshaghi et al., 2018), white matter hyperintensities for

cardiovascular factors (Fuhrmann et al., 2019), and white matter microstructure for conditions

such as ALS (Bede et al., 2015), Huntingtons (Rosas et al., 2010), and many other conditions.

However, one perennial challenge in imaging is how to deal with the dimensionality of

imaging data. Depending on the spatial resolution, a brain image can be divided into as many

as 100,000 individual regions, or voxels, rendering mass univariate approaches vulnerable to

issues of multiple comparison. An alternative approach is to focus on sections called regions

of interest (ROIs) defined either anatomically (e.g., Desikan et al., 2006) or functionally (e.g.,

Schaefer et al., 2018). However, this only solves the challenge of dimensionality in part, by

grouping adjacent voxels into meaningful regions. An emerging approach is therefore to study

how neural measures covary across populations or time, either in these ROIs (Sripada et al.,

2019) or at the voxel level (DuPre & Spreng, 2017). This offers a promising strategy to reduce

the high-dimensional differences in brain structure into a tractable number of components, or

factors, not limited by spatial adjacency.

However, standard techniques such as EFA or PCA do not easily allow for the integration

of a fundamental biological fact: that there exists strong contralateral symmetry between brain

regions, such that any given region (e.g., the left lingual gyrus) is generally most similar to the

same region on the other side of the brain. Here, we show how we can combine the strengths

of exploratory data reduction with the integration of a priori knowledge about the brain into a

more sensible, anatomically plausible factor structure which can either be pursued as an object

of intrinsic interest or used as the basis for further investigations (e.g., which brain factors are

most strongly associated with phenotypic outcomes).

Empirical Example: Grey Matter Volume

Data Description The data we use is drawn from the Cambridge Centre for Ageing and Neu-

roscience (Shafto et al., 2014; Taylor et al., 2017). Cam-CAN is a community derived lifespan

sample (ages 18–88) of healthy individuals. Notably, the raw data from the Cam-CAN cohort is

freely available through our data portal https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.

The sample we discuss here is based on 647 individuals. For the purposes of this project we use

morphometric brain measures derived from the T1 scans. Specifically, we used theMindboggle

pipeline (Klein et al., 2017) to estimate region-based grey matter volume, using the underlying

freesurfer processing pipeline. To delineate the regions, we here use the Desikan–Killiany–

Tourville atlas for determining the ROIs (Klein & Tourville, 2012) as illustrated in Figure 9.
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Exploratory factor analysis with structure for brain network data

Figure 9. Desika–Killiany–Tourville atlas used in the empirical illustration, as included in the
ggseg package (Mowinckel & Vidal-Piñeiro, 2019).

Figure 10. Correlation plot of cortical grey matter volume in 647 T1 weighted images of the Cam-
CAN sample, estimated through Mindboggle in 34 brain regions in each hemisphere according to
DKT segmentation. Numbers on the colour scale indicate the strength of the estimated correla-
tion, with darker blue indicating stronger positive correlations. Secondary diagonal lines are visible
indicating correlation due to contralateral homology.
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Exploratory factor analysis with structure for brain network data

We focus only on grey matter (not white matter) and only on cortical regions (not subcor-

tical or miscellaneous regions such as ventricles) with the above atlas, for a total of 68 brain

regions. The correlation matrix of regional volume metrics is shown in Figure 10, where the

first 34 variables are ROIs in the left hemisphere, and the last 34 variables are ROIs in the

right hemisphere. The presence of higher covariance due to contralateral homology is clearly

visible in the darker secondary diagonal ‘stripes’ which show the higher covariance between

the left/right version of each anatomical region. Our goal is to reduce this high-dimensional

matrix into a tractable set of ‘brain factors,’ which we may then use in further analyses, such

as differences in age sensitivity, in a way that respects known anatomical constraints.

The default estimation using EFA will attempt to account for the strong covariance among

homologous regions seen in this data, meaning it is unlikely for, say, the left insula and the

right insula to load on different factors, and/or for a factor to be characterized only/mostly by

regions in one hemisphere. To illustrate this phenomenon, we first run a six-factor, geomin-

rotated EFA for the above data (the BIC suggests six factors for this data using the EFAST model).

The factor loadings for each ROI in the left and right hemispheres are plotted in Figure 11. A

strong factor loading for a ROI in the left hemisphere is likely to have a strong factor loading in

the right hemisphere due to the homologous correlation, as shown by the strong correlations

for each of the factors.

In EFA, the resulting factors thus inevitably capture correlation due to contralateral symme-

try, inflating or deflating factor loadings due to these contralateral residual correlations. Most

problematically from a substantive neuroscientific standpoint, this distortion means it is effec-

tively impossible to discover lateralized factors, that is, patterns of covariance among regions

expressed only, or dominantly, in one hemisphere. This is undesirable, as there is both sugges-

tive and conclusive evidence that some neuroscientific mechanisms may display asymmetry.

For instance, typical language ability is associated with an asymmetry in focal brain regions

Figure 11. Left-right hemisphere factor loading correlations. The correlations between the load-
ings are high, indicating a strong similarity between the loadings in the left and right hemispheres.
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Exploratory factor analysis with structure for brain network data

(e.g., Bishop, 2013; Gauger, Lombardino, & Leonard, 1997), whereas structural differences

in the right hemisphere may be more strongly associated with face perception mechanisms

(Frässle et al., 2016). Developmentally, there is evidence that the degree of asymmetry changes

across the lifespan (e.g., Plessen, Hugdahl, Bansal, Hao, & Peterson, 2014; Roe et al., 2020).

Within a SEM context, recent work shows that model fit of a hypothesized covariance struc-

ture may differ substantially between the right and left hemispheres despite focusing on the

same brain regions (Meyer, Garzón, Lövdén, & Hildebrandt, 2019). The ignorance of tradi-

tional techniques for the residual structure may cause lateralized covariance factors to appear

symmetrical instead, or to not be observed at all.

Results In this section, we compare the model fit and factor solutions of EFA and EFAST for

the Cam-CAN data, and we show how EFAST decomposes the correlation matrix in Figure 10

into factor, structure, and residual variance components. The full annotated analysis script to

reproduce these results is available as Supporting Information to this manuscript.

Overall, the EFAST model performs considerably better than standard EFA using common

information criteria (Figure 12). The BIC criterion, combined with the convergence of the mod-

els to an admissible solution, suggests that six factors is optimal for this dataset. While both

AIC and SSABIC show that more factors may be needed to properly represent the data, we

see that this quickly leads to nonconvergence. We here consider six factors to be a tractable

number for further analysis. First and foremost, this six-factor solution shows a much better

model solution under EFAST (BIC ≈ 87, 500) than under EFA (BIC ≈ 90, 000), emphasizing

the empirical benefits of appropriately modeling known biological constraints. Additionally,

statistical model comparison through a likelihood ratio test shows that the EFAST model fits

significantly better (see Table 1). Other fit measures such as CFI, root-mean-square error of ap-

proximation (RMSEA), and standardized root mean residual (SRMR) paint a similar story. The

RMSEA:
Root-mean-square error of
approximation, a popular model fit
index based on the log- likelihood
and the degrees of freedom of a
structural equation model. Values
closer to 0 indicate better fit.

SRMR:
Standardized root mean residual,
a value indicating how well a
predicted correlation matrix
approximates the observed
correlation matrix. Values
closer to 0 indicate better fit. full factor loadingmatrix for both EFAST and EFA are shown in Supporting Information Table S1.

Figure 12. AIC and BIC for the increasing numbers of EFA factors. Semitransparent points indicate
models which are inadmissible either due to nonconvergence or convergence to a solution with
problems (e.g., Heywood cases). In these cases we plot the information criteria based on the log-
likelihood computed at the time the estimation terminated.
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Exploratory factor analysis with structure for brain network data

Table 1. Comparing the fit of the EFAST and EFA models with six factors, using a likelihood ratio
test and several fit criteria

CFI RMSEA SRMR χ2 Df ∆χ2
∆Df Pr(> χ2)

EFAST 0.912 0.057 0.209 5762.676 1851

EFA 0.843 0.075 0.342 8818.146 1885 3055.471 34 < .001

Figure 13. Extracted correlation matrix components using a six-factor EFAST model with uncon-
strained correlations. Darker blue indicates stronger positive correlation. From left to right: factor-
implied correlations, residual variance, and structure matrix.

The EFAST model decomposes the observed correlation matrix from Figure 10 into the three

components displayed in Figure 13. Themost notable observation here is the separation of sym-

metry structure (last panel) and latent factor-implied structure (first panel): the factor solution

(first panel) does not attempt to explain the symmetry structure seen in the data (i.e., the char-

acteristic diagonal streaks are no longer present). This indicates that the EFAST model correctly

separates symmetry covariance from underlying trait covariance in real-world data.

We also extracted the estimated factor covariance, shown as a network plot in Figure 14.

For EFA, some latent variables show very strong covariance, clustering them together due to

the contralateral symmetry. This effect is not visible in the EFAST model, which shows a more

Figure 14. Network plots of the latent covariance for EFA (A) and EFAST (B).
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Exploratory factor analysis with structure for brain network data

Figure 15. Correlationmatrix for Cam-CANwhite matter tractography data (fractional anisotropy).
Numbers on the colour scale indicate the strength of the estimated correlation, with darker blue
indicating stronger positive correlations. Secondary diagonal lines are visible indicating correlation
due to contralateral homology.

well-separated latent covariance structure. This suggests that one consequence of a poorly

specified EFA can be the considerable overestimation of factor covariance, which in turn ad-

versely affects the opportunities to understand distinct causes or consequences of individual

differences in these factors.

Empirical Example: White Matter Microstructure

Data Description Our second empirical example uses white matter structural covariance net-

works. We use 42 tracts from the ICBM-DTI-81 atlas (Mori et al., 2008), including only those

tracts with atlas-separated left/right tracts (i.e., excluding divisions of the corpus callosum).

As anatomical metric we use tract-based mean fractional anisotropy, a summary metric sen-

sitive (but not specific) to several microstructural properties (Jones, Knösche, & Turner, 2013).

The resulting correlation matrix is shown in Figure 15. For more details regarding the anal-

ysis pipeline, see Kievit et al. (2016). The same tracts and data were previously analysed in

Jacobucci, Branmaier, and Kievit (2019).

Results We chose 6 factors for the EFAST and EFA models based on the SSABIC in combi-

nation with the convergence limitations. In Table 2, the two models are compared on various
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Exploratory factor analysis with structure for brain network data

Table 2. Comparing the fit of the EFAST and EFA models with six factors for the white matter data,
using a likelihood ratio test and several fit criteria

CFI RMSEA SRMR Df χ2
∆χ2

∆Df Pr(> χ2)

EFAST 0.899 0.081 0.205 603 3137.462

EFA 0.756 0.123 0.198 624 6770.048 3632.586 21 < .001

Figure 16. Visual representation of the root square residual (observed, implied) correlations,
which form the basis of the SRMR fit index. Numbers on the colour scale indicate root square
residual correlation, darker blue indicates larger residual.

characteristics. From the likelihood ratio test, we can see that the EFAST model represents

the white matter data significantly better (χ2(21) = 3632.586, p < .001), and inspecting the

SSABIC values (EFA = 59,120, EFAST = 55,727) leads to the same conclusion. In addition, the

CFI, RMSEA, indicate better fit for the EFAST model, too.

The only index which indicates slightly poorer fit is the SRMR. The difference is very small

in this case, but nonetheless it is relevant to show where these differences lie. A visual repre-

sentation of the root square residual (observed, implied) correlations, which form the basis of

the SRMR fit index, can be found in Figure 16. The figure shows that EFAST is able to represent

the symmetry better: it has almost no residuals on the secondary diagonals. The remaining

residuals are very similar, though slightly higher, leading to a higher SRMR.

Empirical Example: Resting-State Functional Connectivity

Data Description Our previous examples deal with correlation matrices capturing between-

individual similarities across regions. However, the same techniques can be implemented at

thewithin-subject level given suitable data. One suchmeasure is functional connectivity which

reflects the temporal connectivity between regions during rest or a given task, and captures the

purported strength of interactions, or communications, between regions (Van Den Heuvel &

Pol, 2010). Here we use functional connectivity matrices from five participants in the Cam-

CAN study measured during an eyes-closed resting-state block. We focus on 90 cortical and

subcortical regions from the AAL atlas (Tzourio-Mazoyer et al., 2002). The methodology to

compute the connectivity metrics is outlined in (Geerligs, Tsvetanov, & Henson, 2017), and

the data reported here have been used in Lehmann et al. (2019). The correlation matrix for the

first participant is shown in Figure 17.
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Exploratory factor analysis with structure for brain network data

Figure 17. Correlation matrix for the first participant in the Cam-CAN resting-state functional
connectivity dataset. Numbers on the colour scale indicate the strength of the estimated correla-
tion, with darker blue indicating stronger positive correlations. Secondary diagonal lines are visible
indicating correlation due to contralateral homology.

Results For this example, data from the first participant was used to perform the model fit

assessments. We performed a similar routine as with the previous empirical datasets for deter-

mining the number of factors: we fit the EFAST and EFA models for 2–16 factors and compare

their information criteria. All of the models converged, and the optimal model based on the

BIC is a 13-factor EFAST model. BIC was chosen as a criterion for the number of factors in order

to keep the analysis tractable; the other criteria indicated an optimum beyond 16 factors.

The 13-factor EFAST model was then compared to the 13-factor EFA model on various fit

indices. The results of this comparison can be found in Table 3. Across the board, the EFAST

model has better fit, as the EFAST CFI, RMSEA, SRMR, and χ2 fit indices outperform those

for the EFA model, demonstrating that accounting for the bilateral symmetry in dimension

reduction through factor analysis leads to better fitting model of the data.

This approach also allows for comparing the factor loadings for the different participants.

For illustration, the plot in Figure 18 shows the profile of factor loadings for the first three factors

(columns) across the five participants (rows). These profile plots can be a starting point for com-

parison of the connectivity structure across participants, where higher correlation among par-

ticipants means a more similar connectivity structure, while taking into account the symmetry
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Exploratory factor analysis with structure for brain network data

Table 3. Comparing the fit of the EFAST and EFA models with 13 factors for the functional resting-
state data, using a likelihood ratio test and several fit criteria

CFI RMSEA SRMR Df χ2
∆χ2

∆Df Pr(> χ2)

EFAST 0.836 0.093 0.253 2868 9350.278

EFA 0.774 0.108 0.272 2913 11828.126 2477.848 45 0.000

Figure 18. Comparison of factor loading profiles for the first three factors (columns) across five
participants (rows). The left side of each subplot corresponds to the left hemisphere, and the right
side corresponds to the right hemisphere.

in the brain. For example, for Factor 1, participant 3 has a quite different functional connectivity

factor loading profile than the other participants.

MODEL-BASED LATERALIZATION INDEX

In the simulations, we showed how the EFAST approach yields a more veridical representation

of the factor structure than EFA. However, using EFAST yields an additional benefit: our model

allows for estimating the extent of symmetry in each ROI, while taking into account the over-

all factor structure. This enables researchers to use this component of the analysis for further

study. The (lack of) symmetry may be of intrinsic interest, such as in language development

research (Schuler et al., 2018), intelligence in elderly (Moodie et al., 2019), and age-related

changes in cortical thickness asymmetry (Plessen et al., 2014). In the EFAST package, we have

implemented a specific form of lateralization which is based on a variance decomposition in

the ROIs. Our lateralization index (LI) is a dissimilarity measure representing the proportion of

residual variance (given the trait factors) in an ROI that cannot be explained by symmetry. The
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Exploratory factor analysis with structure for brain network data

index value is 0 if the bilateral ROIs are fully symmetric (conditional on the trait factors), and

1 if there is no symmetry:

LIi = 1 − cor(ulh
i , urh

i ) (1)

where ulh
i and urh

i are residuals given the trait factors of interest of the ith ROI in the left and

right hemisphere, respectively. The correlation cor(· , ·) between these residuals represents the

amount of symmetry, so the LIi represents the residual dissimilarity of the ith ROI in the two

hemispheres after taking into account the factor structure in the data. When LIi is 0, the ROIs

Figure 19. Amount of grey matter volume asymmetry per ROI. Dark blue areas are highly symmet-
ric given the previously estimated 6-factor solution, and bright yellow areas are highly asymmetric.
Such plots can be made and compared for different groups and statistically investigated for differ-
ences in symmetry for a common factor solution. A lateralization index (LI) of 0 means that the
regions are fully symmetric conditional on the trait factors.

Figure 20. White matter lateralization index for a selected set of regions given the previously
estimated 6-factor solution. Lower values mean that bilateral ROIs are more symmetric conditional
on the trait factors, higher values that they are less so. The line ranges indicate 95% confidence
intervals, computed as LI ± 1.96× SELI, where the standard error SELI is computed using the delta
method.
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Exploratory factor analysis with structure for brain network data

are fully symmetric given the traits, and a LIi of 1 indicates no symmetry. Note that LIi can be

larger than 1 if the residuals are negatively correlated.

The LI for each ROI in the grey matter volume example is shown in Figure 19. Here, we can

see that there is high lateralization in the superior temporal sulcus and medial orbitofrontal

cortex, but high symmetry in the lateral orbitofrontal cortex and the insula. In Figure 20, we

additionally show in the white matter example that LI can naturally be supplemented by stan-

dard errors and confidence intervals. Thus, the EFAST procedure not only improves the factor

solution under plausible circumstances for such datasets, but in doing so yields an intrinsically

interesting metric of symmetry.

SUMMARY AND DISCUSSION

In this paper, we have developed and implemented EFAST, a method for performing dimension

reduction with residual structure. We show how this new method outperforms standard EFA

across three separate datasets, by taking into account hemispheric symmetry in brain covari-

ance data. We have argued through both simulations and real-world data analysis that our

method is an improvement in the dimension reduction step of such high-dimensional, struc-

tured data, yielding a more veridical factor solution. Such a factor solution can be the basis for

further analysis, such as an extension of the factor model to prediction of continuous pheno-

type variables such as intelligence scores, or the comparison among different age groups. These

extensions will be improved by building on a factor solution which appropriately takes into

account the symmetry of the brain. Furthermore, we believe that many data reduction prob-

lems in social, cognitive, and behavioural sciences have a similar structure: residual structure is

known, but precise theory about the underlying factor structure is not (Asparouhov & Muthén,

2009). As such, although we focus on brain imaging data, our approach is likely more widely

applicable.

Care is needed in the interpretation of the factor solution as underlying dimensions, as

the empirical application has shown that the absolute level of fit for both the EFA and EFAST

models is not optimal. In addition, estimation of more complex factor models may lead to non-

convergence or inadmissible solutions. Such problems would need to be further investigated,

potentially leading to more stable estimation, for example, through a form of principal axis

factoring, or potentially through penalization of SEM (Jacobucci et al., 2019; van Kesteren &

Oberski, 2019). However, these limitations hold equally for EFA, and when comparing both

methods it is clear from the results in this paper that the inclusion of structured residuals greatly

improves the representation of the high-dimensional raw data by the low-dimensional factors.

In summary, this relatively simple but versatile extension of classical EFA may be of consid-

erable value to applied researchers with data that possess similar qualities to those outlined

above. We hope our tool will allow those researchers to easily and flexibly specify and fit such

models.

Note that we are not the first to suggest using structured residuals in EFA to take into ac-

count prior knowledge about structure in the observed variables. Adding covariances among

residuals is a common method to take into account features of the data-generating process

(e.g., Cole et al., 2007), and this has been possible in the context of EFA since the release of

the ESEM capability in MPlus (Asparouhov & Muthén, 2009) and in lavaan (Rosseel, 2019).

In the context of neuroscientific data, similar methods in accounting for structure in dimension

reduction have been researched by De Munck, Huizenga, Waldorp, and Heethaar (2002) in

source localization for EEG/MEG. Our goal for this paper has been to provide a compelling
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Exploratory factor analysis with structure for brain network data

argument for the use of such structured residuals from the point of view of neuroscience, as

well as a user-friendly, open-source implementation of this method for dimension reduction

in real-world datasets.
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