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Abstract 

A novel unsupervised neural network for dimensionality reduction which 
seeks directions emphasizing multimodality is presented, and its connec

tion to exploratory projection pursuit methods is discussed. This leads to 

a new statistical insight to the synaptic modification equations governing 

learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). 

The importance of a dimensionality reduction principle based solely on 

distinguishing features, is demonstrated using a linguistically motivated 

phoneme recognition experiment, and compared with feature extraction 

using back-propagation network. 

1 Introduction 

Due to the curse of dimensionality (Bellman, 1961) it is desirable to extract fea

tures from a high dimensional data space before attempting a classification. How to 

perform this feature extraction/dimensionality reduction is not that clear. A first 
simplification is to consider only features defined by linear (or semi-linear) projec

tions of high dimensional data. This class of features is used in projection pursuit 

methods (see review in Huber, 1985). 

Even after this simplification, it is still difficult to characterize what interesting 

projections are, although it is easy to point at projections that are uninteresting. 

A statement that has recently been made precise by Diaconis and Freedman (1984) 

says that for most high-dimensional clouds, most low-dimensional projections are 

approximately normal. This finding suggests that the important information in the 

data is conveyed in those directions whose single dimensional projected distribution 

is far from Gaussian, especially at the center of the distribution. Friedman (1987) 

241 



242 Intrator 

argues that the most computationally attractive measures for deviation from nor
mality (projection indices) are based on polynomial moments. However they very 

heavily emphasize departure from normality in the tails of the distribution (Huber, 

1985). Second order polynomials (measuring the variance - principal components) 
are not sufficient in characterizing the important features of a distribution (see 

example in Duda & Hart (1973) p. 212), therefore higher order polynomials are 

needed. We shall be using the observation that high dimensional clusters trans
late to multimodallow dimensional projections, and if we are after such structures 

measuring multimodality defines an interesting projection. In some special cases, 

where the data is known in advance to be bi-modal, it is relatively straightforward 
to define a good projection index (Hinton & Nowlan, 1990). When the structure 

is not known in advance, defining a general multi modal measure of the projected 

data is not straight forward, and will be discussed in this paper. 

There are cases in which it is desirable to make the projection index invariant 

under certain transformations, and maybe even remove second order structure (see 
Huber, 1985) for desirable invariant properties of projection indices) .. In such cases 
it is possible to make such transformations before hand (Friedman, 1987), and then 

assume that the data possesses these invariant properties already. 

2 Feature Extraction using ANN 

In this section, the intuitive idea presented above is used to form a statistically 

plausible objective function whose minimization will be those projections having a 

single dimensional projected distribution that is far from Gaussian. This is done 

using a loss function whose expected value leads to the desired projection index. 
Mathematical details are given in Intrator (1990). 

Before presenting this loss function, let us review some necessary notations and as

sumptions. Consider a neuron with input vector x = (Xl, ... , :r N), synaptic weights 

vector m = (ml' ... , mN), both in RN , and activity (in the linear region) c = x . m. 

Define the threshold em = E[(x . m)2], and the functions ¢(c, em) = c2 - ~cem, 

¢(c, em) = c2 _ icem. The ¢ function has been suggested as a biologically plausible 

synaptic modification function that explains visual cortical plasticity (Bienenstock, 
Cooper and Munro, 1982). Note that at this point c represents the linear projection 

of x onto m, and we seek an optimal projection in some sense. 

We want to base our projection index on polynomial moments of low order, and 
to use the fact that bimodal distribution is already interesting, and any additional 

mode should make the distribution even more interesting. With this in mind, con

sider the following family of loss functions which depend on the synaptic weight 
vector and on the input x; 

The motivation for this loss function can be seen in the following graph, which 

represents the ¢ function and the associated loss function Lm (x). For simplicity 
the loss for a fixed threshold em and synaptic vector m can be written as Lm(c) = 
-ic2(c - em), where c = (x· m). 
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Figure 1: The function ¢ and the loss functions for a fixed m and em. 

The graph of the loss function shows that for any fixed m and em, the loss is 
small for a given input x, when either (x .111.) is close to zero, or when (x . m) is 

larger than iem . Moreover, the loss function remains negative for (x· m) > iem , 

therefore, any kind of distribution at the right hand side of ~em is possible, and 

the preferred ones are those which are concentratt'd further away from ~em. 

We must still show why it is not possible that a minimizer of the average loss will be 
such that all the mass of the distribution will be concentrated in one of the regions. 

Roughly speaking, this can not happen because the threshold em is dynamic and 
depends on the projections in a nonlinear way, namely, em = E(x . m)2. This 
implies that em will always move itself to a stable point such that the distribution 

will not be concentrated at only one of its sides. This yields that the part of the 

distribution for c < ~em has a high loss, making those distributions in which the 

distribution for c < ~em has its mode at zero more plausible. 

The risk (expected value of the loss) is given by: 

Rm = -~ {E[(x .111.)3] - E2[(x· m?]}. 
3 

Since the risk is continuously differentiable, its minimization can be achieved via a 

gradient descent method with respect to m, namely: 

dm a 
-d t = - -;;;--Rm = J1 E[¢(x· m, em)Xi]. 

t V7ni 

The resulting differential equations suggest a modified version of the law governing 

synaptic weight modification in the BCM theory for learning and memory (Bienen
stock, Cooper and Munro, 1982). This theory was presented to account for various 

experimental results in visual cortical plasticity. The biological relevance of the 

theory has been extensively studied (Soul et al., 1986; Bear et al., 1987; Cooper et 
aI., 1987; Bear et al., 1988), and it was shown that the theory is in agreement with 

the classical deprivation experiments (Clothioux et al., 1990). 

The fact that the distribution has part of its mass on both sides of ~em makes this 

loss a plausible projection index that seeks multimodalities. However, we still need 
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to reduce the sensitivity of the projection index to outliers, and for full generality, 
allow any projected distribution to be shifted so that the part of the distribution 

that satisfies c < ~em will have its mode at zero. The over-sensitivity to outliers 
is addressed by considering a nonlinear neuron in which the neuron's activity is 
defined to be C = q(x . m), where q usually represents a smooth sigmoidal function. 

A more general definition that would allow symmetry breaking of the projected 

distributions, will provide solution to the second problem raised above, and is still 

consistent with the statistical formulation, is c = q(x . m - a), for an arbitrary 

threshold a which can be found by using gradient descent as well. For the nonlinear 

neuron, em is defined to be em = E[q2(x . m)]. 

Based on this formulation, a network of Q identical nodes may be constructed. All 

the neurons in this network receive the same input and inhibit each other, so as 
to extract several features in parallel. A similar network has been studied in the 

context of mean field theory by Scofield and Cooper (1985). The activity of neuron 

k in the network is defined as Ck = q(x . mk - ak), where mk is the synaptic weight 
vector of neuron k, and ak is its threshold. The inhibited activity and threshold of 

the k'th neuron are given by Ck = Ck - 17 E}#k Cj, e~ = E[c~]. 

We omit the derivation of the synaptic modification equations which is similar to 

the one for a single neuron, and present only the resulting modification equations 
for a synaptic vector mk in a lateral inhibition network of nonlinear neurons: 

mk = -11 E{¢(Ck' e~:J(q'(Ck) -17 Lq'(Cj})x}. 
j#k 

The lateral inhibition network performs a direct search of Q-dimensional projections 

together, and therefore may find a richer structure that a stepwise approach may 

miss, e.g. see example 14.1 Huber (1985). 

3 Conlparison with other feature extraction nlethods 

When dealing with a classification problem, the interesting features are those that 
distinguish between classes. The network presented above has been shown to seek 

multimodality in the projected distributions, which translates to clusters in the 
original space, and therefore to find those directions that make a distinction between 

different sets in the training data. 

In this section we compare classification performance of a network that performs 

dimensionality reduction (before the classification) based upon multimodality, and 

a network that performs dimensionality reduction based upon minimization of mis

classification error (using back-propagation with MSE criterion). This is done using 

a phoneme classification experiment whose linguistic motivation is described below. 

In the latter we regard the hidden units representation as a new reduced feature 

representation of the input space. Classification on the new feature space was done 

using back-propagation 1 

1 See Intrator (1990) for comparison with principal components feature extraction and 
with k-NN as a classifier 
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Consider the six stop consonants [p,k,t,b,g,dJ, which have been a subject of recent 
research in evaluating neural networks for phoneme recognition (see review in Lipp
mann, 1989). According to phonetic feature theory, these stops posses several com

mon features, but only two distinguishing phonetic features, place of articulation 
and voicing (see Blumstein & Lieberman 1984, for a review and related references 

on phonetic feature theory). This theory suggests an experiment in which features 

extracted from unvoiced stops can be used to distinguish place of articulation in 
voiced stops as well. It is of interest if these features can be found from a single 

speaker, how sensitive they are to voicing and whether they are speaker invariant. 

The speech data consists of 20 consecutive time windows of 32msec with 30msec 

overlap, aligned to the beginning of the burst. In each time window, a set of 22 

energy levels is computed. These energy levels correspond to Zwicker critical band 
filters (Zwicker, 1961). The consonant-vowel (CV) pairs were pronounced in isola

tion by native American speakers (two male BSS and LTN, and one female JES.) 

Additional details on biologicalmotivatioll for the preprocessing, and linguistic mo
tivation related to child language acquisition can be found in Seebach (1990), and 
Seebach and Intrator (1991). An average (over 25 tokens) of the six stop consonants 
followed by the vowel [aJ is presented in Figure 2. All the images are smoothened 
using a moving average. One can see some similarities between the voiced and 
unvoiced stops especially in the upper left corner of the image (high frequencies be
ginning of the burst) and the radical difference between them in the low frequencies. 

Figure 2: An average of the six stop consonants followed by the vowel raj. 

Their order from left to right [paJ [baJ [kaJ [gal [taJ [da]. Time increases 

from the burst release on the X axis, and frequency increases on the Y axis. 

In the experiments reported here, 5 features were extracted from the 440 dimen

sion original space. Although the dimensionality reduction methods were trained 

only with the unvoiced tokens of a single speaker, the classifier was trained on (5 

dimensional) voiced and unvoiced data from the other speakers as well. 

The classification results, which are summarized in table 1, show that the back

propagation network does well in finding structure useful for classification of the 
trained data, but this structure is more sensitive to voicing. Classification results 

using a BCM network suggest that, for this specific task, structure that is less 

sensitive to voicing can be extracted, even though voic.ing has significant effects 
on the speech signal itself. The results also suggest that these features are more 

speaker invariant. 
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Place of Articulation Classification JB-P) 

B-P BCM 

BSS /p,k,t/ 100 100 

BSS /b,g,d/ 83.4 94.7 

LTN /p,k,t/ 95.6 97.7 

LTN /b,g,d/ 78.3 93.2 

JES (Both) 88.0 99.4 

Table 1: Percentage of correct classification of place of articulation in voiced 

and unvoiced stops. 

Figure 3 : Synaptic weight images ofthe 5 hidden units of back-propagation 

(top), and by the 5 BCM neurons (bottom). 

The difference in performance between the two feature extractors may be partially 
explained by looking at the synaptic weight vectors (images) extracted by both 

method: For the back-propagation feature extraction it can be seen that although 
5 units were used, fewer number of features were extracted. One of the main 
distinction between the unvoiced stops in the training set is the high frequency burst 

at the beginning of the consonant (the upper left corner). The back-propagation 

method concentrated mainly on this feature, probably because it is sufficient to base 

the recognition of the training set on this feature, and the fact that training stops 

when misclassification error falls to zero. On the other hand, the BCM method does 

not try to reduce the misclassificaion error and is able to find a richer, linguistically 

meaningful structure, containing burst locations and format tracking of the three 

different stops that allowed a better generalization to other speakers and to voiced 

stops. 

The network and its training paradigm present a different approach to speaker 

independent speech recognition. In this approach the speaker variability problem 
is addressed by training a network that concentrates mainly on the distinguishing 

features of a single speaker, as opposed to training a network that concentrates on 

both the distinguishing and common features, on multi-speaker data. 
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