
To appear in ACM TOG 33(4).

Exploratory Font Selection Using Crowdsourced Attributes

Peter O’Donovan*

University of Toronto

Jānis Lı̄beks*

University of Toronto

Aseem Agarwala

Adobe

Aaron Hertzmann

Adobe / University of Toronto

Abstract

This paper presents interfaces for exploring large collections of
fonts for design tasks. Existing interfaces typically list fonts in a
long, alphabetically-sorted menu that can be challenging and frus-
trating to explore. We instead propose three interfaces for font se-
lection. First, we organize fonts using high-level descriptive at-
tributes, such as “dramatic” or “legible.” Second, we organize fonts
in a tree-based hierarchical menu based on perceptual similarity.
Third, we display fonts that are most similar to a user’s currently-
selected font. These tools are complementary; a user may search for
“graceful” fonts, select a reasonable one, and then refine the results
from a list of fonts similar to the selection. To enable these tools, we
use crowdsourcing to gather font attribute data, and then train mod-
els to predict attribute values for new fonts. We use attributes to help
learn a font similarity metric using crowdsourced comparisons. We
evaluate the interfaces against a conventional list interface and find
that our interfaces are preferred to the baseline. Our interfaces also
produce better results in two real-world tasks: finding the nearest
match to a target font, and font selection for graphic designs.

1 Introduction

Typography is fundamental to graphic design. A well-chosen font
can make a design more beautiful and more effective in communi-
cating information. Font selection is also subtle: many professional
designers take entire courses on typography, and, for novices, the
process can be frustrating and opaque. Surprisingly, the standard
interface for selecting fonts — a long list of font names — has
not changed in decades, and often overwhelms users with too many
choices and too little guidance. As a result, users often proceed with
the default font, or stick with a few familiar, but poor, choices.

The problem of font selection is challenging for many reasons.
First, the space of possible fonts is quite large. Most computers are
now equipped with hundreds of fonts, and online repositories pro-
vide hundreds of thousands. Second, there is no obvious method for
categorization that supports a user’s goals. Modern font listings use
categorizations like “serif” or “display,” but these must be hand-
annotated, and they don’t necessarily correspond to a user’s goals.
Font names themselves are rarely meaningful. Third, there are a va-
riety of font selection tasks with different goals and requirements.
One designer may wish to match a font to the style of a particular
image. Another may wish to find a free font which looks similar
to a commercial font such as Helvetica. A third may simply be ex-
ploring a large set of fonts such as Adobe TypeKit or Google Web
Fonts. Current methods for font selection fail to address any of these
needs well. Exhaustively exploring the entire space of fonts using
an alphabetical listing is unrealistic for most users.

This paper proposes interfaces for selecting fonts based on the idea
that fonts can be described by attributes: adjectives that describe
their visual personality or appearance, such as “formal,” “friendly,”
or “legible.” We use these attributes as the basis for three font se-
lection interfaces that are designed to support different types of ex-
ploration and search. First, we describe an Attribute Interface that
allows a user to select one or more descriptive attributes; the sys-
tem then shows a list of fonts that are sorted by how highly they

* Both authors contributed equally

score along the selected axes, e.g., we can show fonts that are both
friendly and legible. Second, we propose a Group Interface that
shows the user a hierarchical menu of fonts, clustered according
to their visual similarity. Third, both interfaces include a Search-
By-Similarity feature which gives a list of fonts sorted by similar-
ity to their currently-selected font, allowing users to fine-tune their
choices. These interfaces allow users to search in a variety of ways,
from high-level exploration using attributes or font groups, to re-
finement of font choices using the similarity search.

In this work, we propose an approach that estimates attribute values
and visual font similarity by learning models from crowdsourced
data. We first collect a set of attributes commonly used by design-
ers to describe fonts, and then compute attribute values for a set of
fonts using crowdsourced data. We also learn a function that pre-
dicts the visual similarity of fonts from crowdsourced data. Finally,
we learn to predict attribute values and font similarity from geo-
metric features of fonts, so that our system can handle new fonts
without any further data collection. The dataset and interfaces are
available at the project page.

We evaluate our approach by two real-world design tasks, tested
with in-person experiments and online with Amazon Mechanical
Turk. First, we test users’ ability to find a specific font in an in-
terface, given an image of text in that font. For this task, users are
three times more likely to find the font by using either of our in-
terfaces, compared to a conventional linear list. Second, we per-
form a more subjective test of selecting a good font for a given
design. Our proposed interfaces show a statistically-significant im-
provement over the conventional list, though the effect size is small
since font choices are highly subjective and multimodal. Participant
surveys show that users frequently prefer our interfaces to the con-
ventional interface.

2 Related Work

To our knowledge, no prior work directly studied font selection in-
terfaces. There is work in a number of related areas.

Font Traits and Features. Researchers have studied the person-
ality traits of certain typefaces and how they affect the appropri-
ateness of typefaces for specific tasks. Shaikh [2007] provides an
extensive list of typeface personality attributes that have been used
in academic publications since 1920. Li and Suen [2010] and Mack-
iewicz and Moeller [2004] present small scale studies that explore
the range of personality values for tens of fonts using a Likert scale.
Shaikh et al. [2006] performed an online study with hundreds of
participants where 20 fonts were rated for 15 adjective pairs (i.e.,
“sad/happy”) and design type appropriateness. Users consistently
attributed personality traits to fonts, and felt specific document
types were more appropriate for certain fonts. For example, chil-
dren’s documents were seen as more appropriate for “funny” fonts.
Lewis and Walker [1989] showed that when a word’s meaning does
not match its font personality traits, participants take longer to an-
alyze the word. These results suggest that attributes are useful in
font interfaces. We differ from prior work in that we build a work-
ing attribute-based interface. We also use data from a much larger
study (31 attributes and 200 fonts) to train predictive models.

Optical Character Recognition systems use low-level raster features
for text recognition [Srihari 1999; Solli and Lenz 2007]. We use

1

To appear in ACM TOG 33(4).

(a) (b) (c)

Figure 1: Font selection interfaces. The interfaces are shown next to the graphic being designed so that users can see font choices in context.
(a) Attribute selection menu. The user may select one or more attributes and/or complements. When mousing over an attribute, examples of
fonts with and without the attributes are shown on the right. (b) As the user selects attributes, a list of fonts with the given attributes are shown
in the list; here, the user has selected delicate and not thin. (c) The user can fine-tune their selection by viewing fonts ordered by similarity to
a query font. Fonts are shown with the term ’handgloves’ rather than their name to make them easier to compare.

vector features, which are not available in the OCR setting, and
should be higher-quality indicators of style.

Another approach for representing fonts is HP’s PANOSE stan-
dard [Laurentis 1993], which assigns a set of category numbers
based on visual characteristics like weight or serif style. Propri-
etary mapping software can then be used to search by similarity.
Unfortunately, there are no automatic methods of classifying fonts
with PANOSE numbers, with Doyle [2005] reporting an adoption
rate of less than 10% in his analysis of the system. We instead use
an empirical approach to measure font similarity, and train models
based on crowdsourced data.

Commercial Font Interfaces. While the majority of font selection
interfaces in existing applications are simple linear lists, more so-
phisticated approaches have been developed. Several websites al-
low searching by font similarity, including Identifont, MyFonts’
WhatTheFont, and Fontspring. The TypeDNA Photoshop plugin
allows searching by similarity, as well as 4 attributes (“weight,”
“width,” “italic,” and “optical”). Unfortunately, the details of these
searching algorithms are proprietary and may be partly based on
hand annotation, so it is difficult to directly compare with our ap-
proach. Sites like Fonts.com and Dafont have a large number of
attributes and categories for fonts, including subjective attributes.
Unlike our automatic approach however, these binary labels are
hand-annotated.

Attributes. Object attributes have recently become an active topic
in computer vision. While binary attributes have been used for im-
age search [Kumar et al. 2011; Tao et al. 2009], recent work for esti-
mating relative attributes [Parikh and Grauman 2011] has been used
in search interfaces. Our work is also inspired by this approach.

Chaudhuri et al. [2013] use relative attributes to help users find
parts to assemble into 3D models. Though their focus is 3D mod-
elling, they also show a proof-of-concept web-design interface
where page elements such as fonts or background color are auto-
matically swapped using an attribute slider. The system also uses
font features, including size and Fourier coefficients to measure
shape. However, their dataset only included 30 WordPress tem-
plates, and their attribute model and interface were not evaluated
in any way. By contrast, our work focuses on font selection, uses a

much larger dataset, and includes a rigorous evaluation.

WhittleSearch [Kovashka et al. 2012] is especially similar to our
work as it allows searching image collections using relative at-
tributes. However, we simplify the interaction considerably, as well
as introduce cluster and similarity-based interfaces that support
fluid switching between different types of search.

Exploratory Search. Interfaces that support exploratory search
through large datasets are a common topic for the HCI and infor-
mation retrieval communities [White et al. 2006]. One approach
is to visualize high-dimensional data points plotted within a low-
dimensional embedding such as t-SNE [van der Maaten and Hinton
2008]. We experimented with a t-SNE interface, but found it diffi-
cult to interpret the 2D layout; it is hard to know where to look in
this space for a particular font, particularly with thousands of fonts.
Another approach that we take is to create hierarchical categoriza-
tions of the data; for example, Huang et al. [2013] hierarchically
cluster 3D shapes based on a hand-designed distance metric. A re-
lated problem is the exploration of continuous parametric spaces
for design [Marks et al. 1997; Talton et al. 2009]; our approach
is more appropriate for exploring a discrete design space. We also
experimented with an adaptive grid interface, similar to Marks et
al. [1997], where users could select several fonts and the system
would adaptively display similar fonts. In practice this approach
was far more time-consuming than our group interface; numerous
selections were required to converge on reasonable fonts, and the
approach did not provide a high-level view of the entire font space.

3 User Experience

We first describe our interfaces from the perspective of a user (see
the Supplemental Video for a demonstration). We offer two ways to
begin exploring fonts, as well as a Search-by-Similarity option to
fine-tune an initial font selection.

Attribute Interface. The attribute interface is useful when a user
has a conceptual rather than mental image of the desired font. For
example, a user may want “happy” and “playful” fonts for a child’s
birthday card, “formal” fonts for legalese, or “legible” fonts for a
wall sign. The interface uses a menu listing the set of attributes

2

To appear in ACM TOG 33(4).

Figure 2: Group interface. The interface shows a three-level per-
ceptual clustering of fonts. Mousing over the clusters allows a user
to quickly get a sense of the range of options, and to explore indi-
vidual clusters. Once a user has selected a font, they may further
refine their query by searching for similar fonts as in Figure 1.

available (Figure 1a). The user selects an attribute by clicking it,
or by clicking on the adjacent “not” button to select fonts that do
not exhibit an attribute (e.g., picking “not strong” produces “weak”
fonts). When the user mouses-over an attribute, five example fonts
with that attribute are shown as examples, as well as five fonts lack-
ing that attribute. Once the user selects an attribute, or a combina-
tion of attributes, fonts are shown sorted in order according to how
well they match the selected constraints (Figure 1b). Multiple at-
tributes may also be selected, in which case fonts are sorted by the
average of how well they match the selected attributes.

Group Interface. The group interface supports a more visual ex-
ploration of the space of fonts for users who will recognize de-
sirable fonts on sight. The group interface organizes the space of
fonts into a tree-based hierarchy of visually similar fonts (Figure 2).
That is, the leftmost list contains twelve groups of visually similar
fonts, with a representative sample shown from each. When the user
mouses-over a font, the middle list shows subgroups of that font’s
group. Each subgroup is shown by a representative font. Mousing-
over any of these reveals their subgroups. The user clicks on a font
in any list to select it. The groups are created automatically with a
bottom-up hierarchical clustering algorithm.

Search-by-Similarity. Both of the above methods are useful for
quickly identifying a reasonably appropriate font. Once a user has
made an initial choice with either of the above methods, the Search-
by-Similarity option (Figure 1c) helps the user refine their choice.
This option lists fonts ordered by their visual similarity to the se-
lected query font. Users can replace the query font with another by
pressing a button next to any selected font. They may again show
the most similar fonts to the new selection, thus exploring the space
of fonts “near” their current favorites.

For all three interfaces the current design is shown to the right, and
the user may choose between three text sizes (“small,” “medium,”
and “large”); users can also save “favorite” fonts to a separate list.
We display all fonts with a word “handgloves” that is often used by
typographers for font comparison [Garfield 2011] since it contains
many different letter strokes and shapes. Removing font names
from the interface also reduces familiarity biases during evaluation.

To support these interface tools, we require models for relative at-
tributes and font similarity. We next describe our approach for train-
ing these models from crowdsourced data.

Image A Image B

Figure 3: Example of a study task for the attribute “wide.”

4 Estimating and Predicting Font Attributes

This section describes our technique for estimating and predicting
relative font attributes. We gather pairwise comparison data by ask-
ing Mechanical Turk workers to compare a small set of training
fonts according to different attributes. We then estimate relative
scalar values for each training font and attribute, and use these val-
ues to train a model that maps from fonts to attributes. We then
compute attributes values for a much larger font database using this
model. We gather data from novices on MTurk instead of profes-
sionals because novices are the target users of our interfaces.

4.1 Font Selection

We gathered a large and diverse set of 1278 fonts that combines
1138 fonts from Google Web Fonts with a selection of web-fonts
that appear frequently on a relatively small set of ≈3800 design-
oriented web-pages, seeded from the Adobe Typekit Blog. Type-
faces within the same font family often have very different person-
alities, and so we treat each separately, e.g., Gill Sans is treated as
a separate font from Gill Sans Light and Gill Sans Bold. We then
randomly sampled a training set of 200 fonts for the MTurk exper-
iments.

4.2 Attribute Selection

We chose 31 attributes from a list of font personality attributes gath-
ered by Shaikh [2007], reflecting adjectives that we expect novice
users would use to describe fonts. We included concrete attributes
such as “thin” and “angular,” and more nebulous concepts like
“friendly” and “sloppy.” We also added 6 common typographical
binary attributes: capitals, cursive, display, italic, monospace, serif.
All 37 attributes are listed in Fig. 1. Relative attribute values range
from 0 to 100, whereas binary attribute values may be either 0 or
100. We hand-label the 6 binary attributes in the training set, leav-
ing the relative attributes to be estimated through crowdsourcing.
We also performed an earlier version of this study with 36 relative
attributes, and then pruned five after finding high correlations with
other attributes. For example,“masculine” and “strong” were highly
correlated, so “masculine” was removed.

4.3 Attribute Estimation

The goal of estimation is to determine a scalar value describing how
much a given font embodies a given attribute. For example, a font
that is often considered “stronger” than other fonts should have a
higher value for the “strong” attribute. Directly asking people to
provide these scores would be unreliable. Instead, we follow a stan-
dard approach and ask comparison questions. A Mechanical Turk
worker is shown a pair of fonts, and asked to rate which is better de-
scribed by the attribute (Figure 3). We use a two-alternative forced

3

To appear in ACM TOG 33(4).

Dramatic Legible Delicate Thin

100 100 100 100

66.44 66.70 66.65 66.32

33.62 33.73 33.34 33.37

0 0 0 0

Figure 4: Examples of estimated attribute values. We show the fonts with the least of the attribute (v = 0), most (v = 100), and intermediate
values (v = 33, 66).

choice (2AFC) design, i.e., raters cannot answer “no difference,” in
order to allow us to better measure small differences.

Given these pairwise comparisons, we can then estimate the
attribute value for each font. We use a Maximum Likelihood
approach to attribute value estimation using the Bradley-Terry
model [1952]. See the survey by Tsukida and Gupta [2011] for de-
tails. However, we augment it with a model of rater reliability, sim-
ilar to item-response theory and the work of Welinder et al. [2010].

The measured pairwise responses is a set of tuples D =
{(a, fi, fj , u, q)}, where a is an attribute, fi and fj are the two
fonts being compared, u is the rater’s ID, and q is the rater’s choice.
q = 1 if the rater judges font fi to have more of the attribute a than
font fj ; q = 0 otherwise. In the standard approach, the likelihood
of a rater’s response q given the fonts and attribute is modeled as
follows. Let vi,a and vj,a be the unknown values of attribute a for
the two fonts. A rater is more likely to answer q = 1 if vi,a > vj,a,
and q = 0 otherwise. However, the rater’s response is more ran-
dom (harder to predict) if the difference in attribute values is small.
In the extreme case where vi = vj , the rater’s response is entirely
random (p(q = 1) = 0.5). To model the rater’s response, we use a
logistic function:

p(q = 1|fi, fj , a) =
1

1 + exp(vj,a − vi,a)
(1)

When performing MTurk evaluations, some raters may be more re-
liable than others. Hence, we introduce a per-user reliability weight
ru. Raters with low ru produce more-random answers; raters with
ru = 0 are completely random, and raters with ru < 0 tend to
produce wrong answers. In the reliability model, the likelihood of
a comparison is:

p(q = 1|fi, fj , a, u) =
1

1 + exp(ru(vj,a − vi,a))
(2)

Given the pairwise comparisons D, the negative log-likelihood ob-

jective function is:

E(v, r) = − ln p(D|v, r) (3)

= −

X

k

q
k ln p(q = 1|fk

i , f
k
j , a

k
, u

k) (4)

−

X

k

(1− q
k) ln

⇣

1− p(q = 1|fk
i , f

k
j , a

k
, u

k)
⌘

where k indexes over all training tuples. We jointly minimize this
objective with respect to all attribute values v and all rater reliabil-
ities r by gradient descent. The resulting attribute values are scaled
to lie in the range 0 to 100. We gathered the comparison data by
a large-scale study on Mechanical Turk, described in Appendix A.
Figure 4 shows examples of the estimated values.

We find that raters agree more on certain attributes than others.
The attribute “thin” is easiest to fit, with 93.16% of the rater re-
sponses correctly predicted given our estimated attributes values,
while “sharp” is the hardest with only 62.02% correctly classified.
The average over all 31 attributes is only 69.64%, indicating sub-
stantial disagreement. Details for individual attributes are given in
the Supplemental Material.

4.4 Attribute Prediction

We now describe an approach to learning a mapping from geomet-
ric font features to font attributes, using the estimated attributes as
training data. The features, denoted xi for font i, are computed from
font files using the raw glyph outline control points and points sam-
pled from the glyph outline curves. Features were selected in part
to capture typographic font qualities (italics, thickness), as well as
other vector-based qualities. We include features which measure the
size, area, orientation, stroke width, and spacing of characters. We
include vector-based features such as curvature, number of curves
per glyph, arc lengths, etc. See Appendix B for more details.

We use these features to learn separate models for each of our 37
attributes. We learn the attribute values using Gradient Boosted Re-
gression (GBR) Trees [Friedman 2000] with a maximum depth of

4

To appear in ACM TOG 33(4).

Reference Font

Figure 5: Example task for font distance study. The rater decides
which bottom font is more similar to the reference font above.

2, and also a linear LASSO model [Tibshirani 1996]. On leave-one-
out cross-validation tests, the GBR had better performance with a
mean average error of 8.51 compared to LASSO’s 10.76; we there-
fore use this model for all further tests.

4.5 Model Evaluation

To evaluate our approach, we repeatedly train a model on the com-
parisons for 199 fonts and test on the hold-out font comparisons.
We report the negative log-likelihood (NLL) of the test data and the
classification rate (the fraction of comparisons correctly predicted).
We also report an upper-bound “oracle” classifier which chooses
the majority opinion. When comparing the models, the likelihood
is a more accurate continuous measure of performance as it uses the
attribute distances. For example, the classification rate for two at-
tribute values would be the same if the two attributes are very close
or far apart, as long as the relative ranking is correct. Intuitively,
such a discontinuous measure is not ideal since we expect that when
the attribute distances are very small, users will have a harder time
ranking them correctly. The models with and without user reliabil-
ity have a similar classification rate of 65.63% and 65.62%, respec-
tively. However, the model with user reliability has a NLL of 0.6087
versus 0.6124 without user reliability, indicating some value to the
approach.

An alternative approach would be to use the pairwise comparison
data to directly train the mapping from geometric features to at-
tributes. The method of Parikh and Grauman [2011] takes this ap-
proach by using a ranking SVM (SVMrank). We can also adapt the
approach in Section 4.3 to similarly learn weights for a distance
of geometric features rather than attributes. Both of these methods
perform equivalently to ours, and produce a classification error of
65.62% and 65.69%, respectively. See the Supplemental Material
for more details.

5 Font Distance Metric

In this section we describe an approach to learning to predict
the perceptual similarity between fonts, which is required for the
Search-by-Similarity tool. A naive similarity metric would simply
use the Euclidean distance between vectors of geometric font fea-
tures, or between vectors of the 37 estimated attributes. However,
it is unclear which attributes or features are more or less important
when people evaluate the overall perceptual similarity. For exam-
ple, it is possible that a difference in the “thin” attribute is more
indicative of a visual difference than “serif.”

We next describe the problem formulation and related work in met-
ric learning, and then describe the results of our similarity study
using MTurk. Our results show that font attributes outperform ge-
ometric font features for modeling font similarity, demonstrating
their usefulness as a mid-level representation for fonts.

Model NLL Classification
Subspace(w/o user reliability) 0.4912 75.95
Subspace 0.4833 75.83
SVM 67.16
Oracle (upper bound) 80.79

Table 1: We compare our metric learning with and without user
reliability modeling, as well as the SVM approach of Schultz and
Joachims [2004]. We report the negative log-likelihood (NLL) of
the test data, as well as the classification rate: the fraction of re-
sponses that are correctly predicted. The oracle is the upper-bound
on the classification rate, given user disagreement. NLL data is un-
available for the Oracle and SVM algorithms, as they do not output
probabilities.

5.1 Metric Learning

Learning distance metrics is a well-studied problem in machine
learning [Kulis 2011]. The goal is to learn to compute the distance
di,j between any two objects i and j. We learn a linear metric pa-
rameterized by an embedding matrix W:

di,j = ||W(xi − xj)|| (5)

where xi and xj are feature vectors for fonts i and j, respectively.
W has dimensionality m × n, where the size of the feature vector
is n = 37, and m = 7, as selected by cross-validation.

To obtain data to train the model, we conduct a crowdsourced study
focused on font similarity. Workers are presented with a reference
font A and two fonts (B and C) and are asked to decide whether
B or C is more similar to A than the other. An example task is
shown in Figure 5. Triplets were randomly sampled from the 200
font training set. See the Supplemental Material for study details
including number of triplets, payment, and control questions.

We use a logistic model of a rater’s triplet comparisons [Tamuz et al.
2011], augmented with a model of rater reliability [Welinder et al.
2010]. In particular, we train our model from a set of font triplets:
D = {(fi, fj , fk, q, u)}, where fj and fk are the two fonts being
compared to font fi, u is the rater ID, and q is the rater’s choice.
q = 1 if the rater judges font fj is closer to font fi than font fk,
q = 0 otherwise. To model the probability of q, we use a logistic
function similar to the one in Section 4.3:

p(q = 1|fi, fj , fk, u,W) =
1

1 + exp(ru(di,j − di,k))
(6)

where ru is a per-user reliability weight. Given the triplets D, learn-
ing entails maximum likelihood estimation of W and the rater re-
liabilities r by gradient descent minimization of the negative log-
likelihood, as in Sec. 4.3.

We evaluate the method using leave-one-out cross-validation, in
which one font is omitted from training, and then classification
is tested on triplets that include the hold-out font; results are av-
eraged over each choice of hold-out font. In Table 1 we compare
our method with and without user reliability modelling, as well as
the SVM approach of Schultz and Joachims [2004]. For the SVM
model, we found the RBF kernel produced the best results, with the
parameters set using cross-validation. The upper bound on the per-
formance is given by an oracle algorithm which always chooses the
majority opinion for each triplet. Our probabilistic model outper-
forms the SVM approach, likely due to the considerable disagree-
ment between users in our data. We also find that user reliability
helps slightly, as evidenced by a lower NLL.

5

To appear in ACM TOG 33(4).

Figure 6: Baseline selection interface with a list of fonts. Back-
ground photo courtesy of Nono Fara.

In the Supplemental Material, we include further tests on the dis-
tance metric. We find that learning an embedding distance W per-
forms better than using a vector of weights or an unweighted Eu-
clidean distance. We also find that using attributes (Sec. 4.4) as fea-
tures x performs slightly better than using just geometric features.

5.2 Grouping

For the Group Interface, we compute a hierarchical font categoriza-
tion automatically with k-means clustering [Lloyd 1982] on fonts
in the embedding space. Fonts are clustered in three levels in a
bottom-up manner; the 1278 fonts are first clustered into 130 clus-
ters, and then the centroids of each cluster are further clustered into
12 groups. The cluster sizes were chosen based on the constraints
of a three-tier menu, and a target menu size of 10-12 items. The
font nearest the center of each top-level group is shown in the first
column of the interface (Figure 1c).

6 User Interface Evaluation

To compare the three interfaces, we conduct user studies on two
separate design tasks. In the font-matching task, the user is pre-
sented with the image of a font, and attempts to find the font within
a user interface. In the design task, the user attempts to select a font
that is best suited to a given design. We compare against a baseline
list-selection interface, similar to existing applications (Figure 6),
in which fonts are shown in a random order.

In each trial, the user first reads the instructions for one of the three
interfaces, then performs a brief tutorial task to familiarize them
with the interface. The user then completes five font-matching or
design tasks. The interfaces are reset between tasks. We impose
a two-minute time limit on each task, in order to prevent highly-
motivated users from exhaustively searching the lists of fonts.

6.1 Font Matching Task

We first test users’ ability to find a given font within each user inter-
face (Figure 7). Font recognition sites and apps such as MyFonts’
WhatTheFont help users identify fonts used in existing designs,
such as signs and advertisements; these sites are heavily used and
demonstrate the usefulness of the task. The user might not be able
to find the exact font within the two-minute time limit; in this case,
the user should seek the most similar font. To simplify the task, the
favorites box allows the user to keep a running list of the most rele-
vant fonts for later review. For each interface, 10 task were created
with 5 target fonts each. The target fonts are selected randomly, but,
workers receive the same sequence of target fonts, regardless of the
interface. Additional study details are in the Supplemental Material.

Interface Distance to Target Font Effect Size Exact Match
Baseline 55.08± 2.13 - 5%
Attribute 52.97± 2.57 0.07 15%
Group 47.36± 2.20 0.26 15%

Table 2: Results of the font matching study. Using the group in-
terface, workers on average selected a closer font than using the
baseline and found the exact font more often. For the attribute inter-
face, workers also found the exact target more often, though there
was no statistically significant difference for the mean distance. The
distance between fonts is computed as the Euclidean distance in the
learned embedding space of Sec. 5, with 95% confidence intervals.

Figure 7: Example of a font matching task. The users use the inter-
face to make the bottom font match the top as closely as possible.

Results from the MTurk study are shown in Table 2. We find that,
using either of the new interfaces, a user is three times more likely
to correctly find the target font, as compared to the baseline inter-
face. We also compare the mean distance of the selected font to the
target font for the new interfaces compared to the baseline, accord-
ing to our learned metric (Sec. 5). The group interface performs
significantly better than the baseline interface (using a two-sided
t-test between the distances, p < 0.05). The effect size was 0.26,

computed as
|µn−µb|

σb

, where µn and µb are the means of the new

and baseline interface, and σb is the baseline standard deviation.
There was no statistically-significant difference between the mean
distances of the baseline and attribute interfaces (effect size 0.07).
When users found inexact matches, they found better matches us-
ing the group interface rather than the attribute interface, perhaps
because users had trouble identifying appropriate attributes for cer-
tain fonts.

6.2 Design Task

Our second evaluation uses a more subjective task: given a design,
pick a suitable font for the main text, such as title or heading. Each
design consists of a background image and modifiable text fields,
with the background image usually containing text which the user
cannot modify. We use 15 relatively simple designs created by three
professional designers that reflect a variety of formal and informal
event posters, invitations, announcements, and advertisements, sim-
ilar to designs that an average user might create on their own (Fig-
ure 8). As with the matching task, workers have two minutes to
complete the font selection task on each design.

We conducted the design task using Mechanical Turk, and with
in-person studies with local university students. Mechanical Turk
workers allow us to gather large amounts of data, whereas in-person
studies allow us to perform more in-depth qualitative comparisons.

MTurk Study. For each interface we asked MTurk workers to
choose fonts for 15 designs. Each study task contained 5 designs
and used a single interface, with 1350 designs collected in total. We
then evaluated the designs created using the new interfaces against
the designs created by the baseline interface. 2AFC testing was per-
formed with designs selected from the baseline interface and either
the attribute or group interface, and evaluated by 8 workers. See the
Supplemental Material for study details.

6

To appear in ACM TOG 33(4).

100 100 100 100

51 50 49 49

0 0 0 0

75 32 59 56

Figure 8: Examples of the estimated design scores from crowd-sourced pairwise comparisons. The top three rows show MTurk designs
ranging from 0 (worst) to 100 (best). The bottom row are the original designer font choices, along with the estimated relative score.

Results are shown in Table 3. Our interfaces give a statistically
significant improvement over the baseline (two-sided t-test with
p < 0.05). However, the difference in preference effect size is
relatively small, perhaps reflecting the highly variable preferences
and abilities of MTurk workers at font selection and evaluation. We
found considerable disagreement between MTurk raters: average
votes had about a 74% majority, where 100% would indicate unan-
imous vote and 50% would indicate an exact tie.

We also compare the MTurk font selections to those originally cho-
sen by the professionals that created each design (Table 3), using the
same 2AFC study design as above. Each designer’s font selection
was compared to 12 baseline interface font selections, with random
comparisons added to prevent a familiarity bias. This comparison
provides a rough upper bound on the performance of new inter-

faces, as the designers selected the fonts when creating the original
design, so the font should be a good choice for the design. Remark-
ably, the designer font choices were preferred over MTurk selec-
tions only 53.19% of the time, suggesting there is substantial noise
and subjective preference in the evaluation.

We can also estimate a relative score using pairwise comparisons in
the same manner as in Section 4.3. Figure 8 shows an example of
the best, worst, and middle font selections for 4 of the 15 designs.
We also include the scores of the original designer font choices.

Designer vs. MTurk Evaluation. The high level of disagreement
between workers when evaluating fonts makes it unclear whether
novices are capable of evaluating font selections. We therefore also
collected pairwise comparisons from three professional designers,
and compared the consistency of font selections among MTurk

7

To appear in ACM TOG 33(4).

Interface Raw Majority
Group vs. Baseline 51.39%± 0.86 51.93%± 1.63
Attribute vs. Baseline 51.83%± 0.84 52.60%± 1.65
Designer vs. Baseline 53.19%± 3.47 56.62%± 8.33

Table 3: MTurk interface evaluation. Font selections from the new
interfaces are compared against the baseline in forced AB compar-
isons. We report the raw percentage of people who preferred the
design created by the new interface, as well as the percentage of
comparisons where one interface had a clear majority (i.e., had 2 or
more votes more than the alternative). The new interfaces perform
statistically better than the baseline interface, though the effect size
is small due to the high variance in user ability and font evalua-
tion. We also compare the baseline interface fonts against the de-
signer’s original fonts, which provides a rough upper bound on the
performance. Note the significant noise in the raw results, though
designer’s fonts are generally preferred. 95% confidence intervals
are shown. The higher confidence intervals for the designer versus
the new interfaces is due to a smaller sample size (180 vs. 3600).

workers to the consistency among professionals. Surprisingly, the
consistency among the two groups was similarly low; the mean of
the absolute values of the Kendall tau correlations among MTurk
workers was 0.369 versus 0.365 for professionals. The consistency
between groups was 0.322. Kendall tau values ranges from -1 to 1,
where -1 or 1 indicate perfect correlation between the ranks, and 0
indicates no correlation. These results suggest that font evaluation
is highly subjective for both novices and professionals. The agree-
ment between novices and professionals is also only slightly lower
than between professionals themselves, suggesting MTurk evalua-
tions are reasonable. See the Supplemental Material for details.

Qualitative MTurk Evaluation. Our tasks also included fields for
providing general comments and suggestions on the task and inter-
face. We received many positive comments, including “I thought
the interface was easy to use. It was helpful in picking out fonts
based on attributes that you thought the design should have (i.e.
“happy” for birthday card)”, “This would be an EXCELLENT tool
for setting typefaces. Amazingly easy to use/edit. Fun!”, “The at-
tribute selector was very helpful!”, “Its a great concept...People
like me who are not pros would love this. Even professionals would
love this.”, “This actually seems like a really neat tool. As someone
who occasionally needs choose a font I’m often overwhelmed with
the flat list of choices. I look forward to finding this out in the wild.”

Some users also provided suggestions or negative comments. Most
comments were related to task constraints (e.g., requesting more
time for the task), or requesting more features (e.g., selecting bold
or italic fonts, increasing the sizes of certain interface elements). A
few users wished for the font groups to be labelled.

In-Person Testing. We also conducted in-person studies where 31
participants compared the three interfaces. 17 of the participants
were second-year undergraduate design students and the others
were students with little design experience. Participants created 5
designs with each interface, and rated each interface based on vari-
ous factors (overall preference, ease-of-use, ease-of-learning) using
a 5-point Likert scale, and then commented on the interfaces.

Participants significantly preferred the attribute interface to the
other interfaces, using the Mann-Whitney U test with p < 0.05.
However, there was no statistical difference between the group and
the baseline interfaces. The median of the preference ratings were
4, 3, and 3 for attribute, group, and baseline interfaces. The mean
preference ratings and 95% confidence intervals were 3.81 ± 0.36
and 3.07 ± 0.33 for the attribute and group interfaces, compared
to 2.81 ± 0.33 for the baseline. The effect sizes on the mean rat-
ings were 1.07 and 0.28 for the attribute and group interfaces, com-

puted as in Sec. 6.1. In the comments, participants often positively
described the attribute interface. The group interface received more
mixed reviews; some users preferred it to the other interfaces, while
others found the large number of groups confusing, as well as sim-
ilarity between some groups. A supervised categorization with a
smaller number of groups may help this issue. People found the
baseline interface the easiest to learn, given its similarity to exist-
ing interfaces. However, many users commented on the difficulty
of dealing with large numbers of fonts in that interface. People also
found the Search-by-Similarity feature to be quite useful, giving it
a score of 3.90 ± 0.27, with a median of 4. See the Supplemental
Material for study details and more analysis of user feedback.

7 Future Work

We have proposed interfaces for font selection based on estimating
attributes of fonts through a combination of crowdsourcing and ma-
chine learning. While we focus on fonts, this approach can extend
to any domain where users must search large datasets. Potential do-
mains include vector illustration (e.g., a sketchy drawing of a car),
music (e.g., playful electronic music), and videos (e.g., a cute video
of a dog).

Font attributes and font similarity are inherently subjective proper-
ties; however, there is enough agreement among human opinions
to build reasonably effective models of these properties. Nonethe-
less, one limitation of our approach is that it learns the averaged
response over all users, and ignores variation among individuals.
Modelling an individual’s perception of attributes or similarity is
an open question; collaborative filtering techniques are one possi-
bility for modelling individuals.

We have only scratched the surface of what can be done to improve
font selection and make the difficult task of graphic design easier.
Most immediately, it may be possible to combine the group and at-
tribute interfaces into a single, more intuitive experience. We could
also learn an “auto” button to automatically suggest a font for a
design using a model trained from professional designs. Selecting
fonts that are visually compatible (e.g., choose a header font to go
with a specific body font) is also challenging; we could learn a joint
model of compatible fonts from a corpus of designs. Finally, our set
of attributes is limited; we could use natural language techniques to
map any text to our existing set of attributes.

Acknowledgements

Thanks to John Hancock for his technical assistance. This work was
supported in part by Adobe, NSERC, and CIFAR.

References

BRADLEY, R. A., AND TERRY, M. E. 1952. Rank Analysis of In-
complete Block Designs: I. The Method of Paired Comparisons.
Biometrika 39.

CHAUDHURI, S., KALOGERAKIS, E., GIGUERE, S., AND

FUNKHOUSER, T. 2013. AttribIt: Content Creation with Se-
mantic Attributes. In Proc. UIST.

DOYLE, J. R. 2005. Evaluating the IBM and HP/PANOSE Font
Classification Systems. Online Information Review 29, 5.

FRIEDMAN, J. H. 2000. Greedy Function Approximation: A Gra-
dient Boosting Machine. Annals of Statistics 29.

GARFIELD, S. 2011. Just My Type. Profile Books.

HUANG, S.-S., SHAMIR, A., SHEN, C.-H., ZHANG, H., SHEF-
FER, A., HU, S.-M., AND COHEN-OR, D. 2013. Qualita-

8

To appear in ACM TOG 33(4).

tive Organization of Collections of Shapes Via Quartet Analysis.
ACM Transactions on Graphics 32, 4.

KOVASHKA, A., PARIKH, D., AND GRAUMAN, K. 2012. Whittle-
Search: Image Search with Relative Atribute Feedback. In Proc.
CVPR.

KULIS, B. 2011. Metric Learning: A Survey. In Foundations and
Trends in Machine Learning.

KUMAR, N., BERG, A. C., BELHUMEUR, P. N., AND NAYAR,
S. K. 2011. Describable Visual Attributes for Face Verification
and Image search. In IEEE PAMI.

LAURENTIS, M. S. D. 1993. Panose 2.0 White Paper. Tech. rep.,
Hewlett-Packard Document.

LEWIS, C., AND WALKER, P. 1989. Typographic Influences on
Reading. British Journal of Psychology 80.

LI, Y., AND SUEN, C. Y. 2010. Typeface Personality Traits and
Their Design Characteristics. In Proc. DAS.

LLOYD, S. P. 1982. Least Squares Quantization in PCM. IEEE
Transactions on Information Theory 28, 129–137.

MACKIEWICZ, J., AND MOELLER, R. 2004. Why People Perceive
Typefaces to Have Different Personalities. In Proc. IPCC.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J., KANG, T., MIRTICH, B., PFISTER,
H., RUML, W., RYALL, K., SEIMS, J., AND SHIEBER, S. 1997.
Design Galleries. In Proc. SIGGRAPH.

PARIKH, D., AND GRAUMAN, K. 2011. Relative Attributes. In
Proc. ICCV.

SCHULTZ, M., AND JOACHIMS, T. 2004. Learning a Distance
Metric from Relative Comparisons. In Proc. NIPS.

SHAIKH, A., CHAPPARO, B. S., AND FOX, D. 2006. Perception
of Fonts: Perceived Personality Traits and Uses. Usability News.

SHAIKH, A. 2007. Psychology of Onscreen Type. PhD thesis,
Wichita State University.

SOLLI, M., AND LENZ, R. 2007. FyFont: Find-Your-Font in Large
Font Databases. In Proc. SCIA, 432–441.

SRIHARI, S. 1999. Multifont Classification Using Typographical
Attributes. In Proc. ICDAR.

TALTON, J. O., GIBSON, D., YANG, L., HANRAHAN, P., AND

KOLTUN, V. 2009. Exploratory Modeling with Collaborative
Design Spaces. ACM Transactions on Graphics 28, 5.

TAMUZ, O., LIU, C., BELONGIE, S., SHAMIR, O., AND KALAI,
A. 2011. Adaptively Learning the Crowd Kernel. In Proc.
ICML.

TAO, L., YUAN, L., AND SUN, J. 2009. Skyfinder: Attribute-based
Sky Image Search. ACM Transactions on Graphics 28, 3.

TIBSHIRANI, R. 1996. Regression Shrinkage and Selection Via
the Lasso. Royal. Statist. Soc B 58.

TSUKIDA, K., AND GUPTA, M. R. 2011. How to Analyze Paired
Comparison Data. Tech. rep., University of Washington.

VAN DER MAATEN, L., AND HINTON, G. 2008. Visualizing Data
Using t-SNE. Journal of Machine Learning Research 9.

WELINDER, P., BRANSON, S., BELONGIE, S., AND PERONA, P.
2010. The Multidimensional Wisdom of Crowds. In Proc. NIPS.

WHITE, R., KULES, B., DRUCKER, S., AND SCHRAEFEL, M.
2006. Supporting Exploratory Search. Commun. ACM 49, 4.

Appendix A: Attribute MTurk Study Details

Each Human Intelligence Task (HIT) on MTurk consists of 16 com-
parison tasks, along with four control tasks for quality control. Two
of the four control tasks check for consistency; we repeat two of the
16 tasks with the order of the fonts swapped. The other two con-
trol for correctness; we add two font pairs with the attribute “thin”
which are unambiguous and should have a clear answer. We discard
any HITs in which the worker fails two or more control questions;
the final rejection rate was 8.1%. Workers were paid $0.07 per HIT.

For each attribute, the total number of comparison tasks is mn
2

,
where m is the number of fonts, and n is the number of pair-
wise comparisons per font. The division by 2 appears since two
fonts appear in each comparison. For our dataset, m = 200 and
n = 8, providing 800 comparison tasks for each attribute, with font
pairs selected randomly. Each comparison task was completed by 8
unique workers, providing 8n = 64 individual responses for each
font/attribute pair. Over all attributes and fonts, this produces a final
dataset of 198,400 individual responses for 639 unique workers. In
the Supplementary Material, we justify our choice of n = 8 with a
study which varied this parameter.

Appendix B: Font Features

Size and Area. For both the lower and upper case ‘X’, we measure
the width, height, and width/height ratio. We find each character’s
area, and the ratio of the area with the bounding box. We then find
the min/max/mean over all characters. We also compute the height
of the biggest ascender or descender in the character set: the length
that extends above/below the mean line of the font.

Spacing. We measure the horizontal and vertical spacing between
upper and lower case ‘X’ . That is, for the horizontal spacing, we
measure the space between the two characters ‘xx’ and ‘XX’. We
also compute vertical spacing for characters with descenders.

Outlines. For each character, we compute the sum of the outline
arc lengths, as well as the minimum and maximum of the set. We
then compute the min/max/mean for all characters.We also find the
mean number of independent curves for each character.

Curvature Histograms. We compute curvature histograms for
curved and non-curved characters. The curvature points are com-
puted by iterating over the character, and computing the angle be-
tween adjacent points. We use 10-bin histograms, along with his-
togram entropies. We then compute the Earth Mover’s Distance be-
tween lower and upper case curvature histograms. For each charac-
ter, we also find the max and mean curvature, and the entropy of
the curvature histograms, then compute the min/max/mean over all
characters.

Orientation and Width. To measure the orientation of the charac-
ters, such as italic or slanted fonts, we create a point set from the
character ‘L’, compute PCA on the points, then find the angles and
magnitudes of the first two principal components. We estimate the
stroke width by taking the horizontal width of ‘l’, ‘I’, and the ‘1’.
We also estimate the stroke width by the character ‘O’, both along
the x-axis and the y-axis, as well as the ratio of both widths.

9

