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Abstract 

From the standpoint of supporting human-centered discov- 
ery of knowledge, the present-day model of mining asso- 

ciation rules suffers from the following serious shortcom- 

ings: (i) lack of user exploration and control, (ii) lack of 

focus, and (iii) rigid notion of relationships. In effect, this 

model functions as a black-box, admitting little user inter- 

action in between. We propose, in this paper, an architec- 

ture that opens up the black-box, and supports constraint- 

based, human-centered exploratory mining of associations. 
The foundation of this architecture is a rich set of con- 

straint constructs, including domain, class, and SqLstyle 
aggregate constraints, which enable users to clearly specify 

what associations are to be mined. We propose constrained 

association queries as a means of specifying the constraints 

to be satisfied by the antecedent and consequent of a mined 

association. 

In this paper, we mainly focus on the technical challenges 

in guaranteeing a level of performance that is commensu- 
rate with the selectivities of the constraints in an associ- 

ation query. To this end, we introduce and analyze two 
properties of constraints that are critical to pruning: onti- 

monotonicity and succinctness. We then develop charac- 

terizations of various constraints into four categories, ac- 

cording to these properties. Finally, we describe a min- 

ing algorithm called CAP, which achieves a maximized de- 

gree of pruning for all categories of constraints. Experi- 

mental results indicate that CAP can run much faster, in 

some cases as much as 80 times, than several basic algo- 
rithms. This demonstrates how important the succinctness 

and anti-monotonicity properties are, in delivering the per- 

formance guarantee. 

1 Introduction 

Since its introduction [I], the problem of mining association 
rules from large databases haa been the subject of numer- 
ous studies. These studies cover a broad spectrum of topics 
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including: (i) fast algorithms based on the levelwise Apriori 

framework [3, 131, partitioning [19, 181, and sampling [24]; 
(ii) incremental updating and parallel algorithms [6, 2, 81; 

(iii) mining of generalized and multi-level rules [21, 91; (iv) 

mining of quantitative rules [22, 161; (v) mining of multi- 

dimensional rules [7, 14, 121; (vi) mining rules with item 

constraints [23]; and (vii) association-rule baaed query lan- 

guages [15, 41. However, from the standpoint of the user’s 

interaction with the system, the process of association min- 

ing can be summarized as follows. First, the user speci- 

fies the part of the database to be mined. Next, the user 

specifies minimum thresholds for measures such as support 

and confidence. The system then executes one of several 
fast mining algorithms. At the end of a highly data inten- 

sive process, it returns a very large number of associations, 

some of which are hopefully what the user was looking for. 

We contend that there are a number of problems with this 

present-day model of interaction. Below, we discuss these 

problems, and highlight our contributions to solving them. 

Problem 1 - Lack of User Exploration and Control: 
Mining (of associations) should be an activity that allows 

for exploration on the user’s part [ll, 201. However, the 

present-day model for mining treats the mining process as 

an impenetrable black-box - only allowing the user to set 

the thresholds at the beginning, showing the user all asso- 

ciations satisfying the thresholds at the end, but nothing 
in between. What if the user sets the wrong thresholds, or 

simply wants to change them? What if the user wants to 

focus the generation of rules to a specific, small subset of 

candidates, based on properGes of the data? 

Such a black-box model would be tolerable if the turnaround 

time of the computation were small, e.g., a few seconds. 

However, despite the development of many efficient algo- 

rithms [2, 3, 6, 8, 13, 18, 19, 241, association mining remains 

a process typically taking hours to complete. Before a new 

invocation of the black-box, the user is not allowed to pre- 

empt the process and needs to wait for hours. Furthermore, 
typically only a small fraction of the computed rules might 
be what the user was looking for. Thus the user often in- 

curs a high computational cost that is disproportionate to 
what the user wants and gets. 

Suggested Principle: (1) Open up the black-box, and 

establish clear breakpoints so as to allow user feedback. 

(2) Incorporate user feedback, not only for guidance and 

control of the mining process, but also for acquiring user’s 
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approval for any task involving a substantial cost. ’ 

Our Contributions: In Section 2, we present an archi- 

tecture for exploratory association mining. It divides the 

black-box into two phases. In Phase I, the user guides 

the system into finding the intended candidates for the an- 

tecedent and consequent of the associations. This can be an 

iterative process. In Phase II, the user instructs the system 

to find associations among the selected candidates. 

Problem 2 -~ Lack of Focus: A user may have certain 

broad phenomena in mind, on which to focus the mining. 

For example, t,he user may want to find associations be- 

tween sets of items whose types do not overlap, or associa- 
tions from item sets whose total price is under $100 to items 

sets whose average price is at least $1,000 (thereby verify- 

ing whether the purchases of cheap items occur together 

with t,hose of expensive ones). The interface for expressing 

focus offered by the present-day model is extremely impov- 

erished, because it only allows thresholds for support and 

confidence to be specified. We note that some recent stud- 

ies (e.g., [23, 251) are moving towards the same direction of 

constraint/query-based association mining and these works 
will be reviewed below. 

Suggested Principle: (3) Provide the user with many op- 

portunities to express the focus. (4) Use the focus to ensure 
that the system does an amount of computation propor- 

tional to what the user gets. This is the first step towards 

ad hoc mining of associations [ll, 201. 

Our Contributions: The architecture presented in Sec- 

tion 2 provides a rich interface for the user to express focus. 

The critical component is the notion of constradned asso& 

ation queries (CAQ) to be introduced in Section 3. CAQs 
offer the user a means for specifying constraints, including 

domain, class and aggregation constraints, that must be 

satisfied by the antecedents and consequents of the rules to 

be mined. Moreover, towards the goal of doing an amount 

of processing commensurate with the focus specified by the 

user, we develop in Sections 4-7 various pruning optimiza- 

tions effected by the constraints. In particular, two key 

properties, called anti-monotondcity and succinctness, are 

introduced and studied. Section 4 analyzes and character- 

izes all constraints based on anti-tnonotonicity, and Sec- 

tion 5 characterizes constraints based on succinctness. Sec- 

tion 6 develops algorithms for mining associations with con- 

straints. One of our algorithms, called CAP, incorporates 
the earlier analyses on anti-monotonicity and succinctness 
to support a maximized degree of pruning. Experimental 
results shown in Section 7 indicate that CAP can run as 

much as 80 times faster than several algorithms based on 

the classical Apriori framework. 

Srikant et al. consider association mining with item con- 

straints [23]. They consider essentially membership con- 

straints in the context of an item taxonomy, which corre- 

spond to a small subclass one of the categories of constraints 
(see Section 6.3.2) studied in this paper. While we focus 

on conjunctions and negations of constraints, rather than 
arbitrary boolcan combinations, constraints of the form 

S.Type = so&s do permit implicit forms of disjunction. 

‘The smrlt of this ormcivle LS vet-v slmllar to the ormciole SUE- 
gested by’Hellerstein et al ‘for onlme aggregatmn [Id], m t’hat thYe 
uwr 1s given the final say as to the amount of informatmn wanted, 
anti LS not charged for the cost of computatmn that 1s drrmed un- 
necessary by the user 

Besides, we also consider domain and SQL-style aggrega- 

tion constraints, which are far from trivial (cf: Figure 2 

later). More importantly, our study focuses on the analy- 

sis of the pruning properties of a substantial and naturally 

useful class of constraints. The classification of constraints 

based on anti-monotonicity and succinctness is funhnen- 

tally new. Moreover, Algorithm CAP provides highly ef- 

fective pruning for much larger classes of constraints than 

the algorithms given in [23]. Meo et al. propose a lar- 

guage for association mining with conditions [15]. They 
focus more on sophisticated ways of grouping tuples and 

do not consider pruning optimizations effected by the con- 

ditions. Tsur et al. [25] propose an interesting notion, called 

“query flocks,” for describing parameterized query and filter 
(a condition applied to the result of the query). However, 

the filter is confined to lower bound constraints on the num- 

ber of tuples returned by the query. The general notion of 

constraints, their classification, and their role in optimiza- 

tion of association mining, fundamentally new in our work, 

are not studied there. 

Problem 3 - Rigid Notion of Relationship: The present- 
day model restricts the notion of associations to rules with 

support and confidence that exceed given thresholds. While 
such associations are useful, other notions of relationships 

may also be useful. First, there exist several significance 

metrics other than confidence that are equally meaningful. 

For example, Brin et al. argue why correlation can be more 

useful in many circumstances [5]. Second, there may be 

separate criteria for selecting candidates for the antecedent 

and consequent of a rule. For example, the user may want 

to find associations from sets of items to sets of types. The 

rule pepsi =+ anaclcs is an instance of such an association, 

meaning that customers often buy the item pepsi together 

with any item of type snacks. Coming from different do- 
mains, the antecedent and consequent may call for different 

support thresholds and requirements. 

Suggested Principle: (5) Allow the user the flexibility 

to choose the significance metrics and the criteria to be 

satisfied by the relationships to be mined. 

Our Contributions: The two-phase architecture presented 
in Section 2 provides this flexibility. Prior to entering Phase 

II, the user can specify the desired significance metric, and 

can give different conditions that must be satisfied by the 

antecedent and consequent of the relationships to be formed. 

There are already several proposals in the literature that 
make the notion of associations less rigid [5, 7, 9, 12, 14, 211. 
We are not proposing another here. Instead, we are propos- 

ing an architecture that allows many of those alternative 

notions to co-exist. and that nermits the user to choose 

whatever is appropriate for the application. 

2 Architecture 

Figure 1 shows a two-phase architecture for exploratory as- 

sociation mining. The user initially specifies a so-called 

constrained association query, which includes a set of con- 
straints C, including support thresholds for the antecedent 

and consequent. Each constraint in C may be applicable to 
the antecedent, or the consequent, or both. The output of 
phase I consists of a list of pairs of candidates (S,, S,), for 

the amecedent and consequent satisfying C, such that both 
S, and S, have a support exceeding the thresholds initially 
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Figure 1: Architecture for Exploratory Association Mining 

set by the user. 2 On seeing the candidates, the user can: 

(i) add, delete, or modify the constraints, and/or (ii) ad- 

just the support thresholds. The user may iterate through 

Phase I in this manner as many times as desired. 

Once satisfied with the current candidate list, the user can 
inst,ruct the system to proceed to Phase II, wherein the 

user has the opportunity to specify: (i) the significance 

metric, (ii) a threshold for the metric specified above, and 

(iii) whatever further conditions to be imposed on the an- 

tecedent and consequent. For instance, if the user wishes to 

operate in the classical association mining setting, the user 

would choose confidence as the significance metric, give a 

confidence threshold, and require that (S, US,) be frequent. 

In this manner, the effort spent in Phase II is geared to- 
wards the computation of what the user really wants. Even 

if Phase II involves costly computation (e.g., computation 

of correlations), the user has the final say in authorizing 

such costly operations. Finally, the output of Phase II con- 

sists of all associations/relationships that satisfy the condi- 

tions given at the beginning of Phase II. IJpon examining 

this output, the user has the opportunity to make further 

changes to any parameters set before. Depending on which 

parameters are reset, this may yet trigger Phase I and Phase 

II, or just Phase II, computations. 

A key feature of the proposed architecture is that it is down- 

ward compatible. This means that if a user wants only clas- 
sical associations and the classical mode of interaction, the 

user can simply set all the appropriate parameters at the 

beginning, and need not be prompted at the breakpoints for 
feedback. Of course, we stress that the real power of the 

architecture stems from its provision for human-centered 
exploration for association mining, and its implementation 

of the five principles suggested in the previous section. 

The architecture per se does not address performance is- 

sues. Note that in the computation of classical associations, 
finding frequent sets is much more expensive than comput- 

ing rule confidence. Similarly, in our framework, Phase I is 

‘In general the candidate list can br quite large, running in the 
order of tens of thousands of paxs An Important issue is how to 
orgamze such a large list I” order to help the user browse through 
it convementlv One “osslbllrtv 1s to order the hst with res”ect, to 
set inclusio” and show only pairs of maximal sets Another is to 
prowde rankmg of the (maxunal) sets based on thew supports, thus 
prowding feedback to the user as to whether the support thresholds 
nerd to be adJusted. This ,ss”e IS not pursued further L” this paper 

C is a conJunction of constramts on Sl, S2 drawn from the followmg 
classes of constraints. 

1. Sin& Variable Constraints. A smgle variable (f-var) con- 

stramt 1s of one of the followmg forms 

(a) Chss Constraint. It 16 of the form S C A, where S is a 
set variable and A is a” attrlbute. It says S is a set of 
values from the domain of attribute A 

(b) Domazn Con.?trarnt: It 1s of one of the following forms 

1. SOW, where S 1s a set vanable, u is a constant 
from the domain that S comes from, and 9 1s one 
of the boolean operators =, f, <, 2, >, 2. It says 
every element of S stands in relationshlp 6’ with 
the constant value u. 

ii. u6’S, where S, u are as above, and 0 LS one of the 
boolean operators E, f. Tlus simply says the ele- 
ment u belongs to (or not) the set S 

111 VBS, or SBV, where S is a set variable, V M a set 
of constants from the domam S ranges over, and 
Riso”eofC,$Z,C,~,=,f. 

(c) Aggregate Constrazn~ It 1s of the form tigg(S)Ov, 
where agg is one of the aggregate funct,ons ~WI, maz, 
sum, count. aug, and 0 is one of the boolean opera- 
tors =, #, <, 5, >, 2. It says the aggregate of the set 
of numeric values I” 5’ stands m relatlonshlp 0 to v. 

2. Two Variable Constraints- A two variable constraint (Z-var) 16 
of one of the followmg forms 

(b) (Sl o Sz) fl V, where S1, Sa are set variables, V 16 a 
set of constants or 0, o is one of U, (3, and 0 is one of 
=, f, c, cz> c, e 

(c) w7l(S1)@wgz(Sz), where aggl , aggz are aggregate 
functions, and 8 is one of the boolean operators =, # 

,<>I,>,L 

Figure 2: Syntax of Constraint Constructs 

computationally much more expensive than Phase II. Thus, 

in the rest of the paper, we focus on Phase I computations, 
and designate all Phase II issues as the subject of a forth- 

coming paper. Regarding Phase I computations, the task is 

to find all frequent sets satisfying the constraints specified 

in a constrained association query introduced in the next 

section. Our technical challenge is to find ways of optimiz- 

ing the amount of pruning on the computation required in 

this phase, which is the subject of later sections. 

3 Constrained Association Queries 

As shown in Figure 1, Phase I begins with the user specify- 
ing a constrained association query, which states the con- 

straints imposed on the antecedent and consequent of the 
rules to be mined. To be more precise, the user also needs 

to specify the part of the database to be mined, called the 
minable view, and to define the notion of “transactions” for 

the purpose of calculating support and other metrics. For 

space limitations, in this paper, we only focus on the specifi- 

cation and optimization of constrained association queries, 

and do not pursue the issue of how to specify minable view 

and transactions. We refer the reader to [17] which gives 

a complete example of how a constrained association query 

can be “wrapped” in a SClL environment. For the purpose 
of this paper, we may simply regard the minable view as 

one or a set of relations. 

A constrnined association query (CAQ for short) is defined 

to be a query of the form: {(Sl, &) 1 C}, where C is a set 

of constraints on S1, Sz. Note that a CAQ does not make 
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the notion of antecedent and consequent of an association finds pairs of sets of cheaper snack items and sets of more 

explicit. The reason we define a CAQ in this way is that expensive beer items. The CAQ 

this issue is irrelevant to Phase I. The kinds of constraints 

studied in this paper are formalized in Figure 2. It includes 
both single variable constraints - useful in conditioning the 

{(TI, Tz) 1 TI C Type & T2 C Type) 

antecedent and/or consequent separately, and two variable 
constraints - useful in constraining them jointly. The con- 

find s pairs of sets of types (corresponding to items bought 

straints cover domain, class, and aggregation constraints. 
together). Finally, the following CAQ specifies set variables 

A set variable is either an identifier of the form S or is an 
from two different domains. 

expression of the form S.A, where A is an attribute in the 

minable view. In addition to the constraints shown in Fig- 
{(S, T) 1 S C Item & S.Type = snacks & T C Type & 

ure 2, we also include in C the frequency constraints of the 
snacks e T}. 

form freq(S, ), saying that the support of S, must exceed 

some given threshold. The reason for this is that such con- It asks for sets of snack items and non-snack types. All the 

straints are pushed inside Phase I computation. Our later above examples are based on the basket domain. See [17] 

analyses on constraints cover frequency constraints as well. for examples based on the WWW domain. 

We next illustrate the various constraints of Figure 2 via 

examples, for which we assume the minable view to be: 

trans(TID, Itemset), itemInfo(Item, Type, Price). 

The constraint S C Item says that S is a set variable 

on the Item domain. This together with S.Price 5 100 
says all items in S are of price less than or equal to $100. 

{snacks, sodas) E S.Type says S should include some items 

whose type is snacks and some items whose type is so- 

das, while S.Type n {snacks, sodas} = 0 says S should ex- 
clude such items. All the above examples are 1-var con- 

straints. Some examples of 2-var constraints are: S1 .Typefl 

Sz.Type = 0, and maz(S1 .Price) 5 aug(&.Price). The 

CAQ 

{(Sl, SZ) ) S1 C Item & SZ C Item & count(S1) = 1 & 

count(S2) = 1 & fw(Sl) & freq(S2)) 

asks for all pairs of single items satisfying frequency con- 

straints. In the examples that follow, for brevity, we sup- 

press the frequency constraints and the domain constraints 

54 C Item& Sz C Item. The CAQ 

{(Sl, Sz) 1 oggi(Sl.Price) < 100 & aggz(&.Price) 2 
1000) 

asks for pairs of item sets, where 5’1 has an aggregate price 

less than $100 and Sz has an aggregate price more than 

$1,000. Here, aggl , agg2 could be any aggregate function 

given in Figure 2. The CAQ 

{(Sl, 5’2) / count(Sl.Type) = 1 & count(&.Type) = 1 & 

SI .Type # SZ .Type} 

then asks for pairs of item sets of two distinct types. Simi- 

larly, the CAQ 

{(SI,.%) I &.Typen&.Type=0} 

asks for 
r 

airs of item sets whose associated type sets are 

disjoint. The CAQ 

Satisfaction of a constraint by a pair of sets (5’1,s~) is de- 

fined in the obvious manner. Satisfaction with respect to 

a conjunction and negation of constraints is defined in the 

usual sense as well. Thus, given a CAQ 3 { (S1 , 5’2) 1 C}, 

where C includes the frequency constraints, we seek to find 

algorithms that are sound and complete. An algorithm is 

sound provided it only finds frequent sets that satisfy the 

given constraints; it is complete provided all frequent sets 

satisfying the given constraints are found. 

A trivial sound and complete algorithm is to apply the clas- 

sical Apriori algorithm for finding all frequent sets, and then 

to test them for constraint satisfaction (called Apriori+ in 

Section 6). But this algorithm can be highly inefficient. The 

key technical challenge that we take on is how to guarantee 

a level of performance (i.e., query processing time) that is 

commensurate with the selectivities of the constraints in C. 

The goal is to “push” the constraints as deeply as possible 

inside the computation of frequent sets. Note that a naive 

approach to pushing constraints into the Apriori framework 

of computing frequent sets is to test all candidate sets for 

constraint satisfaction, before counting for support is con- 

ducted. However, this approach is not guaranteed to be 
complete. Consider the constraint oug(S.price) < 100. 

If we apply the usual criterion used by the Apriori Algo- 
rithm for pruning away candidate sets for iteration k + 1, 

we may miss out certain sets which may potentially be fre- 

quent. Specifically, a set S of size k + 1 may have a subset 

of size k which was not counted, because the subset did 

not satisfy the constraint. On the other hand, S itself may 

well satisfy the constraint. In the following sections, via a 
comprehensive analysis of the properties of constraints, we 

develop techniques for “pushing” constraints as deeply in 
the frequent set computation as possible, while preserving 

soundness and completeness. Our analysis focuses on prun- 
ing optimizations for 1-var constraints only. We have de- 

veloped pruning optimizations for 2-var constraints as well. 
But for space limitations, we will only discuss them in a 

forthcoming paper. Also for space limitations, we suppress 
several proofs and further discussions on details in this pa- 

per. The complete details can be found in the full version 

b71 

{(Sl, S2) 1 Sl.Type C {Snacks} & Sz.Type E {Beers} AZ 

mas(SI.Price) < min(Sz.Price)} 
4 Optimization Using Anti-Monotone 

Constraints 
‘In the class~al settmg, there 1s the implicit condition that S1 

and Sa are disjomt for the assoclatmn rule SI+Sa. We impose the 
same condition in our framework. However, even when S1 CI Sa = 0, 

The first property of constraints that we identify and ana- 

it is still meanmgful to have such constramts as S1 Type = Sa.Type, 
lyze is anti-monotonicity. What motivates this property is 

S1 Type c Sa.Type, etc. the observation that the success of the Apriori algorithm for 
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Figure 3: Characterization of 1-var Constraints: Anti- 

Monotonicity and Succinctness 

classical association mining relies critically on the following 

property of the frequency constraint: whenever a set vio- 

lates the frequency constraint, so does any of its supersets. 

Because this property deals with violation of the frequency 

constraint, it is anti-monotone in nature. 4 This property 

enables the Apriori algorithm to prune away a significant 

number of candidate sets that require support counting. 

The question we ask here is which classes of constraints 

proposed in the previous section satisfy a similar property. 
If we can identify such constraints, we can incorporate them 

in the mining algorithm with the same efficiency with which 
the conventional frequency constraint is incorporated in the 

Apriori algorithm. The definition of anti-monotonicity is as 
follows. 

Definition 1 (Anti-monotonicity) A 1-var constraint C 

is anti-monotone iff for all sets S, S’: 

S > S’ & S satisfies C * S’ satisfies C. 

Note that anti-monotonicity is not a new concept. But 

our main contribution here with respect to this notion is 

a detailed analysis and a complete characterization of the 
class of 1-var constraints that are anti-monotone. For space 
limitations, we summarize in Figure 3 our results for a rep- 

resentative subset of constraints. The figure includes only 

the positive operators (e.g., =, E) and omits the negative 

counterparts (e.g., #, SC). It also omits the strict operators 

(e.g., C, <) and only includes the counterparts with equal- 

ity (e.g., E, 5). For reference, it also includes an entry for 

the frequency constraint. 

The second column of the table in Figure 3 identifies which 

I-var constraints are anti-monotone. (The third column 

does the same for succinctness, which will be discussed in 
Section 5.) Among the domain constraints involving set op- 
erators, some are anti-monotone, and some others are not. 

Similarly, for constraints involving rnan(), min(S) 2 v is 
anti-monotone, but min(S) 5 v is not. The proof of Theo- 

rem 1 below shows why min(S) 2 v is anti-monotone. But 

41n [la] Manmla et al. refer to this property as monotomcity. But 
we prefer the term antl-monotone for the reason mentIoned above. 

for min(S) 5 w, even if min(S) f u, it is possible that some 

superset S’ of S may satisfy &a(S’) < U. This is because 

the minimum of a set may decrease when more elements 

are added into the set. Since m;n(S) = o is equivalent to 

min(S) 2 u & m;n(S) 5 v, it is partly anti-monotone in the 

following sense. On the one hand, if S violates m;ra(S) = r~ 

because it violates min(S’) 2 V, then every superset S’ of 

S violates min(S’) = v, in which case m;n(S) = v is anti- 

monotone. On the other hand, if S violates min(S) = v be- 

cause it violates m;n(S) < V, then there may be a superset 

S’ that satisfies m;n(S’) = w, in which case m;n(S) = v is 

not anti-monotone. Constraints involving maz() are “mir- 

ror images” of the corresponding min() constraints. 

Note that almost all aggregate constraints of the form 

agg(S)Bw should be more precisely written as agg(S.A)Ou, 

where A is a numeric attribute. The only exception are con- 

straints involving count(), because both count(S)Ou and 

count(S.A)Ov are meaningful. The former case is repre- 

sented in the table. The latter case, not duplicated in the 

table, behaves exactly the same as the corresponding snm() 

constraints. And regarding sum0 constraints, the entries 
in the figure assume that elements in S are non-negative 

(e.g., price, length of time). If this assumption is not true, 

then all forms of constraints involving sum0 are not anti- 

monotone. Finally, all forms awg() constraints are not anti- 

monotone. We have the following result ascertaining the 

correctness of the table in Figure 3. 

Theorem 1 For each constraint C hsted in the table in 

Figure 3, C is anti-monotone iff the table sags so. 

Proof Sketch. We only show the proof of one case here: 

man(S) 2 V. Proofs of other cases are omitted for brevity. 
Because man(S) zf Y, there must exist an element e E 5’ 

such that e < w. But then the same element e is con- 
tained in every superset S’ of S. Thus, it is necessary that 

min(S’) 5 e < v. D 

Having characterized all anti-monotone l-var constraints, 

we next address the issue of how to take full advantage 

of the anti-monotonicity property of constraints. The ba- 

sic idea is that any pruning optimization that is applicable 

to the frequency constraint is also applicable to all anti- 
monotone constraints. In particular, the standard opti- 

mization is to use the following property (Pl) : 

S, where (S( = k, is frequent -4 VS’ E S where 

19 = k - 1, S’ is frequent. 

In the general setting of processing a constrained associa- 

tion query {(Sl , Sz) ( C}, if C,, consists of all the anti- 

monotone constraints in C, including the frequency con- 

straint, then an optimization is to use the following prop- 

erty (P2) , which generalizes property (Pl) above. 

S, where (S( = k, satisfies C,, a VS’ c S where 
1.9’1 = k - 1, S’ satisfies C,,. 

More specifically, if Lk-i consists of all the sets of size k - 1 
that satisfy C,,, then the set Ck of candidate sets of size 

k can be generated in exactly the same way as is being 

done in the Apriori Algorithm. Furthermore, Ck can be 

fnrther pruned to become Cl”’ by checking whether each el- 

ement in CI, sat,isfies every constraint in C,,, other than the 
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frequency constraint. Any element that violates any con- 

straint in C,, is not added to Ctm. Only elements in Ci”’ 

require support counting. As will be seen in Section 6.3, 

this optimization is incorporated in Algorithm CAP. 

5 Optimization Using Succinct 

Constraints 

In the previous section, we have identified anti-monotonicity 

as a useful property of constraints, and characterized the 

class of l-var constraints that are anti-monotone. Here we 

ask the question: can we do better? More specifically, the 

kind of optimization achievable using anti-monotonicity is 
restricted to iterative pruning: at each iteration or level 

of the Apriori Algorithm, we can prune the candidate sets 
which require support counting. However, at each iteration, 

we still need to generate and test these candidates for sat- 

isfaction of the anti-monotone constraints under consider- 

ation. Thus, the question we explore here is whether there 
are classes of constraints for which pruning can be done 

once-and-for-all before any iteration takes place, thereby 

avoiding the generate-and-test paradigm. This raises two 

key questions: (i) Can we succinctly characterize the set of 

all (item) sets that satisfy a given constraint, and when? 

(ii) How can we generate all and only those item sets that 

satisfy the given constraint, avoiding the generate-and-test 

paradigm completely? Toward (i), we formalize the notion 
of succinctness below. Toward (ii), we propose the notion 

of a member generating function. 

In the following, for concreteness, but without loss of gen- 

erality, we assume that S is a set variable ranging over the 
domain of attribute Item, i.e., S c Item. We also assume 

that the minable view consists of the relations: trans (TID, 

Itemset), itemInfo(Item, Type, Price). Let C be a l- 

var constraint. Define SATc(Item) to be the set of item 

sets that satisfy C. With respect to the lattice space con- 

sisting of all item sets, SATc(Item) represents the pruned 

spuce consisting of those item sets satisfying C. For ex- 

ample, if Cr E S.Price > 100, then the pruned space 

for Ci contains precisely those item sets such that each 

item in the set has a price at least $100. The notion of 
a selection predicate will play a useful role in much of the 

rest of the development. By a selection predicate, we mean 
any predicate allowed to appear as a parameter of a selec- 

tion operation in relational algebra. In particular, the size 

of the description of the selection predicate must be inde 

pendent of the size of the database. In the following, for 

I C It em and a selection predicate p, we use cp( 1) to denote 

{i E I 1 3 E trans W itemInf0 : t.Item = i & t satisfies p}. 

We also use the notation 2’ to mean the strict powerset of 

I, i.e., the set of all subsets of I except the empty set. 

Definition 2 (Succinctness) 

1. I C Item is a succinct set if it can be expressed as 

up( Item) for some selection predicate p. 

2. SP c 2 ’ Itom is a succinct poluerset if there is a fixed 

number of succinct sets Item,, . , Itemk C Itemsuch 

that SP can be expressed in terms of the strict pow- 

erset,s of Item1 , , Itemk using union and minus. 

3. Finally, a l-var constraint C is succinct provided 
sa’rc,(Item) is a succinct powerset. 

For the above constraint Ci E S.Price > 100, let Itemi = 

~~,~~~>is~(Itern). Cr is succinct because-its pruned space 

SATc;(IteDI) is simply 21tom1. Next consider a more com- 

plicated example. Given Cz s {snacks, sodas} c S.Type, 
the pruned space consists of all those sets that contain at 

least one item of type snacks and at least one item of type 

sodas. Let Iteq, Item, Item respectively be the sets 

u Type=~snocks~(It4r ~~ype=~so~as~(IWr and 
u Typef’snacks,hTypef’~~~~~,(Item). Then, Cz is succinct be- 

cause the pruned space SATC, (It em) can be expressed as: 

We have the following result ascertaining the correctness 
of the table in Figure 3 characterizing succinct 1-var con- 

straints. 

Theorem 2 For each constraint C listed in the table of 

Figure 3, C is .succinct iff the table says so. 

Proof Sketch. The two examples above illustrate two pos- 

itive cases. We show the formal proof of one case here: 

maz(S.A) 2 c. Formal Proofs of other cases are omitted 

for brevity. Let Itemi = aA<,(Item). Then the pruned 

space SATc(IteIU) = 21te’ - 21ten1. The negative cases are 

proved by producing a pair of witness instances such that 

(i) no expression for SATc(Item) can distinguish between 

them, but (ii) the sets in SATc(Item) corresponding to the 

two instances are distinct. m 

Consider a constraint of the form count(S) 5 w. This con- 

straint is not succinct according to Definition 2, and does 

not have an MGF of the kind introduced in Definition 3. 

However, we can have an MGF based on cardinality con- 

straint, i.e., {X 1 X C Item& 1x1 5 w}. Similarly, for 

count0 constraints involving 0 E {=, 2, #, <, >} we can 

easily set up MGFs with cardinality constraints. Mem- 

ber generation in this manner takes on a flavor different 

from that introduced earlier. Thus, in the table of Fig- 

ure 3, we say that count0 constraints are weakly succinct, 

to distinguish them from the aforementioned succinct 1-var 

constraints. 

Note that not being succinct has no bearing on the size of 
the pruned space. For the constraint C E avg(S.A) = u, it 

might well be that SATc(IteIIt) is an extremely small subset 

of anem. But without further concepts and tools, one would 
be forced to generate arbitrary subsets of Item and test 

them for satisfaction of C. However, in Section 6.3, we will 

offer a technique that can provide pruning optimization for 

even such a constraint. 

Having characterized the succinct constraints, the imme- 

diate question to ask is how to take full advantage of the 

succinctness property of constraints in pruning. The key 
concept here is the member generating function of a set. 

Definition 3 (Member Generating Functions) 

1. We say that SP 2 21te’ has a member generating 

function (MGF) provided there is a function that 

can enumerate all and only elements of SP, and that 
can be expressed in the form {Xi U . . . U X, 1 X, C 

arl(Item), 1 5 i 5 n, & 3k 5 n : X, # 0,l 5 j 5 
k}. for some n >_ 1 and some selection predicates 

PI,. . rpn. 
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2. A I-var constraint C is pre-counting prunable pro- 

vided sATc(Item) has an MGF. 

For the constraint Ci G S.Price > 100 discussed above, 
an MGF is simply {X 1 X & Itemi & X # 0}, where Itemi 
is as defined earlier. As for the constraint Cz f (snacrk.9, 

sodas} E S.Type, an MGF is {Xl U X2 U X3 1 X1 E 

Item2 & X1 # 0 &; X2 C Item3 & X2 # 0 & X3 & Item4}, 

where Itemz, Item and Item are as defined earlier. 

We have the following lemma showing that succinctness is 

a sufficient condition for pre-counting prunability. We omit 

the proof, which is based on an induction on the number of 

minus operator in the succinctness expression. By consider- 
ing Theorem 2 and the lemma together, we have identified a 

large class of constraints that admit pre-counting pruning. 
In other words, by using the associated MGF, a succinct 

constraint can simply operate in a generate-only environ- 
ment - but need not in a generate-and-test environment. 

Furthermore, the satisfaction of the constraint alone is not 

affected in any way by the result of the iterative support 

counting. 

Lemma 1 If C Ss succinct, then C is pre-counting prun- 

able. 

So far, we have conducted our analysis on a per-constraint 

basis. But clearly, an algorithm for processing a constrained 

association query needs to deal with multiple constraints 

specified in the query. This raises the question of how to 

produce one MGF for multiple succinct constraints. The 
following lemma shows how to merge the MGFs of two suc- 

cinct constraints into one combined MGF. 

Lemma 2 Let 4, CZ be two succinct constraints with re- 

spective MGFs: {Sl U . . . U S, 1 Si E a;p,(Item),l < i 5 

m, & 3m’ _< m : S, # 0,1 < i < m’}, and {TI U.. . U T, 1 

T, C a,,(Item), 1 5 i 5 n, & 32 < n : T, # 0,1 5 i < n’}. 

Then: 

(R11 u ... u R,, 1 R,, 5 o,,A,j(Item), 1 5 a’ 5 m,l < j < 

n, & & # 8,1 < k < m’, 1 5 f? < n’} 

is an MGF for Cl & Cz. 

While we do not include a proof of the lemma, we use an 

example to illustrate the construction given above. Con- 
sider again the two constraints Cl E S.Price 2 100 

and CZ E {snacks, sodas} E S.Type. Based on the in- 

dividual MGFs shown above, the combined MGF for both 
constraints is: 

(XiUXzUX3 I Xi C b~~p~=‘snocks’hPrics>lOO(Item) & Xi # 

Combining the MGFs of more than two succinct constraints 

can be done by straightforward extensions of the construc- 
tion shown in the above lemma. 

6 Algorithms for Computing 

Constrained F’requent Sets 

In this section, we develop algorithms for computing sets 

that are both frequent and that satisfy the given constraints. 

In the next section, we will present experimental results 

comparing them. 

Algorithm AprioriS 

I Cr consists of sets of size 1; Ic = 1; Ans = 0; 

2 while (ck not empty) { 

2.1 conduct db scan to form ~?k from CA; 

2.2 form Ck+l from Lk based on Cfren; k++; } 

3 for each set S in some Lk: 

add S to Ans if S satisfies (C - Cfren). 

Figure 4: Pseudo Code for Algorithm Apriori+ 

Algorithm Hybrid(m) 

1 Cl consists of sets of size 1; k = 1; An.5 = @; C* = @; 

2 while (ck not empty and k < m) { 

2.1 conduct db scan to form Lk from ck; 

2.2 form Ck+l from Lk based on Ctreq; k++; } 

3 if m > 0 then for each set S in some Lk: 

4 ifCk 

4.1 

4.2 

4.3 

add S to Ans if S satisfies (C - Cfrep); 

not empty then { 

for every S’ E C,+l : 

add S’ to C* if S’ satisfies (C - Cfren); 

;,eeryFi;eSs;;,h that for all S’ c SA( IS’] = 

add S to C’ if S satisfies (C - Cfreq); 

conduct db scan for sets in C*; add sets that are 

frequent to Ans. } 

Figure 5: Pseudo Code for Algorithm Hybrid(m) 

6.1 Algorithm Apriori+ 

Let C denote the set of constraints that a set (of items) must 

satisfy, one of which is the frequency constraint, denoted 

by Cfreg. As illustrated in the computation of classical fre- 

quent sets, Cfreq provides good pruning (cf: Property Pl 
in Section 4). Algorithm Apriori+ shown in Figure 4 is a 

straightforward extension of the classical Apriori Algorithm 

[3]. It first computes the frequent sets (i.e., Steps 1 and Z), 
each of which is then verified against the remaining con- 

straints (i.e., Step 3). Ans consists of all sets that satisfy 

all the constraints C. 

6.2 Algorithm Hybrid(m) 

Algorithm Apriori+ is not bad if the frequency constraint 

Cfreq is more selective than the remaining ones (C - CfPeP). 
If, however, the converse is true, it, is conceivable that check- 

ing (C - Cfreq) first, followed by verifying Cfreq, could be 
better. Algorithm Hybrid(m), shown in Figure 5, with m 
set to 0, gives such a sequence of executions. With m = 0, 

Steps 2 and 3 are not executed. Then Step 4.2 basically gen- 

erates and tests all possible sets against (C - Cfrep). Those 

that satisfy the constraints are then counted for support in 

Step 4.3. Note that Step 4 represents a tradeoff between 

CPU and I/O costs. On the one hand, Step 4 may generate 

and test an exponential number of sets, incurring a huge 

CPU cost. On the other hand, Step 4.2 has the desirable 

property that only sets that satisfy (C - CfTeq) are counted 
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for support. This has the benefit of reducing the amount of l Replace Cl in the Apriori Algorithm by C,C defined 

database scanning required and hence the I/O cost. This above. 

tradeoff could be reasonable if the constraints in (C - CfTe9) 

are highly selective. We have the following formal result. 

To repeat, Apriori+ and Hybrid(O) represent two extremes. 

The former checks Cfreq first, followed by (C-CfrSq), whereas Lemma 3 tet C be a succinct anti-monotone constraint. 

the latter checks (C - CfTcq) first, followed by Cfrep. But 

there are a whole class of algorithms in between the two 

extremes. Algorithm Hybrid(m) first checks Cfreq for m 

iterations to produce the standard (:m+~ set -- consisting 

of all candidate sets of size m + 1. This takes advantage 

of the pruning effected by the frequency constraint. Then 

to reduce the remaining l/O cost, it switches to checking 

(C - Cfrpq). In particular, the algorithm only needs to con- 

sider a set S whenever all its subsets of size m + 1 are in 

c m+l. This is Step 4.2 in Figure 5. Clearly, the number of 

candidate sets considered in this step is much less in Algo- 

rit,hm Hybrid(m) than in Algorithm Hybrid(O), and indeed, 

much less than in Hybrid(n), whenever n < m. Thus, com- 
pared with Hybrid(O), Ilybrid(m) aims to reduce the CPU 

cost of Step 4.2, at the expense of increasing the I/O cost 
of Step 2. Conversely, compared with Apriori+ , Hybrid(m) 

aims to reduce the l/O cost of Step 2, at the expense of 

increasing the CPU cost of Step 4.2. All these algorithms 

will be experimentally evaluated in the next section. 

6.3 Algorithm CAP 

Then strategy I above is sound and complete w.r.t. deter- 

mining the set of all frequent Jet3 that satisfy C. 

While the above algorithms have their own merits, they all 

fail to exploit the properties of the constraints. In particu- 

lar, in the preceding sections, we identified anti-monotonicity 

and succinctness as two useful properties of constraints. In 
the remainder of this section, we show how Algorithm CAP, 

to be introduced later, incorporates these ideas by pushing 

constraints as deep “inside” the computation as possible. 

We begin by classifying all the constraints into four cases:’ 

I. Constraints that are both anti-monotone and suc- 

cinct (e.g., m;n(S) 2 u); 

II. Constraints that are succinct but not anti-monotone 

(e.g., min(S) 5 w); 

III. Constraints that are anti-monotone but not succinct 

(e.g., sum(S) < w); and 

IV. Constraints that are neither (e.g., avg(S) < w). 

For each category of constraints, we develop a strategy that 
exploits those constraints to the maximum extent possible. 

6.3.1 Succinct and Anti-monotone Constraints 

Recall from Definition 3 the general form for an MGF for 
SATc(Item), when C is succinct. It can be shown that when 

C is anti-monotone as well, then the MGF must be of the 
form {S ( S E a,(Item) & S # 0) [17]. Then the set Cl of 

candidate sets of size 1 in the Apriori Algorithm can simply 
be replaced by C; = {e 1 e E Cl & e E a,(Item)}. Further- 

more, since S is anti-monotone, sets containing any ele- 
ment not in C,C need not be considered. Thus, we have the 
following strat,egy and lemma for succinct anti-monotone 
constraints. 

Strategy I: 

‘For brewty, we do not dmcuss pruning induced by weakly suc- 
cinct constramts in d&all here Essentmlly, these constraints con- 
tribute new startmg and/or termination conditions for the basic lev- 
olwise algorithm 

6.3.2 Succinct but Non-anti-monotone Constraints 

Since the constraint is not anti-monotone, the challenge in 

this case is that we cannot guarantee that all sets satisfy- 

ing the constraint must be subsets of Ct. Fortunately, we 

can make use of the structure given by the MGF of the 

constraint. Here for brevity, we only describe the strat- 

egy for the case where the MGFs are of the simple form 

{S, US2 ( S1 2 o,,(Item) & S1 # 0 & & 5 a,,(Item)}. 

Strategy II: 

Define C,C = up,(Item) and Ccc = gPz(Item). Define 
corresponding sets of frequent sets of size 1: L; = {e 1 

e E C; & freq(e)}, and L;’ = {e ( e E C;’ & freq(e)}. 

Define Cz = {{e, f} 1 e E L; & f E (Ly U L;“)}, 

and La, as usual, the set of frequent sets in CZ, i.e., 

LZ = {S 1 S E C2 & freq(S)}. 

ln general, Ck+l can be obtained from Lk in exactly 

the same way as in the Apriori Algorithm - with only 

one modification. In the classical case, a set S is in 

Ck+l, if all its subsets of size k are in L,+, i.e., 

‘ds’ : s’ C s and (S’( = k j S’ E Lk. 

In the case of succinct, non-anti-monotone constraints, 

we only need to check subsets S’ that intersect with 

Lf. In other words, subsets S” that are disjoint with 

LT are excluded in the above verification. These are 

sets that only contain elements from L;‘, and that 

are not counted for support. Because we do not know 

whether they are frequent or not, we give them the 

benefit of the doubt. Hence, we have the following 

modification in candidate generation. A set S is in 

Ck+ L, if for all subsets: 

VS’ : S’ c S and (S’I = k and S’ n L; # 0 

+ S'ELk. 

As USlId, &+I = {s ( s E ck+l & freq(.!?)}. 

For example, suppose that Item is the set (1, . . . ,50}, Cf is 

(1,. . . ,20), and CT’ is (21,. . ,50}. Further suppose that 

LF turns out to be (1,. . . , lo}, and that L;” turns out to be 

(41,. . . ,50}. Then Cz corresponds to the Cartesian prod- 

uct { 1,. . . , 10) x { 1, , 10,41, ,50}. This gives all the 
sets of size 2 that can be frequent and that contain at least 

one element from C,C. Suppose that {1,41} and {1,42} are 
frequent (i.e., E L2) and that {1,43} is not. Then in con- 

sidering whether {1,41,42} should be in C’s, we only check 
whether { 1,41} and { 1,42} are frequent, with the benefit 

of the doubt given to {41,42}, whose support frequency is 

unknown. Thus, { 1,41,42} is in C3. But neither { 1,41,43} 

nor { 1,42,43} is in Cz, because { 1,43} is not frequent. In 

this example, it is not difficult to show that any frequent 
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set satisfying the constraint (i.e., containing at least one el- 

ement from G,“) will be counted and verified to be frequent 

under Strategy II. In general, we have the following result, 

which can be proved by induction on Ic, the size of the sets. 

Lemma 4 Let C be a constraint that is succinct but not 

anti-monotone. Strategy II proposed above is sound and 

complete w.r.t. computing the frequent sets that satisfy C. 

So far, we have only considered the MGF of the simple 

form given above. Strategy II and Lemma 4 above can be 

generalized to deal with the general form of MGF given 

in Definition 3. For space limitations, we omit the de- 
tails but give the following example. For the constraint 
C, s {snacks, sodas} C S.Type discussed in Section 5, 

the MGF is {X1 u XZ U XB ) X1 C Item2 & X1 # 0 & 

X2 C Item & X2 # 0 & X3 2 Item}, where Itemz, Item3 
and Item are as defined earlier. Corresponding to X,, the 

strategy is to first form the sets Lf’, as LF’ = {e 1 e E 

Item,+1 & freq({e})}, 1 < i 5 3. Then we form the candi- 

date set Cz = Lf’ XL, , xa from which the set Lz is obtained. 

Next we form Cs = Lz x (LT’ U L;“z U LF3). From this point 

onwards, Lk and Ck+l are computed as usual, with the only 

modification in candidate generation that S is in Ck+l, iff: 

for all subsets S’ c S and IS’1 = k and S’ n LF’ # 0 and 

s’ n LFa # 8 j s’ E Lk. Complete details can be found 

in the full paper [17]. 

6.3.3 Anti-monotone but Non-succinct Constraints 

Because constraint C is not succinct, it does not admit 

an MGF that can be used to avoid the generate-and-test 

paradigm completely. However, because of anti-monotonicity, 

whenever candidate sets for a particular level are generated, 

satisfaction of C is tested first - before counting is done. 

Those sets not satisfying C can be dropped right away. 

Strategy III: 

l Define Ck as in the classical Apriori Algorithm. Drop 

a set S E Ck from counting if S fails C, i.e., constraint 
satisfaction is tested before counting is done. 

Lemma 5 Let C be a constraint that is anti-monotone, but 

not succinct. Then Strategy III above is sound and complete 

w.r.t. computing the frequent sets that satisfy C. 

6.3.4 Non-succinct and Non-anti-monotone Con- 
straints 

Our methodology for dealing with a constraint C that is nei- 
ther anti-monotone nor succinct, is to try and induce weaker 

constraints that might be anti-monotone and/or succinct. 
If we can fmd such constraints, then the latter can be ex- 

ploited using one of the strategies outlined above. However, 
in this case, once the frequent set determination algorithm 

terminates, one final round of testing the frequent sets for 

satisfaction of C is necessary. The reason is that the fre- 

quent sets, while guaranteed to satisfy the induced weaker 
constraints, may not necessarily satisfy C. 

Strategy IV: 

l Induce any weaker constraint C’ from C. Depending 

on whether C’ is anti-monotone and/or succinct, use 
one of the strategies I-III above for the generation of 

frequent sets. 

Al~orithrn CAP 

1 if C,,, UC,,, u C,,,, is non-empty, prepare Cl as indi- 

cated in Strategies I, II and IV; k = 1; 

2 if C,,, is non-empty { 

2.1 conduct db scan to form L1 as indicated in Strategy 

II; 

2.2 form Cz as indicated in Strategy II; k = 2;} 

3 while (ck not empty) { 

3.1 conduct db scan to form Lk from Ck; 

3.2 form Ck+l from Lk based on Strategy 11 if C,,, is 

non-empty, and Strategy III for constraints in Cam; 

> 

4 ifCnone is empty, Ans = UL~. Otherwise, for each set 

s in sOme Lk, add S to Am iff S satisfies C,,,,. 

Figure 6: Pseudo Code for Algorithm CAP 

l Once all frequent sets are generated, test them for 

satisfaction of C. 

For example, let C be the constraint awg(S.A) < w. Al- 

though C is neither anti-monotone nor succinct, it induces 

the weaker constraint C’ E min(S.A) 5 w. More precisely, 

every set S that satisfies C necessarily satisfies C’. Since 

C’ is a succinct but non-anti-monotone constraint, Strat- 

egy II can be applied. However, once all frequent sets are 

generated, each of them should be tested for satisfaction of 

C. It should be straightforward to see that Strategy IV is 

sound and complete. 

6.3.5 Handling Multiple Constraints 

So far, our analysis has concentrated on individual con- 

straints. An important question is, given a set of con- 

straints in a constrained association query, each correspond- 
ing to one of the four categories analyzed above, how they 

can be incorporated in an algorithm. Let C be the set of 

constraints in a CAQ, including the frequency constraints, 

and let C,,, (resp., C,,,, C,,, and C,,,,) denote those 

constraints among C that are succinct and anti-monotone 

(resp., that are succinct but not anti-monotone, that are 

anti-monotone but not succinct, and that are neither of the 

above). We assume without loss of generality that weaker 
constraints induced from those in C,,,, are included in 

c sue, cwn, or crm,, depending on the nature of the con- 

straints induced. 

Strategy for Handling Multiple Constraints: 

Combine the MGFs of all the constraints in C,,, 

as shown in Lemma 2. Apply Strategy I with the 

combined MGF. 

Combine the MGFs of all the constraints in C,,,. 

Apply Strategy II with the combined MGF. 

For all constraints in C,,, follow Strategy III. 

For each constraint in C,,,, , induce weaker constraints 

and apply Strategy IV. 

As depicted in Figure 6, Algorithm CAP (“Constrained 
APriori”) incorporates the strategy for handling multiple 
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(a) Speedup w Selectivity (b) Speedup “6 Support 

Apriori+/Hybrid(S) 

- 
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support threshold 

0.6X 

Figure 7: Performance Comparison for Succinct and Anti-monotone Constraints 

constraints, and shows where the various strategies are ap- 
plied within the Apriori framework, thus pushing the con- 

straints in a CAQ deep inside the mining process. 

7 Experimental Evaluation 

To evaluate the relative efficiency of the various algorithms 

presented in Section 6, we implemented all of them in C. 

We used the program developed at IBM Almaden Research 

Center [3] to generate the transactional databases. While 

we experimented with various databases, the results cited 

below are based on a database of 100,000 records and a 
domain of 1000 items. The page size was 4Kbytes. Exper- 

iments were run in a SPRAC-10 environment. 

(1) In the first set of experiments, we compare the al- 

gorithms using the succinct and anti-monotone constraint 

maz(S.price) 5 v. Different values of w correspond to dif- 

ferent selectivitles of the constraint. In Figure 7(a), an z-% 

selectivity means that there are Z-% of the items whose 

price is < w, whatever that value may be. The y-axis shows 

the speedup of various algorithms relative to Algorithm 

Apriori+, i.e., the execution time of Aprior? divided by 

that of the algorithm being considered. 

Figure 7(a) plots the speedup as a function of constraint 

selectivity, with support threshold set at 0.5%. It clearly 
shows the dominance of Algorithm CAP compared with 

Apriori+. For instance, for a 10% selectivity, CAP runs 80 

times faster than Apriori + ! Even for a 30% selectivity, the 

speedup is about 10 times. 

Hybrid(O), Hybrid( 1) and Hybrid(a) all take much too long 
when compared with Apriori+ . This clearly demonstrates 

that the CPU cost of finding all sets that satisfy the con- 
straints in a generate-and-test mode is prohibitive. Using 

the MGF to generate all such sets is much better. Hy- 
brid(3), Hybrid(4), etc. take more or less the same time 

as Apriori .+, almost always within 5% of each other.6 Re- 

“Hybr,d(m) for 171. > 4 mcum the same I/O ,n the first several 

&rations as Apnont. Ssvmgs on I/O corresponding to later iter- 
atlas will be dominated by the heavy I/O incurred in the first few 

call that the Hybrid(m) algorithms try to reduce database 
scanning time at the expense of increasing CPU time. It is 

quite possible that when the transaction database is larger 

in size, the Hybrid(m) algorithms will become more supe- 

rior to Apriori+. However, it is highly unlikely that they 

will ever catch up with Algorithm CAP. The Hybrid(m) 

algorithms will be omitted in subsequent discussions. 

Figure 7(a) shows the comparisons of the algorithms when 

the support threshold is set to 0.5%. Figure 7(b) shows 

the comparisons when the support threshold varies, but 

with the item selectivity fixed at 30%. When the support 
threshold is low, Apriori+ need to find and process a lot 

of frequent sets, most of which turn out not to satisfy the 
constraint. When the support threshold is high, the total 

number of frequent sets decreases, and Apriori+ behaves 

relatively better. Still, it processes too many frequent sets 

violating the constraint, and CAP is at least 8 times faster. 

The effectiveness of the pruning achieved by CAP is best 

captured by the following tables. 

support Ll L2 L3 L4 

0.2% 1741582 791969 29/1140 811250 

0.6% 98/313 l/12 O/l 0 

support L5 L6 L7 L3 

0.2% I/934 O/451 Of132 O/20 

0.6% 0 0 0 0 

Based on a setting that is the same as that shown in Fig- 

ure 7(b), the two rows correspond to support thresholds of 

0.2% and 0.6% respectively. The columns correspond to 
the sizes of the frequent sets. Each entry is of the form a/b, 
where o is the number of frequent sets satisfying the con- 
straint, and b is simply the total number of frequent sets of 

that size. For example, for a support of 0.2% and sets of size 
4, Apriori+ finds 1,250 frequent sets, only 8 of which need 
to be found by CAP. Furthermore, Apriori+ finds frequent 

lteratmns. This pant is remforced by our experiments 
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Figure 8: Performance Comparison for the Other Three Types of Constraints 

sets of size 6 and up, whereas CAP correctly stops after size 

5. We choose the support thresholds such that Apriori+ re- 

quires between 5 and 8 iterations. We can conclude: (i) if 

the support thresholds are chosen to be lower corresponding 

to more iterations by Aprior?, the overall speedup of CAP 

would be even more pronounced. (ii) Even if the support 

thresholds are chosen to be higher so the Apriori+ finishes 

in fewer than 5 iterations, the speedup achieved by CAP 

would still be substantial. The reason is that CAP achieves 

considerable savings in the very first few iterations, com- 
pared to Aprior?. 

pushing them inside to achieve pruning. 

(2) In the next series of experiments, we use the succinct but 
non-anti-monotone constraint {soda) s S.Type. In Fig- 

ure 8(a), an Z-% selectivity means that there are Z-% of the 

items whose type is soda. The y-axis shows the speedup. 

For selectivities of 5%, 10% and 20%, CAP runs 9, 4 and 

2.5 times faster than Apriori+ respectively. 

(4) Finally, we consider the last category of constraints - 

anti-monotone but not succinct. The constraint used is 

sum(S.Price) 5 MazSum. Unlike the previous cases, the 

notion of item selectivity does not directly make sense in 

this case. Instead, we do the following. The 1,000 items in 

our domain are numbered from 1 to 1,000. The Price value 

of each item is exactly its number, i.e., from 1 to 1,000. 

Then MazSum is set to be 500, 1000, 2000 and so on. 

This gives the s-axis of Figure 8(b). Contrary to the other 

cases, the dominance of CAP drops drastically as the value 

of MaxSum increases. In fact, beyond MaxSum = 2000, 

CAP shows no gain over Apriori+. The following tables 

illustrate why. 

When compared with the previous case, i.e., succinct and 

anti-monotone constraints, the gain here shown by CAP 

comes entirely from the succinctness of the constraint. This 

shows the importance of taking advantage of the succinct- 
ness property for achieving pruning. Furthermore, for a 
given selectivity, a constraint that is both succinct and anti- 

monotone effects much more pruning than a constraint that 

is only succinct. This shows that succinctness and anti- 

monotonicity produce a powerful compound pruning effect. 

MaxSum Ll L2 LB L4 

500 184/362 16166 4191 O/105 

1000 3621362 39166 28191 151105 

2000 3621362 66/66 86/91 771105 

MaxSum Lg Ls L7 .b, 

500 O/77 o/35 o/9 O/l 
1000 l/77 o/35 o/9 O/l 

2000 40/v 13135 l/9 O/l 

(3) Next, we consider the constraint Awg(S.Price) 5 2). 

This constraint by itself is tough to optimize because it is 

neither succinct nor anti-monotone. But as shown before, 

the constraint induces the weaker constraint min(S.Price) 5 
v, which is succinct but non-anti-monotone. The extra cost 

is that a final verification step is needed to check whether 

the frequent sets really satisfy Avg(S.Price) 5 V. As it 

turns out, the comparison between CAP and Apriori+ for 

Awg(S.Price) < v is almost identical to the comparison 
for a typical succinct, non-anti-monotone constraint. Thus, 

Figure 8(a) applies. This shows that the final verification 
step takes a relatively small amount of effort. This also 

shows the effectiveness of inducine weaker constraints. and 

When MaxSum is 500, the constraint helps reduce the 

number of frequent sets at level 1 (i.e., size 1) by a half 

(i.e., 184 out of 362). This reduction is compounded at 

subsequent levels. As shown in Figure 8(b), this gives rise 

to a speedup of over 7 times. When MaxSum is increased 

to 1,000, there is no pruning at level 1 (i.e., other than the 
pruning of the frequency constraint). It is only at level 2 

that the constraint provides some pruning (i.e., 39 out of 
66). This modest reduction is compounded at later lev- 

els, giving an overall speedup of about 2 times. But when 
MaxSum is increased to 2,000, there is no pruning at the 

first two levels. Even though there is some pruning later 
on, the pruning comes too little too late. The key observa- 

tion is that for any pruning optimization to be significant, 
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it has to be effective as enrly as possible at the first two 

levels. Any reduction obtainable earlier is compounded to 

give a significant speedup subsequently. This observation 

explains convincingly why in previous cases, succinctness 

can help produce such an impressive speedup for CAP. 

8 Conclusions and Future Work 

Motivated by the problems - (i) lack of user exploration 

and control, (ii) lack of focus, and (iii) rigid notion of rela- 

tionships ~~ with the present-day model of association min- 

ing from very large databases, we first propose a model 

whereby the user specifies a constrained association query 

to the system. This allows the user to tell the system to 

focus the mining task on associations that satisfy the con- 
straints specified, which include class, domain, and aggre- 

gation constraints. The mining process is structured using 

a two-phase architecture which provides numerous opportu- 

nities for user feedback, control, and approval. Second, and 

more importantly, to deliver on the goal that the perfor- 

mance must be commensurate with the focus expressed by 

the user via constraints, we develop techniques for pushing 

the constraints deep inside the mining process, to achieve 

a maximized degree of pruning in the amount of processing 

required. Pivotal to this are the anti-monotonicityand suc- 
cinctness properties, based on which we characterize con- 

straints into various categories. From our characterizations, 

we develop and discuss several algorithms for computing 

constrained queries, and evaluate their relative efficiency 
with a series of experiments. Among those, Algorithm 

CAP, which exploits constraints as early as possible in the 

mining process, achieves a remarkable speedup. 

Several questions remain open. (1) For I-var constraints 

that are neither anti-monotone nor succinct, we advocate 

the methodology of inducing weaker constraints, which may 
be anti-monotone and/or succinct. What is the method for 

inferring these induced constraints? And how to find the 

constraints that optimize pruning? (2) For space limita- 

tions, we only discuss I-var constraints in this paper. We 

have already carried out a detailed analysis of 2-var con- 

straints. Our methodology for pushing 2-var constraints as 

well as related algorithms will be discussed in a forthcoming 

paper. (3) The entire paper has focused on computations 

related to Phase I of our architecture. Phase II is concerned 

with forming associations, based on the user specified no- 

tion of significance metric and type of relationship, and is 

orthogonal to the contributions of this paper. This will be 
explored in a future paper. (4) Finally, our eventual goal is 

to develop a framework for ad hoc mining, whereby a user 

can interact with a mining system in much the same way 

that the user does with an RDBMS today. Many believe 
that this is crucial for the technology of database mining to 

reach its full potential (see also [ll]). We believe this paper 
takes an important step in this direction. 
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