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With reliance on Regge calculus and the Regge-Einstein action, models of four-dimensional Eu-
clidean gravity are simulated numerically. The scale a =/ is set by fixing the expectation value of a
length. Monte Carlo calculations support the following results: In the infinite-volume limit, canon-
ical dimensions are realized and a finite action density is obtained.

PACS numbers: 04.60.+n

Classical gravity can be formulated as field theory and in a geometric way. One may, therefore, regard quantum
gravity as the problem of formulating a quantum field theory or one may try a geometric approach. The ‘‘or’’ is
not exclusive. Most work is done in the first direction, as it allows a reliance on the established calculus of pertur-
bative field theory. At distances of the order of the Planck length, violent fluctuations in geometry are expected
and a perturbative quantum field theory sheds little light on the understanding of quantum space and quantum
time. The a priori starting point would always be a smooth and flat space-time continuum. The present paper at-
tempts an approach from the very opposite limit, namely, a heavily fluctuating space-time.

In quantum gravity one may extend the functional integral of field theory to

Z =f@ [space][f@ [fields]exp[— fyd“x /g action(space, fields)”. 1)

We weight over some class of (curved) spaces and de-
fine on each space a conventional field theory coupling
gravity and matter fields. The metric tensor g and the
curvature R, for example, would get their values from
f,@‘ [space]l, whereas fermion and gauge fields, etc.,
would get their values from [ [fields]. Following
Hawking,! the theory is formulated for the Euclidean
gravity.

Using Regge calculus,? I shall illustrate these re-
marks by working out a four-dimensional (4D) exam-
ple. Let us consider a decomposition of a torus into
N, pentahedra p. (A pentahedron is a four-simplex
connecting five sites by ten links.) To each link / a
link length x; is assigned and / is contained in a
number of pentahedra. We now reassign all link
lengths under the constraint that each pentahedron
remains constructable in flat Euclidean space. This de-
fines a Regge skeleton space. The interior of each pen-
tahedron is flat. Curvature is concentrated on triangles
(i.e., two-simplexes) ¢ and involves deficit angles «,
(which are obtained by calculation of the parallel trans-
port around each triangle t). The Regge-Einstein ac-
tion is given by

S =SRE= zta,A,, (23)
where A, is the area of triangle ¢ and
a, =27 — 2 angles (7).

In the continuum limit,>* the Regge-Einstein action is
equivalent to the Einstein action

Sg=[d*x Vg R. (2b)

Let us keep the number of pentahedra, N,, fixed. We

would like to calculate vacuum expectation values with
respect to the partition function

Z = fv.@ [space]em‘gs“E. 3)

The measure & [space] on the 4D Regge skeleton will
be defined below. The sign of the action is chosen to
give negative modes and zero modes for small fluctua-
tions around flat space.>> However, it is well known!
that the continuum Einstein action is unbounded and a
naive simulation with Eq. (3) is expected to give diver-
gent results. An obvious divergence comes from dila-
tations. Let us denote the link length of link / by x,
and rescale all links: x;=Ax;. The action becomes
S’=\2S and we are in trouble because some S > 0 ex-
ists. Dilatations are avoided by keeping, in addition to
N,, the total volume V fixed. The analog of a lattice
spacing is defined by fixing the expectation value of a
length a = /:

[0 = U6/4, (4)

with vo=(v,) and V =N,v,. Here v, is the volume
of pentahedron p.

My numerical procedure consists of proposing single
new links and accepting or rejecting them according to
the Metropolis algorithm. Changing a single link
length x; — x;/ will in general change the volume
V— V’. By rescaling all links with the factor
A= (V/V')Y* the volume is kept constant. The re-
scaling is consistent with detailed balance®

W(X, - X[/)

W — ) =exp{mp[S(x/.. )=S(x..)]1)}
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if and only if & [space] is scale invariant. For simplici-
ty reasons (to allow for an efficient numerical algo-
rithm) I make a product Ansatz:

17 [space]=H,df(x,)Hng(xpl, i Xp,). (5a)
Here I, extends over all links / and [], over all pen-
tahedra p. The function Fy(x,, ..., x o) takes care of
the pentahedra constraints. Scale invariance yields
f(x) =clIn(x). (5b)

The numerical simulation is done under the follow-
ing two aspects: (1) Are canonical dimensions real-
ized? (2) Do we obtain a finite action density
(mg=0)?

(1) By Eq. (4) the length scale is introduced in a
rather arbitrary way. This is satisfactory if other length
scales are equivalent:

lo=Ax), g =(4)"? etc. 6)
(x;) is the expectation value for the link length and
(A4) the expectation value for the area of the triangles.
Equivalent means /j =c'ly and /g’ =c"'l; for N, — oo.
In other words, we have canonical dimensions and no
Hausdorff dimensions.

(2) Even after setting the scale by means of Eq. (4)
Sge may still be unbounded for N, — oo, but a finite
action density could be possible as a result of the entro-
py of & [spacel. A numerical study can decide these
questions.

For calculating expectation values numerically (in
the limit N, — o) one has to define a model. The
only feasible way that I can see at present is to define
in flat space a Regge skeleton by a prescription of glu-
ing links at sites together. The model is then set up by
use of the partition function (3) and integration with
the measure (5). The most natural skeleton in flat
space is the random lattice of Christ, Friedberg, and
Lee.” In the present exploratory study, however, I
want to keep the computational effort small. For prac-
tical computer reasons I insist on handling the local to-
pology of the model by one table (incidence matrix). 1
therefore use the hypercubic model, previously inves-
tigated by Rocek and Williams,’> and a simplicial vari-
ant of it.

To my knowledge the hypercubic model, called
model I henceforth, provides the simplest way for de-
fining a 4D Regge skeleton. One partitions a regular
hypercubic lattice of N =N ;N,N;N, sites into (4)N
pentahedra by drawing one appropriate diagonal for
each square, cube, and hybercube. At each site thirty
links meet and we have to store fifteen links per hy-
percube into the computer memory. For these fifteen
links, initial link length x; and number of pentahedra
n, connected to each link are (1) x,=1, n,=24 for
links 1-4; (2) x,=+/2, n,=12 for links 5-10; (3)
x;=/3, n, =12 for links 11-14; and (4) x, =2, n, =24
for link 15.

Model 2 is a simplicial variant of model 1. I omit the
hypercube diagonal and add a new site at the center of
each hypercube, which is connected by sixteen new
links to the sixteen corners of the hypercube. This
partitions each hypercube into 48 pentahedra. Model 2
has two types of sites: sites at which 44 links meet,
and new sites, where sixteen links meet. We have to
store thirty links per hypercube into the computer
memory. The initial configuration is given by (1)
x;=1, n,=36 for links 1-4; (2) x,=+/2, n, =16 for
links 5-10; (3) x;,=+/3, n,=12 for links 11-14; (4)
x;=1, n,=24 for links 15 and 16; (§) x,=1, n,=12
for links 17-24; and (6) x; =1, n, =8 for links 25-30.
Two models are used to allow a check of possibly
universal features.

The Monte Carlo (MC) calculation is done by scan-
ning through all links of the lattice and proposing for
each link / a new link length x,/=e ™ €x;. Here € is a
uniformly distributed random number in the range
—04=<<e=<0.4. If the new link length is not con-
sistent with the (up to 36) pentahedra constraints, it
is rejected. Otherwise it is accepted or rejected accord-
ing to the Metropolis algorithm.® Numbers carry-
ing dimensions are expressed in system units (4).
The square of the Planck mass, ml?, is a constant
in the Boltzmann factor exp{mg[S(x/, ...)
—S(x;, ...)1}, and S(x/, ...) is of course taken
after rescaling with A= (V’/V)V/4  We have estab-
lished a Markov process and asymptotically we will
sample configurations according to the partition func-
tion (3).

I have carried out MC calculations for mg =0,
+0.3. Systems of size N =2% and N =3* sites are
used and measurements are performed after each
sweep. (A sweep is defined by application of the up-
grading procedure once to each link.) In view of parti-
tion function (3) mp3 =0 resembles the zero-order
strong-coupling limit of lattice gauge theories. On the
other hand, a Planck length /p=mp ! = oo is an analog
to the spin-wave limit of lattice gauge theories, if we
like the Planck length /p to be proportional to a corre-
lation length. Taking a dimensionful coupling serious-
ly makes quantum gravity very different from a lattice
gauge theory.

mp =0 results are entirely due to the entropy of the
measure (5). They are collected in Table I. The first
200 sweeps, for reaching equilibrium, are omitted.
The approach to equilibrium is (for model 1 and 3*
sites) depicted in Fig. 1. (x/) (i=1-4) are the re-
strictions of the link-length expectation value (x;) to
subclasses of links with different initial length x; as de-
fined above. After about sixty sweeps equilibrium is
reached and the system has completely lost any
memory of the original configuration in flat space. Fi-
nal link-length averages depend slightly on the
numbers of pentahedra sharing the link. Particularly
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TABLE I. Numerical results with m2 = 0. The statistics is given in sweeps. Error bars are calculated with respect to the in-
dicated number of bins. (The numbers in parentheses are statistical errors in the last digits.)

Model 1, 2* Model 1, 3* Model 2, 24 Model 2, 3*

Statistics 6x2000 5x400 8x 1000 10x200
(x) 2.8779(17) 2.8651(16) 2.8605(16) 2.8557(18)
(A4) 3.3814(23) 3.3609(23) 3.3571(08) 3.3475(11)
(a) —0.0142(06) —0.0148(04) —0.0136(06) —0.0147(06)
(S) —0.283(04) —0.280(03) —0.338(08) —0.326(10)

interesting is the negative average curvature (S). l

Furthermore, the expectation values (x;) and (A4 ) are
nearly identical in both models. Finite-size effects
(24— 3%*) are small. This strongly supports canonical
dimensions. In other words, setting the scale by
means of Eq. (4) or one of Egs. (6) is identical for
Np — oo,

Of major interest is the analysis of (S) as a function
of m3. Unfortunately m3 =0 slows down the compu-
tational speed by a factor of order = 40. So far I have
only carried out calculations for model 1 and
m@ = +0.3. The results collected in Table II rely on
roughly 200 h of IBM 3081 computer time.

Qualitatively, Table II exhibits similar behavior for
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FIG. 1. First 80 sweeps, approach to equilibrium for vari-
ous measured quantities (model 1, 3* system). Each dot
represents an average over (the previous) five measure-
ments. The solid lines are for guiding the eyes. Asymptotic
averages are indicated by dashed, straight lines.
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both m# values. Naively the correct sign is mZ > 0,
but the connection to Minkowskian gravity is not well
understood. Therefore, one should first of all investi-
gate Euclidean gravity in itself and consider the whole
range —oo < mp < oo. Finite-size effects (2*— 3%)
are now strong, but clearly indicate finite ratios in the
limit N, — oo. I conclude again in favor of canonical
dimensions. Most strikingly, the curvature expecta-
tion value (S) follows this pattern, implying a finite
action density for N, = oo or at least a metastable state
with finite action density.

A surprising result from Table II is that the deficit-
angle expectation value, {(«), and the action density,
(S, are different in sign (anticorrelated). This means
that the final value of the action density is due to
correlations between large triangles and appropriate
deficit angles. This fits well with the observation that
the total length of links and the total area of triangles
are now much larger than in the m? =0 case. In view
of the anticorrelation of («) and (S), the action den-
sity is conjectured to be finite as a result of the entropy
of the measure & [space].

Guided by the achieved qualitative numerical under-
standing, I would like to discuss questions concerning
the continuum limit and universality. The region of
physical interest is

lp << L =VV4 (7)

Here /p=|mp '| is the Planck length and L the edge
length of the finite system.

I will consider two relevant scenarios. The conven-
tional picture is to send /4(/p) — O in units (/p) of the
Planck length. This means that m# — 0 in system
units (mg=1I5"') Eq. (4). In physical units (/¢) a fi-
nite action density can only be obtained if in system
units (/y), (S)— 0 for mZ — 0. In the present two
models this is not the case.

Lee® advocates a fundamental length, which may
provide a natural cutoff for ultraviolet divergencies.
This means that /y< /p and is very attractive in view of
the canonical dimensions. By fine tuning of mp one
could fix (S) to any requested value, for instance
(§)=0. Carrying out the limit N, — oo leads to
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TABLE II. Model 1 MC results for mg = +0.3. Error bars are calculated as in Table I. They may, however, be unreliable
as a result of metastable states and limited statistics. ‘‘Equilibrium”’ gives the number of sweeps omitted for reaching equilibri-

um.
mg = +0.3, 2 mg =+0.3, 3 mé=—0.3, 2 mg =—0.3, 3
Equilibrium 300 700 600 1100
Statistics 5x1200 8x 400 11x 600 11 %400
(x1) 4.33(05) 3.86(02) 4.29(04) 3.99(06)
(4) 6.43(12) 5.22(04) 6.62(09) 5.74(02)
(a) —1.066(05) —1.015(04) 0.129(03) 0.111(02)
(S) 5.01(1D 3.42(04) —5.70(18) —5.15(03)

L lo(Np)‘/“—' oo. The cosmological constant is ex-
actly zero, because (S) is by construction volume in-
dependent.

The final results have to be universal: They are not
allowed to reflect short-distance artifacts of the models
used. Nonuniversal features of the models are the
prescriptions for gluing links at sites together. On the
other hand, the situation is very different from lattice
gauge theory, where the O(4) invariance is broken
down to the hypercubic group. In lattice gravity the
Regge-Einstein action is invariant under general coor-
dinate transformations® and a lattice does not really ex-
ist: The link lengths are dynamical variables. Further
clarification of universality is desirable.

The situation is different for the random lattice,
which could be a fundamental concept in itself and no
universality with respect to other models would be
needed. According to Ref. 8 unitarity of the S matrix
can be proven, if the links are appropriately relinked.
Unfortunately, this is very difficult to implement in a
computer simulation. The present models can, how-
ever, be regarded as a first qualitative approximation
of the random lattice.

A problem is to understand the possible outcome of
flat space. In the present models flat space can only be
realized in the case of a fundamental length and by
fine tuning of the Planck mass. The random lattice
would naturally solve the problem, if it gives (S) =0
for mlg =0. This question should be investigated in
connection with coupling to matter fields, because
empty space does not exist in nature. The simplest
realistic case is to consider a SU(2) gauge theory on
the Regge skeleton. The formalism has already been
worked out in Refs. 7 and 8 and I expect the MC
simulation to slow down only by a factor of order 2.

In conclusion, the present investigation is a starting
point for numerical work on discrete Euclidean quan-
tum gravity. Presently the main results are canonical
dimensions between dimensionful quantities, includ-
ing the finite, perhaps metastable, action density. An
obvious next step is to investigate in more detail the

m§ dependence of {(S). Future work may concentrate
on coupling gravity with an asymptotically free field
theory and on using the random lattice. The final aim
is to understand Euclidean quantum gravity qualita-
tively.
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Note added.—Further investigations indicate that at
least one of the m3 =0 results (mg = +0.3) is only
metastable. For smaller |m? | values a stable finite ac-
tion density is obtained. Between large and small
|mg | seems to be a phase transition. A detailed publi-
cation is in progress.
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