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Abstract

Background: Perioperative quantitative monitoring of neuromuscular function in patients receiving neuromuscular blockers
has become internationally recognized as an absolute and core necessity in modern anesthesia care. Because of their kinetic
nature, artifactual recordings of acceleromyography-based neuromuscular monitoring devices are not unusual. These generate a
great deal of cynicism among anesthesiologists, constituting an obstacle toward their widespread adoption. Through outlier
analysis techniques, monitoring devices can learn to detect and flag signal abnormalities. Outlier analysis (or anomaly detection)
refers to the problem of finding patterns in data that do not conform to expected behavior.

Objective: This study was motivated by the development of a smartphone app intended for neuromuscular monitoring based
on combined accelerometric and angular hand movement data. During the paired comparison stage of this app against existing
acceleromyography monitoring devices, it was noted that the results from both devices did not always concur. This study aims
to engineer a set of features that enable the detection of outliers in the form of erroneous train-of-four (TOF) measurements from
an acceleromyographic-based device. These features are tested for their potential in the detection of erroneous TOF measurements
by developing an outlier detection algorithm.

Methods: A data set encompassing 533 high-sensitivity TOF measurements from 35 patients was created based on a multicentric
open label trial of a purpose-built accelero- and gyroscopic-based neuromuscular monitoring app. A basic set of features was
extracted based on raw data while a second set of features was purpose engineered based on TOF pattern characteristics. Two
cost-sensitive logistic regression (CSLR) models were deployed to evaluate the performance of these features. The final output
of the developed models was a binary classification, indicating if a TOF measurement was an outlier or not.

Results: A total of 7 basic features were extracted based on raw data, while another 8 features were engineered based on TOF
pattern characteristics. The model training and testing were based on separate data sets: one with 319 measurements (18 outliers)
and a second with 214 measurements (12 outliers). The F1 score (95% CI) was 0.86 (0.48-0.97) for the CSLR model with
engineered features, significantly larger than the CSLR model with the basic features (0.29 [0.17-0.53]; P<.001).

Conclusions: The set of engineered features and their corresponding incorporation in an outlier detection algorithm have the
potential to increase overall neuromuscular monitoring data consistency. Integrating outlier flagging algorithms within
neuromuscular monitors could potentially reduce overall acceleromyography-based reliability issues.

Trial Registration: ClinicalTrials.gov NCT03605225; https://clinicaltrials.gov/ct2/show/NCT03605225
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Introduction

Postoperative residual curarization remains a frequent and often
concealed event within modern anesthesia care [1]. It translates
clinically into complications such as aspiration of gastric
contents [2,3] and an impaired ventilatory response to hypoxia
[4]. This is ultimately linked to an increase of morbidity and
mortality due to postoperative pulmonary complications [5].
As such, perioperative quantitative monitoring of neuromuscular
function in patients receiving neuromuscular blockers has
become internationally recognized as an absolute and core
necessity in modern anesthesia care [6,7]. Besides a reduction
of the incidence of severe respiratory complications [8-10],
quantitative monitoring also potentially leads to considerable
financial health care savings, with complications stemming
from suboptimal neuromuscular monitoring being estimated to
be as high as US $25.000 per patient per event [7].

Although a seemingly straightforward procedure, neuromuscular
monitoring presents users with nuances that are frequently
overlooked or that are prone to misinterpretation [11]. This has
been exemplified by research [12,13] showing that baseline
(control) train-of-four ratios (TOFRs; T4/T1) at the adductor
pollicis frequently assume supra-physiological values (TOFR
> 1) when measured using acceleromyography (AMG).
Similarly, Kopman et al [13] have scrutinized some algorithmic
simplifications used by common AMG monitors (T4/T2 ratio
as a substitute for T4/T1) and how their validity is dependent
on the degree of recovery from nondepolarizing neuromuscular
block. Such interpretative considerations, associated frequent
artifactual confounders, and known overestimation tendencies
when compared with electromyography (EMG) or
mechanomyography [14] contribute to the perpetuation of
anesthesiologist’s cynicism toward objective neuromuscular
monitoring methods, further hindering their widespread adoption
[15].

The herein presented research has been motivated by the
development of a smartphone app intended for neuromuscular
monitoring based on combined accelerometric and angular hand
movement data [16]. During the paired comparison stage of this
app against existing AMG monitoring devices, it was noted that
the results from both devices did not always concur. For
instance, it was observed that the collected raw movement data
regularly displayed nonstandard TOF patterns, whereas the
AMG neuromuscular monitoring device did not appear to detect
these outliers and displayed a seemingly (oversimplified) TOFR
plotting. As with any instrument that aims to measure a certain
signal [17], the measurement of TOFR is similarly prone to the
appearance of outliers, which can be erroneously interpreted as
correct measurements.

From a data analysis standpoint, outlier analysis techniques can
be adopted to increase data reliability. Outlier analysis (or
anomaly detection) refers to the problem of finding patterns in
data that do not conform to expected behavior [18]. This study

aims to conduct an offline exploratory analysis on raw AMG
neuromuscular monitoring data and to engineer features (or
variables) to be able to flag erroneous TOF measurements. These
features will be subsequently evaluated for their usability in
outlier analysis.

Methods

Overview
This manuscript follows the “Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research: A Multidisciplinary View” [19]. The key steps of the
feature engineering and the development of the outlier analysis
algorithm are summarized below.

Data Recruitment and Preprocessing
All data for this study have been collected during a prospective
open-label bicentric clinical trial (Clinical Trial Identifier
NCT03605225) that took place in Ziekenhuisnetwerk Antwerpen
Middelheim (Antwerp, Belgium) and Universitair Ziekenhuis
Brussel (Brussels, Belgium). Registration occurred prior to the
start of the trial. Data collection started in February 2018 and
terminated in April 2019. The trial was conducted in accordance
with the established protocol after approval by the Medical
Ethical Committees of both hospitals (ZNA Middelheim
reference number 5055; UZBrussel reference 2018/031, BUN
009201835039). It followed current good clinical practice
guidelines and applicable law(s), as well as adhered to the
applicable CONSORT guidelines.

The data used for the algorithm development were collected
using a purpose-built smartphone app specifically aimed to
monitor hand movements evoked by extraneural supramaximal
stimulation of the ipsilateral nervus ulnaris by means of a
peripheral nerve stimulator. Collected data included triaxial

(3D) raw acceleration values (m/s2) as well as raw 3D angular

velocity values (rad s–1).

Earlier trials involving beta versions of this app have been
published and they reported bidirectional 95% limits of
agreement of 0.12 (TOFR, absolute units) when compared with
a standard AMG neuromuscular CE/FDA-labeled monitor [16].
This study included 35 patients, with a total of 533 TOF
measurements. The offline evaluation of the observations was
performed by 2 authors of this paper (MV and HC), who
performed the evaluation independently from one another. The
classification of outliers was afterward compared and
corresponded to a 98% agreement on the labeling of TOF
patterns. In total, 30 of the 533 observations were identified as
outliers. These anomalies were detected in the TOF
measurements of 18 patients.

Feature Engineering
The acceleration and angulation signals were collected through
the open-source Cordova Plugin Device-motion library [20],
and measure the movement of the muscle contractions in the 3
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orthogonal directions of movement (X, Y, and Z). Similar to
studies in mechanomyography [21], root-mean square analysis
was performed on these signals to indicate the range of muscle
displacement represented by its acceleration (expressed with

units of m/s2; Figure 1). The features for the model were then

directly derived from the continuous monitoring signal. A first
basic set of features (Table 1) were derived: the combined
acceleration value of multiple points on the vicinity of the peak
of the different TOF twitches (T1, T2, T3, T4) and the absolute
TOFR value.

Figure 1. Normal and anomalous train-of-four (TOF) patterns; upper figures display normal TOF observations while bottom figures represent anomalies.
Normality recordings are illustrated by the upper 2 patterns, where 4 clear peaks can be detected and that follow one another in a fixed time interval.
The lower 2 patterns represent 2 simulated anomalies, where the 4 peaks cannot be clearly recognized from the TOF pattern; or where a wide gap in
terms of time interval exists between peaks.

Table 1. Description of the basic features of data set. A train-of-four recording is defined as the integral combination of all acceleration/angulation
points of T1, T2, T3, and T4.

n (count)DescriptionFeature name

533First twitch of train-of-four responseT1

533Second twitch of train-of-four responseT2

533Third twitch of train-of-four responseT3

533Fourth twitch of train-of-four responseT4

533Absolute ratio derived by dividing T1 with T4TOFRa

533Standard deviation of an AMG measurementAMGb_StdDev

533Arithmetic mean of an AMG measurementAMG_Mean

aTOFR: train-of-four ratio.
bAMG: acceleromyography.

Additionally, the arithmetic mean and standard deviation of the
AMG values related to one measurement were computed in
order to gain a better insight into the differences in variation
between different AMG measurements. In order to avoid
confusion with other descriptive statistics, these were labeled
as “AMG_StdDev” and “AMG_Mean.” An additional set of

features were engineered to assess specific TOF pattern
characteristics (Table 2). Several of these were derived from
the distance between the different TOF twitches (denominated
with the prefix “delta”; Figure 2), whereas other features were
based on the ratio of a specific TOF twitch compared with the
mean of the respective TOF measurement (denominated with
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the prefix “ratio”). With a nonanomalous pattern, one would
logically expect such a ratio to be exceedingly higher than the
arithmetic mean of the TOF measurement. In total, 15 features
were extracted and engineered to serve as input for the outlier
detection models. We emphasize that the authors have
deliberately designed the aforementioned features to detect an

anomaly based on the signal characteristics of a specific
measurement instance. Because of the limited size of the data
set, there is no feature that takes into account any historical
information of the TOF recording, administered drugs, or other
patient-related parameters.

Table 2. Description of engineered features of data set.

n (count)DescriptionFeature name

533Elapsed time (ms) between second and first twitchdeltaT2_T1

533Elapsed time (ms) between third and second twitchdeltaT3_T2

533Elapsed time (ms) between fourth and third twitchdeltaT4_T3

533Elapsed time (ms) between fourth and first twitchdeltaT4_T1

533Ratio between first twitch and arithmetic meanratioT1

533Ratio between second twitch and arithmetic meanratioT2

533Ratio between third twitch and arithmetic meanratioT3

533Ratio between fourth twitch and arithmetic meanratioT4

Figure 2. Basic and engineered feature illustration (x axis: time, y axis: combined angulation and acceleration). Each color represents an individual
train-of-four (TOF) twitch. Each individual twitch (T1, T2, T3, and T4) is composed of multiple acceleration/angulation points during the corresponding
contraction, and not solely by the highest value. The TOF recording is obtained by the summation of each individual twitch.

Model Development and Overfitting
Model development encompassed both the basic feature set and
the engineered feature set. Because the study’s data set is
composed out of labeled data with 2 distinct classes (normal
observations and outliers), supervised learning can be applied
in the form of a classification model. Because outliers are rare
instances in the data, there is a class imbalance where the
distribution between the normal observations and outliers is
significantly skewed. To overcome the issue of class imbalance,

a cost-sensitive learning technique was adopted, where the
objective function of the classification algorithm is modified in
order to weight the classification errors in a differential way for
the normal and the less frequent class. This refers concretely to
cost-sensitive logistic regression (CSLR), where a class
weighting configuration is used to influence the amount of
logistic regression coefficients that are updated during training.
The weighting penalizes the model less for errors made on
instances from the normal class, while maintaining a larger
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penalty for errors made on instances from the rare class. The
result is a version of logistic regression that performs better on
imbalanced classification tasks [17]. To avoid overfitting, a part
of the available data set was held out as a test set during the
data preprocessing phase (Figure 3). Moreover, in order to select

the different hyperparameters related to our chosen models, a
cross-validation strategy was adopted, more specifically in the
form of stratified k-fold validation together with the
hyperparameter optimization technique called grid search.

Figure 3. Overview of data set partitioning and model training.

Model Evaluation
To evaluate the effectiveness of the engineered features (Table
2), their performance was compared with that of the basic
features (Table 1) and tested for significance. Therefore, 2
CSLRs were trained: one on the basic feature set and another
on the engineered ones. All model performances were assessed
on the same test set, which was composed of 40% of the total
data and separated from the training set. The precision, recall,
and the F1 score were chosen as performance evaluation metrics
as these are best suited to evaluate data sets with class
imbalance. Additionally, receiver operating characteristics
(ROCs) and area under the curve (AUC) graphs were computed
to characterize the performance of the models.

Statistical Analysis
Statistical analysis was performed with the open-source python
library Scikit-learn [22]. Wilcoxon signed-rank test was adopted
to compare the performance of the CSLR models, with P<.05
considered significant.

Results

Descriptive Statistics, Model Training, and
Cross-Validation
The descriptive statistics of both feature sets are quantified in
Table 3. The Python code related to hyperparameter
optimization, training, and testing is presented in Multimedia
Appendix 1. In contrast to the basic features, the engineered

variables display a larger variation, as can be derived from their
standard deviation. In fact, mainly the “delta” variables appear
to be skewed. Figure 4 displays a scatter plot and a distribution
plot of the basic features T1 and TOFR, and the engineered
features ratioT1 and deltaT4_T1. While the outliers in the scatter
plot of the basic features are more dispersed throughout the
normal data, the outliers within the scatter plot of the engineered
plots can more clearly be identified compared with the normal
observations.

Concerning model training, the training data set (n=319)
consisted out of 18 outliers, while the test data set (n=214)
included 12 outliers. Both train and test data instances were
chosen in a completely randomized manner by means of the
train_test_split function of the scikit-learn library [22]. The
division of data during cross-validation was performed solely
on the segmented measurements (n=533). The split between
train and test data has also been performed in a stratified way
so as to guarantee the same class–imbalanced distribution of
the entire data set. As for the stratified k-fold learning, 5 folds
were chosen to split the training set, taking into consideration
the size of the training set. In combination with cross validation,
a grid search approach was employed to find the best
hyperparameters for the L2 regularization coefficient and the
appropriate class weights configuration for the imbalanced class
distributions of our data set. All model training, cross-validation,
and model evaluation were performed with the open-source
library scikit-learn and the high-level programming language
Python (version 3.8.2) [23].
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Table 3. Descriptive statistics of basic features and engineered features.

SkewnessKurtosisMaximumMinimum75%50%25%Mean (SD)Features

0.770.175.962.621.670.970.061.89 (1.13)T1

0.780.096.032.581.630.80.021.82 (1.2)T2

1.040.776.782.381.360.580.041.65 (1.25)T3

1.050.626.32.341.260.560.051.6 (1.25)T4

0.520.482.621.10.820.530.050.84 (0.4)TOFRa

1.312.542.010.610.360.180.050.44 (0.32)AMGb_StdDev

2.065.911.50.350.20.110.040.27 (0.23)AMG_Mean

0.974.786020129113.99 (6.55)deltaT2_T1

2.4720.168020139214.44 (7.23)deltaT3_T2

11.27164.5633220149216.3 (18.95)deltaT4_T3

4.6146.29349604828644.73 (25.36)deltaT4_T1

0.941.3923.2110.417.955.960.228.55 (3.73)ratioT1

0.731.2720.199.097.235.720.047.57 (2.83)ratioT2

0.921.4618.468.176.164.470.096.52 (2.76)ratioT3

0.741.0318.478.156.054.30.196.36 (2.9)ratioT4

aTOFR: train-of-four ratio.
bAMG: acceleromyography.

Figure 4. Panel A displays a scatter plot of train-of-four ratio (TOFR) and T1. Panel B displays a scatter plot of the features deltaT4_T1 and ratioT1.
Scatter plot displays 1 as outlier, and 0 as a normal observation. TOFR in absolute units. DeltaT4_T1 in milliseconds. T1 in root-mean square angulation
and acceleration.

Model Performance
Figure 5 presents the learning curves during model training and
validation, for both the F1 score and ROC–AUC performance
metrics. By plotting the model training and validation
performances as functions of the training set size, high variance

(ie, overfitting) or bias (ie, underfitting) can be assessed. While
overall there seems to be a good bias–variance trade-off for
both models, the CSLR based on the engineered features data
set tends to overfit more than the model based on the basic
features.
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Figure 5. Learning curves of the cost-sensitive logistic regression models of the basic feature (above) set and the engineering feature set (below).
Training and validation metrics are the F1-score and the ROC-AUC score (y-axis). X-axis represents the number of training instances.

In Table 4, the F1 score, the ROC–AUC, precision, and recall
for the CSLRs of the basic features and the engineered features
are presented. Performance metrics are given for the training
and test data sets. The CSLR model with the engineered features
on the test data has an improved performance compared with
the metrics of the training data set, indicating that the model
has not been overfit. For the CSLR model of the basic features,
we observe the opposite. The F1 score (95% CI) was 0.86

(0.48-0.97) for the CSLR model with the engineered features,
which was significantly larger than the CSLR model with the
basic features (0.29 [0.17-0.53]; P<.001). ROC curves and AUC
curve results are visualized in Figure 6. The CSLR model with
the engineered features has the highest AUC (95% CI) with a
score of 0.91 (0.72-0.97), significantly larger than the CSLR
model with the basic features (0.86 [0.63-0.93]; P<.001).

Table 4. Performance metrics of the training data set and the test data set.

Recall, mean

(95% CI)

Precision, mean

(95% CI)
ROCa–AUCb, mean

(95% CI)

F1 score, mean

(95% CI)

Data sets

Training data set (n=319)

0.55 (0.33-0.71)0.43 (0.18-0.68)0.78 (0.63-0.82)0.47 (0.24-0.63)Basic features

0.50 (0.40-0.75)1.00 (0.68-1.00)0.80 (0.70-0.87)0.65 (0.49-0.84)Engineered features

Test data set (n=214)

0.33 (0.29-0.98)0.25 (0.10-0.52)0.86 (0.63-0.93)0.29 (0.17-0.53)Basic features

0.75 (0.44-0.94)1.00 (0.49-1.00)0.91 (0.72-0.97)0.86 (0.48-0.97)Engineered features

aROC: receiver operating characteristic.
bAUC: area under the curve.
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Figure 6. Receiver-operating characteristic curves displaying the ability of the algorithms to classify a train-of-four measurement as an outlier. AUC:
area under the curve.

Discussion

Principal Findings
The herein obtained results demonstrate that engineered TOF
features outperform basic and common clinically employed
neuromuscular monitoring endpoints for automated outlier
identification of intraoperative TOF measurements. In the test
data set, the CSLR of the engineered variables correctly
identified 9 out of 12 measurements as outliers, compared with
the CSLR of the basic features, which only correctly flagged
one-third of the outliers. Moreover, the basic feature CSLR
displayed a high degree of false positives, where 12 TOF
measurements were incorrectly labeled as outliers, as opposed
to 0 false positives on the CSLR model with the engineered
features. While the authors recognize that the current models
are sedimented on a limited data set and that further
development is necessary in order to arrive at a clinically
deployable outlier detection algorithm, the performance of the
engineered feature algorithm is promising for a possible clinical
application. Various research efforts [8,15,24] have highlighted

that quantitative neuromuscular monitoring is still suboptimally
and reluctantly adopted by practicing anesthesiologists, among
others, due to a low perceived usefulness and reliability of
monitoring devices. Even when effectively available on request,
perceived unreliability due to artifactual recordings has been
shown to be a prevalent barrier and a technical hindrance toward
consistent monitoring adoption [15]. Nevertheless, the
measurement error (artifact) incidence rates of standard
neuromuscular monitors are unknown, and for that matter, so
is an encompassing formal description and corresponding
physiological correlations.

Given the wide scope of anesthesia monitoring, the daily clinical
relevance and eventual successful adoption of such an outlier
analysis are certainly subject to debate. Nevertheless, the
development of the CSLR models within this study is anchored
on clinically grounded reported monitoring issues
[7,8,15,25-29]. Figure 7 illustrates examples of flagged abnormal
extraneural stimulation-induced moments. Although all have
quantifiable and within-normality TOFR values, outliers are
evident on closer inspection.
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Figure 7. (A) Short 4-peak burst—rebound phenomenon TOF-like pattern after a single movement, short intertwitch distance; (B) T3 less than T2 and
T4; (C) Almost equidistant oscillations; (D) Crescendo pattern; (E) Decrescendo but gross oscillations and variable interpeak distance. Some of the
detected patterns have implications. y axis: muscle acceleration (m/s2), x axis: time (centiseconds). TOF: train-of-four.

The anchoring of such outlier analysis to the clinical context of
neuromuscular blockade monitoring is yet to be done practically
and prospectively. Although the authors anticipate the present
offline analysis will improve both neuromuscular monitoring
adoption and clinical errors when embedded into anesthesia
monitors, this can only be speculated upon at the present stage
of development. It should additionally be reiterated that the
bottleneck issue of undereducation is not tackled by the present
developments. In fact, phenomena such as the failure of T1%
to reach its baseline levels of around 100% during EMG-based
neuromuscular monitoring are frequently observed in clinical
practice and similarly trigger distrust among anesthesiologists
[15]. The importance of human factors on the effective
implementation of recommendation software has been
highlighted by a recent randomized pilot trial, where a rather
widely deployable predictive algorithm—the Hypotension
Prediction Index (Edwards Lifesciences Corporation)—has been
shown to fail to engage anesthesiologists [30].

As reinforced in the latest perioperative neuromuscular
management consensus statement, educational efforts constitute
an important part of modern anesthetic neuromuscular
monitoring [7]. On the authors’ opinion, automated decision
support software alone is expected to aid, but not solve or
abolish, with the problem of suboptimal worldwide adoption
of neuromuscular monitoring.

Considering the frequent and known artifactual biasing of kinetic
data even with CE/FDA-labeled AMG/kinemyography/EMG
neuromuscular monitoring devices [25-29], the added value of
outlier analysis becomes especially relevant for reliability
purposes. For instance, Liang et al [29] performed an ipsilateral
comparison of AMG and EMG monitoring devices, concluding
that AMG is less precise than EMG and overestimates the EMG
TOFR by at least 0.15 units. A similar study performed by
Kopman et al [28] found that AMG TOF values tend to
overestimate the extent of EMG recovery, with a bias estimate
of 0.125. However, both authors could not provide a cause to

why these bias estimates between AMG and EMG devices were
measured, stating that their lack of agreement cannot be
explained by the imprecision of either device. Although outliers
are not expected to explain such systematically reported
intermethod precision differences when no technical issues are
at hand, these do have the potential to compensate for small
kinetic nuances such as overshoots, provided enough training
data are available. In that sense, commonly applied AMG
correction techniques such as normalization against baseline
measurements could potentially be obviated. Nevertheless,
based on the herein presented results, such potential is purely
speculative.

Study Limitations
• It can be argued that the data set that was collected and

applied to develop the algorithm within this study is of a
somewhat limited sample size. In order to address this
limitation and avoid overfitting, we chose a cost-sensitive
learning technique for logistic regression, adopted a
cross-validation strategy together with the grid search
optimization technique, and implemented regularization
training, commonly used in machine learning.

• While the presented CSLR model with our engineered
features is capable of detecting outliers in the process of
AMG neuromuscular monitoring, there is no correlation
with a possible cause. Hence, except for a measurement
repetition, it remains unclear how clinicians would act upon
the warning given by the algorithm.

• The data of this study were collected through an
AMG-based smartphone app specifically aimed to monitor
the TOF movement pattern and to calculate the
corresponding TOFR. This app is undergoing further
refinement to facilitate neuromuscular monitoring and to
provide clinical intraoperative decision support. While the
quality of the recorded measurements of the device has
been previously assessed within a clinical trial [16], it is
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still possible that certain outliers are due to the nature of
handheld devices themselves.

• We present a set of engineered features that have the
potential for real-time detection of outliers within
neuromuscular monitoring. Further analysis could reveal
features that carry additional information for this purpose.
Additionally, this study did not analyze (online) real-time
streams of data to detect outliers.

• The algorithm developed depends on AMG neuromuscular
monitoring devices. While these devices are still the most
adopted quantitative neuromuscular devices in the domain
of anesthesia [6], the developed algorithm does not tackle
EMG-based devices [31].

• This study is not an intermethod validation study, but a
precision increasing exercise that still warrants prospective

intermethod comparison. This refers to its paired
comparison with both AMG and EMG devices.

Conclusion
This study demonstrates that a set of engineered features has
the ability to detect outliers from an AMG neuromuscular device
based on intraoperative measurements. The development of the
model based on these features displayed promising results
toward the creation of an outlier detection technique for
neuromuscular monitoring. With further research and additional
training, an outlier detection algorithm can potentially be
implemented within an AMG neuromuscular monitoring device
to scan TOF measurements for outliers automatically while not
relying on active input from medical providers.
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CSLR: cost-sensitive logistic regression
EMG: electromyography
ROC: receiver operator characteristics
TOF: train-of-four
TOFR: train-of-four ratio
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