
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Exploratory Review of Hybrid Fuzzing
for Automated Vulnerability Detection

FAYOZBEK RUSTAMOV1, JUHWAN KIM2, JIHYEON YU3, AND JOOBEOM YUN.4
1
Department of Computer and Information Security, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea

2,3,4
Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

Corresponding author: Joobeom Yun (e-mail: jbyun@sejong.ac.kr).

ABSTRACT Recently, software testing has become a significant component of information security. The

most reliable technique for automated software testing is a fuzzing tool that feeds programs with random

test-input and detects software vulnerabilities that are critical to security. Similarly, symbolic execution has

gained the most attention as an efficient testing tool for producing smart test-inputs and discovering hard-

to-reach bugs using search-based heuristics and compositional approaches. The combination of fuzzing

and symbolic execution makes software testing more efficient by mitigating the limitations in each other.

Although several studies have been conducted on hybrid fuzzing in recent years, a comprehensive and

consistent review of hybrid fuzzing techniques has not been explored. To add coherence to the extensive

literature on hybrid fuzzing and to make it reach a large audience, this study provides an overview of

key concepts along with the taxonomy of existing hybrid fuzzing tools, problems, and solutions that have

been developed in this sphere. It also includes evaluations of the proposed approaches and a number of

suggestions for the development of hybrid fuzzing in the future.

INDEX TERMS Hybrid fuzzing, symbolic execution, concolic execution, vulnerability, software testing,

survey

I. INTRODUCTION

The introduction of fuzzing in the early 1990s [1] brought

significant changes to the field of computer and information

security and has become a more prevalent approach for iden-

tifying software vulnerabilities. Generally, fuzzing refers to

the method of continuously executing a Program Under Test

(PUT) with produced test-inputs that can trigger a program’s

abnormal behavior. Practically, attackers regularly employ

fuzzing for pen testing and "Automatic Exploit Generation"

[2], [3]. For instance, competitor teams utilized fuzzing tools

in the "2016 DARPA Cyber Grand Challenge" (CGC) [4] for

their cyber systems [5]–[7]. Meanwhile, security defenders

also apply fuzzing tools to protect their systems from at-

tackers and to identify system vulnerabilities. For instance,

well-known vendors such as Google [8]–[10], Adobe [11],

Microsoft [12], [13], and Cisco [14] utilize fuzzing to secure

their production system.

Symbolic or concolic execution [15] and fuzzing [1],

[16], [17] are considered as the prominent software testing

techniques for effective test-input generation and for hunting

software bugs. These techniques have been highly utilized

and applied in recent years. Symbolic execution (SE) is a

tool for analyzing a PUT to identify the effects of test-

input on each executable program path. Executing the pro-

gram symbolically involves exploring all paths where the

constraints of the branches are gathered. With the help of

constraint solvers, it can generate effective test-inputs for

each path. SE comprises techniques such as bounded model

checking (BMC) [18], whitebox fuzzing [19] approaches,

and search-based heuristics. Concolic execution (CE) [20],

[21] is a combination of concrete and SE. It enables the

collection of the constraints of branches while executing a

program. The function of whitebox fuzzing is similar to that

of black-box fuzzing, which gathers some initial constraints

of a program sequentially and provides new test cases by

solving the constraints. The BMC approach is also used to

address PUT constraints with certain optimizations.

Both the SE and fuzzing approaches serve as beneficial

tools for discovering vulnerabilities. Considering the time

limits, a fuzzing tool is an efficient manner of deeply analyz-

ing some of the paths in a PUT, whereas SE can help explore

most branches in a PUT at low depths. For example, two steps

are involved in the use of hybrid fuzzing. The first step is

to execute the most easy-to-cover branches in a short time

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

by fuzzing the PUT, and the second step is to symbolically

explore the hard-to-reach branches that are not covered by

fuzzing. Thus, hybrid fuzzing integrates fuzzing with an

SE/CE execution method to address the shortcomings of

both techniques. Because of this ability to combine multiple

functions, hybrid fuzzing has attracted attention and made

important contributions to software vulnerability detection.

This study will focus on hybrid fuzzing techniques by consid-

ering their perspectives on the abovementioned technological

aspects.

A. MOTIVATION

The two predominant motivations for conducting this survey

are as follows:

1) Hybrid fuzzing has already gained recognition in the

field of software security because of its relative re-

liability and contribution to easing the determination

of bugs. Additionally, it attracts notable IT compa-

nies such as Google, Microsoft, and Cisco to advance

fuzzing techniques to discover vulnerabilities in the

PUT. The practical advantages of hybrid fuzzing have

encouraged us to illustrate the most recent techniques

and new findings that have a positive effect on this

field.

2) While most studies provide an overview of software

testing techniques, they tend to focus on one software

testing tool, such as a systematic overview exclusively

pertaining to fuzzing or SE only. Despite the fact that

some hybrid fuzzing surveys have reviewed a minor-

ity of hybrid approaches, there is no comprehensive

study that provides an extensive overview of the hy-

brid fuzzing techniques. Owing to the aforementioned

reasons, it is essential to provide a detailed summary of

the hybrid fuzzing techniques.

B. RELATED WORKS

As mentioned above, attention has seldom been afforded to

the empirical analysis of hybrid fuzzing containing SE/CE

and fuzzing before previous studies. In 1999, Edvardsson

[22] conducted a survey on the use of SE for an automatic

test-input generation. Moreover, several meta-studies and

reviews [23]–[27] have focused on practical SE/CE, results

of evaluations and overview optimizations in SE/CE. Fuzzing

has been empirically reviewed as a vulnerability identifica-

tion technique by Sutton et al. [17], and Richard McNally et

al. [28]. Furthermore, Van Sprundel [29] published a survey

of studies in the area of fuzzing. Moreover, comprehensive

review studies on fuzzing have recently been presented by

Valentin [30] and Hongliang Liang [31]. Fuzzing and SE

have also been regarded as effective methods for the detection

of software flaws in some studies [32], [33].

In addition, several review papers on hybrid testing have

been published [34]–[36]. Saahil Ognawala et al. [34] pre-

sented a survey on a hybrid testing tool that combines only

the fuzzing and SE. This survey also provides new ideas for

the implementation of hybrid test-input production methods.

Yang CAO et al. [35] presented a survey on a test-input gener-

ation model of hybrid testing methods that combined fuzzing

and dynamic symbolic execution. Furthermore, this paper

empirically compared AFLFast and KLEE by testing real-

world programs. Recently, Tao Zhang et al. [36] presented

a mini-survey of hybrid testing based on SE. It provides

a brief overview of vulnerability mining technologies. Al-

though these published hybrid testing surveys provide useful

information, they do not cover a majority of hybrid fuzzing

tools. For example, Saahil Ognawala, Yang CAO, Tao Zhang

have provided a survey on 9, 12, and 8 hybrid testing tools,

respectively.

Based on the factors mentioned above, we consider that

integrating the considerable improvement of hybrid fuzzing

into a mainstream study is long overdue. Therefore, this

empirical study is intended to demonstrate the usefulness

of hybrid techniques in this field and, also provides rich

statistical data for explaining the comparisons between dif-

ferent hybrid fuzzers and covers a wide range of research

perspectives such as the trend, technical features, and geneal-

ogy of hybrid fuzzing tools. Furthermore, the corresponding

comprehensive review gives a clear picture of hybrid fuzzing

for beginners and professionals to comprehend its functions.

C. OUTLINE

The following explains how this study is organized. Section

II discusses the review technique employed in our study, pro-

viding a summary and analysis of the selected publications.

Section III is devoted to the overall workflow of vulnerability

detection methods. Section IV discusses the taxonomy of

fuzzing techniques, and in Section V, hybrid fuzzing tech-

nologies are described. In Section VI, the most prevalent

hybrid fuzzers are classified considering the application,

areas, and problem domains. Section VII demonstrates the

performance evaluation of hybrid fuzzers. According to the

results of this study, we uncover some potential problems that

require further studies in Section VIII. Finally, in Section IX,

we present a summary of this study.

II. REVIEW METHODOLOGY

We adopted a systematic approach originally promoted by

Keele [37] and Kitchenham [38], which first led to perform-

ing a comprehensive analysis of the hybrid fuzzing studies.

In the following sections, we will detail our review approach,

research questions, data collection, and publication selection

criteria.

A. RESEARCH QUESTIONS

To explain hybrid fuzzing techniques, we will address five

research questions:

Q1 What is the trend of studies in the field of hybrid

fuzzing?

Q2 Which studies have been introduced in hybrid fuzzing

methods over the years?

Q3 What technical features of fuzzing and SE/CE have

been applied in innovative solutions proposals?

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Initial	paper
	collection

Keyword	
extraction

Database
search

Duplicate
removal

Data	collection

Inclusion	and	Exclusion

Applying	inclusion	criteria Removing	excluded	papers

Final	selection

Individual
voting

Collecting
votes Agreement

Finish
selection

93	papers

68	papers

Discussion N

Y

FIGURE 1: Overview of publication selection criteria.

Q4 Which datasets are utilized for evaluation, and what is

the capacity of software vulnerability detection for the

existing hybrid fuzzing tools?

Q5 What are the potential research prospects or directions

in the future?

Q1 is discussed in Section II-C, and the aim of this

question is to determine whether the field of hybrid testing

techniques is increasing through the analysis of publication

trends. Q2, which is addressed in Section V, provides a better

insight into how these studies proposed solutions for hybrid

techniques, including fuzzing and SE/CE. Considering Q3,

we will explore technical aspects of both methods that have

been used in hybrid fuzzing proposals discussed in Sections

V and Section VI. Regarding Q4, we will demonstrate the

performance and comparison of existing hybrid testing tools,

presented in Section VII. Finally, depending on the answers

to the last questions, considering Q5, we will provide our

viewpoint in identifying unresolved issues and research pos-

sibilities that can be tackled in the future, which is provided

in Section VIII.

B. PUBLICATION SELECTION CRITERIA

Several studies were considered to present a comprehensive

research study that covers all publications associated with hy-

brid fuzzing. Particularly, to make the hybrid fuzzing survey

more relevant, we collected more than 128 studies published

from March 2010 to December 2020 from various sources.

Thus, after the data screening process, we obtained 49 unique

studies as part of our survey. An overview of our study’s

selection methodology is illustrated in Figure 1. Publications

were selected in three steps.

Data collection. Initially, the data collection began with

searching for well-known bibliographical databases such as

Springer Online Library, Internet Society, IEEE Xplore, ACM

Digital Library, and USENIX. We gathered articles that in-

cluded either one or more of the terms "hybrid fuzzing,"

"hybrid testing," "SE/CE and fuzzing", and "hybrid fuzzer"

in their abstracts, titles, or keywords. Thereafter, we read

the selected study, considering cases where the relevancy

could not be determined by the abstract. Additionally, these

collected materials were considered as main studies [38].

Figure 2 (a) illustrates the bibliographical distribution of

the collected main literature. The subsequent step in the

data collection was to delete the duplicated manuscripts. For

example, these manuscripts can be (1) various variants of

the same manuscript such as the expanded journal edition of

a conference article or (2) the same manuscript in multiple

bibliographic databases. We obtained only 93 unique publi-

cations.

Inclusion and Exclusion. To verify that the publications

in the classification were in the software testing area and

were related to hybrid fuzzing, for each article, we used these

inclusion criteria [37].

• Is the study published in the English language?

• Is the publication linked to software analysis or vulner-

ability detection?

• Does the publication provide a contribution to SE, CE,

or fuzzing?

If we do not receive the answers to the above questions

from the "Abstract" of a study, each author has to read

the study’s "Introduction", "Implementation", and "Method-

ology" sections. We exclusively selected publications that

answered "YES" to all the questions above. Otherwise, we

removed it from our database. Moreover, studies that poorly

clarify the key objective of the suggested analysis were

excluded. Finally, the studies that did not include clear results

and reasonable comparisons were excluded. After the inclu-

sion and exclusion step, we were left with 68 publications in

our database.

Final selection. Considering this step, all the authors read

the articles and sorted them out based on the following

criteria:

• A common area of contributions.

• Introduction of an innovative approach.

• An innovative solution to the weaknesses of fuzzing.

• A creative solution to the SE or CE issues.

The final article selection was determined by a vote of

all authors. After the authors’ voting process, 49 unique

publications matched our selection criteria remaining. We are

assured that the general patterns are correct in this study, and

they give a decent description of hybrid fuzzing techniques.

C. SUMMARY OF FINDINGS

To answer Q1, we summarize our central reviews considering

the publishing venues, publication trends, and geographical

affiliations of researchers of hybrid fuzzing in this subsection.

Trends in publications: Figure 3 shows the number of

publications on hybrid fuzzing from March 2010 to Decem-

ber 2020. As can be observed in the figure, since 2016,

there has been a considerable growth in the number of

publications on hybrid fuzzing techniques. After the hybrid

testing approach won the DARPA CGC, the popularity of this

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

ACM

DIGITAL

LIBRARY

25.5%

SPRINGER

ONLINE

LIBRARY

10.2% INTERNET

SOCIETY

10.2%

SEMANTIC

SCHOLAR

8.1%

USENIX

4.1%

OTHERS

9.3%

IEEE XPLORE

DIGITAL

LIBRARY

32.6%

(a) Bibliographic and regional distribution of the collected literature.

U S A

26.5%

G E R M A N Y

18.3%

K O R E A

12.2%

I N D I A

2.1%

R U S S I A

2.1%

S I N A G P O R E

2.1%

B R A Z I L

2.1%
C H I N A

34.6%

(b) Regional distribution of papers

FIGURE 2: Bibliographic and regional distribution of collected literature.

technique has been rapidly expanded in the field of computer

security, which led to the publication of more papers.

Publisher Venues: The expansion of this technique in-

spired scholars to publish 49 studies in 21 distinct venues,

which increased the possibility of finding a broad literature

on this subject. Furthermore, this technique is valued because

of its practicality and reliability in multiple testing by the

audience. Considering the different types of venues, the ma-

jority of publications were presented at conferences (65%), in

journals (29%), workshops (6%), and technical reports. Table

1 illustrates the top venues in which at least three hybrid

fuzzing-related studies were presented.

Distribution of publications by regions: We linked the

country of origin of each primary study to the first coauthor’s

affiliate region. Regarding the geographical distribution of

the publications, 49 primary studies stemmed from eight

different countries. China, the USA, Germany, and South

Korea were the top countries to represent the studies as

shown in Figure 2 (b). Considering the data, 28.6% of the

publications belonged to American scholars, 18.3% belonged

to Europeans, and 53.1% were authored by Asians.

15

0

2

4

6

8

10

12

14

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N
u

m
b

er
 o

f
p

u
b

li
ca

ti
o

n
s

Year

FIGURE 3: Number of published studies per year.

III. VULNERABILITY DETECTION METHODS

We include a brief explanation of software vulnerability de-

tection approaches, including static analysis, dynamic anal-

ysis, fuzzing, SE, CE, and hybrid fuzzing in this section.

Subsequently, we explain the pros and cons of each strategy.

A. STATIC ANALYSIS

Static analysis is a software testing method utilized for iden-

tifying possible software flaws in the PUT without running

the source code. This type of analysis allows a user to

promptly identify where the bug exists in the code based

on the applied rules. The benefit of using static analysis is

its speed and the decreased cost incurred to fix bugs. This

provides advantages over dynamic analysis that fails to report

vulnerabilities without substantial effort. Through parsing the

code and creating an “Abstract Syntax Tree” (AST) of the

software, static analysis is typically implemented. Moreover,

this analysis is also useful for identifying coding issues, such

as buffer overflows, and format string vulnerabilities [39].

Despite the benefits, there are a few limitations of static

analysis. Depending on the employed rules, static analysis

may only be workable or practical in specific situations.

Another drawback of static analysis is that it can provide false

positives and false negatives.

TABLE 1: Top Venues on Hybrid Fuzzing.

Venue Papers

IEEE Symposium on Security and Privacy

(S&P)
8

International Conference on Software

Engineering (ICSE)
6

Network and Distributed System Security

Symposium (NDSS)
5

USENIX Security Symposium (USENIX

SEC.)
3

ACM Conf. on Computer and Communi-

cations Security (CCS)
3

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Monitor
Runtime

Information
Test-input
Mutation

Test-input
Generator

Test-input
Selection

Test-input
pool

Te
st-

in
pu

t

Bug
Detector

Bug?
Bug Reports

Abandoned
test-inputs

Initial
test-input

PUT

no yes

FIGURE 4: Overall workflow of traditional fuzzing.

B. DYNAMIC ANALYSIS

To address the drawbacks of static analysis, dynamic analysis

is introduced. Unlike static analysis, dynamic analysis de-

tects software vulnerabilities while executing a program [40].

Specifically, dynamic analysis techniques can effectively find

software vulnerabilities by analyzing the running states and

evaluating the runtime information. The benefit of dynamic

analysis is high precision because it determines bugs or

defects with extreme precision. However, it has some disad-

vantages such as slow speed, high technological criteria for

testers, and low stability. The following section will discuss

each dynamic analysis method, including fuzzing, SE, CE,

and hybrid fuzzing, in detail.

1) Fuzzing

Barton Miller, a professor at the University of Wisconsin, first

introduced the term fuzzing in 1988. Considering the world

of cybersecurity, fuzzing is an automated testing technique

that plays a vital role in the detection of program bugs by

feeding test-inputs to the PUT and analyzing the execution

states [41]. Ari Takanen et al. [42] provided detailed infor-

mation regarding fuzzing techniques in their book with rich

statistical data and comprehensive case studies. Depending

on whether test-inputs are produced from scratch or through

the modification of existing ones, fuzzers can be generation-

or mutation-based fuzzers. Furthermore, fuzzers can also be

classified as whitebox, greybox, or black-box fuzzers. For

instance, a whitebox fuzzer is proficient at monitoring the

execution path and solving complex constraints by using

heavyweight program analysis [43]–[46]. On the contrary,

greybox fuzzing tools [47]–[50] utilize lightweight program

analysis to increase the code coverage. For instance, the

highly effective Google ClusterFuzz has detected more than

25000 vulnerabilities in Google and more than 22500 vul-

Concrete Symbolic

Concolic

FIGURE 5: Concolic execution model.

nerabilities in over 340 projects, as of September 2020 [8].

Black-box fuzzers only observe the behavior of input/output

execution [51]–[53] and do not require the PUT’s source

code. Although the fuzzing technique is considered one of

the efficient approaches to expose program bugs, fuzzers

often struggle to obtain complex path conditions in the PUTs;

hence, code coverage performance is usually low. Despite

that, fuzzing techniques alone are insufficient for detecting

complete vulnerability threats in a program.

The overall workflow of the traditional fuzzing technique

is illustrated in Figure 4. The fuzzing method consists of four

major phases: test-input generation, execution of the target

program, monitoring, and vulnerability detection. Determin-

ing how to generate highly efficient test-inputs is a vital

challenge of fuzzing techniques.

2) Symbolic execution

Another productive software testing technique is SE, often

referred to as whitebox fuzzing. This approach was proposed

in the mid 1970’s to check for violations in software pro-

grams [54], [55]. SE has gained wide attention amongst a

heterogeneous audience since DARPA established a CGC

competition in 2013. The challenge pertains to the detection

of software bugs, exploitation, and patching [56].

Technically, SE is an effective way to test lightweight

programs and cover all execution paths in a PUT. However,

users of this technique often suffer from path explosion issues

during the testing of heavyweight programs.

Overall test-input generation processes of SE are demon-

strated in Algorithm 1. The SE takes the PUT and ITI initial

test-input as the input. It outputs the new test-inputs by

solving the constraints. First, SE loads the PUT and con-

structs the CFG, and extracts all the basic block addresses.

Thereafter, the PUT is executed dynamically with the ITI

initial test-input, and the covered basic block addresses are

identified by mapping the path to the CFG. If the BB basic

block in the AllBBaddr does not match the BB in CoveredB-

Baddr, it will put it into CONS for further processing. Finally,

a new effective test-input NTI is produced by solving the

constraints collect in NTI using the Z3 solver.

3) Concolic execution

Concolic execution [57]–[59] is a classical SE that considers

program variables as symbolic variables and executes the

PUT with concrete execution. It mainly focuses on revealing

software vulnerabilities instead of proving the correctness of

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Algorithm 1 Test-input generation of symbolic execution

Input: PUT (Program Under Test)

Input: ITI (Initial Test-Input)

1: TP ← Load(PUT)

2: CFG← cfgConstruction(PUT)

3: AllBBaddr← ExtractAllBBaddr(CFG)

4: Path← DynExecution(PUT, ITI)

5: CoveredBBaddr← PathMapping (Path, CFG)

6: foreach BB ∈ AllBBaddr do

7: if BB /∈ CoveredBBaddr do

8: CONS← ConstraintCollection(BB)

9: NTI ← Solver(CONS)

10: else

11: Continue

12: end if

13: end for

Output: NTI (New Test-Input)

TABLE 2: Performance comparison of testing techniques.

Testing
Approaches

Usage Accuracy
Bug

detection
Scalability

Static Easy Low Moderate Good
Dynamic Hard High Easy Good

SE/CE Hard High Moderate Bad
Fuzzing Easy Moderate Easy Good

Hybrid Fuzzing Easy Highest Easy Best

the application. It functionally forks the symbolic interpreter

into true and false nodes when it arrives in a conditional node.

The symbolic interpreter aims to generate a path formula for

each node encountered throughout the program execution.

A path formula can be satisfied when there is a concrete

test-input that performs the intended path. The concrete test-

inputs are generated by an SMT solver [60] to provide a path

formula solution.

Concolic testing combines concrete and symbolic tests,

wherein both the SE and the concrete execution are carried

out simultaneously (Figure 5). Concrete execution can allow

for a decrease in the ambiguity of the symbolic constraints.

Studies on the function of CE are provided in [61]. However,

as compared to black-box and greybox fuzzing approaches,

the CE is slow because it involves an instrumentation process

and examination of each branch of the program [59].

4) Hybrid Fuzzing

Research in the field of hybrid fuzzing has gained popularity

and provides a significant contribution to bug detection. To

illustrate this, the Shellphish team [62] won the DARPA

CGC in 2016 by utilizing a hybrid fuzzing technique. Hybrid

fuzzing involves an extra CE or SE engine that reexamines

the covered paths by a fuzzer, resolves the path constraints,

and exposes the uncovered paths compared to plain fuzzing.

The combination of fuzzing and SE/CE allows precise results

and makes the software test process easier.

Hybrid fuzzers [6], [63]–[65] aims to take advantage of

those techniques. First, it begins with carrying out fuzzing

before switching to SE automatically to reveal an uncovered

path. Second, the hybrid fuzzer returns to fuzzing. Fuzzing

is capable of quickly performing shallow program paths,

whereas SE provides the advantage of covering more com-

plex program paths. However, the scalability of symbolic

techniques is low. Thus, more recent tools like Driller [6] or

QSYM [64] prefer concolic testing approach.

Figure 6 indicates the overall workflow of hybrid fuzzing.

The entire system includes three key components: fuzzer, CE

engine, and a coordinator. The coordinator component is a

middleware that controls the fuzzing and CE techniques. It

has three main tasks. First, it monitors the fuzzer to determine

when to start the CE engine; second, it prepares the running

environment for CE; third, it selects and filters test-inputs that

run between the fuzzer and CE. Initially, the coordinator’s

test-input selection component determines the test-input file

that queue of fuzzer should be sent to the CE engine first.

Before performing CE, the coordinator needs to sort out the

test-inputs in the fuzzer’s queue according to their efficiency.

C. COMPARING THE PERFORMANCE OF

VULNERABILITY DETECTION METHODS

In this section, we compare the performance of each soft-

ware testing technique. Figure 7 depicts the code coverage

process of each dynamic analysis technique in CFG. The

SE/CE can cover and analyze all basic blocks in the target

program. However, it is not technically scalable because of

the tremendous number of paths in the PUT. The path’s

explosion problem is a significant challenge for the users

of the SE/CE. Although these approaches have a smart so-

lution for complex constraints (SMT solver), they are not

highly effective when testing heavyweight applications. For

instance, there are more than 15 K LOC in a grep program

which has 8,000 basic blocks in the execution path. Thus, it

is not feasible to cover all the branches within a sufficient

time [66]. Fuzzing tools are quicker than SE/CE, allowing

them to explore deeply hidden PUT branches more easily.

However, the fuzzer is not smart and often produces useless

test-inputs that cannot explore new paths. Consequently, this

leads the fuzzer to be more time-consuming, and it decreases

its effectiveness. On the contrary, as shown in Figure 7c,

the hybrid fuzzer can cover all branches quickly. Generally,

the cardinal idea behind the hybrid fuzzer is to combine

both techniques to eliminate each other’s shortcomings and

achieve high code coverage results.

Table 2 shows the performance comparison of different

software testing approaches. The table shows that the hybrid

fuzzing methods have a higher performance than other meth-

ods. In addition, because many software testing competitions

are currently mainly dominated by hybrid fuzzing tools, it is

observed that the use of this technique is highly effective.

Figure 8 demonstrates comparisons of the effectiveness of

each method’s execution rate and code coverage. Although

SE/CE has a high code-coverage, one of its main drawbacks

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Initial
test-input

PUT

Hybrid Fuzzer

C
O
R
D
I
N
A
T
O
R

FUZZING (AFL/AFL++/AFLFast/...)

Mutator Seed
Generator

Seed
Selection

Bug
Detector

CE/SE (Angr/QSYM/KLEE/S2E/...)

Graph
Extractor

State
Manager

SMT
Solver

 seeds

new seeds

new seeds

seeds

Bug?

no

yes

New
Coverage

no

yes

Abandoned
seeds

FIGURE 6: Hybrid fuzzing technique’s high-level architecture.

....

....

....

(a) Symbolic/Concolic Execution

....

....

....

(b) Fuzzing

....

....

....

(c) Hybrid Fuzzing

FIGURE 7: Code coverage comparison of dynamic analysis techniques in CFG.

is its slow execution rate. Moreover, fuzzing and static an-

alyzing methods are fast in bug hunting; nevertheless, they

have low code coverage results. The low code coverage

result makes it inefficient in detecting all program bugs.

Although the hybrid fuzzer does not have high code-coverage

compared to the SE/CE, this method is the most effective

owing to its speed and ability to test heavyweight programs.

IV. TAXONOMY OF HYBRID FUZZER

In this section, we provide the taxonomy of hybrid fuzzers

based on execution and test-input generation. Figure 9 illus-

trates the taxonomy of the hybrid fuzzer. We have divided

the hybrid fuzzing approaches into two groups: test-input

generation and execution monitoring.

A. TEST-INPUT GENERATION

Generating meaningful test-inputs is vital for automated pro-

gram testing. Considering the fuzzing approach, test-inputs

are produced through a generation- or mutation-based ap-

proach [29], [50]. Regarding the mutation-based method, the

generation of test-inputs is based on the mutation of test-

input files, whereas the generation-based method requires

that test-inputs are produced depending on the model of the

file format. The main challenge is the production of efficient

test-inputs that explore the hard-to-reach program branches.

1) Generation-based

Considering the generation-based method, the fuzzer re-

quires knowledge of the test-input. Based on the configura-

tion file test-input files are generated. The given file format

information enables generation-based fuzzers to generate

test-inputs that provide the capability to test the validity of

programs more quickly and exploring the deeper basic blocks

of PUT.

Smart-input based Hybrid Fuzzer. The recognition of

highly efficient test-inputs that can solve complex constraints

and cover more paths and vulnerabilities are critical chal-

lenges in hybrid fuzzing. Therefore, incorporating machine

learning technology into hybrid fuzzing techniques provides

a possibility to improve the performance of the software

testing process. The advancement of machine learning tech-

nology adds a significant contribution to the test-input gen-

eration [67]–[70]. Godefroid et al. [67] first used Machine

Learning (ML) approaches (such as the Neural Network)

to learn test-inputs’ grammar and produced format-fulfilled

test-input files using the learned grammar [71]. The usage of

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Whitebox

fuzzing

Blackbox

fuzzing

Static

analysis

Concolic

Execution

Symbolic

Execution

H
ig

h
L

o
w

C
o
v
er

a
g
e

Fast SlowExecution effectiveness

Greybox

fuzzing

Hybrid

fuzzing

FIGURE 8: Comparison of testing approaches in the execu-

tion process and code coverage.

the ML engine models (including feature extraction, train-

ing, and prediction) produce powerful files as test-inputs.

Specifically, a smart-input-based hybrid fuzzer (SIHF) com-

bines fuzzing, CE, and a smart-input selection paradigm that

functions in accordance with machine learning. Thereafter,

fuzzing begins to run a program with predefined or empty

test-inputs. Subsequently, the ML engine extracts PUT’s

features and test-inputs to model the coverage gains. These

features allow the prediction of the code coverage that the

unknown test-inputs can produce. Thereafter, the CE engine

retrieves the possible practical test-inputs from the prior stage

and generates test-inputs. Subsequently, the fuzzer utilizes

these effective test-inputs and their produced mutants to

continuously explore the PUT. Because the fuzzing persists,

the prediction model is enhanced to provide more accurate

predictions.

2) Mutation-based

Several hybrid fuzzing tools use a mutation approach be-

cause of its ability to generate large test-inputs quickly and

easily. Considering this process, test-inputs are produced by

altering parts of the test-inputs, and the bytes of the test-

inputs are changed through random or many unique values,

which appears ineffective. Another critical obstacle is deter-

mining the position adjustments and special value utilized in

the modification. Based on the techniques for exploring the

PUT, mutation-based hybrid fuzzers can be categorized into

coverage-guided and directed hybrid fuzzing.

Directed Hybrid Fuzzer. A directed hybrid fuzzer (DHF) is

intended to generate test-inputs that explore the specified sus-

picious code and paths of the PUT. Typically, DHFs primarily

accomplish the task of reaching the specified locations by

integrating both dynamic and static analyses. Static analysis

involves determining the path in the basic block located in

the function call chain via the control flow graph analysis and

function call relationship. Considering the DHF, the dynamic

analysis process involves the interconnection between the

fuzzer and SE/CE. Each testing tool exchanges test-inputs

with different preferences and append test-inputs into the

queue.

Coverage–Guided Hybrid Fuzzer. Nowadays, cover-

age–guided hybrid fuzzers (CGHF) are practically the most

widespread hybrid fuzzers. This type of fuzzer aims to pro-

duce productive test-inputs, which involves a more compre-

hensive test to detect as many software vulnerabilities as

possible. This indicates that this technique aims to analyze

the whole target program’s code, making the mutated test-

inputs reachable to uncovered code branches. Technically,

CGHFs mostly reach high code coverage by uniting both the

coverage-guided fuzzing method and the CE engine. Regard-

ing this method, coverage-guided fuzzing exchanges already-

covered branch information with the CE engine. For instance,

AFL intercepts transitions between branches and retains this

data in a Bitmap. Thereafter, the CE engine receives a test-

input in the queue to reveal further uncovered paths. The CE

only forks previously uncovered branches. According to this

hybrid testing method, the CE engine detects hard-to-reach

bugs and generates a new test-input for further fuzzing.

B. EXECUTION MONITORING.

Whitebox based Hybrid Fuzzer. Whitebox based hybrid

fuzzer (WBHF) associates fuzzing with CE to enhance soft-

ware testing performance by detecting deeply-located bugs in

binaries, reaching high code coverage. Most of the WBHFs

utilize a common off-the-shelf fuzzer (AFL) [47] and a top

binary analyzer tool (angr) [56]. The testing process begins

with the generation of test-inputs by the fuzzer. Thereafter,

coverage information that informs the user of the number

of times each basic block is covered during the testing

is gathered. The fuzzer shares the test-inputs with CE to

discover uncovered paths. To simplify the path constraints,

the CE engine simultaneously explores programs on both the

symbolic and concrete values. The CE produces effective

test-inputs for paths that have not been covered by solving

path constraints and returns the already produced test-inputs

to the fuzzer. By getting the new test-inputs from the CE, the

fuzzer can dive deeply into the PUT and increase the code

coverage.

C. SELECTION OF A SUITABLE HYBRID FUZZER

Depending on how bugs are detected or triggered, they can be

"hidden" or "shallow" bugs. Considering the early execution

stage, the bugs that crash the PUT are termed "shallow" bugs.

In contrast, the bugs located deep in the PUT and challenging

to explore are termed "hidden" vulnerabilities. Despite their

existence, there is no exact method to detect these bugs;

therefore, the fuzzer is widely utilized to discover bugs in

the software. Software testers can opt to use the fuzzer based

on the following aspects: 1) the requirements for the testing

process (e.g., time efficiency) and 2) the type of PUT. For

example, if the target program’s test-input format is complex

or unique, selecting a SIHF is suggested. Considering other

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

Test-input
Generation

Hybrid Fuzzer

Execution
Monitoring

White-box based HF Mutation-based

Directed HF Coverage-guided HF

Static Analysis &
Dynamic Analysis
(SE/CE + Fuzzing)

SE/CE + Fuzzing

CE + Fuzzing

-Berry
-Directer
-BugMiner
-DrillerGo

-FFuzz
-Breacher
-ConFuzzius
-LibKuzzer
......

-QSYM
-Driller
-SAFL
-DeepFuzzer
......

Generation-based

Smart-input
based HF

SE/CE + Fuzzing
& ML training model
for input generation.

-MEUZZ
.....

FIGURE 9: Taxonomy of hybrid fuzzers based on test-input production and PUT exploration methods.

situations, test requirements should be considered by soft-

ware testers. If the cardinal purpose of the test is efficiency

rather than high-quality results or accuracy, and if the testers

want to detect the specified vulnerable code and patch it,

DHFs are the best option. The DHS, for example, is preferred

if a target program has not been previously examined and

testers aim to detect or eliminate "shallow" vulnerabilities

rapidly. On the contrary, if testers are interested in the accu-

racy of the results and aim to reach high code coverage, it is

typically more appropriate to use CGHFs or WBHFs. Despite

the possibilities of these techniques, they are very expensive,

considering the time and consumption of resources.

V. STATE-OF-THE-ART IN HYBRID FUZZING

To answer Q2, we present the genealogy of hybrid fuzzers in

Figure 10, and answer Q3 in this section by outlining the key

contributions of the suggested hybrid fuzzing approaches. We

discuss studies on HF in Section V-A based on instrumenta-

tion and test-input selection, test-input generation in Section

V-B, and execution monitoring in Section V-C.

A detailed description of the hybrid fuzzing approaches

is presented in Table 3 (page 11). Each technique is sum-

marized based on the implementation process of the hybrid

fuzzer. The requirement (REQ) column shows whether a

hybrid fuzzer requires an open-source program or binary.

The Preprocess column shows whether a hybrid tool uti-

lizes instrumentation and test-input selection methods. The

Key techniques column indicates the bug-hunting methods

(including static analyzer, SE engine, CE engine, fuzzing

tool, and taint analyzer) are leveraged by the hybrid fuzzer.

The Test-input generation column indicates whether a hybrid

fuzzer uses mutation-, generation-, or constraint-based ap-

proach to produce test-inputs. The Schedule column shows

whether a hybrid fuzzer uses scheduling algorithms. The

Scalability column indicates whether a hybrid fuzzer tests

only real-world programs ○, experimental programs +, or

both è. The Platform column indicates the operating system,

Linux (L) or Windows (W), necessary for running the hybrid

fuzzer. The final column shows whether a hybrid fuzzer is

open-sourced or not.

Figure 10 (page 15) demonstrates the genealogy of the

introduced hybrid fuzzers over the last decade. Each node

in each row indicates a hybrid fuzzing technique that is

introduced in the same year. The colored shapes inside the

node indicate the fuzzing tools in the figure above utilized

in the hybrid fuzzers. A solid arrow shows the relationship

between the hybrid fuzzing approaches.

A. PREPROCESSING

Before the first fuzz iteration, some hybrid fuzzers alter the

initial collection of fuzzing configurations. Preprocessing is

widely used for the instrumentation of the PUT and allows

testers to eradicate possible redundant configurations. Pre-

processing methods are mainly utilized in DHF to explore

the target code as outlined in Section V-B2

1) Instrumentation

Considering fuzzing, the goal of instrumenting the program

[48], [49] is to fuzz the contents of the memory at runtime

and collect execution feedbacks. The amount of the execution

data obtained contributes to determining a hybrid fuzzer’s

status. While there are several methods for obtaining infor-

mation regarding the PUT internals such as "processor traces

or system call usage" [72], [73], instrumenting methods

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

are mainly considered as the best ways to obtain the most

valuable feedback. Instrumentation of the PUT can be either

dynamic or static.

The static instrumentation process occurs before the tar-

get program executes, whereas the dynamic instrumentation

occurs during the target program execution. We will discuss

static and dynamic instrumentations in this subsection. Static

instrumentation is mainly executed on either intermediate or

source code.

Contrary to dynamic instrumentation, static instrumen-

tation requires less time because it occurs before execu-

tion. If the target program is dependent on several libraries,

separate instrumentation of libraries is required. This typi-

cally indicates recompiling of these libraries with the same

instrumentation. Apart from the instrumentation based on

the source code, binary-level static instrumentation, such as

binary rewriting tools [74], [75], has been implemented by

researchers.

Dynamic instrumentation can instrument libraries with-

out difficulties while the instrumentation is carried out at

runtime, regardless of higher overhead, compared to the

static instrumentation. There are many highly prominent

dynamic instrumentation techniques, including DynamoRIO

[76], Valgrind [77], QEMU [78] Pin [31], and DynInst

[79]. Instrumentation is applied at compile-time for open-

source programs, whereas it is applied at runtime through an

adapted QEMU [78] for target binaries. If the source code of

the PUT is available, hybrid fuzzers that are based on the

AFL employ static instrumentation with a clang compiler.

Otherwise, they employ dynamic instrumentation with the

assistance of QEMU [78]. For instance, QSYM [64], a fast

CE engine, utilizes AFL to instrument the target program

and fuzz. Furthermore, QSYM relies on the PIN to explore

the target binary and to choose the basic blocks for the SE

engine. There are hybrid fuzzers that approve LLVM [80]

instrumentation, which has been designed to provide the user

with quick and easy access to the code that is sanitized,

analyzed, and injected. For example, Wildfire [81] introduced

a novel open-source compositional fuzzing technique that

detects bugs in a C program by fuzzing separated functions

and evaluating the exploitation feasibility of these bugs by

utilizing a targeted SE engine. Wildfire supported LLVM

3.4-6.0, and it was developed as an enhancement of Macke

[82], an analysis technique for C programs. Wildfire employs

AFL to fuzz isolated functions, and KLEE22 [83] is used

to identify the possibility of vulnerabilities. This study saves

approximately 10% more than other common hybrid fuzzers.

KLUZZER [84] suggests a novel whitebox fuzzer that

applies the "whole-program-llvm" [85] to generate LLVM IR

rather than the LLVM clang compiler. LLVM 6.0 version is

a recommended option for use when the user analyzes tar-

get programs via KLUZZER. Another instrumentation-based

hybrid fuzzer, LibKluzzer [86], [87], combines the coverage-

guided fuzzing techniques known as LibFuzzer [49] and

whitebox fuzzer KLUZZER. It uses the LLVM compiler

interface which compiles the PUT to build the LLVM IR by

employing Clang. The compilation, among other advantages,

provides instrumentation for code coverage and connects

with the LibFuzzer. Lastly, to execute the whitebox fuzzing,

the LLVM bitcode is sent to the KLUZZER.

Another hybrid fuzzing tool is Map2check [88] which

consists of fuzzing and SE. This tool also utilizes LLVM

v6.0 [89] compiler techniques to examine C language-based

programs. Similar to the abovementioned techniques, to first

simplify the code, this tool converts the C-code using the

LLVM compiler and feeds the testing approaches with instru-

mented binary. KleeFL [90] is another hybrid fuzzing tool

that combines KLEE and AFL, where SE generates addi-

tional test-inputs to direct AFL’s exploration. First, KleeFL

gives the task of code exploration to the SE engine. By

enacting simple and fast changes on the resulting test-inputs,

the action leads to high-performance fuzzers subsequently.

KleeFL exhibits limitations in exploring heavyweight pro-

grams with complex libraries owing to the well-known SE

restriction.

2) Test-input Selection

Hybrid fuzzers obtain a variety of fuzz settings to monitor

the fuzzing algorithm’s behavior. Unfortunately, certain fuzz

configuration options, including test-inputs for mutation-

based hybrid fuzzers, possess broad value domains. Consid-

ering an MP3 player as an example, if the tester analyzes the

MP3 player, the MP3 files represent the test-input. A number

of valid MP3 files are available, leaving the tester confused

about which test-input to select for fuzzing. The decline in

the size of the initial test-input queue is classified as the

test-input selection issue [91]. There are many methods to

tackle the problem associated with test-input selection. One

of the effective ways is to identify a minimum number of

test-inputs that expand a code coverage parameter, such as

edge and node coverages. For instance, the present collection

of C configurations comprises two test-inputs TI1 and TI2

that include the following addresses of the PUT: (TI1 = (10,

20), TI2 = (20, 30)). If there is a third test-input TI3 =

(10, 20, 30) that runs the same speed as TI1 and TI2, it is

preferable to fuzz the PUT with TI3 test-input rather than

TI1 and TI2 because it intuitively checks more codes. The

AFL-based hybrid fuzzers encourage this minset that the test-

input selection algorithm is dependent on node coverage with

a logarithmic counter. The cardinal idea of this choice is to

encourage node counts to be considered distinct only if they

vary in terms of magnitude orders.

B. TEST-INPUT GENERATION

Generating efficient test-inputs to hunt the bug is very im-

portant in software testing. Test-input file quality can signifi-

cantly affect the outcome of the fuzzing. Therefore, a signif-

icant problem is determining how to produce sufficient test-

inputs. As mentioned in Section IV, there are two approaches

in the test-input generation for fuzzers: a mutation-based

approach which produces test-inputs according to the random

mutation of the test-input files, or the use of predefined

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

TABLE 3: Overview of the hybrid fuzzing techniques.

Hybrid
Fuzzer

REQ
Pre-

process
Key techniques

Test-input
generation

Schedule
Sca-

lability
Platform

S
o
u
rc

e
C

o
d
e

B
in

ar
y

In
st

ru
m

en
ta

ti
o
n

T
es

t-
in

p
u
t

S
el

ec
ti

o
n

S
ta

ti
c

A
n
al

y
si

s

S
y
m

b
o
li

c
E

x
ec

u
ti

o
n

C
o
n
co

li
c

E
x
ec

u
ti

o
n

F
u
zz

in
g

T
ai

n
t

A
n
al

y
si

s

M
u
ta

ti
o
n

b
as

ed

G
en

er
at

io
n

b
as

ed

C
o
n
st

ra
in

t
b
as

ed

S
ee

d
S

ch
ed

u
le

S
ca

la
b
il

it
y

in
fu

zz
in

g

L
in

u
x

/
W

in
d
o
w

s

O
p
en

-S
o
u
rc

ed

Wildfire [92] X X X X X ○ L [81]

KLUZZER [84] X X X X X ○ L [93]

Map2Check [88] X X X X X X + L [94]

LibKluzzer [86] X X X X X X + L [87]

KleeFL [90] X X X X X è L [95]

DeepDiver [65] X X X X X X X X è L ✗

MEUZZ [96] X X X X X X X X ○ L [97]

Berry [98] X X X X X X X X X è L ✗

DrillerGO [99] X X X X X X + L ✗

1dVul [100] X X X X X X + L ✗

FFuzz [101] X X X X X X X X è L [102]

Breacher [103] X X X X X X X X è L ✗

Driller [6] X X X X X X X + L [104]

QSYM [64] X X X X X X X X X è L [105]

SAFL [106] X X X X X X X ○ L ✗

DeepFuzzer [107] X X X X X X X X è L [108]

T-Fuzz [109] X X X X X X è L [110]

Taintscope [44] X X X X X X X X ○ L/W ✗

RedQueen [111] X X X X X è L [112]

Saad et al. [113] X X X X X X + L ✗

Zhang et al. [114] X X X X X X + L/W ✗

SAVIOR [63] X X X X X X X X X è L [115]

Gerasimov et al. [116] X X X X X X X + L ✗

Sword [117] X X X X X X X - - ✗

Musliner et al. [118] X X X X X X - L ✗

DigFuzz [119] X X X X X X X è L ✗

Angora [120] X X X X X è L [121]

Badger [122] X X X X X X è L ✗

HyDiff [123] X X X X X X X X è L [124]

Fangquan et al. [125] X X X X X X X + L ✗

FAS [126] X X X X X X X + L ✗

SynFuzz [127] X X X X X X X X X è L ✗

Cyberdyne [72] X X X X X X X è L ✗

Pak et al. [39] X X X X X X ○ L ✗

Colossus [128] X X X X X ○ L ✗

VUzzer [50] X X X X X X X è L [129]

SymFuzz [130] X X X X X X X ○ L [131]

Tinker [132] X X X X X X X + L ✗

Munch [133] X X X X X X ○ L [134]

DeepFuzz [135] X X X X X X ○ L ✗

S2F [136] X X X X X è L ✗

Eclipser [137] X X X X X X X X è L [138]

Pangolin [139] X X X X X è L ✗

Intriguer [140] X X X X X X X è L [141]

AutoDES [142] X X X X X X X + L ✗

SHFuzz [143] X X X X X X X X X X è L ✗

HFL [144] X X X X X X X è L ✗

FIoT [145] X X X X X X + L ✗

BugMiner [146] X X X X X X è L ✗

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

mutation strategies and generation-based approach, which

produces test-input files from a specification.

1) Generation-Based Hybrid Fuzzers

As stated above, the advancement of ML technology greatly

contributes to the test-input generation of hybrid fuzzer. Test-

input selection and generation based on ML techniques offer

an opportunity to select test-input rules without designing

manually, testing, and deciding the impracticality when the

number of data to be evaluated is tremendous [96].

For instance, MEUZZ [96] is the first hybrid fuzzer that

was constructed on machine learning techniques. It analyzes

the test-inputs previously encountered, and it identifies which

test-inputs can effectively analyze uncovered branches in

the PUT being tested based on the training. Additionally,

MEUZZ employs UBSAN [147] to instrument the target

program by first beginning to fuzz the PUT with predefined

and empty seeds. Thereafter, it extracts features from the

PUT and test-inputs to model the coverage gains. These

features enable forecasting of the coverage that the uncertain

test-inputs can provide. Subsequently, CE attains the theoret-

ically robust test-inputs from the previous step and generates

mutated test-inputs. Considering the next stage, MEUZZ

directs the fuzzer to employ these smart test-inputs and their

produced mutants via the genetic algorithm to continuously

test the PUT. Because fuzzing persists, the model becomes

reinforced, leading to a more accurate prediction.

Another hybrid fuzzer suggested by Pak [39] employs SE

to collect as many specific constraints as possible in the

user-defined resource limit and solves collected constraints

to produce the "random" test-inputs for the fuzzer. The

generation module of the test-input in Pak’s hybrid fuzzer

is based on the "Parma Polyhedra Library" (PPL) [148],

and advanced the test-input generation module that assists in

producing a pre-configured number of test-inputs. Although

this technique provides sufficient diversity within the test-

inputs rather than the manual entry, it highly depends on

the fuzzer to thoroughly evaluate all the paths. The Eclipser

[137], a hybrid fuzzer that has been recently presented, pro-

poses a new path-based test-input generation algorithm. To

produce high coverage test-inputs, it employs a lightweight

instrumentation tool. The Eclipser incorporates fuzzing and

CE techniques such as QSYM or Driller. Contrary to the

QSYM or Driller, the Eclipser utilizes greybox CE rather

than the traditional CE. This indicates that greybox CE is

considered a lightweight version of CE and allows solving

relatively simple branch conditions.

2) Mutation-based Hybrid Fuzzers

Mutation-based hybrid fuzzers can be categorized as Di-

rected Hybrid Fuzzing (DHF) or Coverage-Guided Hybrid

Fuzzing (CGHF) based on the strategies of the programs’

exploration.

Directed Hybrid Fuzzer. Considering the DHF, static anal-

ysis approaches provide ample support to detect vulnerability

in the target code. Several techniques of static analysis may

also be applied to collect control flow data. For example, the

depth of the direction can be utilized as another guide in di-

rected testing [50]. Berry [98] suggests a "Sequence Directed

Hybrid Fuzzing" (SDHF) methodology that guides both the

fuzzer and CE engine using the program’s improved state-

ment sequences of the target. SDHF consists of static and

dynamic analysis. Considering the first stage, SDHF takes

the target program and sequence as inputs before initially

mapping the target sequence statements to each branch, and it

measures the "Enhanced Target Sequence" (ETS). Thereafter,

the SDHF instruments the target program to obtain data

at runtime. Regarding the second stage, the fuzzer and CE

engine interconnect through test-input synchronization. The

fuzzer gets the ETS and the PUT, whereas the CE explores

the target program. Therefore, the fuzzer and CE exchange

test-inputs to produce test-inputs that explore the specified

target. At the final stage, test-inputs that crash the program

are stored in the bug report database.

Another DHF is known as DrillerGo [99] retrieves the

vulnerable functions from the CVE [149] description, and it

suggests a novel technique known as "Backward Pathfinding"

that searches suspected call functions from the CFG. First,

the basic block address of a specified function is set as a target

location, and until reaching the target destination, it explores

the PUT using dynamic analysis that includes the AFL fuzzer

and directed CE known as angr [150].

A new approach to boost the efficacy of a directed test-

input generation was proposed by 1dVul [100]. It utilizes

"a distance-based directed fuzzing", and "dominator-based

directed SE" systems [100]. Using binary patches, 1dVul

detects one-day software vulnerabilities. To find specified

basic blocks in the patched binary, the authors of 1dVul

implemented heuristic rules based on BinDiff [151]. The sub-

sequent phase involves estimating the distance between the

generated test-input and specified basic block. It prioritizes

the test-input nearer to the specified basic block. Each test-

input produced by fuzzing is fed to the SE. The SE sub-

sequently generates novel test-inputs that can arrive closest

to the destination point and sends them to the fuzzer. If the

generated test-input crashes the patched program, 1dVul will

explore the original program with that test-input to validate

the crashed test-input as true or false. Another innovative

DHF named BugMiner [146] boosted fuzzing performance

with a target-oriented CE. The authors proposed a novel

BugReportAnalyzer method that identified and retrieved un-

safe functions from CVE using the ML-based NLP [152]

technology. Subsequently, the collected data is utilized in

static analysis to measure the distance between the PUT’s

"main ()" and unsafe function’s addresses. To tackle the path

explosion problem, the authors proposed a BranchPruner

that collects all the basic block locations unrelated to the

specified function and avoids exploring those basic blocks.

Consequently, BugMiner hunts the bug in a short time with-

out path explosion.

Coverage Guided Hybrid Fuzzers. The target programs

are executed repetitively in the fuzzing loop. The new path

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

discovery and guidance of the fuzzing process are the main

challenges of coverage-guided hybrid fuzzers (CGHF). To

detect a deeply hidden bug more quickly, the hybrid fuzzer

requires the PUT’s path execution information. Considering

CGHF, instrumentation tools are applied to collect the PUT’s

path execution and evaluate the code coverage. KLUZZER

[84] is a CGHF that constructed on the KLEE symbolic

execution tool, whereas the coverage-based grey-box fuzzer

known as LibFuzzer [49] is utilized. This process makes sub-

stantial upgrades that help prepare KLUZZER for its usage

in hybrid fuzzing. The authors of KLUZZER implemented

its own main() function instead of connecting LibFuzzer, and

before calling the fuzzing target, it allowed the possibility of

marking byte array as symbolic, and it performed a standard

execution to call back the coverage.

Another CGHF is known as LibKluzzer [86], [87], which

achieved good performance in Test-Comp 2020 [153], had

two key components, LibFuzzer and KLUZZER were em-

ployed as coverage-guided and whitebox fuzzers, respec-

tively. Considering the LibKluzzer, KLUZZER addresses a

majority of the KLEE infrastructure such as SMT solver STP

[154] and instruments the target program with LLVM. Simi-

lar to the LibKluzzer, another CGHF known as Map2Check

also uses LibFuzzer and KLEE. To easily explore "shallow"

vulnerabilities, Map2Check [88] generates random data as a

test-input for C-language programs, and KLEE examines the

properties of safety in a new way. Furthermore, Map2Check

leverages MetaSMTs such as Yices [155] and Boolector

[156] as the SMT solver. The SVCOMP’20 [157] findings

demonstrate that Map2Check exhibits high performance in

reaching the vulnerable location and in pointing the safety-

related properties.

Automated hybrid bug detector tools including FFuzz

[101], BREACHER [103], and S2F [136]) are constructed

on AFL and a profoundly precise SE known as the S2E.

The FFuzz aims to explore the full system, including all

kernels and user-spaces. The use of these tools can assist the

FFuzz to dive deeper into the binary to trigger the bugs and

increase code coverage. The S2E starts to perform the CE

engine with an initial test-input file. The engine examines

coverage of any symbolic node that has not yet been covered,

generating a novel test-input for the new node using the

constraint solver. If this process does not work, the symbolic

forking on this node is interrupted to prevent an overhead.

After exploring all the uncovered nodes by the S2E with that

test-input, the newly produced test-inputs are stored in the

queue. The BREACHER [103] comprises two key techniques

including "Searcher" and "Symbolic PathFinder" (SPF). To

provide support for the fuzzer to dive into deeply hidden

code locations that are complicated to cover, the SPF tech-

nique is employed. The SPF also contributes considerably by

eliminating the path explosion issue. The Searcher provides

mutation strategy to the test-input files that are obtained from

the distance-based selection approach. Consequently, this

process would make the fuzzer reachable to more code loca-

tions that were previously unexplored in a given time budget.

The S2F [136] proposed a new approach known as the "Semi

Symbolic Fuzz Testing" to explore deeply hidden bugs. The

authors of the S2F implemented the "Low-Frequency Seed

Detector" approach, which helped to measure the frequency

of the test-input files and to split the fuzzer’s test-input files

into high- and low-frequency test-input groups. Thereafter, it

leverages the S2E to resolve only the uncovered basic blocks

for eliminating the path-explosion issue. Considering each

low-frequency test-input, the S2F is advantageous because it

identifies critical basic blocks and analyzes each critical basic

block’s symbolic state, providing potential solutions. Subse-

quently, it fixes the test-inputs generated by the mutator. An-

gora [120] reduces the cost of software testing by generating

test-inputs that are executed with lightweight instrumenta-

tion. Moreover, it strengthens bug hunting and the concept of

"hot bytes" by leveraging taint analysis. To resolve path con-

straints effectively, Angora employs "gradient-descent-based

search algorithm" and taint-tracking approaches. Another

CGHF known as Pangolin [139] implemented a "polyhedral

path abstraction" approach, retained a state of exploration in

the CE step and enabled more powerful constraint solutions

and mutations. Considering the fuzzing stage, the unexplored

blocks are first detected and sent to the CE to continue the

testing process. Contrary to the CE of a traditional hybrid

fuzzer that invokes an SMT solver to achieve an efficient

solution directly, Pangolin produces a description of these

unexplored basic blocks that denote the abstraction of the

polyhedral path.

Saad et al. [113] present a novel hybrid fuzzer that em-

ploys static and taint analyses alongside the fuzzing tool.

Considering the initial step, it analyzes a program utilizing

the static analysis component that helps to rank attack points

according to their seriousness and sends them to the taint

analysis. Thereafter, it requires the user to supply the taint

analyzer with a test-input file which makes bytes usable at

each attack point. Subsequently, the taint analyzer generates

a set of attack points utilized at the particular test-input files

and a set of tainted bytes utilized at the control flows. The first

list represents the fuzzer’s test-input, and a constraint solver

will utilize a tainted file with the subsequent list. Gerasimov

et al. [116] incorporate static analysis, Anhiety [158], as a CE

engine, and an AFL fuzzer to detect software vulnerabilities.

During the fuzzing process, indirect function calls are in-

volved and passed to the static analyzer. Considering a target

program’s CFG, this strategy contributes to the improvement

of static path identification. The CE engine uses discovered

paths to build test-inputs which aids in covering unexplored

paths in the execution process. The fuzzer leverages these

test-inputs to achieve high code coverage. This method is

introduced because it is related to classic hybrid fuzzing that

aims to expand code coverage.

A depth-wise coverage pattern of fuzzing and SE was in-

troduced by Fangquan et al. [125]. Considering the proposed

hybrid fuzzer, the SE engine starts to explore the PUT when

the fuzzer fails to expand the code coverage. The first fuzzer

runs the PUT with mutated test-inputs as the front end, and

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

the coverage analyzer measures the coverage ratio as a link

between fuzzing and the SE, utilizing the static analysis.

In addition, it stores the explored nodes, using a dynamic

instrumentation tool. If the fuzzer is unable to improve the

code coverage, the SE engine begins to explore the PUT

as a back end. Fangquan et al. employed the "Generation

Search" (GS) [19] algorithm that negated any complicated

path constraints.

VUzzer [50] is defined as a program-aware fuzzing ap-

proach that does not demand any prior knowledge of the

program or test-input format. It utilizes taint analysis to

identify the location of "magic bytes" in test-inputs and

sets these "magic bytes" to fixed test-input locations. The

utilization of control and data-flow heuristics rely on static

analyzing methods such as "constant string extraction" and

"node weight measurement", enabling the enhancement of

code coverage to explore the basic blocks located in the

deeper portions of the program. Tinker [132] introduced

the "Growth Rate of Path Coverage" (GRPC) algorithm to

assess the effectiveness of the fuzzer. Tinker is similar to

Driller, considering the working process. It first instruments

the target program and constructs the CFG. Whereas the

fuzzing process is pending, the GRPC algorithm is utilized

to compute the fuzzing’s current state. When the fuzzing

becomes stalled or stops to cover new paths, Tinker runs

the SE engine to produce a novel test input that can provide

assistance for the fuzzer to explore the novel paths.

C. EXECUTION MONITORING

1) Whitebox Based Hybrid Fuzzers

Driller [6] is regarded as a vulnerability excavation hybrid

system to expose deep bugs in binaries by incorporating the

AFL fuzzer with a selective CE known as angr. Statistics

of published articles showed that the rapidly increasing de-

velopment of hybrid fuzzing tools began with the success

of the Driller in the DARPA CGC in 2016. Driller first

starts to explore a target program with an AFL fuzzer. The

AFL examines the PUT with a specific test-input until it

arrives at the first check that is complicated to explore. At

this stage, the AFL gets "stuck" and fails to produce test-

inputs that can cover new paths; hence, Driller leverages

angr, the selective CE tool, to solve the constraints. To

accomplish this, Angr uses the Z3 SMT solver [159], [160]

and produces efficient test-inputs that force the fuzzer to

dive deeper inside the uncovered branches. Once CE gener-

ates the test-inputs, it sends them back to the AFL. Driller

proceeds to cycle between both techniques until the test-

inputs trigger the bug. Another hybrid fuzzer, DigFuzz [119],

proposed a new approach known as "Monte Carlo based

Probabilistic Path Prioritization" (MCP3). The MCP3 is seen

as a smart algorithm that enables the computation of basic

block complexities. It measures the complexity of the path

using based on a random test-input that can cover its path.

The authors leveraged the Monte Carlo approach [161] to

estimate this probability. Considering fuzzing as a random

selection process, the MCP3 model constructs an execution

tree between various basic blocks. To construct the execution

tree, DigFuzz utilizes code coverage information from the

fuzzer, and regarding the CE engine, it identifies the test-

inputs that include specified basic blocks and run the CE

engine on those test-inputs.

DeepFuzz [135], and Munch [133] are hybrid fuzzers

that are nearly identical to the Driller approach. DeepFuzz

allocates probabilities for path execution to overcome the

path explosion issue and uses a novel search heuristic that

effectively postpones the explosion of the path into the PUT’s

deep layers. Essentially, it leverages the probabilistic CE

engine to allocate the target program’s paths with proba-

bilities and applies these probabilities for the guidance of

the path exploration in fuzzing. Munch is an adaptive tool

that works in two operating modes: FS (Fuzzing+SE) and

SF (SE+Fuzzing). Considering the FS mode, the PUT is

explored by the AFL for a set period of time. Thereafter, the

PUT is symbolically explored with a sonar-search method to

target the uncovered branches by the AFL. The SF mode is

initiated with the KLEE before fuzzing the PUT using the

test-inputs generated by the SE.

An approach similar to Munch’s latest version has also

been implemented by SAFL [106]. The method of SAFL is

improved with an efficient coverage-guided mutation strategy

and qualified test-input generation. Considering a lightweight

method, the SAFL leverages KLEE for an initial test-input

generation that can obtain a reasonable path for the AFL

fuzzer. It categorizes the test-inputs and mutates them in

various forms and weights, depending on the path coverage.

The authors emphasized that the algorithm of SAFL can

speedily analyze as many deep paths as possible. However,

most of the hybrid-fuzzing techniques are highly limited by

the slow performance of the SE/CE engine. To tackle this

problem, QSYM [64] proposed the fast CE that leveraged

"Dynamic Binary Translation" (DBT) to integrate the sym-

bolic emulation and the native execution. First, in the QSYM,

the PUT is instrumented and executed using the DBT with

an initial test-input file obtained from the AFL fuzzer. Con-

sidering the native execution, the basic blocks are generated

by the DBT and are pruned for the SE engine, enabling a

quick swapping between both execution-modes. Thereafter,

the system selectively emulates only the instructions that

require constraint production. This leads to a reduction in the

number of symbolic emulations, attaining a faster execution

speed.

Another hybrid fuzzer, SHFuzz [143], presented a novel

"Selective Hybrid Fuzzing" (SHF) method along with an

algorithm for selecting a critical basic block which mea-

sures each basic block’s critical score and an algorithm for

calculating the priority score, providing an effective test-

input selection. SHFuzz’s employs AFL and QSYM CE,

and similar to the QSYM, SHFuzz first explores the PUT

with the AFL slave and AFL master, and the QSYM CE

obtains candidates from the AFL slave’s test-input queue

before executing the CE engine. DeepFuzzer [107] integrates

KLEE appropriately for the AFL fuzzing. First, DeepFuzzer

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

2010

2012

2014

2015

2016

2017

2018

2019

2020

GBHF DHF CGHF WBHF HFs in various areas

MEUZZ [96]

KLUZZER [84]

LibKluzzer [86]

Map2Check [88]

KleeFL [90]

Berry [98]

BugMiner [146]

DrillerGo [99]

1dVul [100]

FFUZ [101]

Breacher [108]

S2F [136]

Angora [120]

Pangolin [139]

Driller [6]

DeepFuzz [135]

Zhang et.
al. [114]

Sword [117]

Musliner
et. al. [118]

FAS [126]

SymFuzz [130]

Taintscope
 [44]

HFL [144]

Badger
[122]

HyDiff
[123]

Pak et. al [39]

Eclipser [137]

Saad et. al. [113]

Gerasimov
et. al. [116]

Fangquan
 et. al. [125]

VUzzer [50]

DeepFuzzer [107]

Intriguer [140]

Colossus [128]

DigFuzz [119]

Munch [133]

SAFL [106]

QSYM [64]

Cyberdyne [72]

Tinker [132]

SHFuzz [143]

SAVIOR [66]

Wildfire [92]

IoT Patching Kernel Java

 AFL AFL++ kAFL LibFuzzer Do-Fuzzer Kelinchi Syzkaller Zzuf SE S2E

 SPFCE KLEE KLEE22CE (QSYM) Mayhem Angr DTA

Fuzzing approaches that used in hybrid fuzzers

Fuzzer AFLPIN

 Anhiety PySymEmu (PSE) CREST

T-Fuzz [109]

SAVIOR [63]

FIoT [145]

RedQueen
 [111]

AutoDES
 [142]

SynFuzz
 [127]

DeepDiver
[65]

FIGURE 10: Genealogy of hybrid fuzzers. (GBHF: Generation-Based Hybrid Fuzzer; DHF: Directed Hybrid Fuzzer; CGHF:

Coverage-Guided Hybrid Fuzzer; WBHF: Whitebox-Based Hybrid Fuzzer)

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

applies the SE engine to produce initial test-inputs. This

indicates that the complicated nested checks can be covered

at the beginning of the testing process. Second, it uses a

balanced test-input selection strategy to provide sufficient

time for each test-input mutation. It prevents over investment

of time spent analyzing frequent parts. Third, it leverages a

suggested novel technique known as the "hybrid mutation"

approach which incorporates the "restricted mutation" and

"random mutation" approaches. Consequently, it covers the

complicated conditions faster and constantly analysis more

deeper paths.

Zhang et al. [114] begin the PUT testing by executing a

resource-bounded SE engine. The SE engine will execute

until reaching a predefined threshold. The subsequent process

involves the collection of complicated constraints in the ana-

lyzed paths and offering solutions for the test-inputs that feed

the fuzzing tool. Thereafter, the fuzzer can quickly analyze

certain unique basic blocks that are immensely difficult to

reach. If the fuzzer cannot explore any novel path, the CE

engine starts to trace each analyzed basic block and collects

the complicated constraints to solve them. Subsequently, the

newly generated test-inputs are sent to the fuzzer queue. The

hybrid bug-driven fuzzing approach SAVIOR [115] com-

prises a compiling tool-chain, KLEE, AFL, and a coordinator

that links the fuzzer and CE. The SAVIOR’s completion tool-

chain is intended to identify bug labels, analyze control flow

reachability, and form various target components. SAVIOR

proposed the use of UBSan sanitizer [147] to improve the

chance of calculating the number of bug labels. The function

of CE is to replay the coordinator’s scheduled test-inputs

and select to resolve constraints according to code-coverage

information. Furthermore, SAVIOR provides a bug-guided

validation module to validate all detected bug destinations in

the execution paths.

Musliner et al. [118] utilize an open-source CE technique

known as CREST [162] for C language-based programs. It is

employed for acquiring complicated constraints. The CREST

applies "C Intermediate Language" (CIL) [163] that instru-

ments a PUT to run concrete and symbolic execution concur-

rently. Considering the subsequent stage, vulnerabilities are

explored utilizing an off-the-shelf fuzzer. Sword [117] hybrid

fuzzer incorporates fuzzing, SE, and taint analysis. The SE

engine discovers paths and valid variable assignments in the

PUT. Taint analysis is performed on these paths to identify

taint information. Moreover, the fuzzing tool generates test-

inputs based on the path and path-related taint information.

Despite these apparent advantages, it possesses some poten-

tial problems. For example, the implementation of the test-

input generator that maintains these path constraints can be a

possible complication.

Similar to Driller and DigFuzz, FAS [126] uses angr [150]

as the CE and DO-Fuzzer [164]. Moreover, FAS authors

implemented a "Test-Input-Control System" that provides

the possibility to prioritize SE and the fuzzer based on the

novel methodologies of FAS such as the "Large Distance-

First" and "Deep-Oriented" strategies [165]. The goal of

these strategies is to choose test-inputs that are located at

a long distance from each other such that the directions of

their neighbor are less random to avoid excessive testing pro-

cesses. Consequently, gradual code-coverage can be achieved

with maximum ease using FAS. The code-coverage results

are improved by the next hybrid fuzzer, Cyberdyne [72]]. It

includes four key components such as the GRR [166] which

is a high-throughput fuzzer, PySymEmu [167] custom CE

tool. Cyberdyne’s fuzzer consists of GRR and a scheduler.

The scheduler manages the GRR and specifies the way of

fuzzing. The GRR provides and mutates test-inputs to the

PUT and determines when a test-input triggers a bug by in-

strumenting the PUT. PySymEmu employs the GRR program

snapshots to perform CE for generating test-inputs. Another

WBHF SymFuzz [131] proposes a creative approach for

maximizing the test-inputs in the fuzzer by tainting the input

vectors, and these test-input vectors correspond to program

branch circumstances. Using PUT information enhances the

test-input mutation technique. SymFuzz includes two major

stages to produce test-inputs, and each stage employs various

fuzzing techniques such as black-box fuzzer and SE engine

to summarize an effective mutation ratio for each test-input.

To overcome the path divergence and irreproducibility

in the SE engine, Colossus [128] introduced the "Deferred

Concretization" algorithm that utilizes symcrete values. To

consider complicated constraints, a fuzz-based solver for

complicated constraints was also proposed by the authors

to leverage the off-the-shelf fuzzer. A predictor first scans a

KLEE query, and if the query is satisfied, the query is sent

to the constraints compiler which converts the query into the

C language program to check the reachability performance.

Thereafter, the AFL explores the produced program to de-

tect the vulnerabilities. To enhance hybrid fuzzing efficiency

based on deep research, Intriguer [140] proposes a set of

innovative strategies such as "field-level constraints solving"

and "trace reduction". The "field-level constraint solving" is

the core concept of the Intriguer, which enhances the SE

engine performance. The Intriguer receives a PUT and an

initial test-input, and seeks to identify interesting values and

offsets to produce a novel test-input that analyzes uncovered

paths. It conducts taint tracking with a test-input generated

by the fuzzing tool on the PUT execution and saves these

trace executions. Subsequently, the Intriguer decreases the

trace executions for the tainted instruction, which allows it

to access various input bytes. These improvements allow the

Intriguer to enhance its performance on the SE for relevant

instructions and to solve nested constraints.

2) Test-input Scheduling

Scheduling refers to the selection of a fuzzing setup for

further iteration. The key idea in scheduling is to evalu-

ate fuzz configuration details and to select one that can

achieve the best results. For example, detecting a number

of unknown software vulnerabilities or increasing the code-

coverage achieved by the produced test-inputs is a way of

achieving the desired results. SHFuzz [143] researched the

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

hybrid fuzzer’s basic block scheduling issue using the syn-

chronizing strategy. There were three potential reasons for

this issue, and SHFuzz overcame these issues by suggesting

a new approach. SHFuzz scheduling contains three mod-

ules: code-coverage measurement, basic block, and test-input

selection. First, the code coverage is calculated using the

instrumentation method. Thereafter, the basic block selection

identifies the set of uncovered basic blocks through the use of

code coverage details. Finally, the test-input selection module

chooses the generated test-input files based on the selected

basic blocks and sends them to the CE tool. These three

crucial modules ensure that each basic block can be beneficial

to maximize code-coverage in lieu of repeatedly re-analyzing

paths that have already been explored.

VI. TOOLS IN DIFFERENT APPLICATION AREAS

There are numerous hybrid fuzzers actively employed in

various computing systems. By analyzing some of the most

common and robust hybrid fuzzers that are categorized ac-

cording to their application areas, we provide additional

answers to the Q3 in this section.

A. PATCHING-BASED HYBRID FUZZERS

The program structure is complicated, particularly if it com-

prises several nested checksums and magic bytes. This kind

of checksum proves difficult for the vulnerability hunting

tool. Checksums [168], [169] are standards for evaluating the

probity of data commonly utilized in real-world programs,

file formats, and different networks. Considering bug hunting

tools, generating test-inputs that pass the complicated magic

bytes and checksums is too complex and there is a huge

possibility that the produced test-inputs will be denied in the

initial phases of PUT execution. To tackle this problem, sev-

eral software security studies have promoted hybrid fuzzing

approaches based on patching.

1) TaintScope [44] introduced the first checksum-aware

fuzzing approach, which helped detect nested roadblock

checks using taint analysis. Specifically, when it runs the

program, TaintScope employs taint propagation information

to identify nested checksums and generate test-inputs that

trigger vulnerabilities, and patch the target program to pass

validation of the checksum.

2) T-Fuzz [109] also promoted this perspective and ex-

panded this idea through AFL fuzzing to cover all the com-

plex roadblock checks reliably. Initially, without changing

the logic of a program, it constructs "Non-Critical Checks

(NCC)" sets which are transformed basic blocks. When the

number of new paths coverage does not increase by the AFL,

it selects the NCC to patch and resumes fuzzing on the

patched program. Finally, if a bug is detected in a patched

binary, T-Fuzz attempts to rebuild it on the initial binary

through the SE engine. Nevertheless, the T-Fuzz crash ana-

lyzer does not function well on all programs. It suffers from

path explosion issues if the actual vulnerability is deeply

located in the PUT [110].

3) DeepDiver [65] is also intended to patch nested check-

sums in the PUT and to helps the fuzzer analyze uncovered

paths. Using the DeepDiver as a fuzzing tool, AFL++ [170],

[171] was utilized because it was combined with a large

number of perfect bug hunting tool’s features [172]–[177].

The main goal of the DeepDiver is to dive deep into the

target program to excavate software vulnerabilities as well

as tackle the shortcomings of T-Fuzz [109] by leveraging

the CE. First, it identifies the "Roadblock Checksums" and

negates them to explore the uncovered paths; thereafter, the

hybrid fuzzing process, AFL++, and the CE engine, analyzes

these new directions. Considering the initial step of the CE, it

takes a test-input from the AFL++ and transformed program

as inputs. Thereafter, it begins to produce novel, efficient test-

inputs that can explore the abysmal depth of the PUT. Lastly,

it confirms the crash test-inputs as true or false through the

bug validation module.

4) RedQueen [111] proposed an efficient alternative taint

tracking method and SE to enhance software testing per-

formance. RedQueen relies on lightweight branch-tracing,

and it is capable of solving "magic bytes" and complicated

checksums. First, it detects magic bytes or nested complex

checksums in the PUT. Thereafter, it patches the opera-

tion and later tries to fix the test-inputs. Comparatively, T-

Fuzz and DeepDiver do not eliminate false positives in the

fuzzing process. Therefore, several fuzzing instances oper-

ating at dead endpoints can rise to be practically boundless.

RedQueen consistently maintains a queue of valid test-inputs

to prevent these scalability problems. Hence, RedQueen nei-

ther generates false positives nor does it expend effort on

them.

5) SynFuzz [127] introduced an innovative approach to

execute formula-solving-based test-input generation through

dynamic taint analysis, program synthesis, and a branch

flipper. Dynamic taint analysis performs a lightweight data-

flow analysis. Program synthesis employs the taint analysis

result to synthesize the symbolic basic block and utilizes the

synthesis outcomes to generate a new concrete test-input.

The SynFuzz obtains two binaries after instrumenting the

PUT using "Data Flow Sanitizer" (DFSAN) [178]. The first

binary is for regular testing execution that comprises the

fuzzing process and gathering of input-output pairs, whereas

the second is for the taint analyzing process. SynFuzz auto-

matically obtains new test-inputs applied to the AFL fuzzer,

and attempts to synthesize branches to generate new test-

inputs. Then, SynFuzz tests whether the test-inputs cover

new paths. If the test-inputs can explore uncovered paths,

SynFuzz stores them in its own queue which is then synced

with AFL’s queue.

B. HYBRID FUZZERS FOR OS KERNELS.

It is difficult to fuzz Kernel components in OS because

feedback systems cannot be easily employed. Specifically,

there are some challenges [179], [180] such as interruptions

and kernel threads. Whenever a system explores its own

kernel, a crash happens in the kernel, which impacts the

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

fuzzer’s efficiency owing to the OS reboot.

The introduction of the first kernel hybrid fuzzer by HFL

[144] proved a significant contribution to kernel bug detec-

tion. It was constructed on top of the existing fuzzing tool

known as named Syzkaller [181] and the SE engine, S2E.

Additionally, it solves kernel-specific fuzzer issues through

a set of different heuristics: 1) The HFL changes indirect

control flows into direct ones by interpreting the original

kernel at the compilation time.; 2) It rebuilds system states

by inferencing the right calling sequence. More precisely, to

decrease the scope of the symbolic variables, HFL executes

static points to evaluate in advance making so that it can

selectively symbolize data variables within the system states.

3) The HFL extracts nested syscall arguments at runtime

by using the domain information on how the kernel handles

arguments.

C. HYBRID FUZZERS FOR IOT DEVICE FIRMWARE

The increasing use of IoT devices is encouraging the develop-

ment of systems that assess their firmware efficiency [182]–

[184].

1) AutoDES [142] is a hybrid fuzzer that seeks to enhance

the performance of bug detection and exploitation in IoT

applications. It contains three key steps: AutoD-automatic

bug discovery, AutoE-automatic bug exploitation, and AutoS-

efficient scheduling strategy. Considering the AutoD stage,

the authors introduced an innovative approach known as

Anti-Driller. Compared to the Driller, it first leverages a

CE to identify a particular path and produces a certain test-

input. Thereafter, it utilizes a fuzzing tool to determine the

IoT application defects during the avoidance of disabled

mutations. Three attack approaches were introduced in the

AutoE module, including "AutoJS," "AutoROP," and "IPOV

fuzzers,” which can generate a shell based on the discovered

bugs. Regarding the AutoS stage, the authors introduced

a "Genetic Algorithm" (GA) that generated a scheduling

solution by improving a particular fitness feature.

2) FIoT [145] introduced a new hybrid fuzzer to detect

memory corruption bugs in lightweight firmware images of

IoT devices. The rationale behind the concept is to explore

the PUT code snippets dynamically via the SE engine and a

fuzzer. Mainly, it traverses the CFG in a backward manner

to produce code snippets. Considering a better performance,

the authors enhanced the CFG recovery and backward slice

methods. Furthermore, to mitigate the binary firmware im-

pacts, FIoT utilizes the "Loading Address Determination"

and "Library Function Identification" analyses.

D. HYBRID FUZZERS FOR JAVA PROGRAMS

1) Badger [122] is a hybrid fuzzer that explores Java

language-based programs. It utilizes Kelinci [185], [186],

an interface for running an AFL fuzzer on Java programs,

and "Symbolic PathFinder" [187], [188] which is an SE

engine for Java bytecode. An innovation of this method is

controlling user-dependent expenses, which are converted

to symbolic expenses on the SE and are managed by the

execution of a symbolic maximization process to produce the

productive test-inputs. The fuzzer produces and transfers test-

inputs that are observed as improving either code-coverage or

expenses, and the SE engine imports these test-inputs. The

SE updates these test-inputs until it achieves a new code-

coverage or discovers a path at a reasonable analytical cost,

considering computational resources. Thereafter, test-inputs,

which contribute to interesting novel behavior, are transferred

to the AFL. Despite this impressive function, Badger lacks

the ability to analyze extensive Java-based web programs,

and it is incapable of doing further exploitability tests in

complicated web programs.

2) HyDiff [124] is a novel hybrid differential fuzzing

method for Java programs that incorporate the AFL and SE

engine "Symbolic Path Finder" (SPF) [188]. The differen-

tial fuzzing component of HyDiff consists of a "heuristic-

driven greybox fuzzer" with a "divergence-based feedback

channel". It leverages an "Inter-procedural Control Flow

Graph" (ICFG) [189] for calculating distance metrics for the

guidance of exploration in the fuzzer. The differential SE

component of HyDiff is the same as Badger’s component.

VII. EVALUATION OF HYBRID FUZZING TOOLS

The proposed hybrid fuzzing techniques leverage a number

of experimental [190]–[193] and real-world programs [194]–

[199] to evaluate the performance of their systems. To answer

Q4, we provide widely used datasets by productive hybrid

fuzzers in this section. In addition, we provide rich evaluation

statistics for explaining the comparisons between different

hybrid fuzzers, which can help assess the level of bug hunting

tool capabilities.

A. LAVA-M DATASET

The LAVA [191] dataset includes numerous buggy programs

and software vulnerabilities that are manually inserted to

evaluate software testing tools. The LAVA-M [196] dataset

is a LAVA dataset’s component, and it is one of the popular

evaluation datasets that are utilized by virtually all hybrid

fuzzers. It includes four programs: the md5sum, uniq, who,

and base64 buggy programs. Usually, each hybrid fuzzer

tests one of the LAVA-M programs for five hours and tests

each program five or eight times to summarize the reasonable

performance.

Table 4 illustrates the statistics of the LAVA-M datasets

comprising the total listed bugs, basic blocks, edges, instruc-

tions, and test options [65]. Table 5 shows the evaluation

TABLE 4: LAVA-M dataset statistics.

Program Edges BB Ins.. T/Bugs Options

base64 1308 822 - 44 -d @@

uniq 1407 890 5285 28 @@

md5sum 1560 1013 7397 57 -c @@

who 3332 1831 84648 2136 @@

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

TABLE 5: Number of found bugs in testing on LAVA-

M dataset (results taken from the corresponding studies).

Hybrid
Fuzzer

T
Fuzzing results

base64 uniq who md5sum

T-Fuzz 5h
43

97.7%
26

92.7%
63

2.94%
49

85.9%

DeepFuzz 5h
29

64.9 %
16

57.1 %
21

0.98%
30

52.6%

DeepDiver 5h
44

100%
28

100%
101

4.72%
57

100%

QSYM 5h
44

100%
28

100%
1238

57.9%
57

100%

Breacher 5h
37

84.1%
28

100%
203

9.51%
29

50.8%

RedQueen 5h
44

100%
28

100%
2134

99.9%
57

100%

Agnora 5h
48

100%
29

100%
1541

72.1%
57

100%

SAVIOR 24h
48

100%
29

100%
2213
100%

59
100%

DigFuzz 5h
48

100%
29

100%
167

100%
59

100%

Driller 5h
48

100%
25

89.2%
142

6.67%
59

100%

SynFuzz 5h
48

100%
29

100%
2218
100%

61
100%

VUzzer 5h
17

38.6%
27

96.4 %
50

2.34%
-

0%

S2F 5h
10

22.7 %
5

17.8%
17

0.79%
3

5.26%

Eclipser 5h
46

100%
29

100%
1135

53.1%
55

96.4%

Pangolin 24h
48

100 %
30

100%
2021
100%

60
100%

Intriguer 5h
44

100 %
28

100%
2136
100%

57
100%

Listed
Bugs

- 44 28 2136 57

TABLE 6: Number of crashed binaries in testing on

CGC dataset (results taken from the corresponding studies).

Hybrid
Fuzzer

T

Total
number of

binaries

Number of
selected
binaries

Number of
crashed
binaries

T-Fuzz 24h 296 296 166
RedQuen 6h 131 54 40
VUzzer 6h 131 63 29
DigFuzz 12h 131 64 12

FAS 6h 131 131 9
Driller 24h 131 126 77
Tinker 2h 131 126 116
QSYM - 131 126 104

DrillerGo 24h 131 126 14
1dVul 8h 131 126 96

Gerasimov - 131 18 18

results of hybrid fuzzers against the LAVA-M dataset. The

table shows that SAVIOR [63] and Pangolin [139] find 100%

of the bugs on the dataset; however, it takes 24h to achieve

this result. DigFuzz [119], SynFuzz [127], Intriguer [140]

TABLE 7: Google FTS dataset statistics.

Programs Version
Size
(kb)

Type

boringssl 2016-02-12 2241 server program
c-ares 2016-5180 14 asynchronous DNS
guetzli 2017-03-30 3505 image processing
lcms 2017-03-21 1235 management systems

libarchive 2017-01-04 1435 compression library
libssh 2017-1272 1128 server library

libxml2 v2.9.2 4771 image processing
pcre2 10.00 808 regular expression
proj4 2017-08-14 3395 cartographic projections
re2 2014-12-19 4551 regular expression

achieve 100% results in 5h.

B. DARPA CGC DATASET

The DARPA CGC [4], [190] dataset includes numerous man-

ually realized vulnerable binaries for the CGC competition

hosted by DARPA. It includes 296 DECREE binary pro-

grams with 248 challenges [109]. However, only 131 binary

programs have been implemented to evaluate the capabilities

of automated software testing tools in the CGC event [64].

Considering Table 6, we illustrate the evaluation results of

hybrid fuzzers that test the CGC dataset programs. The

results show that Tinker has the highest performance when

testing a CGC database compared to other tools.

C. GOOGLE FUZZER TEST SUITE

The Google fuzzer test suite (FTS) dataset [199] contains

popular real-world benchmarks that are utilized to assess the

capability of software testing approaches. Table 7 illustrates

these statistics of the Google FTS dataset [143]. Table 8

shows the number of covered paths, branches, and crashes

by DeepFuzzer, QSYM, SAFL, and SHfuzz in testing on the

Google FTS dataset. Considering the test results, DeepFuzzer

achieved the highest results in covering program branches

and triggering crashes (22742 and 180, respectively). The

SAFL achieved the highest result in covering program paths

(3198 paths).

VIII. FUTURE DIRECTIONS

To answer Q5, we discuss the potential future directions of

hybrid fuzzing tools in this section. Although it is difficult

to provide accurate further direction of the hybrid fuzzers,

we can summarize some trends mentioned in the reviewed

studies, which may serve as guidelines for future studies.

1) Test-input generation and selection

The result of software testing is associated with the test-

input’s quality. Thus, the selection of proper test-input files

in the testing process is an essential issue. In addition, a

more efficient testing approach must be used to create an

opportunity to cover more paths and branches to increase the

program’s reliability.

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

TABLE 8: Number of covered paths, branches and crashes in testing on Google FTS dataset (results obtained from the related

studies).

Programs
Hybrid fuzzing techniques

SAFL
(24h)

DeepFuzzer
(24h)

SHFuzz
(12h)

QSYM
(24h)

P
at

h
s

B
ra

n
ch

es

C
ra

sh
es

P
at

h
s

B
ra

n
ch

es

C
ra

sh
es

P
at

h
s

B
ra

n
ch

es

C
ra

sh
es

P
at

h
s

B
ra

n
ch

es

C
ra

sh
es

boringssl 988 10231 0 766 11320 0 - 1116 0 716 9228 0
c-ares 37 105 4 36 277 7 - 42 7 34 277 3
guetzli 1329 8982 0 1638 32521 2 - 4300 18 663 5155 0
lcms 335 6587 10 296 7720 7 - - - 293 6911 29

libarchive 2093 16296 4 2738 2791 31 - 5836 0 1079 10635 0
libssh 28 1592 7 20 1595 0 - - - 18 1595 0

libxml2 4276 40933 5 5827 57048 19 - 5833 6 1870 26212 3
pcre2 18883 75800 103 12568 78552 1734 - 25663 570 11479 71208 699
proj4 850 6281 121 245 2574 0 - 1336 0 76 594 0
re2 3169 30593 1 2213 33025 6 - 5456 0 2413 32665 0

Average 3198 19740 25 2634 22742 180 - 4958 60 1864 16448 73

The intersections can help enhance the constraint-solving

approaches, avoiding the explosion problems, and the use

of machine learning-based techniques can help improve the

generation of efficient test input files. Furthermore, incorpo-

rating ML technologies (including feature extraction, train-

ing, and prediction) with hybrid fuzzing approaches enhances

the software testing performance. For example, MEUZZ [96]

examines the previously encountered test-inputs based on the

training and determines which test-inputs can successfully

explore uncovered parts of the PUT.

Overall, the ML-based test-input generation and selection

approaches prevent the necessity to manually design and test

the test-input selection rules because this can be overwhelm-

ing when analyzing a large amount of data. Implementing

effective and accurate test-input generation and algorithms

of proper input selection is an open research issue.

2) Path explosion and complex constraint solving

Integrating SE, CE, and DTA with fuzzers can significantly

contribute to improving software testing performance. Al-

though these approaches have several advantages, they also

raise several issues: imprecise SE in concolic analysis, path

explosion, over-tainting in DTA, and under-tainting. The im-

plementation of a more robust hybrid architecture consumes

less time on the analysis in the constraint solver. Moreover,

although the current hybrid testing methods have attempted

to overcome path explosion in SE quite effectively, the com-

plex constraint solver still remains challenging.

The intersections that optimize constraint-solver methods

with static analysis, test-input mutation, and branch pruning

can tackle this problem. Another technique described in [39]

can be applied as SE threshold restrictions. As a result, the

SMT solvers are not blocked in several paths. However, stud-

ies on hybrid approaches also have a missing link, which may

inspire further studies such as SMT query thresholding and

security property assertion statements. We believe this issue

is worth investigating more thoroughly and needs further

research.

3) Test-inputs for individual components

Considering large-scale programs, it is true that more effec-

tive hybrid fuzzers identify more vulnerable parts of the soft-

ware. Considerable contributions are made in specified vul-

nerability exploration using SE, CE [82], [200] and fuzzing

[201]. However, the key obstacle in integrating fuzzing with

compositional SE is the complexity in producing test-inputs

for individual components. Compositional SE can be ben-

eficial in generating test-inputs for components, whereas

directed or compositional fuzzers [49], [201] can provide fast

branch coverage within components.

Overall, the system’s internal view allows the fuzzing tool

to instrument target program’s basic blocks. This assists the

SE in directing a modified path search algorithm. It is also

possible to employ instrumentation and approaches such as

targeted-oriented SE [202], [203] to concentrate on unex-

plored basic blocks. Considering the fuzzer’s perspective, SE

and CE make test-input generation more effective, increasing

the performance of diverse path exploration in the fuzzer.

4) Complicated nested roadblock checks

The program structure is complex; thus, testing heavyweight

real-world programs is not straightforward, especially when

it contains many nested roadblock checksums and magic

bytes. Furthermore, nested roadblock checksums make the

vulnerability mining process complex and cause path explo-

sion problems if bugs are located in the depth of the PUT. To

tackle this issue, T-Fuzz and DeepDiver presented a patching-

based hybrid fuzzer that transforms the conditional jump

instruction of roadblock check if the fuzzers get stuck.

The patching complex nested checksum simplifies the

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

testing process, and the software testing engine can easily

explore the hard-to-reach bugs. Our research has shown that

patching-based hybrid fuzzing has not yet been sufficiently

studied, and we consider it is one of the most trending topics.

5) Hybrid Fuzzers for IOT Device Firmware

Security risks are increasing in tandem with the growing

usage of IoT devices, and remote attackers can easily target

Internet of Things (IoT) devices. The automated vulnerability

mining process in IoT firmware is more complicated than

testing traditional programs. There are several reasons to

make complex firmware testing, for example, multiple micro-

architectures, non-standard implementations, hardware inter-

actions, no library or OS-level abstractions, and instrumenta-

tion of firmware.

Although fuzzers or SE/CE engines are implemented for

hunting bugs in IoT firmware, their code coverage perfor-

mance is low and they do not yield the expected results.

Therefore, it is necessary to develop firmware emulation

methods and robust hybrid testing tools that detect vulner-

abilities in IoT firmware. We believe that the improvement of

the existing hybrid approaches can be further studied.

IX. CONCLUSION

This study aims to review modern hybrid fuzzing studies. We

conducted a survey on hybrid fuzzers involving 49 studies

published between March 2010 and December 2020. The

study’s findings indicate that hybrid testing techniques have

attracted increasing attention from software testers. Existing

hybrid fuzzing techniques have been widely used in numer-

ous industrial products such as compilers, kernels, applica-

tions, and systems ranging from binaries to source codes and

have detected a tremendous number of exploitable software

vulnerabilities. We reviewed several potential issues related

to hybrid fuzzing. This study inspires further practices and

studies that seek to overcome the challenges associated with a

wider adaption of hybrid fuzzing in steady software systems’

integration. We believe this study effectively provides a clear

insight into modern hybrid techniques, and we hope it serves

as a motivation for further studies in more efficient software

testing approaches.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of

Science and ICT), Korea, under the ITRC (Information

Technology Research Center) support program (IITP-2019-

2018-0-01423) supervised by the IITP (Institute for Infor-

mation & communications Technology Promotion). Also,

this research was supported by the Basic Science Re-

search Program through the National Research Foundation

of Korea (NRF), funded by the Ministry of Education

(No.2018R1D1A1B07047323). The authors would like to

thank the anonymous reviewers for their insightful com-

ments. He has graduated from Sejong University with a Ph.D.

degree in Computer and Information Security.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the

reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,

pp. 32–44, 1990.

[2] A. Technica, “Pwn2own: The perfect antidote to fanboys who say their

platform is safe,” 2014.

[3] W. E. Howden, “Methodology for the generation of program test data,”

IEEE Transactions on computers, vol. 100, no. 5, pp. 554–560, 1975.

[4] DARPA, “Cyber grand challenge,” Available online:

http://archive.darpa.mil/cybergrandchallenge/ (Accessed on June.12,

2020).

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox

fuzzing as markov chain,” IEEE Transactions on Software Engineering,

vol. 45, no. 5, pp. 489–506, 2017.

[6] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,

Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting

fuzzing through selective symbolic execution.” in NDSS, vol. 16, no.

2016, 2016, pp. 1–16.

[7] GrammaTech, “Grammatech blogs: The cyber grand challenge,”

Available online: http://blogs.grammatech.com/the-cyber-grand-

challenge. (Accessed on July. 10, 2020).

[8] C. S. Team, “Clusterfuzz,” Available online:

https://code.google.com/p/clusterfuzz/. (Accessed on July. 11, 2020).

[9] “Google chromium security,” Available online:

https://www.chromium.org/Home/chromium-security/bugs. (Accessed

on July. 11, 2020).

[10] M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and M. Whittaker,

“Announcing oss-fuzz: Continuous fuzzing for open source software,”

Google Testing Blog, 2016.

[11] “Binspector: Evolving a security tool,” Available online:

https://blogs.adobe.com/security/2015/05/binspector-evolving-a-

security-tool.html. (Accessed on July. 11, 2020).

[12] “Microsoft security development lifecycle, verification phase,” Available

online: https://www.microsoft.com/en-us/sdl/process/verification.aspx.

(Accessed on July. 11, 2020).

[13] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of

constraints: Whitebox fuzz testing in production,” in 2013 35th Interna-

tional Conference on Software Engineering (ICSE). IEEE, 2013, pp.

122–131.

[14] “Cisco secure development lifecycle,” Available online:

https://www.cisco.com/c/en/us/about/trust-center/technology-built-

in-security.html. (Accessed on July. 11, 2020).

[15] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[16] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security & Pri-

vacy, vol. 3, no. 2, pp. 58–62, 2005.

[17] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability

discovery. Pearson Education, 2007.

[18] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of c and

verilog programs using bounded model checking,” in Proceedings 2003.

Design Automation Conference (IEEE Cat. No. 03CH37451). IEEE,

2003, pp. 368–371.

[19] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox

fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[20] C. Cadar and D. Engler, “Execution generated test cases: How to make

systems code crash itself,” in International SPIN Workshop on Model

Checking of Software. Springer, 2005, pp. 2–23.

[21] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine

for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.

263–272, 2005.

[22] J. Edvardsson, “A survey on automatic test data generation,” in Proceed-

ings of the 2nd Conference on Computer Science and Engineering, 1999,

pp. 21–28.

[23] C. Cadar and K. Sen, “Symbolic execution for software testing: three

decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,

2013.

[24] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-

mann, and W. Visser, “Symbolic execution for software testing in prac-

tice: preliminary assessment,” in 2011 33rd International Conference on

Software Engineering (ICSE). IEEE, 2011, pp. 1066–1071.

[25] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic

execution for software testing and analysis,” International journal on

software tools for technology transfer, vol. 11, no. 4, p. 339, 2009.

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

[26] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,

“A survey of symbolic execution techniques,” ACM Computing Surveys

(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[27] L. Y. Araki and L. M. Peres, “A systematic review of concolic testing

with aplication of test criteria.” in ICEIS (2), 2018, pp. 121–132.

[28] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: the state of the

art,” DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

EDINBURGH (AUSTRALIA), Tech. Rep., 2012.

[29] I. Van Sprundel, “Fuzzing: Breaking software in an automated fashion,”

Decmember 8th, 2005.

[30] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and

M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE

Transactions on Software Engineering, 2019.

[31] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the

art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,

2018.

[32] Z. Li, J.-x. Zhang, X. Liao, and J. Ma, “Survey of software vulnerability

detection techniques,” Chinses Journal of Computers, vol. 38, pp. 717–

732, 2015.

[33] Y. Zhang, Z. Fang, K. Wang et al., “Survey of android vulnerability

detection,” Journal of Computer Research and Development, vol. 52,

no. 10, pp. 2167–2177, 2015.

[34] S. Ognawala, A. Petrovska, and K. Beckers, “An exploratory survey of

hybrid testing techniques involving symbolic execution and fuzzing,”

arXiv preprint arXiv:1712.06843, 2017.

[35] Y. CAO, Y. JIANG, C. XU, J. MA, and X. MA, “Perspectives on

search strategies in automated test input generation (extended version),”

Frontiers of Computer Science, 2020.

[36] T. Zhang, Y. Jiang, R. Guo, X. Zheng, and H. Lu, “A survey of

hybrid fuzzing based on symbolic execution,” in Proceedings of the

2020 International Conference on Cyberspace Innovation of Advanced

Technologies, 2020, pp. 192–196.

[37] S. Keele et al., “Guidelines for performing systematic literature reviews

in software engineering,” Technical report, Ver. 2.3 EBSE Technical

Report. EBSE, Tech. Rep., 2007.

[38] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,

UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[39] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing

and symbolic execution,” School of Computer Science Carnegie Mellon

University, 2012.

[40] “Dynamic program analysis,” Available online:

https://en.wikipedia.org/wiki/Dynamic_program_analysis (Accessed

on August. 11, 2020).

[41] J. Fell, “A review of fuzzing tools and methods,” Technical Report.

https://dl.packetstormsecurity.net/papers/general/a . . . , Tech. Rep., 2017.

[42] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for

software security testing and quality assurance. Artech House, 2018.

[43] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for

security testing,” Queue, vol. 10, no. 1, pp. 20–27, 2012.

[44] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware

directed fuzzing tool for automatic software vulnerability detection,” in

2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 497–

512.

[45] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic

generation of high-coverage tests for complex systems programs.” in

OSDI, vol. 8, 2008, pp. 209–224.

[46] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo

multi-path analysis of software systems,” Acm Sigplan Notices, vol. 46,

no. 3, pp. 265–278, 2011.

[47] M. Zalewski, “American fuzzy lop,” Available online:

https://lcamtuf.coredump.cx/afl/ (Accessed on June. 28, 2020).

[48] R. Swiecki, “Honggfuzz,” Available online:https://honggfuzz.dev/ (Ac-

cessed on June. 28, 2020).

[49] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,”

in 2016 IEEE Cybersecurity Development (SecDev). IEEE, 2016, pp.

157–157.

[50] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,

2017, pp. 1–14.

[51] M. Security, “Dharma: A generation-based, context-free grammar

fuzzer,” Available online: https://github.com/MozillaSecurity/dharma

(Accessed on June. 29, 2020).

[52] M. Eddington, “Peach fuzzing platform,” Available online:

https://www.peach.tech/products/peach-fuzzer/ (Accessed on June.

29, 2020).

[53] M. Vuagnoux, “Autodafe, an act of software torture,” Available online:

http://autodafe.sourceforge.net/ (Accessed on June. 29, 2020).

[54] W. E. Howden, “Symbolic testing and the dissect symbolic evaluation

system,” IEEE Transactions on Software Engineering, no. 4, pp. 266–

278, 1977.

[55] J. C. King, “A new approach to program testing,” ACM Sigplan Notices,

vol. 10, no. 6, pp. 228–233, 1975.

[56] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,

J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state of) the art of

war: Offensive techniques in binary analysis,” in 2016 IEEE Symposium

on Security and Privacy (SP). IEEE, 2016, pp. 138–157.

[57] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th International

Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 416–

426.

[58] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit

path model-checking tools,” in International Conference on Computer

Aided Verification. Springer, 2006, pp. 419–423.

[59] R. Fayozbek, M. Choi, and J. Yun, “Search-based concolic execution for

sw vulnerability discovery,” IEICE TRANSACTIONS on Information

and Systems, vol. 101, no. 10, pp. 2526–2529, 2018.

[60] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction

and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–

77, 2011.

[61] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino et al., “An or-

chestrated survey of methodologies for automated software test case

generation,” Journal of Systems and Software, vol. 86, no. 8, pp. 1978–

2001, 2013.

[62] G. Vigna, “Shellphish team,” Available online: https://shellphish.net/

(Accessed on June.12, 2020).

[63] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,

“Savior: towards bug-driven hybrid testing,” in 2020 IEEE Symposium

on Security and Privacy (SP). IEEE, 2020, pp. 1580–1596.

[64] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical con-

colic execution engine tailored for hybrid fuzzing,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 745–761.

[65] F. Rustamov, J. Kim, and J. Yun, “Deepdiver: Diving into abysmal depth

of the binary for hunting deeply hidden software vulnerabilities,” Future

Internet, vol. 12, no. 4, p. 74, 2020.

[66] H. Seo and S. Kim, “How we get there: A context-guided search strategy

in concolic testing,” in Proceedings of the 22nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2014, pp.

413–424.

[67] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning

for input fuzzing,” in 2017 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 2017, pp. 50–59.

[68] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,

“Toward large-scale vulnerability discovery using machine learning,” in

Proceedings of the Sixth ACM Conference on Data and Application

Security and Privacy, 2016, pp. 85–96.

[69] F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection with deep

learning,” in 2017 3rd IEEE International Conference on Computer and

Communications (ICCC). IEEE, 2017, pp. 1298–1302.

[70] B. Chernis and R. Verma, “Machine learning methods for software

vulnerability detection,” in Proceedings of the Fourth ACM International

Workshop on Security and Privacy Analytics, 2018, pp. 31–39.

[71] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review of

fuzzing based on machine learning techniques,” PloS one, vol. 15, no. 8,

p. e0237749, 2020.

[72] P. Goodman and A. Dinaburg, “The past, present, and future of cyber-

dyne,” IEEE Security & Privacy, vol. 16, no. 2, pp. 61–69, 2018.

[73] F. G. R. Swiecki, “Honggfuzz,” Available on-

line:https://github.com/google/honggfuzz (Accessed on October.

11, 2020).

[74] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating

primitives to improve fuzzing performance,” in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,

2017, pp. 2313–2328.

[75] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Com-

paring operating systems using robustness benchmarks,” in Proceedings

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

of SRDS’97: 16th IEEE Symposium on Reliable Distributed Systems.

IEEE, 1997, pp. 72–79.

[76] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a formal system for

testing and debugging programs by symbolic execution,” ACM SigPlan

Notices, vol. 10, no. 6, pp. 234–245, 1975.

[77] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,

pp. 89–100, 2007.

[78] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program

input grammars,” ACM SIGPLAN Notices, vol. 52, no. 6, pp. 95–110,

2017.

[79] S. Pailoor, A. Aday, and S. Jana, “Moonshine: Optimizing {OS} fuzzer

seed selection with trace distillation,” in 27th {USENIX} Security Sym-

posium ({USENIX} Security 18), 2018, pp. 729–743.

[80] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical

results and practical implications,” IEEE Transactions on Software En-

gineering, vol. 38, no. 2, pp. 258–277, 2011.

[81] S. Ognavala, “Wildfire,” Available online: https://github.com/tum-

i22/macke (Accessed on June. 10, 2020).

[82] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer, “Macke: Compo-

sitional analysis of low-level vulnerabilities with symbolic execution,”

in Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering, 2016, pp. 780–785.

[83] S. Ognawala, A. Pretschner, T. Hutzelmann, E. Psallida, and R. N.

Amato, “Reviewing klee’s sonar-search strategy in context of greybox

fuzzing,” arXiv preprint arXiv:1803.04881, 2018.

[84] H. M. Le, “Kluzzer: Whitebox fuzzing on top of llvm,” in International

Symposium on Automated Technology for Verification and Analysis.

Springer, 2019, pp. 246–252.

[85] I. A. Mason, “Whole program llvm,” Available online:

https://github.com/travitch/whole-program-llvm (Accessed on October.

10, 2020).

[86] H. M. Le, “Llvm-based hybrid fuzzing with libkluzzer (competition

contribution).” in FASE, 2020, pp. 535–539.

[87] H.M.Le, “Libkluzzer,” Available online:https://gitlab.com/sosy-lab/test-

comp/archives-2020/blob/testcomp20/2020/libkluzzer.zip (Accessed on

June. 17, 2020).

[88] H. Rocha, R. Menezes, L. C. Cordeiro, and R. Barreto, “Map2check:

Using symbolic execution and fuzzing,” in International Conference on

Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 2020, pp. 403–407.

[89] R. Menezes, H. Rocha, L. Cordeiro, and R. Barreto, “Map2check using

llvm and klee,” in International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer, 2018, pp. 437–441.

[90] J. Fietkau, B. Shastry, and J. Seifert, “Kleefl-seeding fuzzers with sym-

bolic execution,” USENIX Security (Poster presentation), 2017.

[91] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and

D. Brumley, “Optimizing seed selection for fuzzing,” in 23rd {USENIX}
Security Symposium ({USENIX} Security 14), 2014, pp. 861–875.

[92] S. Ognawala, F. Kilger, and A. Pretschner, “Compositional fuzzing aided

by targeted symbolic execution,” arXiv preprint arXiv:1903.02981, 2019.

[93] H. M.Le, “Kluzzer,” Available online: http://unihb.eu/kluzzer (Accessed

on June. 15, 2020).

[94] H. Rocha, “Map2check,” Available online:

https://github.com/hbgit/Map2Check (Accessed on June. 15, 2020).

[95] J. Fietkau, “Kleefl,” Available online: https://github.com/julieeen/kleefl

(Accessed on June. 15, 2020).

[96] Y. Chen, M. Ahmadi, B. Wang, L. Lu et al., “Meuzz: Smart seed

scheduling for hybrid fuzzing,” arXiv preprint arXiv:2002.08568, 2020.

[97] RiS3-Lab, “Meuzz: Smart seed scheduling for hybrid fuzzing,” Avail-

able online: https://github.com/RiS3-Lab/muse. (Accessed on April. 05,

2021).

[98] H. Liang, L. Jiang, L. Ai, and J. Wei, “Sequence directed hybrid fuzzing,”

in 2020 IEEE 27th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, 2020, pp. 127–137.

[99] J. Kim and J. Yun, “Poster: Directed hybrid fuzzing on binary code,” in

Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 2019, pp. 2637–2639.

[100] J. Peng, F. Li, B. Liu, L. Xu, B. Liu, K. Chen, and W. Huo, “1dvul:

Discovering 1-day vulnerabilities through binary patches,” in 2019 49th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 2019, pp. 605–616.

[101] B. Zhang, J. Ye, X. Bi, C. Feng, and C. Tang, “Ffuzz: Towards full system

high coverage fuzz testing on binary executables,” Plos one, vol. 13, no. 5,

p. e0196733, 2018.

[102] B. Zhang, “Ffuzz,” Available online: https://github.com/Epeius/FFuzz

(Accessed on June. 17, 2020).

[103] B. Zhang, C. Feng, A. Herrera, V. Chipounov, G. Candea, and C. Tang,

“Discover deeper bugs with dynamic symbolic execution and coverage-

based fuzz testing,” Iet Software, vol. 12, no. 6, pp. 507–519, 2018.

[104] N. Stephens, “Driller,” Available online:

https://github.com/shellphish/driller (Accessed on June. 20, 2020).

[105] I. Yun, “Qsym,” Available online: https://github.com/sslab-gatech/qsym

(Accessed on June. 17, 2020).

[106] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and

J. Sun, “Safl: increasing and accelerating testing coverage with symbolic

execution and guided fuzzing,” in Proceedings of the 40th International

Conference on Software Engineering: Companion Proceeedings, 2018,

pp. 61–64.

[107] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-

K. R. Choo, “Deepfuzzer: Accelerated deep greybox fuzzing,” IEEE

Transactions on Dependable and Secure Computing, 2019.

[108] J. Liang, “Deepfuzzer,” Available online:

https://github.com/Ljiee/deepfuzz (Accessed on June. 18, 2020).

[109] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program

transformation,” in 2018 IEEE Symposium on Security and Privacy (SP).

IEEE, 2018, pp. 697–710.

[110] H. Peng, “T-fuzz,” Available online: https://github.com/HexHive/T-Fuzz

(Accessed on June. 18, 2020).

[111] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,

“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,

vol. 19, 2019, pp. 1–15.

[112] C. Aschermann, “Redqueen,” Available online: https://github.com/RUB-

SysSec/redqueen (Accessed on June. 19, 2020).

[113] S. Aloteibi and F. Stajano, “On the value of hybrid security testing,” in

Cambridge International Workshop on Security Protocols. Springer,

2010, pp. 207–213.

[114] L. Zhang and V. L. Thing, “A hybrid symbolic execution assisted fuzzing

method,” in TENCON 2017-2017 IEEE Region 10 Conference. IEEE,

2017, pp. 822–825.

[115] Y. Chen, “Savior,” Available online: https://github.com/evanmak/savior-

source (Accessed on June. 21, 2020).

[116] A. Y. Gerasimov, S. S. Sargsyan, S. F. Kurmangaleev, J. Hakobyan, S. As-

ryan, and M. K. Ermakov, “Combining dynamic symbolic execution,

code static analysis and fuzzing,” Proceedings of ISP RAS, vol. 30, no. 6,

2018.

[117] J. Cai, S. Yang, J. Men, and J. He, “Automatic software vulnerability

detection based on guided deep fuzzing,” in 2014 IEEE 5th International

Conference on Software Engineering and Service Science. IEEE, 2014,

pp. 231–234.

[118] D. J. Musliner, J. M. Rye, and T. Marble, “Using concolic testing to refine

vulnerability profiles in fuzzbuster,” in 2012 IEEE Sixth International

Conference on Self-Adaptive and Self-Organizing Systems Workshops.

IEEE, 2012, pp. 9–14.

[119] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my way:

Probabilistic path prioritization for hybrid fuzzing.” in NDSS, 2019.

[120] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”

in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,

pp. 711–725.

[121] P. Chen, “Angora,” Available online:

https://github.com/AngoraFuzzer/Angora (Accessed on June. 21,

2020).

[122] Y. Noller, R. Kersten, and C. S. Păsăreanu, “Badger: complexity analysis

with fuzzing and symbolic execution,” in Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis,

2018, pp. 322–332.

[123] Y. Noller, C. S. Păsăreanu, M. Böhme, Y. Sun, H. L. Nguyen, and

L. Grunske, “Hydiff: Hybrid differential software analysis,” in Proceed-

ings of the International Conference on Software Engineering, 2020.

[124] Y. Noller, “Hydiff,” Available online:

https://github.com/yannicnoller/hydiff (Accessed on June. 25, 2020).

[125] D. Fangquan, D. Chaoqun, Z. Yao, and L. Teng, “Binary-oriented hybrid

fuzz testing,” in 2015 6th IEEE International Conference on Software

Engineering and Service Science (ICSESS). IEEE, 2015, pp. 345–348.

[126] J. Ye, B. Zhang, Z. Ye, C. Feng, and C. Tang, “Improving the cooper-

ation of fuzzing and symbolic execution by test-cases prioritizing,” in

VOLUME 4, 2016 23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

2017 13th International Conference on Computational Intelligence and

Security (CIS). IEEE, 2017, pp. 543–547.

[127] W. Han, M. L. Rahman, Y. Chen, C. Song, B. Lee, and I. Shin, “Syn-

fuzz: Efficient concolic execution via branch condition synthesis,” arXiv

preprint arXiv:1905.09532, 2019.

[128] A. Pandey, P. R. G. Kotcharlakota, and S. Roy, “Deferred concretization

in symbolic execution via fuzzing,” in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis,

2019, pp. 228–238.

[129] S. Rawat, “Vuzzer,” Available online: https://github.com/vusec/vuzzer

(Accessed on June. 28, 2020).

[130] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational

fuzzing,” in 2015 IEEE Symposium on Security and Privacy. IEEE,

2015, pp. 725–741.

[131] S. K. Cha, “Symfuzz,” Available online:

http://security.ece.cmu.edu/symfuzz/ (Accessed on June. 30, 2020).

[132] L. Xu, L. Yin, W. Dong, W. Jia, and Y. Li, “Expediting binary fuzzing

with symbolic analysis,” International Journal of Software Engineering

and Knowledge Engineering, vol. 28, no. 11n12, pp. 1701–1718, 2018.

[133] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner, “Improving

function coverage with munch: a hybrid fuzzing and directed symbolic

execution approach,” in Proceedings of the 33rd Annual ACM Sympo-

sium on Applied Computing, 2018, pp. 1475–1482.

[134] S. Ognawala, “Munch,” Available online: https://github.com/tum-

i22/munch (Accessed on July. 4, 2020).

[135] K. Böttinger and C. Eckert, “Deepfuzz: Triggering vulnerabilities deeply

hidden in binaries,” in International Conference on Detection of Intru-

sions and Malware, and Vulnerability Assessment. Springer, 2016, pp.

25–34.

[136] B. Zhang, J. Ye, C. Feng, and C. Tang, “S2f: Discover hard-to-reach

vulnerabilities by semi-symbolic fuzz testing,” in 2017 13th International

Conference on Computational Intelligence and Security (CIS). IEEE,

2017, pp. 548–552.

[137] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing

on binary code,” in 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). IEEE, 2019, pp. 736–747.

[138] J. Choi, “Eclipser,” Available online: https://github.com/SoftSec-

KAIST/Eclipser (Accessed on July. 5, 2020).

[139] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental

hybrid fuzzing with polyhedral path abstraction,” in 2020 IEEE Sympo-

sium on Security and Privacy (SP). IEEE, 2020, pp. 1613–1627.

[140] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving

for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security, 2019, pp. 515–530.

[141] M. Cho, “Intriguer,” Available online: https://github.com/seclab-

yonsei/intriguer (Accessed on July. 8, 2020).

[142] Z. Wang, Y. Zhang, Z. Tian, Q. Ruan, T. Liu, H. Wang, Z. Liu, J. Lin,

B. Fang, and W. Shi, “Automated vulnerability discovery and exploitation

in the internet of things,” Sensors, vol. 19, no. 15, p. 3362, 2019.

[143] X. Mi, B. Wang, Y. Tang, P. Wang, and B. Yu, “Shfuzz: Selective

hybrid fuzzing with branch scheduling based on binary instrumentation,”

Applied Sciences, vol. 10, no. 16, p. 5449, 2020.

[144] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl: Hybrid

fuzzing on the linux kernel,” in Proceedings of the 2020 Annual Network

and Distributed System Security Symposium (NDSS), San Diego, CA,

2020.

[145] L. Zhu, X. Fu, Y. Yao, Y. Zhang, and H. Wang, “Fiot: detecting the mem-

ory corruption in lightweight iot device firmware,” in 2019 18th IEEE

International Conference On Trust, Security And Privacy In Computing

And Communications/13th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE). IEEE, 2019, pp.

248–255.

[146] F. Rustamov, J. Kim, J. Yu, H. Kim, and J. Yun, “Bugminer: Mining the

hard-to-reach software vulnerabilities through the target-oriented hybrid

fuzzer,” Electronics, vol. 10, no. 1, p. 62, 2021.

[147] C. Team, “Undefined behavior sanitizer - clang 9 documentation,” Avail-

able online:https://clang.llvm.org/docs/ (Accessed on October. 12, 2020).

[148] R. Bagnara, P. M. Hill, and E. Zaffanella, “The parma polyhedra library:

Toward a complete set of numerical abstractions for the analysis and

verification of hardware and software systems,” Science of Computer

Programming, vol. 72, no. 1-2, pp. 3–21, 2008.

[149] T. Armerding, “What is cve, its definition and purpose?” Avail-

able online:https://www.csoonline.com/article/3204884/what-is-cve-its-

definition-and-purpose.html (Accessed on December. 12, 2020).

[150] Y. Shoshitaishvili, “angr,” Available online: http://fuse.sourceforge.net

(Accessed on June. 10, 2020).

[151] Zynamics, “Bindiff - comparison tool for binary files,” Available on-

line:https://www.zynamics.com/bindiff.html (Accessed on October. 12,

2020).

[152] N. Hardeniya, J. Perkins, D. Chopra, N. Joshi, and I. Mathur, Natural

language processing: python and NLTK. Packt Publishing Ltd, 2016.

[153] Test-Comp-2020, “2nd competition on software testing,” Available

online:https://test-comp.sosy-lab.org/2020/ (Accessed on October. 12,

2020).

[154] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and

arrays,” in International conference on computer aided verification.

Springer, 2007, pp. 519–531.

[155] B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided

Verification. Springer, 2014, pp. 737–744.

[156] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for bit-

vectors and arrays,” in International Conference on Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 2009, pp. 174–

177.

[157] SVCOMP20, “9th competition on software verification,” Available

online:https://sv-comp.sosy-lab.org/2020/results/results-verified/

(Accessed on December. 12, 2020).

[158] A. Gerasimov, S. Vartanov, M. Ermakov, L. Kruglov, D. Kutz,

A. Novikov, and S. Asryan, “Anxiety: a dynamic symbolic execution

framework,” in 2017 Ivannikov ISPRAS Open Conference (ISPRAS).

IEEE, 2017, pp. 16–21.

[159] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.

[160] M. Research, “Z3,” Available online:https://github.com/Z3Prover/z3

(Accessed on December. 12, 2020).

[161] C. P. Robert, V. Elvira, N. Tawn, and C. Wu, “Accelerating mcmc

algorithms,” Wiley Interdisciplinary Reviews: Computational Statistics,

vol. 10, no. 5, p. e1435, 2018.

[162] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”

in 2008 23rd IEEE/ACM International Conference on Automated Soft-

ware Engineering. IEEE, 2008, pp. 443–446.

[163] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: Intermediate

language and tools for analysis and transformation of c programs,” in

International Conference on Compiler Construction. Springer, 2002,

pp. 213–228.

[164] J. Ye, C. Feng, and C. Tang, “A fuzzer based on a fine-grained deeper

strategy,” in 2017 4th International Conference on Information Science

and Control Engineering (ICISCE). IEEE, 2017, pp. 24–28.

[165] C. Zhang, A. Groce, and M. A. Alipour, “Using test case reduction and

prioritization to improve symbolic execution,” in Proceedings of the 2014

International Symposium on Software Testing and Analysis, 2014, pp.

160–170.

[166] P. Goodman, “Grr binary translator,” Available online:

https://github.com/lifting-bits/grr (Accessed on October. 28, 2020).

[167] Goodman, “Pysymemu - custom symbolic execution engine,” Available

online: https://github.com/trailofbits/manticore (Accessed on October.

28, 2020).

[168] Wikipedia, “Checksum,” Available online:

https://en.wikipedia.org/wiki/Checksum (Accessed on October. 05,

2020).

[169] L. Fitzgibbons, “Checksum,” Available online:

https://searchsecurity.techtarget.com/definition/checksum (Accessed

on October. 05, 2020).

[170] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Combining

incremental steps of fuzzing research,” in 14th {USENIX} Workshop on

Offensive Technologies ({WOOT} 20), 2020.

[171] M. Hauster, “American fuzzy lop plus plus (afl++),” Available online:

https://github.com/AFLplusplus/AFLplusplus (Accessed on December.

05, 2020).

[172] M. Bohme, “Aflfast,” Available online:

https://github.com/mboehme/aflfast (Accessed on December. 05,

2020).

[173] C. Lyu, “Mopt-afl,” Available online: https://github.com/puppet-

meteor/MOpt-AFL (Accessed on December. 05, 2020).

[174] A. Herrera, “Afl n-gram branch coverage,” Available online:

https://github.com/adrianherrera/afl-ngram-pass (Accessed on

December. 05, 2020).

24 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114202, IEEE Access

Fayozbek et al.: Exploratory Review of Hybrid Fuzzing for Automated Vulnerability Detection

[175] QuarkslaB, “A dynamic binary instrumentation framework based on

llvm,” Available online: https://github.com/QBDI/QBDI (Accessed on

December. 05, 2020).

[176] A. Helin, “Radamsa,” Available online: https://gitlab.com/akihe/radamsa

(Accessed on December. 05, 2020).

[177] Google, “Hongfuzz,” Available online:

https://github.com/google/honggfuzz (Accessed on December. 05,

2020).

[178] ClangTeam, “Dataflowsanitizer design document,” Available online:

https://clang.llvm.org/docs/DataFlowSanitizerDesign.html (Accessed on

December. 05, 2020).

[179] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin, “Manipulating seman-

tic values in kernel data structures: Attack assessments and implications,”

in 2013 43rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[180] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,

“kafl: Hardware-assisted feedback fuzzing for {OS} kernels,” in 26th

{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.

167–182.

[181] D. Vyukov, “Syzkaller - kernel fuzzer,” Available online:

https://github.com/google/syzkaller (Accessed on January. 05, 2021).

[182] J. Kim, J. Yu, H. Kim, F. Rustamov, and J. Yun, “Firm-cov: High-

coverage greybox fuzzing for iot firmware via optimized process emu-

lation,” IEEE Access, vol. 9, pp. 101 627–101 642, 2021.

[183] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl:

high-throughput greybox fuzzing of iot firmware via augmented process

emulation,” in 28th {USENIX} Security Symposium ({USENIX} Secu-

rity 19), 2019, pp. 1099–1114.

[184] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “Avatar: A

framework to support dynamic security analysis of embedded systems’

firmwares.” in NDSS, vol. 23, 2014, pp. 1–16.

[185] R. Kersten, K. Luckow, and C. S. Păsăreanu, “Poster: Afl-based fuzzing

for java with kelinci,” in Proceedings of the 2017 ACM SIGSAC Confer-

ence on Computer and Communications Security, 2017, pp. 2511–2513.

[186] ISSTAC, “Afl-based fuzzing for java with kelinci,” Available online:

https://github.com/isstac/kelinci (Accessed on April. 01, 2021).

[187] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,

and N. Rungta, “Symbolic pathfinder: integrating symbolic execution

with model checking for java bytecode analysis,” Automated Software

Engineering, vol. 20, no. 3, pp. 391–425, 2013.

[188] C. Pasareanu, “Symbolic (java) pathfinder,” Available online:

https://github.com/SymbolicPathFinder/jpf-symbc (Accessed on April.

01, 2021).

[189] F. Nielson and H. R. Nielson, “Interprocedural control flow analysis,” in

European Symposium on Programming. Springer, 1999, pp. 20–39.

[190] DARPA, “Cyber grand challenge dataset,” Available online:

https://github.com/CyberGrandChallenge/samples/tree/master/cqe-

challenges (Accessed on June.12, 2020).

[191] B. Dolan Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,

F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnerability

addition,” in 2016 IEEE Symposium on Security and Privacy (SP).

IEEE, 2016, pp. 110–121.

[192] D. Gavitt, “Lava dataset source code,” Available online:

https://github.com/panda-re/lava (Accessed on April. 21, 2021).

[193] Dolan, “Lava-m dataset source code,” Available online:

https://sites.google.com/site/steelix2017/home/lava (Accessed on

June. 12, 2020).

[194] GNU, “Binutils source code,” Available online:

https://ftp.gnu.org/gnu/binutils/ (Accessed on April. 21, 2021).

[195] G. E. Schalnat, “Libpng—a library for processing png files,” Available

online: http://www.libpng.org/pub/png/libpng.html (Accessed on April.

21, 2021).

[196] Google, “Openssl-cryptography and ssl/tls toolkit,” Available online:

https://ftp.openssl.org/source/old/1.0.1/ (Accessed on April. 21, 2021).

[197] M. Matuska, “Libarchive: Multi-format archive and compression library,”

Available online: https://libarchive.org/downloads/ (Accessed on April.

21, 2021).

[198] Poppler, “Pdf rendering library,” Available online:

https://poppler.freedesktop.org/releases.html (Accessed on April.

21, 2021).

[199] Google, “Google fuzzer-test-suite,” Available

online:https://github.com/google/fuzzer-test-suite (Accessed on October.

12, 2020).

[200] M. Christakis and P. Godefroid, “Proving memory safety of the ani

windows image parser using compositional exhaustive testing,” in In-

ternational Workshop on Verification, Model Checking, and Abstract

Interpretation. Springer, 2015, pp. 373–392.

[201] C. Shortt and J. Weber, “Hermes: A targeted fuzz testing framework,” in

International Conference on Intelligent Software Methodologies, Tools,

and Techniques. Springer, 2015, pp. 453–468.

[202] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic

execution,” in International Static Analysis Symposium. Springer, 2011,

pp. 95–111.

[203] M. Christakis and P. Godefroid, “Ic-cut: A compositional search strategy

for dynamic test generation,” in International SPIN Workshop on Model

Checking of Software. Springer, 2015, pp. 300–318.

FAYOZBEK RUSTAMOV was born in Andijan

region, Uzbekistan, in 1990. He received the B.S.

in Economics And Management In The Sphere

Of ICT in 2013 and M.S. degree in Information

Security, Cryptography and Cryptanalysis from

Tashkent University of Information Technologies

(TUIT) in 2015. He has completed the Ph.D. de-

gree in Computer and Information Security from

Sejong University, Seoul, Korea, in 2021. His

research interests include software security and

vulnerability detection.

Fayozbek Rustamov was an award recipient named “Beruniy” by The

Ministry of Higher Education of the Republic of Uzbekistan in 2013 and

“Young Scientist” award by The Republic of Uzbekistan ICT Ministry in

2014.

JUHWAN KIM received the M.S. degree in Com-

puter and Information Security from Sejong Uni-

versity, Seoul, Korea in 2019. He is currently

pursuing the Ph.D. degree in Computer and Infor-

mation Security and Convergence Engineering for

Intelligent Drone from Sejong University, Seoul,

Korea. His research interests include fuzzing, vul-

nerability detection, IoT security, and software

security.

JIHYEON YU is currently pursuing the M.S. de-

gree in Computer and Information Security, and

Convergence Engineering for Intelligent Drone

from Sejong University, Seoul, Korea. His re-

search interests include fuzzing, vulnerability de-

tection, IoT security, artificial intelligence (AI)

security, and network security.

JOOBEOM YUN received the B.S. degree in

Computer Science and Engineering from Korea

University, Seoul, Korea in 1999 and the M.S.

degree in Computer Engineering from Seoul Na-

tional University, Seoul, Korea in 2001, and the

Ph.D. in Computer Science from Korea Advanced

Institute of Science and Technology (KAIST),

Daejeon, Korea in 2012. He is currently an as-

sociate professor in the Department of Computer

and Information Security from Sejong University,

Seoul, Korea. His research interests include software security, artificial

intelligence (AI) security, and network security.

VOLUME 4, 2016 25

