
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009 539

Exploratory Undersampling for
Class-Imbalance Learning

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou, Senior Member, IEEE

Abstract—Undersampling is a popular method in dealing with
class-imbalance problems, which uses only a subset of the majority
class and thus is very efficient. The main deficiency is that many
majority class examples are ignored. We propose two algorithms
to overcome this deficiency. EasyEnsemble samples several subsets
from the majority class, trains a learner using each of them,
and combines the outputs of those learners. BalanceCascade
trains the learners sequentially, where in each step, the majority
class examples that are correctly classified by the current trained
learners are removed from further consideration. Experimental
results show that both methods have higher Area Under the ROC
Curve, F-measure, and G-mean values than many existing class-
imbalance learning methods. Moreover, they have approximately
the same training time as that of undersampling when the same
number of weak classifiers is used, which is significantly faster
than other methods.

Index Terms—Class-imbalance learning, data mining, ensemble
learning, machine learning, undersampling.

I. INTRODUCTION

IN MANY real-world problems, the data sets are typically
imbalanced, i.e., some classes have much more instances

than others. The level of imbalance (ratio of size of the majority
class to minority class) can be as huge as 106 [41]. It is
noteworthy that class imbalance is emerging as an important
issue in designing classifiers [11], [23], [37].

Imbalance has a serious impact on the performance of classi-
fiers. Learning algorithms that do not consider class imbalance
tend to be overwhelmed by the majority class and ignore the
minority class [10]. For example, in a problem with imbalance
level of 99, a learning algorithm that minimizes error rate could
decide to classify all examples as the majority class in order
to achieve a low error rate of 1%. However, all minority class
examples will be wrongly classified in this case. In problems
where the imbalance level is huge, class imbalance must be
carefully handled to build a good classifier.

Class imbalance is also closely related to cost-sensitive learn-
ing, another important issue in machine learning. Misclassi-

Manuscript received October 26, 2007; revised March 15, 2008 and
June 24, 2008. First published December 16, 2008; current version published
March 19, 2009. This work was supported in part by the National Science Foun-
dation of China under Grants 60635030 and 60721002, by the Jiangsu Science
Foundation under Grant BK2008018, and by the National High Technology
Research and Development Program of China under Grant 2007AA01Z169.
This paper was recommended by Associate Editor N. Chawla.

X.-Y. Liu and Z.-H. Zhou are with the National Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210093, China (e-mail:
liuxy@lamda.nju.edu.cn; zhouzh@lamda.nju.edu.cn).

J. Wu is with the School of Interactive Computing, College of Computing,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: wujx@cc.
gatech.edu).

Digital Object Identifier 10.1109/TSMCB.2008.2007853

fying a minority class instance is usually more serious than
misclassifying a majority class one. For example, approving a
fraudulent credit card application is more costly than declining
a credible one. Breiman et al. [7] pointed out that training
set size, class priors, cost of errors in different classes, and
placement of decision boundaries are all closely connected. In
fact, many existing methods for dealing with class imbalance
rely on connections among these four components. Sampling
methods handle class imbalance by varying the minority and
majority class sizes in the training set. Cost-sensitive learning
deals with class imbalance by incurring different costs for
the two classes and is considered as an important class of
methods to handle class imbalance [37]. More details about
class-imbalance learning methods are presented in Section II.

In this paper, we examine only binary classification problems
by ensembling classifiers built from multiple undersampled
training sets. Undersampling is an efficient method for class-
imbalance learning. This method uses a subset of the majority
class to train the classifier. Since many majority class examples
are ignored, the training set becomes more balanced and the
training process becomes faster. However, the main drawback
of undersampling is that potentially useful information con-
tained in these ignored examples is neglected. The intuition of
our proposed methods is then to wisely explore these ignored
data while keeping the fast training speed of undersampling.

We propose two ways to use these data. One straightforward
way is to sample several subsets independently from N (the
majority class), use these subsets to train classifiers separately,
and combine the trained classifiers. Another method is to use
trained classifiers to guide the sampling process for subsequent
classifiers. After we have trained n classifiers, examples cor-
rectly classified by them will be removed from N . Experiments
on 16 UCI data sets [3] show that both methods have higher
Area Under the receiver operating characteristics (ROC) Curve
(AUC), F-measure, and G-mean values than many existing
class-imbalance learning methods.

The rest of this paper is organized as follows. Section II
reviews related methods. Section III presents EasyEnsemble
and BalanceCascade. Section IV reports the experiments.
Finally, Section V concludes this paper.

II. RELATED WORK

As mentioned in the previous section, many existing class-
imbalance learning methods manipulate the following four
components: training set size, class prior, cost matrix, and
placement of decision boundary. Here, we pay special attention
to two classes of methods that are most widely used: sampling

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

and cost-sensitive learning. For other methods, we refer the
readers to [37] for a more complete and detailed review.

Sampling is a class of methods that alters the size of training
sets. Undersampling and oversampling change the training
sets by sampling a smaller majority training set and repeating
instances in the minority training set, respectively [15]. The
level of imbalance is reduced in both methods, with the hope
that a more balanced training set can give better results. Both
sampling methods are easy to implement and have been shown
to be helpful in imbalanced problems [37], [47]. Undersampling
requires shorter training time, at the cost of ignoring potentially
useful data. Oversampling increases the training set size and
thus requires longer training time. Furthermore, it tends to
lead to overfitting since it repeats minority class examples [9],
[15]. Aside from the basic undersampling and oversampling
methods, there are also methods that sample in more complex
ways. SMOTE [9] added new synthetic minority class examples
by randomly interpolating pairs of closest neighbors in the
minority class. The one-sided selection procedures [25] tried to
find a representative subset of majority class examples by only
removing “borderline” and “noisy” majority examples. Some
other methods combine different sampling strategies to achieve
further improvement [1]. In addition, researchers have studied
the effect of varying the level of imbalance and how to find the
best ratio when a C4.5 tree classifier was used [38].

Cost-sensitive learning [14], [16] is another important class
of class-imbalance learning methods. Although many learning
algorithms have been adapted to accommodate class-imbalance
and cost-sensitive problems, variants of AdaBoost appear to be
the most popular ones. Many cost-sensitive boosting algorithms
have been proposed [31]. A common strategy of these variants
was to intentionally increase the weights of examples with
higher misclassification cost in the boosting process. In [30],
the initial weights of high cost examples were increased. It was
reported that, however, the weight differences between exam-
ples in different classes disappear quickly when the boosting
process proceeds [33]. Thus, many algorithms raised high cost
examples’ weights in every iteration of the boosting process, for
example, AsymBoost [33], AdaCost [17], CSB [31], DataBoost
[21], and AdaUBoost [24], just to name a few. Another way
to adapt a boosting algorithm to cost-sensitive problems is to
change the weights of the weak classifiers in forming the final
ensemble classifier, such as BMPM [22] and LAC [41]. Unlike
the heuristic methods mentioned earlier, Asymmetric Boosting
[28] directly minimized a cost-sensitive loss function in the
statistical interpretation of boosting.

SMOTEBoost [12] is designed for class-imbalance learning,
which is very similar to AsymBoost. Both methods alter the
distribution for the minority class and majority class in separate
ways. The only difference is how these distributions are altered.
AsymBoost directly updates instance weights for the majority
class and minority class differently in each iteration, while
SMOTEBoost alters distribution by first updating instance
weights for majority class and minority class equally and then
using SMOTE to get new minority class instances.

Chan and Stolfo [8] introduced an approach to explore
majority class examples. They split the majority class into
several nonoverlapping subsets, with each subset having ap-

proximately the same number of examples as the minority class.
One classifier was trained from each of these subsets and the
minority class. The final classifier ensembled these classifiers
using stacking [40]. However, when a data set is highly imbal-
anced, this approach requires a much longer training time than
undersampling. Moreover, since the minority class examples
are used by every classifier, stacking these classifiers will have a
high probability of suffering from overfitting when the number
of minority class examples is limited.

III. EasyEnsemble AND BalanceCascade

As was shown by Drummond and Holte [15], undersampling
is an efficient strategy to deal with class imbalance. How-
ever, the drawback of undersampling is that it throws away
many potentially useful data. In this section, we propose two
strategies to explore the majority class examples ignored by
undersampling: EasyEnsemble and BalanceCascade.

A. EasyEnsemble

Given the minority training set P and the majority training
set N , the undersampling method randomly samples a subset
N′ from N , where |N ′| < |N |. Usually, we choose |N ′| =
|P| and therefore have |N ′| � |N | for highly imbalanced
problems.
EasyEnsemble is probably the most straightforward way

to further exploit the majority class examples ignored by un-
dersampling, i.e., examples in N

⋂
N′. In this method, we

independently sample several subsets N1,N2, . . . ,NT from N .
For each subset Ni (1 ≤ i ≤ T), a classifier Hi is trained using
Ni and all of P . All generated classifiers are combined for the
final decision. AdaBoost [29] is used to train the classifier Hi.
The pseudocode for EasyEnsemble is shown in Algorithm 1.

Algorithm 1 The EasyEnsemble algorithm.
1: {Input: A set of minority class examples P , a set of

majority class examples N , |P| < |N |, the number of subsets
T to sample from N , and si, the number of iterations to train
an AdaBoost ensemble Hi}

2: i ⇐ 0
3: repeat

4: i ⇐ i + 1
5: Randomly sample a subset Ni from N , |Ni| = |P|.
6: Learn Hi using P and Ni. Hi is an AdaBoost ensemble

with si weak classifiers hi,j and corresponding weights αi,j .
The ensemble’s threshold is θi, i.e.,

Hi(x) = sgn

⎛
⎝

si∑
j=1

αi,jhi,j(x) − θi

⎞
⎠ .

7: until i = T
8: Output: An ensemble

H(x) = sgn

⎛
⎝

T∑
i=1

si∑
j=1

αi,jhi,j(x) −
T∑

i=1

θi

⎞
⎠ .

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORATORY UNDERSAMPLING FOR CLASS-IMBALANCE LEARNING 541

The idea behind EasyEnsemble is simple. Similar to the
Balanced Random Forests [13], EasyEnsemble generates T
balanced subproblems. The output of the ith subproblem is
AdaBoost classifier Hi, an ensemble with si weak classifiers
{hi,j}. An alternative view of hi,j is to treat it as a feature
that is extracted by the ensemble learning method and can
only take binary values [41]. Hi, in this viewpoint, is simply
a linear classifier built on these features. Features extracted
from different subsets Ni thus contain information of different
aspects of the original majority training set N . Finally, instead
of counting votes from {Hi}i=1,...,T , we collect all the features
hi,j (i = 1, 2, . . . , T, j = 1, 2, . . . , si) and form an ensemble
classifier from them.

The output of EasyEnsemble is a single ensemble, but
it looks like an “ensemble of ensembles”. It is known that
boosting mainly reduces bias, while bagging mainly reduces
variance. Several works [19], [35], [36], [42] combine dif-
ferent ensemble strategies to achieve stronger generalization.
MultiBoosting [35], [36] combines boosting with bagging/
wagging [2] by using boosted ensembles as base learners.
Stochastic Gradient Boosting [19] and Cocktail Ensemble [42]
also combine different ensemble strategies. It is evident that
EasyEnsemble has benefited from the combination of boosting
and a bagging-like strategy with balanced class distribution.

Both EasyEnsemble and Balanced Random Forests try to
use balanced bootstrap samples; however, the former uses the
samples to generate boosted ensembles, while the latter uses
the samples to train decision trees randomly. Costing [43] also
uses multiple samples of the original training set. Costing was
initially proposed as a cost-sensitive learning method, while
EasyEnsemble is proposed to deal with class imbalance di-
rectly. Moreover, the working style of EasyEnsemble is quite
different from costing. For example, the costing method sam-
ples the examples with probability in proportion to their costs
(rejection sampling). Since this is a probability-based sampling
method, no positive example will definitely appear in all the
samples (in fact, the probability of a positive example appearing
in all the samples is small). While in EasyEnsemble, all the
positive examples will definitely appear in all the samples.
When the size of minority class is very small, it is important
to utilize every minority class example.

B. BalanceCascade

EasyEnsemble is an unsupervised strategy to explore N
since it uses independent random sampling with replacement.
Our second algorithm, BalanceCascade, explores N in a su-
pervised manner. The idea is as follows. After H1 is trained, if
an example x1 ∈ N is correctly classified to be in the majority
class by H1, it is reasonable to conjecture that x1 is somewhat
redundant in N , given that we already have H1. Thus, we can
remove some correctly classified majority class examples from
N . As in EasyEnsemble, we use AdaBoost in this method. The
pseudocode of BalanceCascade is described in Algorithm 2.

Algorithm 2 The BalanceCascade algorithm.
1: {Input: A set of minority class examples P , a set of

majority class examples N , |P| < |N |, the number of subsets

T to sample from N , and si, the number of iterations to train
an AdaBoost ensemble Hi}

2: i ⇐ 0, f ⇐ T−1
√

|P|/|N |, f is the false positive rate (the
error rate of misclassifying a majority class example to the
minority class) that Hi should achieve.

3: repeat
4: i ⇐ i + 1
5: Randomly sample a subset Ni from N , |Ni| = |P|.
6: Learn Hi using P and Ni. Hi is an AdaBoost ensemble

with si weak classifiers hi,j and corresponding weights αi,j .
The ensemble’s threshold is θi i.e.,

Hi(x) = sgn

⎛
⎝

si∑
j=1

αi,jhi,j(x) − θi

⎞
⎠ .

7: Adjust θi such that Hi’s false positive rate is f .
8: Remove from N all examples that are correctly classi-

fied by Hi.
9: until i = T
10: Output: A single ensemble

H(x) = sgn

⎛
⎝

T∑
i=1

si∑
j=1

αi,jhi,j(x) −
T∑

i=1

θi

⎞
⎠ .

This method is called BalanceCascade since it is some-
what similar to the cascade classifier in [34]. The majority
training set N is shrunk after every Hi is trained, and every
node Hi is dealing with a balanced subproblem (|Ni| = |P|).
However, the final classifier is different. A cascade classifier is
the conjunction of all {Hi}i=1,...,T , i.e., H(x) predicts positive
if and only if all Hi(x)(i = 1, 2, . . . , T) predict positive. Viola
and Jones [34] used the cascade classifier mainly to achieve
fast testing speed. While in BalanceCascade, sequential de-
pendence between classifiers is mainly exploited for reducing
the redundant information in the majority class. This sampling
strategy leads to a restricted sample space for the following
undersampling process to explore as much useful information
as possible.
BalanceCascade is similar to EasyEnsemble in their struc-

tures. The main difference between them is the lines 7 and 8 of
Algorithm 2. Line 8 removes the true majority class examples
from N , and line 7 specifies how many majority class examples
can be removed. At the beginning of the T th iteration, N
has been shrunk T − 1 times, and therefore, its current size is
|N | · fT−1 = |P|. Thus, after HT is trained and N is shrunk
again, the size of N is smaller than |P|. We can stop the training
process at this time.

There are other ways to combine weak classifiers in
EasyEnsemble and BalanceCascade. A popular one is stack-
ing [40]. It takes the outputs of other classifiers as input to train
a generalizer. However, Ting and Witten [32] stated that the use
of class probabilities is crucial for the successful application
of stacked generalization in classification tasks. Furthermore,
since minority class examples are used to train each weak
classifier, stacking these classifiers is likely to suffer from
overfitting when the number of minority class examples is

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

TABLE I
CONFUSION MATRIX

limited. To verify this, stacking is compared with the ensemble
strategy used in the proposed methods in Section IV-E.

Chan and Stolfo’s method [8] (abbreviated as Chan) is
closely related to EasyEnsemble and BalanceCascade. It
splits the majority class into several nonoverlapping subsets,
with each subset having similar size to the minority class.
Classifiers trained from each majority class subset and the
minority class are combined by stacking. The differences be-
tween Chan and the proposed methods are obvious and given
as follows: 1) Chan uses all majority class examples, while
EasyEnsemble and BalanceCascade use only part of them.
When a data set is highly imbalanced, Chan requires a much
longer training time than the proposed methods. However, the
experimental results reveal that it is not necessary to use all
majority class examples to achieve good performances. 2) Chan
uses stacking to combine classifiers trained from each subset.
As stated earlier, since the minority class is used repeatedly,
stacking is likely to suffer from overfitting when the number of
minority class examples is limited.

Both EasyEnsemble and BalanceCascade are very ef-
ficient. Their training time is roughly the same as that of
undersampling when the same number of weak classifiers is
used. Detailed analyses of training time and empirical running
time are presented in Section IV-C.

IV. EXPERIMENTS

A. Evaluation Criteria

It is now well known that error rate is not an appropriate
evaluation criterion when there are class imbalance or unequal
costs. In this paper, we use F-measure, G-mean, and AUC [4]
as performance evaluation measures. F-measure and G-mean
are functions of the confusion matrix as shown in Table I.
F-measure and G-mean are then defined as follows. Here, we
take minority class as positive class

False Positive Rate (fpr) =
FP

FP + TN

True Positive Rate (Acc+) =
TP

TP + FN

True Negative Rate (Acc−) =
TN

TN + FP

G-mean =
√

Acc+ × Acc−

Precision =
TP

TP + FP

Recall =
TP

TP + FN
= Acc+

F-measure =
2 × Precision × Recall

Precision + Recall
.

(1)

Fig. 1. Example of an ROC curve.

TABLE II
BASIC INFORMATION OF DATA SETS. Size IS THE NUMBER OF EXAMPLES.

Target IS USED AS MINORITY CLASS, AND ALL OTHERS ARE USED

AS MAJORITY CLASS. IN Attribute, B: BINARY, N: NOMINAL, C:
CONTINUOUS. #min/#maj IS THE SIZE OF MINORITY AND MAJORITY

CLASS, AND Ratio IS THE SIZE OF MAJORITY CLASS

DIVIDED BY THAT OF MINORITY CLASS

AUC has proved to be a reliable performance measure for
imbalanced and cost-sensitive problems [18]. Given a binary
classification problem, an ROC curve depicts the performance
of a method using the (fpr, tpr) pairs, as shown in Fig. 1. fpr
is the false positive rate of the classifier, and tpr is the true
positive rate (Acc+). AUC is the area below the curve (shaded
region in Fig. 1). It integrates performance of the classification
method over all possible values of fpr and is proved to be a
reliable performance measure for imbalanced and cost-sensitive
problems [18].

In our experiments, for ensemble classifiers in the form
H(x) = sgn(

∑T
i=1 αihi(x) − θ), we alter the value of θ from

−∞ to ∞. In this way, we get a full range of (fpr, tpr) pairs and
build an ROC curve from these data. We then use the Algorithm
3 in [18] to calculate the AUC score. Details of AUC can be
found in [18].

B. Experimental Settings

We tested the proposed methods on 16 UCI data sets [3].
Information about these data sets is summarized in Table II.

For every data set, we perform a tenfold stratified cross
validation. Within each fold, the classification method is re-
peated ten times considering that the sampling of subsets intro-
duces randomness. The AUC, F-measure, and G-mean of this

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORATORY UNDERSAMPLING FOR CLASS-IMBALANCE LEARNING 543

cross-validation process are averaged from these ten runs. The
whole cross-validation process is repeated for five times, and
the final values from this method are the averages of these five
cross-validation runs.

We compared the performance of 15 methods, including as
follows.

1) CART: classification and regression trees [7]. It uses the
entire data set (P and N) to train a single classifier.

2) Bagging (abbreviated as Bagg). Bagging [5] uses the
entire data set (P and N). CART is used to train weak
classifiers. The number of iterations is 40.

3) AdaBoost (abbreviated as Ada). AdaBoost uses the entire
data set (P and N). CART is used to train weak classi-
fiers. The number of iterations is 40.

4) AsymBoost (abbreviated as Asym). AsymBoost is a typi-
cal cost-sensitive variant of AdaBoost.1 Let r = |N |/|P|
be the imbalance level. At each iteration, the weight of
every positive example is multiplied by T

√
r, where T

is the number of iterations [33]. AsymBoost uses the
entire data set (P and N). CART is used to train weak
classifiers. The number of iterations is 40.

5) SMOTEBoost (abbreviated as SMB). SMOTE adds syn-
thetic minority class examples [9]. For data sets having
nominal attributes, we use SMOTE-NC. Details for im-
plementing SMOTE and SMOTE-NC can be found in
[9]. SMOTEBoost uses SMOTE to get new minority class
examples in each iteration. CART is used to train weak
classifiers. The number of iterations is 40. The k nearest
neighbor parameter of SMOTE is five. The amount of
new data generated using SMOTE in each iteration is |P|.

6) Undersampling + AdaBoost (abbreviated as Under). A
subset N′ is sampled (without replacement) from N ,
|N ′| = |P|. Then, AdaBoost is used to train a classifier
using P and N′, since the problem is balanced after
undersampling. CART is used to train weak classifiers.
The number of iterations is 40.

7) Oversampling + AdaBoost (abbreviated as Over). A new
minority training set is sampled (with replacement) from
the original minority class, |P′| = |N |. Then, AdaBoost
is used to train a classifier using P′ and N . CART is used
to train weak classifiers. The number of iterations is 40.

8) SMOTE + AdaBoost (abbreviated as SMOTE). In our
experiments, we first generate P′ using SMOTE, a set
of synthetic minority class examples with |P′| = |P|. We
sample a new majority training set N′ with |N ′| = 2|P|
when |N | > 2|P|, and let N′ = N otherwise. Then, we
use AdaBoost to train a classifier with P , P′, and N′.
CART is used to train weak classifiers. The number of
iterations is 40. The settings of SMOTE are the same as
that of SMOTEBoost (k = 5).

9) Chan and Stolfo’s method + AdaBoost (abbreviated
as Chan). It splits N into 	|N |/|P|
 nonoverlapping
subsets. An AdaBoost classifier was trained from each
of these subsets and P . Fisher Discriminant Analysis
[20] is used as the stacking method. CART is used to

1It is also equivalent to the CSB2 algorithm in [31].

train weak classifiers. AdaBoost classifiers are trained for
�40|P |/|N |� iterations when 	|N |/|P |
 < 40; otherwise,
only one iteration is allowed.

10) BalanceCascade (abbreviated as Cascade). CART is
used to train weak classifiers. Number of subsets T = 4;
number of rounds in each AdaBoost ensemble si = 10.

11) EasyEnsemble (abbreviated as Easy). CART is used to
train weak classifiers. Number of subsets T = 4; number
of rounds in each AdaBoost ensemble si = 10.

12) Random Forests (abbreviated as RF). Random Forests
[6] uses bootstrap samples of training data to generate
random trees and then form an ensemble. Here, we use
RandomForest in WEKA [39], in which a random tree is
a variant of REPTree, using random feature selection in
the tree induction process, and not pruned. RF uses the
entire data set (P and N). The number of iterations is 40.

13) Undersampling + Random Forests (abbreviated as
Under-RF). A subset N′ is sampled (without replace-
ment) from N , |N ′| = |P|. Then, Random Forests is
used to train a classifier using P and N′, The number
of iterations is 40.

14) Oversampling + Random Forests (abbreviated as
Over-RF). A new minority training set is sampled (with
replacement) from the original minority class, |P′| =
|N |. Then, Random Forests is used to train a classifier
using P′ and N . The number of iterations is 40.

15) Balanced Random Forests (abbreviated as BRF). Balanced
Random Forests is different from Random Forests in
that it uses balanced bootstrap samples of training data.
It is different from undersampling + Random Forests,
because the latter preprocesses the training data and
then learns a Random Forests classifier. Here, we use
RandomTree in WEKA to train weak classifiers, which
is the same weak classifier learning method used by
RandomForest in WEKA. The number of iterations is 40.

The settings of CART are the same. In CART, pruning is
used, and impure nodes must have at least ten examples to be
split. CART and Ada are baseline methods. All other classifiers
have 40 weak classifiers. In Chan, the amount of classifiers is
also 40 since the imbalance levels of data sets in Table II are all
lower than 40.

C. Analysis of Training Time

Random Forests series (RF, Under-RF, Over-RF, and BRF)
use random decision trees, which train much faster than CART.
Moreover, they are implemented in Java code, while the other
methods are in Matlab code. Therefore, it is not fair to compare
the running time of them directly. Here, we only analyze the
training time of CART-based methods.

Since all methods use the same weak learner and have the
same amount of weak classifiers, the training time of these
methods mainly depends on the number of training examples.

From the descriptions in Section IV-B, Under uses the
smallest number (2|P|) of examples and is the fastest among
all methods. The proposed methods (Cascade and Easy) and
Chan use the same number of weak classifiers as Under and
use the same number of examples as Under to train every weak

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

TABLE III
RUNNING TIMES (IN SECONDS). THE ROW avg. SHOWS THE AVERAGE RUNNING TIME OF EACH METHOD

TABLE IV
AUC OF THE COMPARED METHODS (PART 1). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICH ADABOOST’S AUC IS

HIGHER THAN 0.95. FOR EACH METHOD AND EACH DATA SET, THE AVERAGE AUC IS FOLLOWED BY A

STANDARD DEVIATION. THE COLUMN avg. SHOWS THE AVERAGE AUC OF EACH METHOD

classifier.2 These methods require additional time to sample
or split subsets of N . However, this time is negligible. Thus,
the proposed methods and Chan have approximately the same
training time as Under. Note that the imbalance level of data
sets used in the experiment happens to be lower than 40, so the
number of weak classifiers in Chan can be the same with that
in Cascade and Easy. However, when the data set is highly
imbalanced (for example, the imbalance level is 1000), Chan
will require extremely more training time than the proposed
methods. Furthermore, Easy has a potential computational
advantage since each undersampling process can be executed
in parallel.

Both Ada and Asym use |P| + |N | examples. Since |N | >
|P|, these methods are slower than Under. When the imbalance
level is high, these methods have much longer training time than
Under and the proposed methods.

In our experiments, SMOTE uses either 4|P| or 2|P| + |N |
examples. SMB uses 2|P| + |N | examples, and both of them
require to compute the distance between minority class exam-
ples. Thus, they are much slower than Under and the proposed
methods.
Over uses 2|N | examples, which has the largest training set.

SMB and Over are the most expensive ones. For data sets with a
large number of examples, e.g., letter, the time to train an over-
sampled or SMOTEBoost classifier is too long to be practical.

2Although different subsets of N are used in the training process, the number
of active training examples is always 2|P| at all times.

CART uses |P| + |N | examples. CART trains only one
classifier, so it indicates the time baseline.

Running times of these methods are recorded in Table III,
on a computer with a 3.0-GHz Intel Xeon CPU. It shows that
Chan, Easy, and Cascade are as efficient as Under. The most
expensive ones are SMB and Over, followed by Ada and Asym,
and then by SMOTE.

D. Results and Analyses

The average AUC of the compared methods are summarized
in Tables IV and V. On car, ionosphere, letter, phoneme,
sat, and wdbc, Ada achieves very high AUC values, which
are all greater than 0.95. Applying class-imbalance learning
methods on these data sets is not necessarily beneficial. On
the other ten data sets, Ada’s AUC values are not high, and
these data sets seem to suffer from class-imbalance problem.
Therefore, we divide the 16 data sets into two groups. The
first group contains 6 “easy” tasks, on which the AUC values
of Ada are greater than 0.95. The second group contains
10 “hard” tasks, on which the AUC values of Ada are
lower than 0.95. The AUC results are shown separately in
Tables IV and V.3 The results of t-test (significance level at
0.05) of AUC are also shown separately in the upper and

3Note that the performance of Over and SMB on the data sets in the former
group has not been obtained due to its large training time costs. CART gives
discrete outputs, so its AUC is not available.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORATORY UNDERSAMPLING FOR CLASS-IMBALANCE LEARNING 545

TABLE V
AUC OF THE COMPARED METHODS (PART 2). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICH ADABOOST’S AUC IS LOWER THAN 0.95

TABLE VI
SUMMARY OF t-TEST OF AUC WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF SIX “EASY” TASKS,

AND THE LOWER TRIANGLE SHOWS THE RESULT OF TEN “HARD” TASKS. EACH TABULAR SHOWS THE AMOUNT OF

WIN–TIE–LOSE OF A METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN

TABLE VII
F-MEASURE OF THE COMPARED METHODS ON “EASY” TASKS (PART 1)

lower triangles in Table VI. The average F-measure values
of the compared methods are summarized in Tables VII and
VIII, and the t-test result is shown in Table IX. The aver-

age G-mean values of the compared methods are summa-
rized in Tables X and XI, and the t-test result is shown in
Table XII.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

TABLE VIII
F-MEASURE OF THE COMPARED METHODS ON “HARD” TASKS (PART 2)

TABLE IX
SUMMARY OF T -TEST OF F-MEASURE WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF

SIX “EASY” TASKS, AND THE LOWER TRIANGLE SHOWS THE RESULT OF TEN “HARD” TASKS. EACH TABULAR SHOWS

THE AMOUNT OF WIN–TIE–LOSE OF A METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN

TABLE X
G-MEAN OF THE COMPARED METHODS ON “EASY” TASKS (PART 1). THE ROW avg. SHOWS THE AVERAGE G-MEAN OF EACH METHOD

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORATORY UNDERSAMPLING FOR CLASS-IMBALANCE LEARNING 547

TABLE XI
G-MEAN OF THE COMPARED METHODS ON “HARD” TASKS (PART 2)

TABLE XII
SUMMARY OF t-TEST OF G-MEAN WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF SIX

“EASY” TASKS, AND THE LOWER TRIANGLE SHOWS THE RESULT OF TEN “HARD” TASKS. EACH TABULAR SHOWS

THE AMOUNT OF WIN–TIE–LOSE OF A METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN

The results show that on “easy” tasks, all class-imbalance
learning methods have lower AUC and F-measure than Ada,
except that Asym has similar AUC and F-measure to it. While
on “hard” tasks, class-imbalance learning methods generally
have higher AUC and F-measure than Ada, including SMOTE,
Chan, Cascade, and Easy. We argue that for tasks on which
ordinary methods can achieve high AUC (e.g., ≥ 0.95), class-
imbalance learning is generally not helpful with AUC and
F-measure. However, Easy and Cascade can be used to reduce
the training time, while their average AUC values are close to
that of Ada and Asym.

We are more interested in the results on “hard” tasks, where
class-imbalance learning really helps. Compared with the re-
sults on “easy” tasks, they reveal more properties of class-
imbalance learning and the proposed methods.

Under is not performing well with AUC and F-measure.
Its AUC and F-measure are lower than that of Ada and Asym
on all “easy” tasks and lower than that of many other class-
imbalance learning methods on “hard” tasks. Our conjecture
is that this is due to the information contained in the majority
class which is ignored by Under. Both our proposed methods
can improve upon Under, no matter on “easy” tasks or “hard”
tasks. This result supports our argument that Easy and Cascade
can effectively explore the majority class examples.
Chan uses all the majority class examples, and it generally

has higher AUC and F-measure than Under. However, the
results show that on “hard” tasks, its AUC, F-measure, and
G-mean are comparable to or slightly lower than that of
Cascade, and they are lower than that of Easy on most of the
data sets. This implies that using all majority class examples

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

548 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

TABLE XIII
COMPARISON OF STACKING WITH ENSEMBLE STRATEGY IN

BalanceCascade AND EasyEnsemble. THIS TABLE SHOWS AUC’ S OF

THE COMPARED METHODS. THE FIRST GROUP OF DATA SETS IS “EASY”
TASKS, AND THE SECOND GROUP IS “HARD” TASKS. THE ROW avg1.
SHOWS THE AVERAGE AUC OF EACH METHOD ON “EASY” TASKS.

THE ROW avg2. SHOWS THE AVERAGE AUC ON “HARD” TASKS.
THE ROW avg. SHOWS THE OVERALL AVERAGE AUC. TABULAR

IN BOLD DENOTES THE SUPERIOR ENSEMBLE STRATEGY

BETWEEN THE ORIGINAL ONE AND STACKING

is not necessary. In particular, when the data set is highly
imbalanced, Chan will consume a lot of time.

Both Easy and Cascade attain higher average AUC,
F-measure, and G-mean than almost all the other methods
on “hard” tasks, except that Cascade is comparable to Chan
with AUC and F-measure, and slightly worse than BRF and
Under-RF with G-mean. However, Chan has much lower
G-mean, and BRF and Under-RF have much lower AUC and
F-measure than many other class-imbalance learning methods,
while both Easy and Cascade are very robust with different
performance measures.
Easy and Cascade cannot only improve the AUC scores but

also reduce the training time. They require approximately the
same training time as Under and are faster than other methods.
Considering both classification performance and training time,
they are better than all other compared methods.

The results on “hard” tasks show that Cascade is inferior
to Easy. The way Cascade explores the majority class exam-
ples might be responsible for this observation. In Cascade,
the majority training set of Hi+1 is produced by Hi. Such
a supervised cascading way of sampling might suffer from
overfitting. In other words, the correctly predicted majority
class examples that have been filtered out may be useful [27].
In particular, some examples that are deemed redundant and
discarded in earlier rounds may be helpful in some later rounds,
after some other examples have been discarded. Note that there
are also situations in which Cascade is preferred. From the
results on “easy” tasks, we can see that Cascade has higher
AUC, F-measure, and G-mean than Easy on almost all data
sets. This suggests that Cascade can focus on more useful
data. In addition, note that Cascade is more favorable than
Easy on data sets balance and wpbc. Both of these data sets
have a very small minority class. In fact, if the number of

examples in a class is very small, there is a significant chance
that the examples will scatter around broadly. It is difficult
to get a representative subset by using undersampling alone.
Focusing on more informative examples may be particularly
helpful in this case. Moreover, Cascade is more suitable for
highly imbalanced problems. For example, in the face detection
problem described in [41], there are 5000 positive examples and
2284 million negative ones. The independent random sampling
strategy of Easy requires T , the number of subsets, to be very
large in order to catch all the information in N . Furthermore,
the number of subsets is hard to decide since no prior informa-
tion is available. Thus, Easy is computationally infeasible for
this problem. However, for Cascade, it is much easier to set the
iteration number since it is reasonable to set fp rate around 0.5.
Therefore, T = 20 is sufficient for the face detection problem,
since log2(2.284 × 109/5000) ≈ 19 (assuming a false positive
rate of 0.5).

E. Analysis of the Ensemble Strategy

As stated earlier, since minority class examples are used to
train each weak classifier in the proposed method, stacking
these classifiers may cause overfitting when the number of mi-
nority class examples is limited. To verify this, the 16 data sets
in Table II were used to compare stacking with the ensemble
strategy used in Easy and Cascade.

The AUC values are summarized in Table XIII. Similar to
the experiments in the previous section, the 16 data sets are
divided into groups based on the performance of AdaBoost.
When Cascade is used on “easy” tasks, stacking is inferior
to the original ensemble strategy on three out of six data sets,
while it is superior on only one data set. However, the difference
between the two strategies is small. The same observation holds
for Easy. On “hard” tasks, the performance of Cascade domi-
nates that of stacking on all data sets. As for Easy, there is only
one data set on which stacking is better. Generally speaking,
there are significant differences between the performance of
stacking and the current ensemble strategy used in our proposed
methods.

Therefore, stacking is not very suitable for the case when
minority class examples are used in each weak classifier. In
such a case, stacking may cause overfitting. This is probably
a major reason for Chan to be inferior to Easy.

F. Additional Remarks

We have the following remarks regarding the results in AUC,
F-measure, and G-mean on both “easy” and “hard” tasks.

1) The proposed methods EasyEnsemble and
BalanceCascade are more robust than many other
class-imbalance learning methods. When class imbalance
is not harmful, they do not cause serious degeneration of
performance. When class imbalance is indeed harmful,
they are better than almost all other methods we have
compared with.

2) Class imbalance is not harmful for some tasks, and ap-
plying class-imbalance learning methods in such cases
may lead to performance degeneration. A consequence of

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORATORY UNDERSAMPLING FOR CLASS-IMBALANCE LEARNING 549

this observation is that class-imbalance learning methods
should only be applied to tasks which suffer from class
imbalance. For this purpose, we need to develop some
methods to judge whether a task suffers from class im-
balance or not, before applying class-imbalance learning
methods to it.

3) We observed that on tasks which do not suffer from
class imbalance, AdaBoost and Bagging can improve the
performance of decision trees significantly, while on tasks
which suffer from class imbalance, they could not help
and sometimes even deteriorate the performance. This
might give us some clues on judging whether a task
suffers from class imbalance or not, which will be studied
in the future.

V. CONCLUSION

This paper extends our preliminary work [26] which pro-
posed two algorithms EasyEnsemble and BalanceCascade
for class-imbalance learning. Both algorithms are designed to
utilize the majority class examples ignored by undersampling,
while, at the same time, keeping its fast training speed. Both
algorithms sample multiple subsets of the majority class, train
an ensemble from each of these subsets, and combine all
weak classifiers in these ensembles into a final output. Both
algorithms make better use of the majority class than undersam-
pling, since multiple subsets contain more information than a
single one. The main difference is that EasyEnsemble samples
independent subsets, while BalanceCascade uses trained clas-
sifiers to guide the sampling process for subsequent classifiers.
Both algorithms have approximately the same training time
as that of undersampling when the same number of weak
classifiers is used.

Empirical results suggest that for problems on which ordi-
nary methods achieve high AUC (e.g., ≥ 0.95), class-imbalance
learning is not helpful. However, the proposed methods can
be used to reduce training time. For problems where class-
imbalance learning methods really help, both EasyEnsemble
and BalanceCascade have higher AUC, F-measure, and
G-mean than almost all other compared methods, and
the former is superior than the latter. However, since
BalanceCascade removes correctly classified majority class
examples in each iteration, it will be more efficient on highly
imbalanced data sets. In addition, the comparison of Chan and
our proposed methods reveals that it is not necessary to use all
examples in the majority class.

In the current version of the proposed methods, we use αi,j

returned by the weak learner directly. Further improvements
are possible by learning αi,j , as shown in [22] and [41]. Note
that both EasyEnsemble and BalanceCascade are ensemble
methods. Therefore, while they provide strong generalization
ability, they also inherit the weaknesses of ensemble methods.
An apparent weakness is the lack of comprehensibility. Even
when the base classifiers are comprehensible symbolic learners,
ensembles are still black boxes. There are some research on
this problem [44]–[46], and it is possible to use those research
outputs to enhance the comprehensibility of EasyEnsemble
and BalanceCascade.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers and the associate editor for their helpful comments and
suggestions.

REFERENCES

[1] G. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20–29, Jun. 2004.

[2] E. Bauer and R. Kohavi, “An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36,
no. 1/2, pp. 105–139, Jul./Aug. 1999.

[3] C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine
Learning Databases. Irvine, CA: Dept. Inf. Comput. Sci., Univ.
California. [Online]. Available: http://www.ics.uci.edu/~mlearn/
MLRepository.html

[4] A. P. Bradley, “The use of the area under the ROC curve in the evalua-
tion of machine learning algorithms,” Pattern Recognit., vol. 30, no. 6,
pp. 1145–1159, Jul. 1997.

[5] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–
140, Aug. 1996.

[6] L. Breiman, “Random forest,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[7] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Boca Raton, FL: CRC Press, 1984.

[8] P. K. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection,”
in Proc. 4th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
New York, 1998, pp. 164–168.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321–357, 2002.

[10] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special issue on
learning from imbalanced data sets,” ACM SIGKDD Explor. Newslett.,
vol. 6, no. 1, pp. 1–6, Jun. 2004.

[11] N. V. Chawla, N. Japkowicz, and A. Kotcz, Eds., Proc. ICML Workshop
Learn. Imbalanced Data Sets, 2003.

[12] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,” in Proc.
7th Eur. Conf. Principles Pract. Knowl. Discov. Databases, Cavtat-
Dubrovnik, Croatia, 2003, pp. 107–119.

[13] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbal-
anced data,” Dept. Statistics, Univ. California, Berkeley, CA, Tech. Rep.
666, 2004.

[14] P. Domingos, “MetaCost: A general method for making classifiers cost-
sensitive,” in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, San Diego, CA, 1999, pp. 155–164.

[15] C. Drummond and R. C. Holte, “C4.5, class imbalance, and cost sen-
sitivity: Why under-sampling beats over-sampling,” in Proc. Working
Notes ICML Workshop Learn. Imbalanced Data Sets, Washington DC,
2003.

[16] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. 17th Int.
Joint Conf. Artif. Intell., Seattle, WA, 2001, pp. 973–978.

[17] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost: Misclassification
cost-sensitive boosting,” in Proc. 16th Int. Conf. Mach. Learn.. Bled,
Slovenia, 1999, pp. 97–105.

[18] T. Fawcett, “ROC graphs: Notes and practical considerations for re-
searchers,” HP Labs, Palo Alto, CA, Tech. Rep. HPL-2003-4, 2003.

[19] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal.,
vol. 38, no. 4, pp. 367–378, Feb. 2002.

[20] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York:
Academic, 1990.

[21] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boost-
ing and data generation: The data boost-IM approach,” ACM SIGKDD
Explor. Newslett., vol. 6, no. 1, pp. 30–39, 2004.

[22] K. Huang, H. Yang, I. King, and M. R. Lyu, “Learning classifiers from
imbalanced data based on biased minimax probability machine,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., Washington DC,
2004, pp. 558–563.

[23] N. Japkowicz, Ed., Proc. AAAI Workshop Learn. Imbalanced Data Sets,
2000.

[24] G. J. Karakoulas and J. Shawe-Taylor, “Optimizing classifiers for imbal-
anced training sets,” in Proc. Adv. Neural Inf. Process. Syst. 11, 1999,
pp. 253–259.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

[25] M. Kubat and S. Matwin, “Addressing the curse of imbalanced train-
ing sets: One-sided selection,” in Proc. 14th Int. Conf. Mach. Learn.,
Nashville, TN, 1997, pp. 179–186.

[26] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling for class-
imbalance learning,” in Proc. 6th IEEE Int. Conf. Data Mining, Hong
Kong, 2006, pp. 965–969.

[27] F.-Z. Marcos, “On the usefulness of almost-redundant information
for pattern recognition,” in Proc. Summer School Neural Netw., 2004,
pp. 357–364.

[28] H. Masnadi-Shirazi and N. Vasconcelos, “Asymmetric boosting,” in Proc.
24th Int. Conf. Mach. Learn., Corvallis, OR, 2007, pp. 609–619.

[29] R. E. Schapire, “A brief introduction to boosting,” in Proc. 16th Int. Joint
Conf. Artif. Intell., Stockholm, Sweden, 1999, pp. 1401–1406.

[30] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and Rocchio applied
to text filtering,” in Proc. 4th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 1998, pp. 215–223.

[31] K. M. Ting, “An empirical study of MetaCost using boosting al-
gorithms,” in Proc. 11th Eur. Conf. Mach. Learn., Barcelona, Spain, 2000,
pp. 413–425.

[32] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” J. Artif.
Intell. Res., vol. 10, pp. 271–289, 1999.

[33] P. Viola and M. Jones, “Fast and robust classification using asymmetric
AdaBoost and a detector cascade,” in Proc. Adv. Neural Inf. Process.
Syst. 14, T. G. Dietterich, S. Becker and Z. Ghahramani, Eds. Cambridge,
MA: MIT, 2002, pp. 1311–1318.

[34] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, May 2004.

[35] G. I. Webb, “MultiBoosting: A technique for combining boosting and
wagging,” Mach. Learn., vol. 40, no. 2, pp. 159–196, Aug. 2000.

[36] G. I. Webb and Z. Zheng, “Multistrategy ensemble learning: Reducing
error by combining ensemble learning techniques,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 8, pp. 980–991, Aug. 2004.

[37] G. M. Weiss, “Mining with rarity: A unifying framework,” ACM SIGKDD
Explor. Newslett., vol. 6, no. 1, pp. 7–19, Jun. 2004.

[38] G. M. Weiss and F. Provost, “Learning when training data are costly: The
effect of class distributions on tree induction,” J. Artif. Intell. Res., vol. 19,
pp. 315–354, 2003.

[39] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Mateo, CA: Morgan Kaufmann, 2005.

[40] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5, no. 2,
pp. 241–260, 1992.

[41] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast asymmetric
learning for cascade face detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 3, pp. 369–382, Mar. 2008.

[42] Y. Yu, Z.-H. Zhou, and K. M. Ting, “Cocktail ensemble for regression,” in
Proc. 7th IEEE Int. Conf. Data Mining, Omeha, NE, 2007, pp. 721–726.

[43] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by cost-
proportionate example weighting,” in Proc. 3rd IEEE Int. Conf. Data
Mining, Melbourne, FL, 2003, pp. 435–442.

[44] Z.-H. Zhou and Y. Jiang, “Medical diagnosis with C4.5 rule preceded by
artificial neural network ensemble,” IEEE Trans. Inf. Technol. Biomed.,
vol. 7, no. 1, pp. 37–42, Mar. 2003.

[45] Z.-H. Zhou and Y. Jiang, “NeC4.5: Neural ensemble based C4.5,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 6, pp. 770–773, Jun. 2004.

[46] Z.-H. Zhou, Y. Jiang, and S.-F. Chen, “Extracting symbolic rules from
trained neural network ensembles,” AI Commun., vol. 16, no. 1, pp. 3–15,
May 2003.

[47] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 1, pp. 63–77, Jan. 2006.

Xu-Ying Liu received the B.Sc. degree in computer
science from Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2003, and the M.Sc.
degree in computer science from Nanjing University,
Nanjing, in 2006. She is currently working toward
the Ph.D. degree in the National Key Laboratory for
Novel Software Technology, Department of Com-
puter Science and Technology, Nanjing University.

She is a member of the LAMDA Group. Her
research interests include machine learning and data
mining, particularly in cost-sensitive and class im-

balance learning.

Jianxin Wu received the B.S. degree and M.Sc.
degree in computer science from Nanjing University,
Nanjing, China. He is currently working toward the
Ph.D. degree in the School of Interactive Computing,
College of Computing, Georgia Institute of Technol-
ogy, Atlanta, under the supervision of Dr. J. M. Rehg.

His research interests include computer vision,
machine learning, and robotics.

Zhi-Hua Zhou (S’00–M’01–SM’06) received the
B.Sc., M.Sc., and Ph.D. degrees in computer science
from Nanjing University, Nanjing, China, in 1996,
1998, and 2000, respectively, all with the highest
honors.

He joined the Department of Computer Science
and Technology, Nanjing University, as an Assistant
Professor, in 2001, where he is currently a Cheung
Kong Professor and the Director of the LAMDA
group. His research interests include artificial in-
telligence, machine learning, data mining, pattern

recognition, information retrieval, evolutionary computation, and neural com-
putation. In these areas, he has published over 60 papers in leading international
journals or conference proceedings.

Dr. Zhou is a senior member of China Computer Federation (CCF), the Vice
Chair of the CCF Artificial Intelligence and Pattern Recognition Society, an
Executive Committee member of Chinese Association of Artificial Intelligence
(CAAI), the Chair of the CAAI Machine Learning Society, and the Chair of the
IEEE Computer Society Nanjing Chapter. He is a member of AAAI and ACM,
and a senior member of the IEEE Computer Society. He is an Associate Editor
of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

and an Associate Editor-in-Chief of Chinese Science Bulletin and on the
editorial boards of Artificial Intelligence in Medicine, Intelligent Data Analysis,
Knowledge and Information Systems, Science in China, etc. He is/was a
PAKDD Steering Committee member; Program Committee Chair/Cochair of
PAKDD’07 and PRICAI’08; Vice Chair/Area Chair of ICDM’06, ICDM’08,
etc.; Program Committee member of various international conferences, in-
cluding AAAI, ICML, ECML, SIGKDD, ICDM, ACM Multimedia, etc.; and
General Chair/Cochair or Program Committee Chair/Cochair of a dozen of
native conferences. He has won various awards/honors, including the National
Science and Technology Award for Young Scholars of China (2006), the
Award of National Science Fund for Distinguished Young Scholars of China
(2003), the National Excellent Doctoral Dissertation Award of China (2003),
the Microsoft Young Professorship Award (2006), etc.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 09,2010 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.

