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A n important question in large-data ana-

lytics is this: How can users interact with 

incremental visualization—that is, queries 

that operate on progressively larger samples from 

a database? To answer that question, we exam-

ined how analysts interacted with visualizations 

employing the standard implementation of error 

bars over bar charts. This type of visualization’s 

shortcomings led us to explore alternative visual-

izations that express probability distributions: ways 

to picture the results of yet-incomplete computa-

tion. Such alternatives let users interact more easily 

with large datasets.

The Need for Interactive Approximate 
Querying
Data is now born digital, generated from simula-

tions, collected from click logs, and gathered from 

thousands of devices sensing and recording their 

environments. Computing power hasn’t kept pace 

with this growth. Often, researchers facing large-

data-analysis problems carefully check their code, 

cross their �ngers, and submit their query to the 

queue. They won’t know if the query was incorrect 

until the job terminates the next morning.

Processing data queries can take hours, as high-

performance clusters churn through massive da-

tasets. This slow throughput means that analysts 

must carefully consider their choices—they might 

only be able to ask a few queries of a large dataset 

in the course of a study. This contrasts with ex-

ploratory visualization, in which analysts expect 

to try a long series of visualizations, exploring the 

relationships between dimensions, testing hypoth-

eses, and freely pivoting through the data.

The queries that users issue in exploratory visu-

alization differ fundamentally from those arising 

in noninteractive batch systems. 

In exploratory systems, users 

will try riskier queries and can 

modify their subsequent queries 

with the previous ones in mind. 

We want, therefore, to support 

interactive queries that can give 

users rapid results.

Although tools such as column-

oriented databases and massively 

parallel data engines such as 

Google’s Dremel can help slice 

through data more rapidly, there 

will likely always be situations 

with more data than computing 

time. A query that requires processing or examining 

a stream of images, for example, will typically be 

slow because it requires signi�cant processing 

at each instance. A dataset with sparse points of 

Large datasets can mean slow 

queries, for which users must 

wait. Incremental visualization 

systems can give faster 

results at a cost of accuracy. 

This article asked analysts 

to use one and report on 

their results. Their feedback 

provides suggestions for 

alternative visualizations 

to represent a query still in 

progress.
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interest (such as searching through query logs) might 

similarly take much time to process completely.

Online query processing is meant to help enable 

exploratory data visualization on very large data-

sets. A series of incremental queries returns partial 

results obtained by processing progressively larger 

random samples from the underlying data. This 

approach is most successful with aggregate func-

tions such as sums and averages. Although you 

can’t compute a precise aggregate without looking 

at all the data, you can often approximate it with 

high accuracy by looking at only a small fraction 

of the data.

We can estimate this approximation’s quality. 

An estimate’s bounds are a function of the un-

derlying dataset’s variance. They shrink with the 

square root of the number of values seen to that 

point. So, we can present probability distributions, 

rather than �xed values, to users. Users can under-

stand whether the result in their current sample 

will likely be de�nitive or whether they should 

wait longer for further results. This is a novel ex-

perience for users: visualization tools usually don’t 

display distributions.

Incremental Queries against Big Data
To explore how users interact with exploratory vi-

sualization, we developed sampleAction, a proto-

type system that presents a realistic experience to 

users.1 The system incrementally updates samples 

from a real database, but at far smaller scales than 

we would expect from a production-class system. 

We run queries at interactive speeds, allowing us 

to explore designs. The back end uses a SQL engine 

with queries modi�ed to return con�dence bounds 

and row counts, in addition to the aggregate values.

A bar chart is a common way to visualize an 

aggregate query’s results. One grouping variable 

serves as the x-axis; the aggregates’ values become 

y values. For example, a bar chart might show 

the average time that airline �ights are delayed, 

grouped by day of the week. Using approximate 

queries, we display an approximate aggregate: a 

con�dence interval in which we expect the value 

to fall once the computation �nishes. We can rep-

resent this con�dence interval using traditional 

error bars, showing the range that covers 95 per-

cent of the expected values (see Figure 1b). This is 

precisely the structure that previous research has 

used, including the Control project. (See the side-

bar for more information on Control.)

The front end of sampleAction is a simpli�ed 

Tableau-like (http://tableausoftware.com) inter-

face that lets users visually construct aggregate 

(a) (b)

(c)

Figure 1. The analytics panel in sampleAction, showing an incremental visualization in progress. (a) The 

shelves let users select data dimensions. The user is looking at an FAA database of �ight delays, examining 

average departure delay by day of the week. (b) In the visualization, small dots represent the 95 percent 

probability bounds. (c) The current status is that the visualization is showing estimates based on just 0.32 

percent of the dataset. After seeing only a fraction of the dataset, the user can see that �ights on Thursday 

and Friday are likely to be delayed by several minutes more than �ights on Saturday and Sunday.
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queries. Users can specify a series of independent 

dimensions and a measure. The system responds 

with partial results, displaying a bar chart with 

con�dence bounds. As the analyst waits, the sys-

tem increases its sample size every second, nar-

rowing the con�dence intervals and producing 

more precise results (see Figure 1). (Throughout 

this article, we use examples from the US Airline 

On-Time Performance dataset; http://explore.data.

gov/d/ar4r-an9z.)

Our initial prototype uses column charts, fol-

lowing the Control project. Error bars show the 

con�dence bounds around the data; the column 

height shows the estimated value. For example, in 

Figure 1, an analyst can conclude with 95 percent 

probability that the true average departure delay 

on Friday (day 5) is somewhere between 6 and 

12 minutes, whereas Saturday is between 3 and 9 

minutes. These conclusions are based on 56,000 

rows—just 0.32 percent of the full database. An 

analyst can pause or stop the incremental process 

at any time. In the current implementation, ana-

lysts can also start additional queries while the 

previous ones are running. All queries will con-

tinue to add samples and slowly converge.

We intentionally slowed our simulator to learn 

more about incremental queries’ behavior; it shows 

updates based on tens of thousands of rows per 

second. We expect that in a full implementation, 

we would see updates of millions of rows at a time.

Interacting with Con�dence Intervals
We wanted to understand how users interact with 

con�dence intervals and to understand the weak 

points; this information would drive our next 

round of design. In particular, we looked to un-

derstand what aspects of the visualization made it 

dif�cult for users to interpret their data and what 

tasks users were trying to accomplish.1

Setting Up the Study
We recruited three data experts from different ar-

eas in a large, data-intensive corporation who regu-

larly work with large datasets. Bob’s team manages 

server operations and generates static, visual re-

ports of his system’s performance once a day. Allan 

tracks marketing for online games; his team writes 

custom code based on a massive database to an-

swer speci�c customer requests. Sam is a researcher 

working on social media; he analyzes large corpora 

of messages, looking for trends in emotion.

All three of them had expressed interest in visu-

alizing data but hadn’t been able to explore their 

data. Bob and Allan created noninteractive visual-

ization tools based on static sets of queries. Sam 

had tried to visualize his data but became over-

whelmed by its scale.

We aimed to have these participants interact 

with data that they hadn’t previously visualized 

but with which they were fairly familiar. To prime 

them for the study, we asked them to consider the 

sorts of questions they would ask of these data-

sets. Although we expected them to diverge from 

their usual habits, we wanted to start with famil-

iar information, to evaluate the interface’s effects 

rather than the learning curve on the data. Each 

participant provided us with approximately a mil-

lion rows of sample data.

Results
We trained each participant on the interface and 

then let him explore it on his own. We found that 

each participant ran a series of queries. Although 

the participants would terminate some queries 

rapidly, they would let others run for a time be-

fore making a decision. For example, Bob quickly 

realized that his data had an error when he saw a 

column he didn’t expect. He found that the data 

had several error code values buried in it. To follow 

Exploratory data analysis is a way of learning about the charac-

teristics of a dataset by looking at its various distributions and 

values. The statistician John Tukey promoted the idea,1 which has 

inspired tools for rapidly visualizing data.

But the interactive nature of data exploration falls down with 

large datasets. We’re by no means the �rst to suggest that ex-

ploratory visualization can be part of a large-data process. In the 

Control project, Joseph Hellerstein and his colleagues argued that 

incremental queries can help users quickly get satisfying results 

to long queries by returning approximate rather than precise an-

swers.2 Control emphasized the database implications of building 

systems that support iterative queries. It left open the question of 

how users interact with these incremental computations.

Currently, we don’t know of back-end systems that implement 

interactive approximate queries. The closest, the commercial prod-

uct Infobright,3 generates a single-pass approximate value but 

doesn’t support estimates that converge over time. Generally, the 

research community continues to work on ways to make incre-

mental queries more ef�cient and approachable.
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his line of investigation, he needed to repeatedly 

add �lters to the query to remove the error codes.

Bob recognized that some of the logging his 

team was doing was wasted. One error was being 

triggered only after a different code had been trig-

gered; the two had identical counts and occurred 

under the same circumstances. After discussing 

this problem with the team, he had a better sense 

of how to adjust its data-logging procedures to re-

duce redundancy.

Allan wanted to explore questions of the average 

age of players, categorized by country and game. 

He was surprised to �nd that some combinations 

of games and countries had startlingly different 

average ages. To explore this mystery further, he 

started a long series of queries, looking at possible 

factors that could correlate with age.

Sam had been working with a list of keywords of 

interest and correlating them with the frequency 

of other data. He noticed that one keyword was far 

more frequent than the others; when he removed 

that keyword from the set, other distributions 

on his data changed signi�cantly. He realized he 

would have to readjust his experiment to account 

for this.

None of the three participants were accustomed 

to interactive queries. Each of them stumbled 

down blind alleys, made mistakes, and ended up 

issuing many queries (at least a dozen). This led to 

them exploring data that, in other circumstances, 

might have taken them weeks to explore—or, more 

likely, that they wouldn’t have explored at all.

User tasks. Although the explorations differed 

considerably, all three participants had common 

building-block operations that they performed re-

peatedly. They often compared bars to check which 

one was highest. For example, Allan wanted to 

know which country had the oldest average players 

of a game. All three looked for outliers whose val-

ues differed dramatically from that of the others.

The participants often wanted to compare two 

bar charts. For example, Scott wanted to compare 

the distribution of posts having a given word to 

the posts not having that word; Allan wanted to 

compare age distributions for two games. Because 

sampleAction doesn’t directly support multiple se-

ries, the participants approximated this in several 

ways, including creating multiple queries at once.

Obstacles to success. Although the participants were 

able to complete their queries, they still ran into 

issues with the visualization. The most important 

issues related to scale and perception of error bars. 

Generally, early during the computation, con�-

dence intervals can be broad—sometimes orders of 

magnitude wider than the estimated values’ sizes. 

The participants sometimes faced a screen of large 

intervals with comparatively small values.

In Figure 2, for example, one airline, ML, has 

a con�dence interval ranging from approximately 

−700 to +700. The other airlines have much tighter 

constraints and therefore display much smaller 

ranges. Worst, this image’s most visually salient 

aspect is that the points with the least certainty 

are distinct from all the other points. Preferably, 

the data with the most-converged results would be 

the easiest to read.

The participants sometimes turned off the 

out-of-scale error bar display to track current es-

timates, but then would lose track of the range. 

Were they looking at a bar that had mostly con-

verged (such as AA), had partially converged (such 

as AS), or was still very wide (such as PS)?

For all three participants, then, traditional error 

bars were a poor match for their tasks. For incre-

mental visualization to be a realistic opportunity, 

we must �nd a visualization that can be adapted 

to the special constraints of uncertain results and 

animating data.

Alternative Visualizations
In response to these challenges, we considered al-

ternative designs that can help users compare dis-

tributions. Any alternative to a bar chart with error 

bars should continue to be effective even when 

distributions are on substantially different scales. 

We �rst explored representations that would both 

Figure 2. The average delay of different airlines across the dataset. Con�dence intervals for a few airlines are wide, whereas most 

airlines have narrow con�dence intervals at this stage. The bars are all but invisible owing to the huge intervals.
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carry out the required tasks and help clarify the 

nature of the uncertainty. On the basis of these 

issues, we established four basic design principles, 

which we can use to evaluate visualizations:

 ■ Reduce to a bar chart. As a con�dence interval’s 

size shrinks toward zero, the visualization should 

show an unambiguous (and familiar) single 

point.

 ■ Allow zooming. If a bar doesn’t �t onscreen, users 

should understand whether the region they’re 

looking at is probable or improbable.

 ■ Allow comparison. If users look at two bars side by 

side, they should be able to estimate which bar is 

more likely to have a smaller or larger value.

 ■ Map to animation well. As the con�dence inter-

val converges, the visualization should change 

smoothly. A bar chart with error bars scores 

poorly on these criteria. Error bars are dif�cult 

to compare, except in extreme cases when the 

con�dence intervals don’t overlap. A zoomed-in 

error bar can look like a vertical line without 

features and therefore isn’t safe at scale.

Inspired by a recent review,2 we considered sev-

eral representations with the probability distri-

bution as a cumulative density function. Many 

contemporary types of visualizations are meant 

for distributions across a real sample and thus 

show individual values. Unlike traditional box 

plots, which are based on individual data points, 

these distributions result from a prediction func-

tion. Other researchers have also examined these 

problems, suggesting a suite of possible uncer-

tainty visualizations that modify bar, pie, and line 

charts with fuzzy uncertain zones as well as error 

bars.3 One of the authors, Danyel Fisher, has de-

scribed some of the strategies for large-data and 

uncertainty visualization.4

Computing a cumulative density function is a 

generalization of traditional error bars. Traditional 

error bars, such as the 90 percent range of Figure 

1, mean that there’s a 90 percent chance that the 

�nal value will fall in this range and a 10 percent 

chance that it won’t. If we extend that value, we 

can compute the probability that the true value 

will be outside this point. We choose to look at the 

outside probability—the 10 percent, rather than 

the 90—to ensure that the function is at its high-

est value at the center.

We consider two particularly promising tech-

niques for illustrating these distributions: density 

strips and modi�ed box-percentile plots.

Density Strips
One natural way to visualize uncertainty might 

be by mapping darkness to certainty—and, indeed, 

several different researchers have used gradients 

to represent uncertainty.5,6 In our rendering, we 

set the highest probability value to be black, and 

allowed the bars to continue inde�nitely outward 

(see Figure 3). Bars that are converged will have 

a small dark area, whereas bars that haven’t con-

verged will have a much larger dark area.

Unfortunately, the dark areas overwhelm the 

visual area—the thick dark bars are more visible 
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Figure 3. Density strips (a) with black at the midpoint with a linear decrease and (b) modulated so that only 

the high-density levels are black. Subtle green tick marks represent percentiles at 10 percent intervals. The 

particular estimator of uncertainty used in this example has a large central portion that’s equally probable; 

consequently, the green bands are clustered at the edges.
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than the nearly converged values. So, we add one 

more rule to our collection: have appropriate vi-

sual salience. Values that have a narrow con�dence 

bound should be at least as easy to read as values 

that have a broader con�dence bound.

Christopher Jackson suggested scaling the shad-

ing to the largest density across all the strips.6 

However, that wouldn’t apply to our animated vi-

sualization. Users would expect it to grow darker as 

the dataset converges. Instead, we chose a thresh-

old we labeled “black.” We use the black level as a 

function of the bars’ estimate values.

Modi�ed Box-Percentile Plots
We can also map con�dence to bar width, per-

haps in conjunction with gradient visualization. 

We again de�ne the base thickness at the most 

probable point. At the 95 percent con�dence level, 

we draw a line 5 percent as thick as the thickness 

at the center (see Figure 4). This visualization can 

be useful even when bar color serves a different 

purpose, and, to some users, could be more evoca-

tive of the notion of likelihood. This visualization 

is a variant of the box-percentile plot.7

Again, we �nd that the solid bars’ visual salience 

is overwhelming; this scheme spends more ink on 

uncertain bars than on certain ones. We adapt 

this visualization to add the color schemes of den-

sity plots (see Figure 4b) to get a visualization sug-

gesting a value in both width and saturation.

Annotating the Visualization
A typical con�dence interval suggests the breadth 

of ranges that it can display by placing one tick 

at the center and additional caps at the interval’s 

ends. Unfortunately, if these three markers aren’t 

visible, users might not be able to tell where on the 

distribution their current value is. We add ribs to 

the gradients to show con�dence intervals at 10 

percent increments. These ribs help readers stay 

oriented in the bar.

All these variations reduce to a visualization 

much like a bar chart: a small thick area at the es-

timated value. All of them will work in an interface 

that includes zooming. (It’s perfectly acceptable 

for a bar to be taller than the screen.) Moreover, 

they all change smoothly as data shrinks, so they 

all allow smooth animation.

Figure 5 illustrates a dataset incrementally con-

verging. At the start, all the bars are diaphanous 

and indistinct. As the visualization progresses, the 

bars look more solid. Bars with little data remain 

wide, whereas bars with precise estimates become 

tight and dark. The user can easily tell which data 

is currently interpretable; unconverged bars are 

still visible, but not overwhelming.

We aim to provide a visualization that lets users 

make decisions as incremental data streams in. So, 

it would be valuable for the tool to let them com-

pare distributions. In general, the question to ad-

dress is, how likely is it that this bar will converge 

on a greater value than that bar?

A Direct-Comparison Tool
If we relax the constraint on the results looking 

like a bar chart, an interesting possibility opens up 

for users to directly compare two distributions. The 

fundamental technique is to look at the relative 
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Figure 4. Box-percentile plots. (a) A plot drawn in full black has a visual salience that’s overwhelming. (b) 

Adding the color modulation from Figure 3 to the same shape produces a visualization suggesting a value in 

both width and saturation.
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probabilities of values. So, when computation 

starts, we might see that the airline UA has a 70 

percent likelihood of having the highest value, 

whereas AA has only a 30 percent likelihood. As 

more data comes in, we might see this distribution 

change until the probability of one value being 

the largest converges to almost 100 percent. Such 

approaches can be extended to handle not just 

total ordering but also the difference’s magnitude 

(for example, “What’s the probability that x is 10 

units larger than y?”).

Our technique for �nding this is inspired by 

techniques developed for experimental ranking 

and selection.8 Those techniques take into account 

both the underlying distributions’ observed vari-

ance and the aggregate values’ magnitude.

Under some simplifying assumptions, we com-

pute these direct comparisons via a convolution of 

the underlying value-probability distributions. We 

illustrate this for the comparison of two aggregate 

values V1 and V2. D1 and D2 denote the correspond-

ing cumulative probability distributions, which we 

de�ne as follows. Let D1(x) be the smallest value t 

such that the probability that V1 is larger than t is 

greater than or equal to x. (We de�ne D2(x) simi-

larly.) So, when x is 0.025, D1 returns the lower 

bound of the 95 percent con�dence interval; when 

x is 0.975, D1 returns the upper bound.

We then compute a discrete approximation of 

the convolution of D1 and D2 to quickly estimate 

the probability that V1 > V2. We do this by sam-

pling D1 and D2 at periodic intervals and measur-

ing for which fraction of all point pairs it holds 

that D1 > D2. Essentially, we’re approximating the 

probability with which one distribution will re-

turn a larger value than the other across all com-

binations of discrete intervals. Figure 6 illustrates 

this convolution technique.

After this set of samples is complete, we can com-

pare the number of cases in which each value is 

greater than the other. We can represent this sum 

as a pie chart showing the chances that one distri-

bution will produce a higher value than the other. 

Users can decide what level of certainty is suf�cient 

for them to move ahead with their calculations.

We can extend this equation to �nd the maxi-

mum value of arbitrarily many distributions. We 
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Figure 5. A tinted, shaped representation of the same query at three time intervals: (a) the very beginning, when all estimates are 

uncertain; (b) when several estimates have largely converged; and (c) when most estimates have converged.
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Figure 6. Convolving distributions D1 and D2. The 

distributions are illustrated for their value by 

probability. For probability ranges across the two 

distributions, values at which D1 is greater than D2 are 

red; those for which D2 is greater than D1 are blue. Of 

the 49 cells, D2  is greater than D1 in 29 of them. Thus, 

we would see that there is a 59.2% chance that the 

�nal, converged value of D2 will be greater than D1.
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do this simply by looking for the maximum value of 

each possible combination of the multiple distribu-

tions (although at substantial computational cost).

We can present the output of this computa-

tion as a miniature pie chart. Such charts show 

the chances that a given bar will end up being 

highest. In Figure 7, the small pies are part of a 

clustered bar chart, comparing columns. In other 

systems, users might manually choose pairs of 

columns to compare.

We invite the community to explore ways to 

maintain interactive speeds—and thus ex-

ploratory techniques—even as data moves to larger 

computation. Although this article focuses on in-

cremental and approximate computation and vi-

sualization, other strategies and architectures for 

ensuring queries that produce rapid results are pos-

sible. The age of big data shouldn’t bring us back to 

the techniques of punch-card computing. Rather, as 

data moves to the cloud and the cluster, we must 

search for ways to ensure that exploratory visualiza-

tion’s powerful techniques follow it. 
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Miniature pie charts show the probability of a �ight delay. Although 

pairs that haven’t yet converged, such as ML, are still dif�cult to predict, 

the estimator can make a better guess for converged pairs.
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