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Abstract— This paper describes a real-time im-
plementation of feature-based concurrent mapping
and localization (CML) running on a mobile robot
in a dynamic indoor environment. Novel character-
istics of this work include: (1) a hierarchical repre-
sentation of uncertain geometric relationships that
extends the SPMap framework, (2) use of robust
statistics to perform extraction of line segments
from laser data in real-time, and (3) the integration
of CML with a “roadmap” path planning method
for autonomous trajectory execution. These inno-
vations are combined to demonstrate the ability for
a mobile robot to autonomously return back to its
starting position within a few centimeters of preci-
sion, despite the presence of numerous people walk-
ing through the environment.

I. Introduction

Simply put, concurrent mapping and localiza-
tion (CML) is the task of having a robot au-
tonomously build a map of an unknown environ-
ment while at the same time using that map to
determine its position. While there have been nu-
merous published papers on the problem of CML
in the past few years, there have been only a lim-
ited number of implementations of CML that have
been operated in real-time. To our knowledge,
none of these implementations (with the possible
exception of Thrun [1]) have used CML in real-
time to actually control the motion of the robot.

This paper describes a novel, real-time imple-
mentation of CML running on a mobile robot in a
dynamic indoor environment. The CML algorithm
is actively used to navigate the robot. The preci-
sion and robustness of the CML process is illus-
trated by having a B21 mobile robot start explor-
ing a busy hallway at MIT from a position marked
with small coins on the floor. After a substantial
interval the robot was commanded to return under
autonomous control to its starting point. Despite
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the difficulties of map building in dynamic environ-
ments the robot stopped within 2cm of the marker
dimes.

The system described in this paper is entirely
operating system independent. This fact coupled
with the generality of the underlying mathematics
and software architecture allows rapid deployment
on new vehicles with various sensor configurations,
operating systems and geometries. For example
the software was installed and ran real-time CML
on a Labmate at the University of Zaragoza, Spain
in an afternoon.

The union of these two demonstrations makes
an important point. CML is reaching the point
of maturity at which it can be considered to be
an important piece of the automation engineer’s
toolbox. It is possible to use CML to perform use-
ful tasks – this paper demonstrates its use for au-
tonomous homing. The method does not need to
be hand-crafted to work on specific vehicles.

II. Modeling Uncertainty

The importance of the choice made in the rep-
resentation of the robot’s environment cannot be
under-stated. The shape and characteristics of the
ensuing CML algorithm are highly dependent on
this fundamental decision. To date the spectrum
of representations is large, ranging from none at
all [2] through grid based approaches [3] to prob-
abilistic approaches. The later class have had the
greatest success at achieving CML and can be fur-
ther classified into feature based CML [4], [5], [6],
[7] and data-based estimation [1].

In this paper we adopt a feature based approach.
In general proprioceptive sensor data is processed
to estimate parameterized geometric representa-
tions of real world entities such as walls, corners
or more complex compound objects.

The entire environment is described by parame-
terizing 2D transformations between geometric en-
tities. For example a robot can be described by
the transformation from some arbitrary reference
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frame to a common reference point (CRP) on the
robot. If the robot possesses sensors then these
are described as a transformation from the robot’s
CRP to their own centers. Similarly, the observa-
tions that a sensor makes of a real life landmark
can be expressed as a transformation from sen-
sor to perceived entity. Sequential combination
of these transformations allows any one modelled
component to be expressed in the coordinate frame
of any other.

Writing the transformation from frame i to
frame j as xi,j we define the composition opera-
tor such that

xi,j = xi,[·] ⊕ x[·],j (1)

The inverse composition operator is also defined
such that

xi,j = ªxj,i (2)

It is useful to visualize the structure of the model
and the and relationships between its elements as
a tree of transformations as shown in Figure 1.
By sequential application of the composition op-
erators it is possible to express any entity j in the
coordinate frame of entity i by traversing the tree
from entity i to entity j. Traversal down the tree
towards leaves requires compound application of
the composition operator ⊕ whereas traversal up
the tree towards the root requires compound com-
position with the inverse transformation between
nodes. Using a tree representation the exploration
of new environments and discovery of new features

results in tree growth while removal of erroneous
or unwanted features becomes a task of tree prun-
ing.

In the case of CML geometric entities not
only have position but also an associated uncer-
tainty. The transformation of uncertainties be-
tween coordinate frames is a well-known process
in robotics [7] and is accomplished by evaluating
the Jacobians of the composition operators. The
system discussed in this paper utilizes the SPMap
method of Castellanos et al. [8], which places this
concept into a compact and succinct framework.
The SPMap allows for the easy manipulation of
different feature types, such as lines, points, and
planes, with the same set of update equations.

The method is best understood with reference to
Figure 2. Consider the transformation xf ,e where
the observation e is with respect to feature f ’s co-
ordinate frame. If the measurement truly is an
observation of this feature then xf ,e must be zero.
Using the composition operators this can be ex-
pressed as

0 = Bf ,e[ªxw,f ⊕ xw,r ⊕ xr,s ⊕ xs,e] (3)

where Bf ,e is a row selection matrix that selects
the relevant coordinates. With reference to Fig-
ure 2 where a line segment observation is being
matched to a line feature only the lateral and ori-
entation parameters are relevant and so Bf ,e =
[

0 1 0
0 0 1

]

. Castellanos et al. [8] demonstrate how

3 can be differentiated to produce a single set of
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observation equations for use in an error state ex-
tended Kalman filter regardless of feature and ob-
servation type.

Irrespective of the use of the SPMap (indeed
the system can be set to use conventional feature
based representations [5]) at the heart of the sys-
tem lies an extended Kalman filter (EKF). The
EKF estimates at time i the state vector x̂(i|j)
and an associated covariance matrix P(i|j) given
all observations up to time j. The state vector
is the augmentation of the estimated vehicle state
x̂v (i|j) and N feature states p̂1 ..N (i|j).

x̂(i|j) =
[

x̂v (i|j)
T p̂1 (i|j)

T · · · p̂N (i|j)
T
]T

(4)

At time k an observation z(k) of a feature be-
comes available. The observation is stochastically
gated [9] with all existing features in the state
vector in order to associate it with a particular
feature. If successful, the observation is used to
update the entire state vector using the standard
CML Kalman equations to produce a new esti-
mates x̂(i|j) and P(i|j).

A major component of CML is the discovery of
new features and so we expect to not be able to
associate z(k) to any feature on a frequent basis.
In this case a new feature p̂N+1 (k|k) is added to
the state vector and representation tree such that

p̂N+1 (k|k) = g(x̂v (k − 1|k − 1), z(k)) (5)

. The correlations of this new feature are also cal-
culated and inserted into P (k|k) as originally de-
scribed in [4]. In many scenarios, one with range
only observations for example, it is not possible
to initialize a new feature from a single observa-
tion. In this case the delayed decision framework
described in [10] is invoked which allows for consis-
tent multi-vantage point initialization of new fea-
tures. Although implemented in the discussed sys-
tem the experiments described use a laser scanner
to produce line-segment observations which carry
enough information to initialize new features.

III. Implementation

This section discusses some of the architectural
and systems level issues involved in the develop-
ment of the CML software discussed in this paper
– the CMLKernel.

The broad architecture of the software discussed
in this section and its relationship to the physi-
cal world and client applications is shown in Fig-
ure 3. The tree representation of geometric enti-

ties, together with the unifying observation equa-
tions of the SPMap method, provide strong mo-
tivation for adopting an object oriented program-
ming paradigm – one in which all physical entities
are modeled as specializations of a fundamental
object providing tree traversal, coordinate and un-
certainty transformation functionality. The CM-
LKernel was implemented in vanilla C++ making
significant use of the standard template library.
Data is fed into the Kernel as ASCII sensor data
strings. Similarly estimates of features and vehi-
cle location can be retrieved in string ASCII string
format. In this manner the CMLKernel can be
viewed as a stand-alone navigation sensor requir-
ing only serial port or TCP/IP connections hence
avoiding tiresome software integration problems
and facilitating rapid deployment. Accompany-
ing the CMLKernel are two distinct components.
Firstly, there is a hardware abstraction layer that
provides an interface to the mechatronics of the
host vehicle. This software provides clearly de-
fined areas in which vehicle/sensor dependent code
must be written to allow control of the vehicle and
gathering of sensor data. The advantages of this
abstraction layer were made evident during the de-
ployment at the University of Zaragoza. In addi-
tion to declaring the new vehicle geometry, only
the mapping from generic motion commands to
the Labmate’s actuation interface and raw sensor
data to string format needed to be written – a task
that was swiftly accomplished.

Secondly, a platform independent Berkeley
socket-based communications system binds any
number of vehicles, control and logging applica-
tions (including the CMLKernel) into a collabo-
rating whole. This software, based on commonly
found API, offers remarkable flexibility in configu-
ration for example the hardware abstraction layer
can be running on a vehicle running RT Linux
while the CMLKernel itself is running on an NT
machine connected via radio ethernet.

Although a complex piece of software the CM-
LKernel can be understood as having a few distinct
components.

Input management It is not assumed that sensor
data arrives in a time ordered fashion. For ex-
ample on the B21 laser data arrives with a 0.7
second lag whereas the odometry is almost instan-
taneous. The input stage acts as a time-based
priority queue that guarantees synchronous input
into the rest of the kernel. Another crucial role
of this stage is load monitoring of the system. If
the average CPU load µ, 0 < µ < 1.0 exceeds a
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Fig. 3. An architecture for real-time CML

configurable threshold τ then a fraction λ of non-
odometry input data is removed from the input
stream. The number λ is the output if a IIR filter
λt = α(µ−τ)+(1−α)λt−1 where α is the filter gain
and is typically set to 0.99. This simple action en-
sures that an unforeseen explosion in the number
of features and hence computation time required
to iterate the filter will not render the system un-
responsive to control commands because of CPU
overloading leading to dangerous behavior.
Observation Creation This stage converts raw sen-
sor data into observations. This may involve the
extraction of segments from laser scans or the uti-
lization of delayed decision making [10] to combine
sonar data measurements from multiple vantage
points.
Data Association This stage tries to associate ob-
servations with existing features or if no associa-
tion is found potentially create new features. This
is the most costly of the stages in terms of compu-
tation time. The process is split into three distinct
stages. Firstly an appeal is made to the sensor
physics - a decision is made on whether it is phys-
ically possible for the sensor be observing the hy-
pothesized feature. For example the feature may
be out of range of a laser scanner or in the case of
sonar sensors at too great an angle of incidence to
provide an acoustic return. Secondly a crude non

stochastic gate is applied. In one guise this step
may prevent a segment observation being associ-
ated with a line feature with which it is co-linear
but not intersecting - for example two sides of a
door frame. See Section III-B for more discussion
on this. Finally a chi-squared test on the innova-
tion – the difference between predicted and actual
observation – is performed. Only if all three tests
pass does the observation become associated with
the hypothesized feature. It is possible that the
observation can be associated with more than one
feature, in which case the observation is marked as
ambiguous and not used in any further processing.
Recent work has augmented the CMLKernel with
the Joint Compatibility Test [11] which allows the
resolution of the ambiguity resulting from multiple
associations of an observation.
Update Here new, associated observations are
fused with prior estimates within the EKF. If no
associated observations are available then a pre-
dict only cycle occurs with the odometry data be-
ing used as a control input into the vehicle model.
Output management Finally ASCII representa-
tions of the state estimates are made and stored
for retrieval by a third-party when requested.

A. Feature Extraction

Although the CMLKernel is capable of process-
ing all kinds of proprioceptive sensor data, the re-
sults given in this paper are from running the ker-
nel with odometry and laser data. This section
briefly describes the process by which line seg-
ments are extracted from individual laser scans.
The details of the derivations and calculations of
the numeric values for the parameters discussed
can be found in [12].

At the heart of the process lies a technique read-
ily found in the robust statistics literature which
has many parallels to the RANSAC method fre-
quently used in the computer vision domain [12].
The method employed is a least median consensus
technique that tries to find a line with the least
median squared error between it and points in a
roughly linear subset of the scan. The first phase
is a classical split and merge algorithm [13] that
produces clusters of scan points that are approx-
imately linear. A least medians estimator is then
applied to each of these clusters in turn. For a
given expected outlier ratio, cluster size and re-
quired confidence interval, it is possible to calcu-
late the number, θ, of randomly chosen pairs of
points from which to generate a line hypothesis.
For each hypothesis H1···θ the median ϑHi

of the
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squared orthogonal distance δ
j
Hi
from the line to

the each point j in the remaining cloud of points is
calculated. The hypothesis Hmin with the small-
est median distance is then taken to be the best
linear fit.

Based on ϑHmin
a threshold distance τHmin

is
calculated which allows the jth point in the clus-
ter to be classed as an outlier and removed from
the cluster if δjHmin

> τHmin
. An eigenvalue de-

composition (or total least squares) is then carried
out on the remaining points to determine the best
fit and covariance of the line with respect to the
inliers alone. The resulting line and its associated
covariance is then passed as an observation to the
update stage of the CMLKernel. By specifying a
minimum acceptable segment observation length
this method can be made to be remarkably robust
in noisy environments, as will be shown in the re-
sults section.

A clear benefit of using line segment observa-
tions is the large amount of angular information
they convey. An observation of a wall resulting in
a segment observation of perhaps 1.5 m has very
little angular error with respect to the robot frame
of reference. This is of great consequence given
that it is well understood that large angular er-
rors in EKF based CML algorithms can lead to
instability and filter divergence.

B. Optional Browsing for Structure

As a background task the CMLKernel can op-
tionally be configured to browse its internal tree of
features and look for “anthropomorphic” structure
such as parallelism or orthogonality between line
type features – common phenomena in indoor en-
vironments. Randomly pairs of features are chosen
and hypotheses generated in the form of Equation
3 under the assumption that they are co-linear,
parallel or orthogonal. If a hypothesis passes a
chi-squared significance test [9], this hypothesis is
converted to an artificial observation with a config-
urable covariance or uncertainty (typically large).
The effect of this process is that lines that are al-
most orthogonal tend to become orthogonal, with
similar effects for parallel lines. Clearly invoking
this process while in a pathological environment
such as a large circular hall with gently curving but
“almost” straight walls would cause this method
to fail. It should also be stated that if this option
is used, a priori relative [7] information is being
added to the map and hence the correlations be-
tween features increase more rapidly than would
be the case in normal circumstances. However, at

no point is artificial absolute information added
and thus the limiting uncertainty in the absolute
feature locations remains unchanged.

C. Planning a Path Home

An important component of a successful CML
demonstration is a the ability of a robot to use the
feature based map to perform some useful action.
In this section we describe a method by which us-
ing a stochastic map built by the CMLKernel the
robot autonomously returned to its initial starting
position with less than one inch of error.

As the vehicle explores its environment the
CMLKernel occasionally drops “virtual free-space
markers” at its current estimated position. These
markers form a connected graph of regions of
free space [14]. Markers are only dropped when
the un-occluded distance to the nearest previously
dropped marker is greater than some arbitrary
value (in our experiments 1-2m). The task of nav-
igating to an arbitrary point then becomes one of
driving to the nearest virtual marker and then fol-
lowing the free space graph to get within an ac-
ceptable distance from the desired location. The
robot must then leave the “free space highway”
and drive in a straight line to the goal position.
The first free space marker is dropped at the initial
robot position. The task of returning home is then
reduced to one of traversing the free space graph
until the root node is reached. Each marker con-
tains a “score” that defines the minimum number
of markers from itself that need to be traversed be-
fore the origin or first dropped marker is reached.
In this manner at each node in the graph a decision
can be made as to which marker to head towards
next.

A simple control algorithm is used to execute
the transitions to free space markers. First the
robot rotates in-situ until its forward axis points
directly at the target marker xt. It then translates
the required distance to the goal position. While
undertaking this motion the CML process continu-
ally updates the location of the robot as and when
sensor data arrives. This allows dynamic feedback
to correct the vehicle trajectory in real time as a
function of the stochastic map.

IV. Experimental Results

This section describes a substantive deployment
of CML in a moderately sized and highly dynamic
environment. The experiment was undertaken in
a large hallway at MIT during a busy time of the
day. A commercially available B21 mobile robot
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Fig. 4. Re-observing an existing feature

Fig. 5. The experiment scene

fitted with a radio ethernet ran the hardware ab-
straction layer under Linux and relayed data via
the comms layer to a laptop running the CMLK-
ernel and a 3D OpenGL renderer under NT 1.

The only sensors used were a SICK laser scanner
and wheel encoders mounted on the vehicle. The
floor surface was a combination of sandstone tiles
and carpet mats providing alternatively high and
low wheel slippage.

The exploration stage was manually controlled
although it should be emphasized that this was
done without visual contact with the vehicle. The
output of the CMLKernel was rendered in 3D and
used as a real-time visualization tool of the robot’s
workspace. This enabled the remote operator to
“visit” previously un-explored areas while simul-
taneously building an accurate geometric repre-
sentation of the environment. This in itself is a
useful application of CML; nevertheless, future ex-
periments will implement an autonomous explore
function as well as the existing autonomous return.

To illustrate the accuracy of the CML algorithm
the starting position of the robot was marked with
four ten-cent coins; the robot then explored its
environment and when commanded used the re-
sulting map to return to its initial position and
park itself on top of the coins with less than 2cm
of error. The duration of the experiment was

1It is important to note that the kernel could just as well
have been run on the B21 itself but running a local version
offers debugging advantages.

a little over 20 minutes with just over 6MB of
data processed. The total distance travelled was
well in excess of 100m. Videos of various stages
of the experiment can be found in various for-
mats at http://oe.mit.edu/~pnewman. Figure 5
shows the environment in which the experiment
occurred. The main entrance hall to the MIT cam-
pus was undergoing renovation during which large
wood-clad pillars had been erected throughout the
hallway, yielding an interesting, landmark-rich and
densely populated area. Figures 4 and 6 show ren-
dered views of the estimated map during the ex-
ploration phase of the experiment. In Figure 4 the
robot can be seen to be applying a line segment
observation of an existing feature. In contrast Fig-
ure 6 shows an observation initializing a new fea-
ture just after the robot has turned a corner. The
dotted lines parallel to the walls are representa-
tions of lateral uncertainty in that wall feature2.
The vehicle was started with an initial uncertainty
of 0.35 m and as shown in [15] all features will in-
herit this uncertainty as a limiting lower bound in
their own uncertainty. The 1σ uncertainty of the
vehicle location is shown as a dotted ellipse around
the base of the vehicle.

Figure 9 shows an OpenGL view of the esti-
mated map towards the end of the experiment
when the robot is executing its homing algorithm.

2One benefit of the SPMap is that the states estimated for
line are precisely the lateral and angular errors of the wall
in its local coordinate frame, hence drawing the uncertainty
is a trivial matter.
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Fig. 6. Creating a new feature in the foreground following a rotation

Fig. 7. The starting position

Fig. 8. The robot posi-
tion after the completion
of the homing leg of the
mission

Fig. 9. A plan view of the CML map at the end of the
experiment. The approximate size of the environment
was a 20m by 15m rectangle.

The circles on the ground mark the free space
markers that were dropped during the exploration
phase of the experiment. The homing command
was given when the robot was at the far corner
of the hallway. Using the output of the CMLKer-
nel, the robot set the goal marker to be the closest
way point. When the algorithm deduces that the
vehicle is within an acceptable tolerance ε of the
present goal marker it sets the goal way-point to
be the closest marker that has a score less than the
present goal marker as described in Section III-C.
This then proceeds until the goal marker is the
origin or initial robot position. At this point the

goal seeking tolerance ε is reduced to 1cm. The
CMLKernel spent about thirty seconds command-
ing small adjustments to the location and pose of
the robot before declaring that the vehicle had in-
deed arrived back at its starting location. Fig-
ures 7 and 8 show the starting and finishing posi-
tions with respect to the coin markers. As can be
seen in these figures the vehicle returned to within
an inch of the starting location. Readers are in-
vited to view videos of this experiment and oth-
ers including navigation in a populated museum
at http://oe.mit.edu/~pnewman.

V. Future work

The CMLKernel is part of an ongoing pro-
gram of CML research at the MIT Department of
Ocean Engineering. The software is currently be-
ing deployed in the sub-sea domain on autonomous
underwater vehicles (AUVs) using inputs from
beacon-based long baseline acoustic systems with
no prior knowledge of beacon locations. The ex-
tension to multi-map navigation is an important
avenue to pursue, to enable real-time CML in
large-scale environments [16], [17], and is currently
underway. CML with multiple submaps can be
viewed as a depth-wise expansion of the represen-
tation tree. Vehicles belong to submaps which in
turn belong to the world frame.

Both the Joint Compatibility Test presented
in [11] and the delayed decision making framework
described in [10] have been implemented in the
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CMLKernel. However the fusion of these method-
ologies into a single approach may yield a robust
and powerful spatio-temporal data association and
feature creation capability.

As has always been the case with EKF-based
CML methods the algorithm is ill affected by the
effects of linearization in the presence of large an-
gular error. This situation is most likely to oc-
cur during or just after maneuvers containing a
large rotational components or when operating in
a large single map (rather tan using multiple small
maps). Detecting and coping with such scenar-
ios and actively controlling perception to minimize
angular error may significantly improve robustness
and facilitate performing CML around large loops.
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