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Abstract: We analyze four-dimensional quantum field theories with continuous 2-group

global symmetries. At the level of their charges, such symmetries are identical to a prod-

uct of continuous flavor or spacetime symmetries with a 1-form global symmetry U(1)
(1)
B ,

which arises from a conserved 2-form current J
(2)
B . Rather, 2-group symmetries are char-

acterized by deformed current algebras, with quantized structure constants, which allow

two flavor currents or stress tensors to fuse into J
(2)
B . This leads to unconventional Ward

identities, which constrain the allowed patterns of spontaneous 2-group symmetry breaking

and other aspects of the renormalization group flow. If J
(2)
B is coupled to a 2-form back-

ground gauge field B(2), the 2-group current algebra modifies the behavior of B(2) under

background gauge transformations. Its transformation rule takes the same form as in the

Green-Schwarz mechanism, but only involves the background gauge or gravity fields that

couple to the other 2-group currents. This makes it possible to partially cancel reducible

’t Hooft anomalies using Green-Schwarz counterterms for the 2-group background gauge

fields. The parts that cannot be cancelled are reinterpreted as mixed, global anomalies

involving U(1)
(1)
B , which receive contributions from topological, as well as massless, degrees

of freedom. Theories with 2-group symmetry are constructed by gauging an abelian flavor

symmetry with suitable mixed ’t Hooft anomalies, which leads to many simple and ex-

plicit examples. Some of them have dynamical string excitations that carry U(1)
(1)
B charge,

and 2-group symmetry determines certain ’t Hooft anomalies on the world sheets of these

strings. Finally, we point out that holographic theories with 2-group global symmetries

have a bulk description in terms of dynamical gauge fields that participate in a conventional

Green-Schwarz mechanism.
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1 Introduction

In this paper we discuss four-dimensional quantum field theories (QFTs) with continuous

global symmetries, such as ordinary flavor symmetries or Poincaré symmetry. As explained

in [1], there are also generalized q-form1 global symmetries U(1)
(q)
B , which arise from con-

served (q + 1)-form currents J
(q+1)
B . The objects that carry charge under such symmetries

are q-dimensional defect operators and dynamical q-brane excitations. We will mostly focus

on the case q = 1, i.e. on U(1)
(1)
B global symmetries that act on line operators and strings.

We will explore theories in which the associated conserved 2-form current J
(2)
B appears in

the operator product expansion (OPE) of two 1-form flavor currents or two stress tensors.

For reasons explained below, we refer to this structure, which mixes U(1)
(1)
B with flavor or

Poincaré symmetries at the level of their current algebras, as a 2-group global symmetry.

We will see that 2-group symmetries occur in many QFTs, including simple and familiar

ones, such as massless quantum electrodynamics (QED) with multiple flavors.

After reviewing the conserved currents and background gauge fields associated with

flavor, q-form, and Poincaré symmetries (section 1.1), we give a detailed introduction to

continuous 2-group symmetries. We first present them from the perspective of their back-

ground gauge fields, by analogy with the Green-Schwarz (GS) mechanism (sections 1.2

and 1.3), before discussing 2-group current algebras and the associated Ward identities

(section 1.4). In section 1.5, we summarize constraints on the allowed patterns of sponta-

neous 2-group symmetry breaking, as well as other aspects of renormalization group (RG)

flows with 2-group symmetry, that follow from the 2-group Ward identities.

1Throughout, we use a superscript (q) in parentheses to indicate a q-form.
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’t Hooft Anomalies for 2-group symmetries are discussed in section 1.6. There, certain

GS contact terms in two-point functions of J
(2)
B with abelian flavor currents, which are

intimately related to GS counterterms for the 2-group background gauge fields, play a

crucial role. These GS contact terms are four-dimensional analogues of the Chern-Simons

contact terms that were analyzed in [2, 3]. Some simple examples of QFTs with 2-group

symmetry are summarized in section 1.7, among them multi-flavor QED, a topological

quantum field theory (TQFT) with 2-group symmetry, and a theory with spontaneous 2-

group breaking. In section 1.8, we mention other work related to 2-group global symmetries

in QFT, most of which focuses on discrete 2-groups. There we also summarize some results

about continuous 2-group symmetries in six spacetime dimensions, which will appear in [4].

The introduction gives a detailed overview of sections 2 through 6 of the paper. Some

further aspects of continuous 2-group symmetries are discussed in section 7, including their

gauging, their holographic duals, and their implications for dynamical string excitations

that carry U(1)
(1)
B charge. This section is largely self contained and can (for the most part)

be read after the introduction. Additional material appears in several appendices.

Given the length of the paper, we also mention that some familiarity with ’t Hooft

anomalies (reviewed in section 2) makes it possible to read sections 1, 3, and 6 in sequence.

1.1 Global symmetries and background fields

We consider continuous global symmetries that arise from conserved currents.2 The cur-

rents encode local features of a symmetry, such as Ward identities or ’t Hooft anomalies,

that are typically not visible at the level of its global charges. A useful way to access this

local information is to couple the theory to non-dynamical background gauge fields, which

act as classical sources for the currents. We begin by reviewing some examples of continuous

global symmetries, as well as the associated currents and background gauge fields.

1.) Flavor (or 0-form) symmetries. These are associated with a Lie group G. We will

also refer to them as 0-form global symmetries (see below), and denote them by G(0).

Our main example will be G(0) = U(1)
(0)
A . The associated 1-form current j

(1)
A (or jAµ ,

if we write out the spacetime indices), satisfies the conservation equation

d ∗ j(1)A = 0 . (1.1)

Conserved charges QA(Σ3) are defined by integrating ∗j(1)A over 3-cycles Σ3,

QA(Σ3) =

∫

Σ3

∗j(1)A . (1.2)

The charged objects are local operators, which can be surrounded by a closed 3-

cycle Σ3 in euclidean signature, and point particles, which reside on Σ3, if we think

of it as a time slice in hamiltonian quantization.

2In many situations, the existence of such currents follows from Noether’s theorem.
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The appropriate classical source for j
(1)
A is an abelian background gauge field A(1),3

S ⊃
∫
A(1) ∧ ∗j(1)A =

∫
d4xAµjAµ . (1.3)

Under a U(1)
(0)
A background gauge transformation, with 0-form gauge parameter λ

(0)
A ,

the gauge field A(1) shifts as follows,

A(1) −→ A(1) + dλ
(0)
A . (1.4)

In the absence of t’ Hooft anomalies (discussed below), the effective action W [A(1)]

(see footnote 3) is invariant under (1.4). This encodes the conservation equation (1.1).

The statement that the flavor symmetry is U(1)
(0)
A (rather than R

(0)
A ) means that all

charges QA in (1.2) are integers. We can therefore take the gauge parameter λ
(0)
A

in (1.4) to be compact, λ
(0)
A ∼ λ

(0)
A + 2π, so that 1

2π

∫
Σ1
dλ

(0)
A ∈ Z for any closed

1-cycle Σ1. Similarly, the U(1)
(0)
A background field strength F

(2)
A = dA(1) can have

arbitrary integer fluxes through closed 2-cycles Σ2,

1

2π

∫

Σ2

F
(2)
A ∈ Z . (1.5)

More generally, the flavor symmetry G(0) can be a compact Lie group. In this paper,

we will limit our discussion to flavor symmetries of the form G(0) =
∏

I G
(0)
I , where ev-

ery factor G
(0)
I is either U(1)(0) or SU(N)(0). The associated currents and background

gauge fields are then valued in the Lie algebra of G(0), and transform appropriately

under the corresponding, possibly nonabelian, background gauge transformations.

2.) Generalized q-form global symmetries (see [1] and references therein). A U(1)
(q)
B

symmetry arises from a conserved (q+1)-form current J
(q+1)
B (i.e. JB

µ1···µq+1
) satisfying

d ∗ J (q+1)
B = 0 . (1.6)

The conserved charges QB(Σ3−q) are now defined on (3− q)-cycles Σ3−q,

QB(Σ3−q) =

∫

Σ3−q

∗J (q+1)
B . (1.7)

Charged defect operators are supported on q-cycles linked by Σ3−q, and charged

dynamical q-brane excitations extend along q spatial dimensions transverse to Σ3−q.
4

3We will use S = S[B, ψ] to denote the euclidean action, which can include background fields B and

dynamical fields ψ. The partition function Z[B], which only depends on the background fields, is given

by the functional integral
∫
Dψ exp(−S[B, ψ]) over all dynamical fields ψ. Note that (1.3) means that

insertions of jAµ (x) are given by − δZ
δAµ(x)

. By a mild abuse of language, we will refer to W [B] = − logZ[B]

as the effective action for background fields, even though it is typically non-local.
4These concepts are ubiquitous in the context of supersymmetry algebras and BPS branes (see [5] and

references therein).
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The appropriate classical source for J
(q+1)
B is an abelian (q+1)-form gauge field B(q+1),

S ⊃
∫
B(q+1) ∧ ∗J (q+1)

B =
1

q!

∫
d4xBµ1···µq+1JB

µ1···µq+1
. (1.8)

A U(1)
(q)
B background gauge transformation, with q-form gauge parameter Λ

(q)
B , shifts

B(q+1) −→ B(q+1) + dΛ
(q)
B . (1.9)

The invariance of the effective action W [B(q+1)] (see footnote 3) under this shift is

tantamount to the conservation law (1.6).

Saying that the symmetry is U(1)
(q)
B (rather than R

(q)
B ) implies that all charges QB

in (1.7) are integers, so that both dΛ
(q)
B and the gauge-invariant U(1)

(q)
B field strength

dB(q+1) can have arbitrary integer fluxes through (q + 1)- and (q + 2)-cycles,

1

2π

∫

Σq+1

dΛ
(q)
B ∈ Z ,

1

2π

∫

Σq+2

dB(q+1) ∈ Z . (1.10)

Note that the case q = 0 is a standard abelian flavor symmetry. This case is special

because it admits a nonabelian generalization (see point 1.) above). By contrast,

q-form symmetries with q ≥ 1 are necessarily abelian [1].

In this paper, we will mostly focus on the case q = 1, i.e. on 1-form symmetries U(1)
(1)
B

that arise from conserved 2-form currents J
(2)
B . The charged objects are line defects

and dynamical strings. The main example will be the magnetic U(1)
(1)
B symmetry of

a dynamical U(1)
(0)
c gauge theory with Maxwell field strength f

(2)
c and no dynamical

magnetic U(1)
(0)
c charges. Then f

(2)
c satisfies the Bianchi identity, df

(2)
c = 0, which

implies the conservation equation (1.6) for the magnetic 2-form current,5

J
(2)
B =

i

2π
∗ f (2)c . (1.11)

The defects charged under U(1)
(1)
B are ’t Hooft lines. Examples of charged dynamical

excitations are Abrikosov-Nielsen-Olesen (ANO) strings.

3.) Poincaré symmetry (P). The associated current is the stress tensor Tµν , which must

be symmetric and conserved,

Tµν = T(µν) , ∂µTµν = 0 . (1.12)

The appropriate classical sources for Tµν are background gravity fields, such as a

riemannian background metric gµν on the spacetime 4-manifold M4. We will de-

scribe the background gravity fields using an orthonormal frame (or vielbein) e(1)a,

so that gµν = δabe
a
µe

b
ν , and the associated spin connection ω(1)a

b. Here a, b = 1, . . . , 4

5The factor of i in the definition J
(2)
B = i

2π
∗f

(2)
c arises from the Wick rotation to euclidean signature. In

lorentzian signature, J
(2)
B = 1

2π
∗L f

(2)
c , where ∗L is the lorentzian Hodge star operator, which satisfies ∗2L =

−1 when acting on 2-forms.
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are local frame indices.6 An insertion of the stress tensor Tµν = eaµe
b
νTab is defined by

a variational derivative of the partition function Z[e(1)a] with respect to the vielbein,

√
g Tab(x) = −ebµ

δZ

δeaµ(x)
. (1.13)

The gauge transformations of the background gravity fields consist of local SO(4)

frame rotations (i.e. Wick-rotated local Lorentz transformations), and diffeomor-

phisms (i.e. local translations). Infinitesimally, they are parametrized by δab +

θ(0)ab(x) ∈ SO(4) and a vector field ξµ(x). Under these transformations, the vielbein

shifts as follows,

e(1)a −→ e(1)a − θ(0)ab e(1)b + Lξe(1)a , (1.14)

where Lξ is the Lie derivative along the vector field ξµ. Invariance of the effective

action W [e(1)] = − logZ[e(1)] (see footnote 3) under (1.14) encodes the fact that the

stress tensor is symmetric and conserved, as in (1.12).

As emphasized in [1], there are many similarities between ordinary 0-form flavor sym-

metries and higher q-form symmetries. In addition to those that are apparent from the

review above, we recall the following additional parallels:

• A continuous q-form symmetry may be unbroken or spontaneously broken by the

vacuum. In the latter case there are massless Nambu-Goldstone (NG) bosons. For

0-form flavor symmetries, these are the familiar abelian or nonabelian NG scalars;

for q ≥ 1, they are suitable higher-spin particles.7 For instance, the NG boson

for a spontaneously broken 1-form symmetry is a free photon. In the deep IR, it

is described by a free U(1)
(0)
c gauge theory with Maxwell field strength f

(2)
c . As

in (1.11), the 2-form current J
(2)
B is linear in f

(2)
c and creates a one-photon state.

• ’t Hooft anomalies manifest as c-number shifts of the effective action W [A(1), B(q+1)]

under the gauge transformations (1.4) and (1.9) of the various background gauge

fields. Consequently, they also modify the conservation equations (1.1) and (1.6) in

the presence of such background fields. This constitutes an obstruction to gauging

the symmetry (see below). ’t Hooft anomalies are subject to matching: they do not

change along RG flows and must be reproduced in any effective description of the

theory, e.g. in terms of ultraviolet (UV) or infrared (IR) degrees of freedom.

• If a q-form symmetry is free of ’t Hooft anomalies, it can be gauged by promoting

the background gauge field B(q+1) to a dynamical gauge field b(q+1) and doing the

functional integral over gauge orbits of b(q+1).8

• q-form global symmetries can be emergent, accidental symmetries in the IR, even if

they are explicitly broken in the UV. This is standard for ordinary flavor symmetries.

Another example is the emergent magnetic 1-form symmetry (with current (1.11))

that arises upon higgsing a dynamical nonabelian gauge theory to a U(1)
(0)
c subgroup.

6In lorentzian signature, they are often referred to as local Lorentz indices.
7As discussed in [1], only 0- and 1-form symmetries can be spontaneously broken in four dimensions.
8Throughout, we denote background fields by uppercase letters and dynamical fields by lowercase letters.
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All of these statements also apply to Poincaré symmetry P, but we will only consider

relativistic continuum QFTs, for which P is an exact symmetry at all energies. We will

also assume the existence of a Poincaré-invariant vacuum, so that P is not spontaneously

broken. We will encounter ’t Hooft anomalies involving Poincaré symmetry, and the associ-

ated gravity background fields, but we will not contemplate making these fields dynamical.

1.2 2-group symmetry: a Green-Schwarz mechanism for background fields

The background gauge fields reviewed in section 1.1 do not mix under their respective

background gauge transformations (1.4), (1.9), (1.14). In this paper, we explore global

symmetries that allow such mixings. The simplest example involves the mixing of a back-

ground 1-form gauge field A(1) for a U(1)
(0)
A 0-form flavor symmetry with a background

2-form gauge field B(2) for a U(1)
(1)
B 1-form symmetry. The transformation rule for A(1)

in (1.4) is unchanged, but the transformation rule for B(2) in (1.9) now takes the following

modified form,

B(2) −→ B(2) + dΛ
(1)
B +

κ̂A
2π

λ
(0)
A F

(2)
A , F

(2)
A = dA(1) , (1.15)

where κ̂A is a real constant. In section 7.1, we will show that (1.15) is only consistent if κ̂A is

quantized, κ̂A ∈ Z. In addition to conventional U(1)
(1)
B background gauge transformations,

parametrized by Λ
(1)
B , the transformation rule of B(2) in (1.15) involves a shift under U(1)

(0)
A

background gauge transformations, with gauge parameter λ
(0)
A , which is proportional to

the U(1)
(0)
A background field strength F

(2)
A = dA(1). It is therefore typically inconsistent

to activate a non-trivial profile for A(1), without also turning on B(2). Many arguments in

this paper can be understood in terms of this basic observation.

The shift of B(2) in (1.15) under U(1)
(0)
A background gauge transformations takes ex-

actly the same form as in the Green-Schwarz (GS) mechanism [6] (see for instance [7, 8]

for a textbook treatment). There B(2) is typically dynamical and the GS shift can be used

to cancel certain mixed gauge anomalies by adding suitable GS terms to the action.9 By

contrast, our B(2) is a non-dynamical background field that couples to the 2-form cur-

rent J
(2)
B associated with a global U(1)

(1)
B symmetry (see (1.8)). As is familiar from the

GS mechanism, the conventional 3-form field strength dB(2) is not invariant under the GS

shift in (1.15). Instead, we can define a different field strength H(3), which is fully gauge

invariant but satisfies a modified form of the Bianchi identity,

H(3) = dB(2) − κ̂A
2π

A(1) ∧ F (2)
A , dH(3) = − κ̂A

2π
F

(2)
A ∧ F (2)

A . (1.16)

Note that the definition of H(3) involves the Chern-Simons 3-form CS(3)(A) = A(1) ∧ F (2)
A .

In section 7.1, we will show that the modified Bianchi identity (1.16) leads to topological

9In four dimensions, a dynamical 2-form gauge field is dual to a NG scalar with a continuous shift

symmetry (see also section 6.5). The GS mechanism then reduces to the statement that some anomalies

can be cancelled using suitable couplings to such a NG boson. The duality does not apply to the non-

dynamical background field B(2).
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restrictions on the possible configurations of A(1) and B(2), which are reminiscent of similar

constraints in string compactifications with a GS mechanism [9, 10].

In this paper, we will identify and analyze explicit examples of QFTs that couple to a

background field B(2) that is subject to GS-like shifts, as in (1.15). We will argue that this

phenomenon should be viewed as an unconventional form of global symmetry. Unlike the

standard GS mechanism, which is closely associated with anomalies, it is not appropriate

to think of (1.15) as an anomaly. (Nevertheless, there are several important ways in which

anomalies will make an appearance below.) The relationship of GS shifts such as (1.15)

to symmetries was pointed out in [11], where the underlying mathematical structure was

identified as a 2-group [12] (see sections 1.3 and 1.8 for additional references). A 2-group is a

higher category generalization of group. For our purposes, it will be sufficient to know that

the definition of a 2-group involves three pieces of data: a 0-form flavor symmetry G(0), such

as U(1)
(0)
A above; an abelian 1-form symmetry G(1), which we will always take to be U(1)

(1)
B ;

and a choice of group-cohomology class β ∈ H3(G(0), G(1)) = H3(G(0),U(1)
(1)
B ).10

In this paper, we will not discuss 2-groups themselves, but rather the associated 2-

group background gauge fields. In analogy with conventional background gauge fields,

they can be thought of as 2-connections on suitable 2-bundles [13, 14]. In the abelian

example discussed above, with G(0) = U(1)
(0)
A and G(1) = U(1)

(1)
B , the background gauge

field B(2) is subject to the non-trivial GS shift in (1.15). We will also refer to such GS

shifts for B(2) as 2-group shifts. As explained in [11], the form of the 2-group shift in (1.15)

and the cohomology class β ∈ H3(U(1)
(0)
A ,U(1)

(1)
B ) are related by descent (see section 2.2).

To see this, recall that the group cohomology H3(U(1)
(0)
A ,U(1)

(1)
B ) = Z classifies three-

dimensional Chern-Simons actions for U(1)
(0)
A gauge fields, which are labeled by an integer

level [15]. Precisely such a Chern-Simons term appears in the definition of the modified

field strength H(3) in (1.16), and the integer level κ̂A ∈ Z labels the choice of cohomology

class β. Under a U(1)
(0)
A background gauge transformation, the Chern-Simons term in H(3)

shifts by an amount ∼ κ̂A d
(
λ
(0)
A F

(2)
A

)
that is exactly compensated by the 2-group shift

of B(2) in (1.15). Similar arguments apply if the flavor symmetry G(0) is a more general,

possibly nonabelian, Lie group (see section 1.3).

We will say that a QFT has 2-group symmetry, if it can be coupled to a 2-form

background gauge field B(2) that is subject to a suitable 2-group shift, in addition to its

own U(1)
(1)
B background gauge transformations. In the example above, the 2-group shift

in (1.15) is associated with a U(1)
(0)
A flavor symmetry and its background field A(1). A

QFT that couples to such background fields will be said to have abelian 2-group symmetry

U(1)
(0)
A ×κ̂A

U(1)
(1)
B , κ̂A ∈ Z . (1.17)

We will refer to the integer κ̂A, which determines the 2-group shift in (1.15), as a 2-group

structure constant. It characterizes the 2-group symmetry, somewhat like the structure

constants of a Lie algebra (however, see the discussion below (1.35)), or the level of a

10In the notation of [11], the group cohomology class β (which was referred to as a Postnikov class there)

belongs to H3(Π1,Π2), while for us Π1 = G(0) and Π2 = G(1) = U(1)
(1)
B . The discussion in [11] also involved

an action α of G(0) on G(1) (via automorphisms), which will be trivial in all of our examples.
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Kac-Moody algebra. In particular, when κ̂A = 0, the 2-group shift in (1.15) disappears

and (1.17) decomposes into a conventional product symmetry U(1)
(0)
A ×U(1)

(1)
B .

As is appropriate for a constant that determines the properties of a global symme-

try, the 2-group structure constant κ̂A is a meaningful, scheme-independent property of a

QFT. For instance, its value cannot be changed by rescaling (or otherwise redefining) the

background fields A(1) and B(2), because this would modify the quantization conditions

in (1.5) and (1.10), or equivalently, because the normalization of the associated currents j
(1)
A

and J
(2)
B is meaningful. Below we will see that κ̂A controls the OPE that allows two j

(1)
A

currents to fuse into J
(2)
B , which implies modified Ward identities for these currents in the

presence of the 2-group symmetry (1.17). This is one way to see that κ̂A is an absolute

constant, which is inert under RG flow. The same conclusion also follows from the fact

that κ̂A ∈ Z is quantized. Furthermore, this quantization implies that κ̂A does not depend

on continuously variable coupling constants. Therefore κ̂A can only arise at tree level or

at one loop (see also section 1.7).

As was already mentioned, there is a close connection between 2-group symmetries

and ’t Hooft anomalies for conventional global symmetries. We will now explain this

connection for the abelian 2-group in (1.17). In the process, we identify many QFTs that

possess U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry. We will find that such theories arise from

a parent theory with conventional U(1)
(0)
A ×U(1)

(0)
C flavor symmetry and suitable mixed ’t

Hooft anomalies, by gauging U(1)
(0)
C ,11 which involves the following substitutions,

U(1)
(0)
C → U(1)(0)c , C(1) → c(1) , F

(2)
C = dC(1) → f (2)c = dc(1) . (1.18)

The possible ’t Hooft anomalies for a U(1)
(0)
A ×U(1)

(0)
C flavor symmetry are conveniently

summarized by an anomaly 6-form polynomial I(6) that depends on the background field

strengths F
(2)
A,C and four anomaly coefficients, κA3 , κA2C , κAC2 , κC3 ,12

I(6) = 1

(2π)3

(
κA3

3!
F

(2)
A ∧ F (2)

A ∧ F (2)
A +

κA2C

2!
F

(2)
A ∧ F (2)

A ∧ F (2)
C

+
κAC2

2!
F

(2)
A ∧ F (2)

C ∧ F (2)
C +

κC3

3!
F

(2)
C ∧ F (2)

C ∧ F (2)
C

)
.

(1.19)

The anomaly polynomial encodes (via the descent equations, see section 2.2) the anomalous

c-number shift of the effective action W [A(1), C(1)] under U(1)
(0)
A and U(1)

(0)
C background

gauge transformations. Since we would like to gauge U(1)
(0)
C , it should not give rise to any

such shift, and this requires κC3 = 0. We further assume that the U(1)
(0)
A current does

not suffer from an Adler-Bell-Jackiw (ABJ) anomaly of the form d ∗ j(1)A ∼ κAC2 f
(2)
c ∧ f (2)c

after gauging, and hence we also set κAC2 = 0. After adjusting various counterterms, the

remaining anomalous shifts of the effective action W [A(1), C(1)] arise solely from U(1)
(0)
A

11A similar phenomenon for discrete symmetries was described in [16].
12Here κA3 arises from the three-point function of j

(1)
A , while κA2C can be extracted from a three-point

function involving two U(1)
(0)
A currents and one U(1)

(0)
C current, and similarly for κAC2 , κC3 . In theories

of free fermions, these correlators reduce to the standard triangle diagrams.
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background gauge transformations,

W [A(1) + dλ
(0)
A , C(1) + dλ

(0)
C ] =

=W [A(1), C(1)] +
i

4π2

∫
λ
(0)
A

(κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C

)
.

(1.20)

The term ∼ κA3 is a conventional U(1)
(0)
A ’t Hooft anomaly. It remains a c-number after

gauging U(1)
(0)
C , although its status as an anomaly must be reevaluated (see section 1.6).

However, the term ∼ κA2C also involves F
(2)
C , which becomes the dynamical field-strength

operator f
(2)
c after gauging U(1)

(0)
C (see (1.18)). Such an operator-valued shift is unaccept-

able,13 because the effective action W should only depend on background fields.

The resolution of this apparent paradox is that the dynamical U(1)
(0)
c gauge theory

has a new current — the magnetic 2-form current J
(2)
B = i

2π ∗ f
(2)
c introduced in (1.11) —

and hence also a new background gauge field B(2), which couples to J
(2)
B as in (1.8),

S ⊃
∫
B(2) ∧ ∗J (2)

B =
i

2π

∫
B(2) ∧ f (2)c . (1.21)

If we interpret this BF coupling as a GS term, we can cancel the operator-valued term

∼ κA2C λ
(0)
A F

(2)
A ∧ f (2)c that arises from (1.20) by assigning a 2-group shift to B(2), as

in (1.15),

B(2) −→ B(2) +
κ̂A
2π

λ
(0)
A F

(2)
A , κ̂A = −1

2
κA2C . (1.22)

Therefore the theory has abelian 2-group symmetry (1.17). The 2-group structure con-

stant κ̂A is determined by the mixed ’t Hooft anomaly coefficient κA2C of the parent

theory. (Despite the factor of −1
2 in (1.22), κ̂A is always an integer, see appendix A.)

Therefore any theory with U(1)
(0)
A ×U(1)

(0)
C flavor symmetry and a κA2C ’t Hooft anomaly

(as well as κAC2 = κC3 = 0) gives rise to a theory with abelian 2-group symmetry upon

gauging U(1)
(0)
C . As we will explain in section 7.2, this construction has an inverse: if we

gauge U(1)
(1)
B in a theory with U(1)

(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, we recover the parent

theory with U(1)
(0)
A ×U(1)

(0)
C flavor symmetry and a κA2C = −2 κ̂A ’t Hooft anomaly.

1.3 More general 2-group and n group symmetries

In this paper, we will encounter several generalizations of the abelian 2-group symmetry

U(1)
(0)
A ×κ̂A

U(1)
(1)
B described above. (Some additional possibilities are mentioned in sec-

tion 1.8.) All of them are background-field versions of GS mechanisms, which lead to

modifications of the 3-form field strength and its Bianchi identity, as in (1.16). Moreover,

all of these 2-group symmetries (with 2-group structure constants denoted by κ̂’s) arise

by gauging a U(1)
(0)
C flavor symmetry in a parent theory with suitable mixed ’t Hooft

anomalies (where the anomaly coefficients are denoted by κ’s):

13It is tempting to refer to such operator-valued shifts as anomalies. For instance, the ABJ anomaly

d ∗ j
(1)
A ∼ κAC2 f

(2)
c ∧ f

(2)
c arises from a similar operator-valued shift (see section 3.1). However, we

would like to avoid conflating phenomena that involve operator-valued shifts with ’t Hooft anomalies,

i.e. c-number shifts of the effective action, which are physically distinct. For this reason we will not refer

to operator-valued shifts as anomalies, except in the case of the ABJ anomaly, where this terminology is

the unavoidable standard.
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• Abelian 2-group symmetry
(∏

I U(1)
(0)
I

)
×κ̂IJ

U(1)
(1)
B of higher rank. If the flavor

symmetry is G(0) =
∏

I U(1)
(0)
I , with background gauge fields A

(1)
I that transform

as A
(1)
I → A

(1)
I + dλ

(0)
I , the 2-group shift of B(2) in (1.15) can be modified as follows,

B(2) −→ B(2)+ dΛ
(1)
B +

1

2π

∑

I,J

κ̂IJ λ
(0)
I F

(2)
J , F

(2)
I = dA

(1)
I , κ̂IJ ∈ Z . (1.23)

The 2-group structure constants κ̂IJ = κ̂(IJ) now define a symmetric matrix. The

higher-rank abelian 2-group symmetry
(∏

I U(1)
(0)
I

)
×κ̂IJ

U(1)
(1)
B arises by gaug-

ing U(1)
(0)
C in a parent theory with mixed U(1)

(0)
I -U(1)

(0)
J -U(1)

(0)
C ’t Hooft anomalies

and anomaly coefficients κIJC = −2 κ̂IJ .14

• Nonabelian SU(N)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry. A nonabelian flavor symme-

try G(0) can be embedded inside a nonabelian 2-group. For simplicity, we only con-

sider G(0) = SU(N)
(0)
A . We can then assign the following 2-group shift to B(2),

B(2) −→ B(2) + dΛ
(1)
B +

κ̂A
4π

tr
(
λ
(0)
A dA(1)

)
, κ̂A ∈ Z . (1.24)

The background gauge field A(1) and the gauge parameter λ
(0)
A are valued in the

Lie algebra of SU(N)
(0)
A , over which tr is a suitable trace (see section 2.4). The 2-

group symmetry SU(N)
(0)
A ×κ̂A

U(1)
(1)
B arises upon gauging U(1)

(0)
C in a theory with

a mixed SU(N)
(0)
A -U(1)

(0)
C ’t Hooft anomaly and anomaly coefficient κA2C = κ̂A.

15

• Poincaré 2-group symmetry P×κ̂P
U(1)

(1)
B . The 2-group shift of B(2) can also include

background gravity fields, i.e. the background gauge fields of Poincaré symmetry P,

B(2) −→ B(2) + dΛ
(1)
B +

κ̂P

16π
tr
(
θ(0) dω(1)

)
, κ̂P ∈ Z . (1.25)

Here θ(0)ab is a local SO(4) frame rotation (see (1.14)), ω(1)a
b is the spin connection,

and tr is a trace over the indices a, b. The 2-group symmetry P ×κ̂P
U(1)

(1)
B arises

upon gauging U(1)
(0)
C in a theory with a mixed U(1)

(0)
C -P ’t Hooft anomaly κCP2 =

−6 κ̂P .16 Therefore spacetime symmetries can also be embedded inside 2-group

symmetries.

We will also encounter more general n-group symmetries. By this we (somewhat

loosely) mean a symmetry with an n-form background gauge field B(n) that shifts under

gauge transformations associated with other q-form or gravitational background fields. For

14The ’t Hooft anomaly coefficient κIJC can be extracted from a three-point function involving one U(1)
(0)
I

current, one U(1)
(0)
J current, and one U(1)

(0)
C current.

15The anomaly coefficient κA2C is encoded in a three-point function of two SU(N)
(0)
A currents and

one U(1)
(0)
C current.

16A mixed U(1)
(0)
C -Poincaré anomaly is often referred to as a U(1)

(0)
C -gravity anomaly. The corresponding

anomaly coefficient κCP2 can be extracted from a three-point function involving the U(1)
(0)
C current and two

stress tensors. In appendix A, we show that κ̂P = − 1
6
κCP2 is an integer whenever U(1)

(0)
C can be gauged.
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instance, we will encounter a theory with 3-group symmetry in section 6.6. Here we would

briefly like to comment on the case of d-group symmetry in d spacetime dimensions (see for

instance [16, 17]).17 This involves a background gauge field B(d) associated with a U(1)
(d−1)
B

symmetry. Since a conserved d-form current is necessarily a constant multiple of the volume

form,18 B(d) only couples to the identity operator. In a sense, it is therefore extraneous to

the theory. For instance, any ’t Hooft anomaly (reducible or not) can be cancelled via a

suitable GS (or d-group) shift for B(d).19 While this might seem slightly artificial for an

intrinsically d-dimensional theory, it can happen naturally for theories that arise from a

higher-dimensional parent theory. We will see examples of this in sections 7.4 and 7.5.

1.4 2-group current algebras and Ward identities

Continuous global symmetries imply Ward identities for correlation functions that involve

the associated conserved currents. Although Ward identities imply the selection rules en-

forced by the global charges, they also encode the local implications of the symmetry. After

reviewing Ward identities for ordinary symmetries, we explain how these Ward identities

are modified in the presence of 2-group symmetry. For simplicity, we focus on the abelian

2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B in (1.17).

In the absence of background fields, the U(1)
(0)
A flavor current j

(1)
A is a conserved

operator, which satisfies (1.1). This operator equation is valid inside correlation functions at

separated points, i.e. as long as the current does not collide with other operators. However,

at coincident points the conservation equation may be modified by δ-function contact terms.

These contact terms can be c-numbers associated with ’t Hooft anomalies (see section 1.6),

or they can involve non-trivial operators. The latter case implies a Ward identity. To see

this, consider the contact term that arises when ∂µjAµ (x) collides with a local operator O(y)
(e.g. a Lorentz scalar) that carries charge qA under the U(1)

(0)
A flavor symmetry,

∂µjAµ (x)O(y) = iqAδ
(4)(x− y)O(y) . (1.26)

This equation should be understood as an OPE, which applies whenever ∂µjAµ (x) collides

with a charged operator inside a correlation function. For instance, (1.26) implies the

standard U(1)
(0)
A Ward identity (here the conjugate O† has charge −qA),

∂µ〈jAµ (x)O†(y)O(z)〉 =
(
−iqAδ(4)(x− y) + iqAδ

(4)(x− z)
)
〈O†(y)O(z)〉 . (1.27)

Integrating over x implies a selection rule for the U(1)
(0)
A charges: they must sum to zero.

Note that (1.26) and (1.27) imply that O appears in the OPE of j
(1)
A with O.

The OPE in (1.26), and hence all Ward identities that follow from it, such as (1.27), is

encoded in the transformation rules of background fields under U(1)
(0)
A background gauge

17We thank N. Seiberg and Y. Tachikawa for a related discussion.
18Such constants give rise to space-filling charges, which can have non-trivial effects. For instance, they

can deform certain supersymmetry algebras [5].
19Note that this does not spoil ’t Hooft anomaly matching, since the contribution of B(d) to the anomalies,

which is encoded by its d-group (or GS) shift, does not change under RG flow. Thus B(d) plays a role

analogous to that of the spectators in ’t Hooft’s original argument for anomaly matching [18].
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transformations. In addition to the U(1)
(0)
A background gauge field A(1), which couples

to j
(1)
A as in (1.3), we must also include a complex source SO that couples to O and O†,

S ⊃
∫
d4x

(
AµjAµ + S†OO + SOO†

)
. (1.28)

Here both O and SO carry U(1)
(0)
A charge qA, so that the effective action W [A(1),SO] is

invariant under U(1)
(0)
A background gauge transformations of the form A(1) → A(1) + dλ

(0)
A

and SO → eiqAλ
(0)
A SO. Substituting into (1.28) gives the (non-) conservation equation

∂µjAµ = iqA SOO† − iqA S†OO . (1.29)

Note that the right-hand side vanishes when SO = 0, consistent with the fact that j
(1)
A is a

conserved operator. Taking a variational derivative − δ

δS†
O(y)

of (1.29) inserts O(y) on the

left-hand side (see (1.28)) and reproduces the operator-valued contact term in (1.26).

We will now repeat the preceding discussion for the abelian 2-group background gauge

fields A(1) and B(2), which couple to the currents j
(1)
A and J

(2)
B as in (1.3) and (1.8),

S ⊃
∫
A(1) ∧ ∗j(1)A +B(2) ∧ ∗J (2)

B =

∫
d4x

(
AµjAµ +

1

2
BµνJB

µν

)
. (1.30)

In the presence of U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, A(1) transforms like a conventional

1-form gauge field, but B(2) is subject to a non-trivial 2-group (or GS) shift (1.15),

A(1) → A(1) + dλ
(0)
A , B(2) → B(2) + dΛ

(1)
B +

κ̂A
2π

λ
(0)
A F

(2)
A . (1.31)

Together with (1.30), the invariance of the effective action W [A(1), B(2)] under these gauge

transformations (which holds in the absence of ’t Hooft anomalies, see section 1.6) implies

the following 2-group (non-) conservation equations for the currents,20

d ∗ J (2)
B = 0 , d ∗ j(1)A =

κ̂A
2π

F
(2)
A ∧ ∗J (2)

B . (1.33)

Thus J
(2)
B remains exactly conserved, but conservation of j

(1)
A is broken by the operator J

(2)
B

in the presence of a U(1)
(0)
A background field strength F

(2)
A . Just as in (1.29), this effect

disappears when F
(2)
A = 0, so that j

(1)
A remains a conserved 1-form current in the absence

of background fields, and at separated points.

If we follow the discussion after (1.29) and take a variational derivative − δ
δAν(y)

of (1.33) (or equivalently, of (1.32) in footnote 20), we find an operator-valued contact

term proportional to J
(2)
B in the OPE of ∂µjAµ (x) with another U(1)

(0)
A current jAν (y),

∂µjAµ (x)j
A
ν (y) =

κ̂A
2π

∂λδ(4)(x− y) JB
νλ(y) . (1.34)

20When the Lorentz indices are written out, the non-conservation equation for j
(1)
A takes the form

∂
µ
j
A
µ =

κ̂A

4π
F

µν
A J

B
µν . (1.32)
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Unlike in the conventional Ward identity (1.26), no operator in (1.34) is charged under

either U(1)
(0)
A or U(1)

(1)
B . Integrating (1.34) with respect to x, and recalling (1.2), gives

[QA, j
A
ν (y)] = −

κ̂A
2π

∂λJB
νλ(y) = 0 . (1.35)

The right-hand side has the form of an improvement term,21 but vanishes because J
(2)
B

is a conserved 2-form current. It follows that the 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B

does not modify the global charges. In order to distinguish it from a conventional product

symmetry U(1)
(0)
A × U(1)

(1)
B , we can either study the response to the background gauge

fields A(1) and B(2), as we have done previously, or examine the OPE in (1.34). The 2-

group (non-) conservation equations in (1.33) and the OPE in (1.34) have analogues for

the other continuous 2-group symmetries summarized in section 1.3.

The OPE (1.34) leads to 2-group Ward identities for the currents j
(1)
A and J

(2)
B . The

simplest example involves the 〈j(1)A j
(1)
A J

(2)
B 〉 three-point function, which characterizes the

fusion of two j
(1)
A currents into J

(2)
B . For this reason we refer to it as the characteristic three-

point function of the abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B . It follows from (1.33)

that J
(2)
B is exactly conserved inside the characteristic three-point function. By contrast, the

non-conservation of j
(1)
A at coincident points, which is captured by the OPE (1.34), implies

∂

∂xµ

〈
jAµ (x)j

A
ν (y)J

B
ρσ(z)

〉
=
κ̂A
2π

∂λδ(4)(x− y)
〈
JB
νλ(y)J

B
ρσ(z)

〉
. (1.36)

This Ward identity is central to our analysis of QFTs with continuous 2-group symmetry.

In section 4.1, we solve (1.36) for the characteristic three-point function in momentum

space, 〈jAµ (p)jAν (q)JB
ρσ(−p − q)〉. The analysis is simplified by choosing the momenta so

that p2 = q2 = (p+ q)2 = Q2, where Q is a Lorentz-scalar with dimensions of energy. We

parametrize all momentum-space correlators in terms of dimensionless structure functions

of Q2

M2 (here M is some mass scale), which multiply independent Lorentz structures. The

structure that is responsible for the right-hand side of the Ward identity (1.36) is given by

〈jAµ (p)jAν (q)JB
ρσ(−p−q)〉 ⊃

κ̂A
2πQ2

J

(
Q2

M2

)(
δµρ(pν+qν)(pρ−qσ)+permutations

)
. (1.37)

Here J

(
p2

M2

)
is the structure function that controls the momentum-space two-point func-

tion 〈JB
µν(p)J

B
ρσ(−p)〉. Note the pole ∼ κ̂A

Q2 that multiplies J

(
Q2

M2

)
in (1.37). This non-

analytic behavior in momentum space contributes to the position-space 〈j(1)A j
(1)
A J

(2)
B 〉 three-

point function at separated points. Generically, this implies that the 2-group structure

constant κ̂A can be extracted from the characteristic three-point function at separated

points. Equivalently, κ̂A controls the fusion of two j
(1)
A currents into J

(2)
B . An important

exception occurs when J
(2)
B is a redundant operator, which satisfies J

(2)
B = 0 at separated

21Improvement terms for conserved currents are automatically conserved and do not contribute to the

associated charges. For a 1-form current jAµ , the most general improvement term takes the form ∂νUµν ,

where Uµν = U[µν] is a 2-form. In differential form notation, j
(1)
A ⊃ ∗dU (2), see section 4.3.
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points, but may have non-trivial contact terms. Then the structure function J

(
p2

M2

)
, and

hence the right-hand side of (1.37), vanishes identically.22 Nevertheless, the theory may

possess 2-group symmetry. A simple example is a deformed version of Zp gauge theory,

introduced in section 1.7, which is a TQFT with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry,

even though all of its local operators are redundant.

1.5 RG flows and phases of theories with 2-group symmetry

In section 4, we use the 2-group Ward identity (1.36) for the characteristic 〈j(1)A j
(1)
A J

(2)
B 〉

three-point function to analyze general aspects of RG flows with 2-group symmetry, such

as U(1)
(0)
A ×κ̂A

U(1)
(1)
B . (Additional constraints on possible RG flows arise from ’t Hooft

anomalies for 2-group symmetries and their matching, see section 1.6.) This is facilitated by

the well-motivated assumption that the UV and IR endpoints of such RG flows are confor-

mal field theories (CFTs). In particular, the structure of unitary conformal representations

implies that a conformal primary 2-form current J
(2)
B must in fact be proportional to a free

Maxwell field strength f (2), which satisfies df (2) = d ∗ f (2) = 0 (see e.g. [19–21]). A general

theme, which will emerge from various points of view, is that U(1)
(0)
A does not behave like

a good subgroup symmetry of the full 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B , while U(1)

(1)
B does.23

This is reflected in various properties of the RG flow, as well as the allowed realizations

of U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry (with κ̂A 6= 0) in the IR:

• Just as any other symmetry, 2-group symmetry can be unbroken or spontaneously

broken by the vacuum. In the former case, we find that J
(2)
B must flow to a redundant

operator (i.e. J
(2)
B = 0 at separated points) in the deep IR. In the latter case, we

show that the only allowed patterns of spontaneous 2-group breaking are

U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)

(1)
B or U(1)

(0)
A ×κ̂A

U(1)
(1)
B → nothing . (1.38)

The fact that the symmetry cannot break to U(1)
(0)
A is a manifestation of the general

theme according to which U(1)
(0)
A does not behave like a good subgroup of the 2-

group U(1)
(0)
A ×κ̂A

U(1)
(1)
B (see footnote 23). As in the unbroken case, the first scenario

in (1.38) requires J
(2)
B to be redundant in the deep IR. In the second scenario,

both j
(1)
A and J

(2)
B are non-trivial operators in the IR. They create the U(1)

(0)
A NG

scalar and the U(1)
(1)
B NG photon from the vacuum (see the discussion at the end of

section 1.1). The resulting model of spontaneous 2-group breaking is further discussed

in section 1.7.

• We will find that exact 2-group symmetry (with non-redundant J
(2)
B ) is not compati-

ble with conventional UV completions that have CFT fixed points at short distances.

22More precisely, if J
(2)
B is a redundant operator, then its momentum-space two-point func-

tion 〈JB
µν(p)J

B
ρσ(−p)〉 is a polynomial in p, which can be set to zero using local counterterms.

23This is not precise, because 2-group symmetry does not modify the charge algebra, as explained be-

low (1.35). Rather, the U(1)
(0)
A current algebra is not a good subalgebra of the U(1)

(0)
A ×κ̂A

U(1)
(1)
B 2-group

current algebra. Since this qualification is tedious, we will usually omit it and simply say that U(1)
(0)
A is

not a good subgroup of U(1)
(0)
A ×κ̂A

U(1)
(1)
B .
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However, such UV completions can exist if the 2-group symmetry is an emergent,

accidental symmetry of the IR theory, which is explicitly broken at short distances.

In the context of this scenario, we argue in favor of an approximate inequality be-

tween the energy scales EUV(j
(1)
A ) and EUV(J

(2)
B ) at which the operators j

(1)
A and J

(2)
B

emerge as approximately conserved currents,

EUV(J
(2)
B ) & EUV(j

(1)
A ) . (1.39)

This inequality states that the U(1)
(1)
B symmetry must emerge before U(1)

(0)
A can

emerge, in line with the general theme that the former is a good subgroup of the

2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B , while the latter is not. The reason (1.39) is not a sharp

inequality is that the emergence scales EUV(J
(2)
B ) and EUV(j

(1)
A ) are themselves not

sharply defined.

• An inequality similar to (1.39) exists for Poincaré 2-group symmetry P×κ̂P
U(1)

(1)
B ,

which was introduced around (1.25). Now the stress tensor Tµν plays the role of j
(1)
A

in (1.39). In continuum theories that are relativistic and local at all energy scales,

the stress tensor Tµν should be exactly conserved, rather than emergent. Such the-

ories can therefore only realize exact Poincaré 2-group symmetry. As was already

mentioned, this is incompatible with standard UV completions that involve a CFT

fixed point.

1.6 Green-Schwarz contact terms and 2-group ’t Hooft anomalies

In section 5, we examine ’t Hooft anomalies in the presence of 2-group symmetries, such

as U(1)
(0)
A ×κ̂A

U(1)
(1)
B . At first glance, these anomalies appear to descend from the con-

ventional κA3 anomaly for the U(1)
(0)
A flavor symmetry (see (1.19) and (1.20)), which is

reducible, but as we will see, reducible 2-group ’t Hooft anomalies are qualitatively very

different from conventional ’t Hooft anomalies. (This is natural given the interpretation

of 2-groups as background-field analogues of the GS mechanism, see sections 1.2 and 1.3.)

We will find that the κA3 anomaly splits into two parts, one of which will turn out to

be removable using local counterterms (and should therefore not be viewed as a genuine

anomaly), while the other part remains a genuine ’t Hooft anomaly, but only due to global

considerations. Conventional ’t Hooft anomalies for continuous symmetries only receive

contributions from massless, local degrees of freedom. By contrast, the sensitivity of re-

ducible 2-group ’t Hooft anomalies to global issues enables them to also receive contri-

butions from non-trivial TQFTs. This fact is essential to ensuring that these anomalies

satisfy ’t Hooft anomaly matching (see section 1.7).

A central role is played by GS counterterms for the 2-group background fields

A(1), B(2),

SGS =
in

2π

∫
B(2) ∧ F (2)

A . (1.40)

This counterterm, and the associated GS contact term (see below), can be viewed as four-

dimensional analogues of the three-dimensional Chern-Simons counterterms and contact

terms analyzed in [2, 3]. The GS counterterm in (1.40) has two important properties:
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1.) SGS gives rise to an anomalous c-number shift under U(1)
(0)
A background gauge trans-

formations, due to the 2-group (or GS) shift of B(2) in (1.15). Adding SGS to the

action therefore shifts the κA3 ’t Hooft anomaly coefficient as follows,

κA3 −→ κA3 + 6n κ̂A . (1.41)

2.) SGS is only invariant under large U(1)
(1)
B background gauge transformations, if the

coefficient n is quantized, n ∈ Z.

Point 1.) above suggests that the κA3 ’t Hooft anomaly can be cancelled by a GS

counterterm (1.40) with coefficient n = −κ
A3

6κ̂A
. However, point 2.) shows that this is only

correct if
κ
A3

6κ̂A
is an integer. Its fractional part

κ
A3

6κ̂A
(mod 1) can only be absorbed by a GS

counterterm with fractional coefficient n, which in turn gives rise to an ’t Hooft anomaly

under large U(1)
(1)
B background gauge transformations. The upshot is that the κA3 ’t Hooft

anomaly for a conventional U(1)
(0)
A flavor symmetry is truncated — but not completely

obliterated — in the presence of 2-group symmetry: its fractional part
κ
A3

6κ̂A
(mod 1) survives,

but it is reinterpreted as a mixed anomaly that arises from a clash between U(1)
(0)
A and

large U(1)
(1)
B background gauge transformations; by contrast, the integer part of

κ
A3

6κ̂A
is

scheme dependent and can be adjusted, or set to zero, using a GS counterterm (1.40) with

a properly quantized coefficient n ∈ Z. The GS counterterm (1.40) can similarly truncate

other reducible ’t Hooft anomalies, if B(2) undergoes additional GS shifts arising from other

2-group symmetries (see section 1.3). By contrast, 2-group symmetry does not truncate

irreducible ’t Hooft anomalies, as is familiar from the GS mechanism.

The GS counterterm (1.40) is closely related to the two-point function of the cur-

rents J
(2)
B and j

(1)
A . In momentum space (see appendix B),

〈JB
µν(p)j

A
ρ (−p)〉 = −

1

2π
K

(
p2

M2

)
εµνρλp

λ . (1.42)

Here K

(
p2

M2

)
is a real, dimensionless structure function, and M is some mass scale. The

non-trivial momentum dependence of K
(

p2

M2

)
is scheme independent and contributes to

the 〈J (2)
B j

(1)
A 〉 two-point function in position space at separated points. In a scale-invariant

theory M should not appear, so that K

(
p2

M2

)
= K reduces to a constant. Fourier-

transforming (1.42) back to position space then gives rise to a contact term,24

〈JB
µν(x)j

A
ρ (0)〉 =

iK

2π
εµνρλ∂

λδ(4)(x) . (1.43)

We refer to (1.43) as a GS contact term (in analogy to Chern-Simons contact terms [2, 3]).

Such a term can arise in CFTs, and even in TQFTs, where the currents are redundant.

It is occasionally useful (though imprecise, see section 5.1) to think of the GS contact

term (1.43) as a (potentially fractional) GS term in the background-field effective action,

W [A(1), B(2)] ⊃ iK

2π

∫
B(2) ∧ F (2)

A . (1.44)

24The constant K can be thought of as a four-dimensional analogue of the Hall conductivity.
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Varying such a term with respect to the background gauge fields reproduces (1.43). Com-

paring with (1.40), we see that a properly quantized GS counterterm shifts K by an integer,

K −→ K+ n , n ∈ Z . (1.45)

Therefore only the fractional part K (mod 1) of the GS contact term is scheme-independent.

Such a fractional part can only arise from non-trivial massless or topological degrees of

freedom. For instance, a topological Zp gauge theory can give K ∈ 1
p
Z (see section 1.7).

By contrast, in fully gapped theories, without any dynamical degrees of freedom at long

distances, the effective action W for the background fields only consists of genuine local

counterterms, such as properly quantized GS counterterms (1.40). In such theories the

scheme-independent fractional part K (mod 1) necessarily vanishes.

In a theory with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, the GS contact term in (1.44)

contributes (via the 2-group shift of B(2) in (1.15)) an amount 6K κ̂A to the κA3 ’t

Hooft anomaly. The scheme-dependent contribution from the integer part of K was al-

ready discussed after (1.41) above. We now see that the scheme-independent fractional

part K (mod 1) of the GS contact term also induces a scheme-independent contribution to

the κA3 ’t Hooft anomaly. As we have already mentioned, K (mod 1) can receive contri-

butions from non-trivial TQFTs. In the presence of 2-group symmetry, such TQFTs can

therefore also contribute to reducible ’t Hooft anomalies (see section 1.7). As was already

emphasized above, this is in stark contrast to conventional ’t Hooft anomalies, which are

only activated by massless, local degrees of freedom.

In section 5.3, we elaborate on the preceding discussion, and compare it to a detailed

analysis of the anomalous Ward identity satisfied by the 〈j(1)A j
(1)
A j

(1)
A 〉 three-point function

in the presence of 2-group symmetry. (A review of the conventional case [22, 23], without

2-group symmetry, can be found in section 5.2.) Recall from section 1.4 that the 2-group

OPE (1.34) leads to the 2-group Ward identity (1.36) for the characteristic 〈j(1)A j
(1)
A J

(2)
B 〉

three-point function. Similarly, applying the OPE (1.34) to the 〈j(1)A j
(1)
A j

(1)
A 〉 correlator

leads to an anomalous 2-group Ward identity of the schematic from 〈(d ∗ j(1)A ) j
(1)
A j

(1)
A 〉 ∼

κ̂A 〈J (2)
B j

(1)
A 〉 + κA3 . (Here we have omitted all δ-functions.) As above, the 〈J (2)

B j
(1)
A 〉

correlator in (1.42) naturally makes an appearance. This will play an important role in

section 5.3.

1.7 Summary of examples

In section 6, we analyze a variety of simple, explicit QFTs with 2-group symmetry. As

we saw in sections 1.2 and 1.3, theories with 2-group symmetry can be constructed from

suitable parent theories with global symmetries and mixed ’t Hooft anomalies, by gaug-

ing a U(1)
(0)
C flavor symmetry. (In section 7.2, we explain how this construction can be

inverted.) In the examples we consider, the ’t Hooft anomalies of the parent theories arise

either at one loop, from massless fermions, or a tree level, from NG bosons for sponta-

neously broken flavor symmetries. In the latter case, the 2-group symmetries that emerge

after gauging U(1)
(0)
C are visible classically. By contrast, in the former case the 2-group

deformation of the global symmetry arises as a one-loop quantum effect.
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The first set of examples (discussed in section 6.2) involves massless multi-flavor QED,

i.e. U(1)
(0)
c gauge theory with Nf massless Dirac flavors of charge q. The model has flavor

symmetry G(0) = SU(Nf )
(0)
L ×SU(Nf )

(0)
R , where the left (L) and right (R) symmetries only

act on Weyl fermions of U(1)
(0)
c charge q and −q, respectively. As explained around (1.24),

the mixed SU(N)
(0)
L ,R -U(1)

(0)
C ’t Hooft anomalies κL2C = −κR2C = q of the ungauged

parent theory imply that multi-flavor QED possesses the following 2-group symmetry,25

(
SU(Nf )

(0)
L × SU(Nf )

(0)
R

)
×κ̂L , κ̂R

U(1)
(1)
B , κ̂L = −κ̂R = q . (1.46)

The U(1)
(1)
B symmetry arises from the magnetic 2-form current J

(2)
B = i

2π ∗f
(2)
c , where f

(2)
c

is the field strength of the dynamical U(1)
(0)
c gauge field (see (1.11) and (1.21)). We can also

consider various U(1)
(0)
A ⊂ G(0) flavor subgroups, some of which belong to abelian 2-group

symmetries U(1)
(0)
A ×κ̂A

U(1)
(1)
B that are embedded inside the nonabelian 2-group (1.46).

As was mentioned in section 1.5, exact 2-group symmetry is not compatible with

conventional UV completions. In multi-flavor QED, and other examples below, this is

closely related to the fact that the U(1)
(0)
c gauge coupling has a Landau pole at high

energies. Conventional UV completions are possible if the 2-group symmetry is emergent.

In section 6.2.3, we recall some simple, asymptotically-free nonabelian gauge theories that

flow to multi-flavor QED after their gauge symmetry is higgsed to U(1)
(0)
c . In these models,

the 2-group symmetry (1.46) emerges at low energies, below the scale of higgsing.

The QED-like U(1)
(0)
c gauge theories discussed above are vector-like. A qualitatively

different set of examples is furnished by chiral U(1)
(0)
c gauge theories.26 One of the simplest

examples (discussed in section 6.3) has four Weyl fermions ψi
α (i = 1, . . . , 4) with the

following U(1)
(0)
c gauge charges,

q1C = 3 , q2C = 4 , q3C = 5 , q4C = −6 , (1.47)

which satisfy the gauge-anomaly cancellation condition κC3 =
∑4

i=1(q
i
C)

3 = 0 in a non-

trivial way. Since this cubic constraint on the integers qiC is an example of a Fermat

equation, we refer to the U(1)
(0)
c gauge theory based on (1.47) as a Fermat model. This

model has a mixed U(1)
(0)
C -Poincaré (P) ’t Hooft anomaly κCP2 =

∑4
i=1 q

i
C = 6.27 As

25The κL2C and κR2C ’t Hooft anomalies are due to standard fermion triangle diagrams, with

two SU(N)
(0)
L,R currents and one U(1)

(0)
C current at the vertices.

26An important chiral gauge theory that arises in nature is the standard model of particle physics. It has

a dynamical U(1)
(0)
Y hypercharge gauge symmetry, as well as an abelian flavor symmetry U(1)

(0)
B−L, which is

free of ABJ anomalies (although it is likely broken by irrelevant operators). The left-handed Weyl fermions

of the standard model, their U(1)
(0)
Y × U(1)

(0)
B−L charges (QY , QB−L), and their multiplicities (which are

due to their quantum numbers under the SU(3)
(0)
color × SU(2)

(0)
weak gauge symmetry, as well as the fact that

there are three generations) take the following form,

qα = 18 ·

(
1

6
,
1

3

)
, uα = 9 ·

(
−
2

3
,−

1

3

)
, dα = 9 ·

(
1

3
,−

1

3

)
, ℓα = 6 ·

(
−
1

2
,−1

)
, eα = 3 · (1, 1) .

This leads to the well-known fact that κ(B−L)2Y = κY P2 = 0, and hence the standard model does not have

an abelian 2-group symmetry involving U(1)
(0)
B−L, or Poincaré 2-group symmetry.

27The κCP2 ’t Hooft anomaly arises from a fermion triangle diagram with one U(1)
(0)
C current and two

stress tensors at the vertices.
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discussed around (1.25), this mixed anomaly gives rise to Poincaré 2-group symmetry upon

gauging U(1)
(0)
C , with properly quantized 2-group structure constant κ̂P = −1

6κCP2 = −1
(see appendix A),

P ×κ̂P
U(1)

(1)
B , κ̂P = −1 . (1.48)

The Fermat model thus suffers from the obstruction to UV completion mentioned in the

last bullet point of section 1.5. The model also has an abelian flavor symmetry of rank

two, G(0) = U(1)
(0)
X × U(1)

(0)
Y . Prior to gauging U(1)

(0)
C there are mixed ’t Hooft anoma-

lies κIJC (I, J ∈ {X,Y }).28 Once we gauge U(1)
(0)
C , G(0) remains free of ABJ anomalies

and participates in a higher-rank abelian 2-group G(0)×κ̂IJ
U(1)

(1)
B , with a symmetric ma-

trix of 2-group structure constants κ̂IJ = −1
2κIJC . Together with (1.48), this furnishes the

full 2-group symmetry of the Fermat model.

We also consider deformations of the QED-like and Fermat models discussed above

and study the resulting RG flows. In section 6, we focus on deformations that involve

an additional complex scalar field φ and various Yukawa couplings. (A different kind of

deformation, which involves gauging the two-group background gauge fields, is discussed

in section 7.2.) These deformations allow us to exhibit explicit examples of the different

possible IR phases for theories with 2-group symmetry that were mentioned in section 1.5.

For instance, we find RG flows that preserve abelian U(1)
(0)
A ×κ̂A

U(1)
(1)
B or Poincaré P×κ̂P

U(1)
(1)
B 2-group symmetry and lead to a gapped theory in the IR.29 In some cases, ’t Hooft

anomaly matching for reducible 2-group anomalies (see section 1.6) requires contributions

from a non-trivial TQFT in the IR. We now briefly explain how this works for gapped RG

flows with abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B (see section 6.5 for details and

generalizations).

All our gapped examples arise by higgsing the U(1)
(0)
c gauge symmetry with a complex

scalar Higgs field φ of U(1)
(0)
c charge qC 6= 0 and U(1)

(0)
A flavor charge qA. The low-

energy TQFT is a dynamical Z|qC | gauge theory. As explained in [24–26], this theory has a

convenient presentation as a dynamical BF theory, which facilitates the coupling to U(1)
(0)
A

and U(1)
(0)
B background gauge fields. This leads to the following quadratic action,

SBF[A
(1), B(2), b(2), c(1)] =

iqC
2π

∫
b(2) ∧ f (2)c +

iqA
2π

∫
b(2) ∧F (2)

A +
i

2π

∫
B(2) ∧ f (2)c . (1.49)

Here b(2) is a dynamical U(1)
(1)
b 2-form gauge field, and c(1) is the dynamical U(1)

(0)
c

gauge field. The 1-form gauge fields A(1) and c(1) transform in a standard fashion un-

der U(1)
(0)
A and U(1)

(0)
c . Similarly, the 2-form gauge fields B(2) and b(2) are subject

to U(1)
(1)
B and U(1)

(1)
b 1-form gauge transformations. Note that the background gauge

fields A(1) and B(2) couple to the conserved currents j
(1)
A = iqA

2π ∗db(2) and J
(2)
B = i

2π ∗f
(2)
c ,

which vanish if we use the equations of motion db(2) = f
(2)
c = 0 that hold in the absence

28These ’t Hooft anomalies come from fermion triangles with a U(1)
(0)
I current, a U(1)

(0)
J current, and

a U(1)
(0)
C current at each vertex. Here I, J ∈ {X,Y }.

29Some of these theories admit dynamical string excitations that are charged under the U(1)
(1)
B global

symmetry. These are discussed in section 7.5.
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of background fields.30 The currents are therefore redundant operators, and hence the

continuous U(1)
(0)
A and U(1)

(1)
B symmetries do not act on the non-trivial line or surface

operators of the theory.31

We can deform the model (1.49) by declaring that b(2) and B(2) are also subject to the

following GS shifts (parametrized by α) under U(1)
(0)
A background gauge transformations,

b(2) → b(2) +
α

2π
λ
(0)
A F

(2)
A , B(2) → B(2) +

κ̂A
2π

λ
(0)
A F

(2)
A , κ̂A = −αqC . (1.50)

The action (1.49) is invariant under these shifts, up to a c-number ’t Hooft anomaly. The

GS shift of the background field B(2) shows that the deformed model has U(1)
(0)
A ×κ̂A

U(1)
(1)
B

2-group symmetry. The anomalous c-number shift contributes an amount 6
(
− qA

qC

)
κ̂A to

the ’t Hooft anomaly coefficient κA3 (see (1.19) and (1.20)). In section 1.6, we saw that

TQFTs with 2-group symmetry contribute precisely 6K κ̂A to the κA3 ’t Hooft anomaly.

Here K is the GS contact term in (1.43) and (1.44). It can be checked that (1.49) gives rise

to just such a contact term, with the correct value K = − qA
qC

, for instance by integrating

out the dynamical fields (this requires some care, see sections 5.1 and 6.5).

Finally, we would like to mention a simple model which arises in the deep IR of RG

flows that spontaneously break the entire 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B (see (1.38)). In the

absence of background fields, the model consists of a free U(1)
(0)
A NG scalar χ, and a free

Maxwell field f
(2)
c , which furnishes the U(1)

(1)
B NG boson. For this reason, we refer to

it as the Goldstone-Maxwell (GM) model. The coupling of the dynamical fields to the

background fields A(1) and B(2) proceeds via the following quadratic action,

SGM[A(1), B(1), χ, c(1)] = v2
∫ (

dχ−A(1)
)
∧ ∗
(
dχ−A(1)

)
+

1

2e2

∫
f (2)c ∧ ∗f (2)c

+
i

2π

∫ (
B(2) − κ̂A

2π
χF

(2)
A

)
∧ f (2)c .

(1.51)

The NG scalar shifts as χ → χ + λ
(0)
A under U(1)

(0)
A background gauge transformations.

The second line of (1.51) is only invariant if we also declare that B(2) undergoes a 2-group

shift, B(2) → B(2) + κ̂A

2π λ
(0)
A F

(2)
A . This shows that the model has U(1)

(0)
A ×κ̂A

U(1)
(2)
B

2-group symmetry. The GM model is further discussed in section 6.6. As we will see

there, its 2-group symmetry is in fact embedded in an even large 3-group symmetry (see

section 1.3).32

The deformed BF theory described by (1.49), (1.50) and the GM model (1.51) il-

lustrate the general point emphasized below (1.35): the presence or absence of 2-group

symmetry can only be detected if we know how the dynamical fields couple to the back-

ground gauge fields A(1) and B(2). (Equivalently, if we know the associated currents.)

30More generally, the on-shell currents are given by c-number terms in the background fields, and hence

their correlation functions can have non-trivial contact terms, see below.
31As was explained in [1, 25, 26], the Z|qC | gauge theory described by the BF theory in (1.49) has a

discrete Z
(1)

|qC | 1-form symmetry that acts on the |qC | distinct Wilson lines of a(1), and a Z
(2)

|qC | 2-form

symmetry that acts on the |qC | distinct Wilson surfaces of b(2).
32The 3-group symmetry of the GM model is essential to making its ’t Hooft anomalies compatible with

anomaly inflow from a five-dimensional bulk.

– 20 –



J
H
E
P
0
2
(
2
0
1
9
)
1
8
4

Without this additional data, the models cannot be distinguished from conventional Z|qC |

gauge theory, or from the theory of a free NG boson and Maxwell field, which do not

possess 2-group symmetry.

1.8 Related work

The continuous 2-group symmetries analyzed in this paper have much in common with

their discrete counterparts. Most discussions of 2-groups in the literature have focused on

the discrete case (an exception is [17]). In this context, the authors of [11] pointed out the

relation between GS shifts for background fields and 2-group symmetries (see section 1.2),

following earlier related work [27, 28]. Possible ’t Hooft anomalies for such symmetries were

analyzed in [11, 29, 30]. Other recent discussions of discrete 2-group (and higher n-group)

symmetries in QFT appear in [16, 31]. Many phenomena that occur for continuous 2-group

symmetries also happen in the discrete case. For instance, the fact that 2-group symmetries

arise by gauging a U(1)
(0)
C flavor symmetry with suitable mixed ’t Hooft anomalies (see

sections 1.2 and 1.3) has a discrete analogue [16]. Other phenomena that arise in both

cases are the truncation of certain 2-group ’t Hooft anomalies, and the fact that TQFTs

can contribute to such anomalies (see section 1.6 and [11, 29, 30]). A detailed analysis

of these, and other, aspects of discrete 2-groups will appear in [32]. Finally, we would

like to point out that some of the phenomena described in [33–35], which also involve

a group-cohomology class in H3(G(0), G(1)) (see section 1.2), and which are sometimes

referred to as anomalies, can be understood in terms of discrete 2-group symmetries. Some

comments appear in [16, 30], see [32] for a detailed discussion. As we have emphasized in the

continuous case, it is more appropriate to think of 2-group symmetries as unconventional

global symmetries, rather than as anomalies. This distinction is especially important if the

2-group symmetries have ’t Hooft anomalies of their own (see section 1.6).

A powerful handle on theories with continuous 2-group symmetries is furnished by

the associated 2-group currents and their Ward identities (see sections 1.4, 1.5, and 1.6).

In the present paper, we focus on theories with continuous 2-group symmetries in four

dimensions. The six-dimensional case will be analyzed in [4]. Here we briefly summarize

some of the results.

In six dimensions, ’t Hooft anomalies for continuous flavor and spacetime symmetries

first appear in four-point functions of the associated currents. This allows for a richer

structure of mixed anomalies than exists in four dimensions. For instance, there are mixed

anomalies that involve two different nonabelian flavor symmetries, with two nonabelian

currents of each kind appearing in the anomalous four-point function. (It is also possible

to replace some of the flavor currents by stress tensors.) By generalizing the arguments in

sections 1.2 and 1.3, we find that gauging one of these nonabelian flavor symmetries leads

to a 2-group whose U(1)
(1)
B subgroup arises from a 2-form current constructed out of the

dynamical nonabelian field strength f (2),

J
(2)
B ∼ ∗ tr

(
f (2) ∧ f (2)

)
. (1.52)

This shows that nonabelian gauge theories in six dimensions can have 2-group symmetry.
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Even though six-dimensional gauge theories are IR-free effective field theories, some

supersymmetric examples have known UV completions as little string theories, or as super-

conformal theories (SCFTs). The former can possess 2-group symmetries. For instance,

the little string theory [36] that arises from N small SO(32) instantons [37] in the heterotic

string provides a six-dimensional UV completion for a particular Sp(N)(0) gauge theory

with (1, 0) supersymmetry and suitable matter. In this theory, the 2-form current (1.52),

which involves the Sp(N)(0) field strength f (2), is associated with the string charge of the

little string theory. The known anomaly structure of this theory (see for instance [38]) im-

plies that this 2-form current participates in a 2-group, together with the SO(32)(0) flavor

symmetry of the theory, as well as with six-dimensional Poincaré symmetry P.

By contrast, six-dimensional SCFTs do not admit 2-group symmetries [4], because

they cannot posses a conformal primary 2-form current, such as (1.52). This follows from

the fact that conserved 2-form currents, which reside in short representations of conformal

symmetry, cannot be embedded into any unitary representation of the six-dimensional

superconformal algebras [21]. In [4], we use these observations to justify the prescription

of [39] for extracting the ’t Hooft anomalies of an SCFT from the low-energy theory on

its tensor branch (if such a branch exists). Together with the fact that some of these ’t

Hooft anomalies determine the a-type Weyl anomaly [40, 41], this can be used to prove

that the a-anomaly of any six-dimensional SCFT with a tensor branch is positive, a > 0 [4].

2 Review of ’t Hooft anomalies for conventional symmetries

In this section we review ’t Hooft anomalies for the continuous global symmetries summa-

rized in section 1.1. Anomalies for 2-group symmetries will be discussed in section 5.

2.1 Generalities

QFTs with global symmetries can have ’t Hooft anomalies.33 One way to exhibit such

anomalies involves coupling the theory to background gauge fields B for the global symme-

tries. By adjusting local counterterms for these background fields, it is sometimes possible

to make the partition function Z[B] of the theory invariant under background gauge trans-

formations B → B + δB. ’t Hooft anomalies arise when this is not possible, in which

case the effective action W [B] = − logZ[B] for background fields (see footnote 3) is not

gauge invariant,

W [B + δB] =W [B] +A[B] . (2.1)

The anomaly A[B] is a local c-number functional of the background fields (roughly, because

there is a sense in which it arises from physics at very short distances), which satisfies the

Wess-Zumino consistency conditions [45].34 Moreover, A[B] vanishes when the background

fields B are turned off. In particular, the symmetry is unbroken in this case. This should

be contrasted with a distinct (but related) phenomenon — the Adler-Bell-Jackiw (ABJ)

33Various aspects of anomalies are nicely reviewed in [42–44].
34For this reason, the functional A in (2.1) is sometimes called the consistent anomaly. It should be distin-

guished from the covariant form of the anomaly [46]. Throughout, we only discuss the consistent anomaly.
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anomaly [47, 48] — which does not vanish in the absence of background fields. For instance,

an ABJ anomaly is responsible for the non-conservation of the axial current jµaxial in massless

QED, which satisfies the operator equation ∂µj
µ
axial ∼ ∗(f (2)∧f (2)) (here f (2) is the Maxwell

field strength operator of the dynamical electromagnetic field).

The anomaly functional A[B] in (2.1) can be modified by adding local counterterms in

the background fields to the action S, and hence toW [B]. This can change the presentation

of the anomaly (as we will see in examples below), but genuine anomalies cannot be removed

using local counterterms. Two reasons for the enduring interest in ’t Hooft anomalies are

that they obey strong non-renormalization theorems (as in [49]) and are subject to anomaly

matching [18, 22, 23]. By anomaly matching we mean that ’t Hooft anomalies must be

reproduced in all effective descriptions of a given theory.

2.2 Anomaly polynomials, descent, inflow, and counterterms

We are interested in ’t Hooft anomalies for continuous symmetries. In d spacetime dimen-

sions these are conveniently summarized by a d + 2-form anomaly polynomial I(d+2)[B].
Here we imagine extending the background gauge fields B, and their gauge transforma-

tions δB, to d+2 dimensions. Then I(d+2)[B] is a gauge-invariant polynomial in background

field strengths and curvatures constructed out of various characteristic classes (see below),

which determines the anomalous shift A[B] of the d-dimensional effective action W [B]
in (2.1) via the descent equations (see for instance [42–44] and references therein),

A[B] = 2πi

∫

Md

I(d)[B, δB] , dI(d)[B, δB] = δI(d+1)[B] , dI(d+1)[B] = I(d+2)[B] . (2.2)

Here Md is the d-dimensional spacetime manifold and I(d)[B, δB], I(d+1)[B] are local ex-

pressions in the background fields (and, in the case of I(d), also the gauge parameters δB).
On a closed (d + 1)-manifold Md+1, the euclidean action Sd+1[B] = 2πi

∫
Md+1

I(d+1)[B]
is gauge invariant modulo 2πiZ, so that e−Sd+1 is gauge invariant. However, if Md+1 is

a manifold with boundary ∂Md+1 = Md, the action Sd+1[B] induces the anomaly A[B]
on the boundary Md by anomaly inflow from the (d + 1)-dimensional bulk.35 It is be-

lieved that all ’t Hooft anomalies in local QFTs should admit a description in terms of

anomaly inflow, once the symmetries and background fields have been correctly identified

(see section 6.6).

An anomaly polynomial I(d+2)
red. is called reducible if it factorizes into a product of

closed, gauge-invariant anomaly polynomials J (p) and K(d+2−p) of lower degree,

I(d+2)
red. = J (p) ∧ K(d+2−p) , dJ (p) = dK(d+2−p) = 0 . (2.3)

The first step of the descent procedure described around (2.2) involves removing an exterior

derivative d from the anomaly polynomial. However, this is ambiguous for the reducible

anomaly I(d+2)
red. in (2.3), because we can remove an exterior derivative from either factor.

35Alternatively, we can take the action in the (d + 1)-dimensional bulk to be −Sd+1[B], which con-

tributes −A to the boundary anomaly. Since anomaly of the d-dimensional boundary theory is +A, the

combined bulk-boundary system is then invariant under background gauge transformations.
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To see this explicitly, consider the first descendants I(d+1)
red. , J (p−1), K(d+1−p) of the

anomaly polynomials in (2.3),

I(d+2)
red. = dI(d+1)

red. , J (p) = dJ (p−1) , K(d+2−p) = dK(d+1−p) . (2.4)

The ambiguity described above leads to an expression for I(d+1)
red. that depends on an un-

determined real parameter s,

I(d+1)
red. =

(
1 + s(−1)p−1

)
J (p−1) ∧ K(d+2−p) + sJ (p) ∧ K(d+1−p)

= J (p−1) ∧ K(d+2−p) + s d
(
J (p−1) ∧ K(d+1−p)

)
, s ∈ R .

(2.5)

The free parameter s multiplies an exact term in the (d + 1)-dimensional anomaly-inflow

action 2πi
∫
Md+1

I(d+1)
red. , and hence it corresponds to a local counterterm in d dimensions,

SC.T.[B] = 2πi s

∫

Md

J (p−1) ∧ K(d+1−p) . (2.6)

Adjusting such counterterms modifies the presentation of reducible anomalies. This will

play an important role below.

We now briefly sketch the basic ingredients that make up the anomaly 6-form polyno-

mial I(6) in d = 4 spacetime dimensions. (A detailed discussion appears in the subsections

below.) Since the anomaly polynomial must be gauge invariant, it naturally involves back-

ground field strengths and curvatures, which assemble into various characteristic classes:

• An ordinary U(1)
(0)
I flavor symmetry contributes to I(6) via the first Chern class

c1(F
(2)
I ) = 1

2π F
(2)
I , where F

(2)
I = dA

(1)
I is the associated background field strength.

• An SU(N)
(0)
A flavor symmetry contributes to I(6) through the Chern classes

ck(F
(2)
A ) = 1

(2π)k
tr
(
(F

(2)
A )k

)
, with k = 2, 3, which are 2k-forms constructed from

the SU(N)
(0)
A background field strength F

(2)
A . Here ck(F

(2)
A ) is independent if there

is an SU(N) Casimir of order k. This is always true for k = 2, but for k = 3 it

requires N ≥ 3.

• Poincaré symmetry contributes to I(6) via Pontryagin classes pk ∼ tr
(
(R(2))2k

)
,

which are 4k-forms constructed from the Riemann curvature 2-form R(2)a
b. Here a, b

are SO(4) frame indices, and tr denotes a trace over such indices.

• U(1)
(q)
B symmetries, with q ≥ 1, contribute to I(6) via the field strength dB(q+1),

which is invariant under q-form background gauge transformations (1.9) of B(q+1).

Schematically (in particular, omitting all prefactors, which are explained in detail below)

these ingredients can be used to construct the following candidate anomalies:

a) Abelian flavor symmetries can contribute mixed U(1)
(0)
I -U(1)

(0)
J -U(1)

(0)
K anomalies,

∑

I,J,K

κIJK c1
(
F

(2)
I

)
∧ c1

(
F

(2)
J

)
∧ c1

(
F

(2)
K

)
⊂ I(6) . (2.7)

Here the indices I, J,K may coincide, e.g. κIII = κI3 denotes a cubic U(1)
(0)
I anomaly.

Note that (2.7) is always a reducible anomaly (see (2.3)).
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b) There can be reducible, mixed SU(N)(0)-U(1)
(0)
I anomalies of the form

∑

I

κA2I c2
(
F

(2)
A

)
∧ c1

(
F

(2)
I

)
⊂ I(6) . (2.8)

c) If N ≥ 3, there can be an irreducible cubic SU(N)(0) anomaly,

κA3 c3
(
F

(2)
A

)
⊂ I(6) . (2.9)

d) There can be reducible, mixed U(1)
(0)
I -Poincaré (P) anomalies of the form

∑

I

κI P2 c1
(
F

(2)
I

)
∧ p1 ⊂ I(6) . (2.10)

e) There can be reducible, mixed U(1)
(1)
B -U(1)

(1)
B′ anomalies,

κBB′ dB(2) ∧ dB′(2) ⊂ I(6) . (2.11)

Note that the left-hand side vanishes by antisymmetry if B = B′. The anomaly (2.11)

therefore requires two distinct 1-form global symmetries. We will only encounter this

situation in the context of free Maxwell theory (see appendix C and section 6.6),

which has both an electric and a magnetic 1-form symmetry [1]. In section 6.6, we

also discuss a mixed anomaly of the form c1(F
(2)
A

)
∧ dΘ(3) ⊂ I(6), where U(1)

(0)
A

is an ordinary flavor symmetry, while Θ(3) is the 3-form background gauge field for

a U(1)
(2)
Θ 2-form global symmetry.

Note that there is no candidate anomaly that mixes a U(1)
(1)
B symmetry with ordinary

flavor symmetries, or with Poincaré symmetry. This will be important in section 5.3.

2.3 Abelian flavor symmetries and background gauge fields

We first consider four-dimensional theories with abelian 0-form flavor symmetry

G(0) = U(1)
(0)
A ×U(1)

(0)
C . (2.12)

The corresponding 1-form background gauge fields are A(1) and C(1); their field strengths

are F
(2)
A = dA(1) and F

(2)
C = dC(1). We will eventually gauge U(1)

(0)
C , but throughout this

section it will be a global symmetry. The most general anomaly 6-form I(6) that can be

constructed using F
(2)
A and F

(2)
C takes the form (2.7), with I, J,K ∈ {A,C}. Explicitly,

I(6) = 1

(2π)3

(
κA3

3!
F

(2)
A ∧ F (2)

A ∧ F (2)
A +

κA2C

2!
F

(2)
A ∧ F (2)

A ∧ F (2)
C

+
κAC2

2!
F

(2)
A ∧ F (2)

C ∧ F (2)
C +

κC3

3!
F

(2)
C ∧ F (2)

C ∧ F (2)
C

)
.

(2.13)

Here the different κ’s are real constants — the anomaly coefficients — that can be extracted

from the various three-point functions of the U(1)
(0)
A and U(1)

(0)
C currents. A set of Weyl

fermions ψi
α with U(1)

(0)
A and U(1)

(0)
C charges qiA and qiC contribute

I(6) =
∑

i

exp

(
qiA
2π

F
(2)
A +

qiC
2π

F
(2)
C

) ∣∣∣∣
6-form

. (2.14)
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Expanding the exponential and comparing the 6-form terms with (2.13) leads to

κA3 =
∑

i

(
qiA
)3
, κA2C =

∑

i

(
qiA
)2
qiC ,

κAC2 =
∑

i

qiA
(
qiC
)2
, κC3 =

∑

i

(
qiC
)3
.

(2.15)

This result also follows from a direct evaluation of the various current three-point functions,

which here reduce to anomalous fermion triangles. Note that the anomaly coefficients

in (2.15) are sums and products of U(1) charges, and hence integers. As is reviewed in

appendix A, this quantization is a general feature of ’t Hooft anomaly coefficients, which

can be argued without appealing to free fermions. The fact that the anomaly coefficients

are quantized explains their rigidity under RG flows, as well as the non-renormalization

theorem of [49].36

All anomalies in (2.13) are reducible, and hence the discussion around (2.3) applies.

In particular, every term in I(6) that involves both F (2)
A and F

(2)
C leads to a one-parameter

ambiguity in I(5), as in (2.5). For instance, applying descent to the term proportional

to F
(2)
A ∧ F (2)

A ∧ F (2)
C in I(6) leads to the following terms in I(5),

I(5) ⊃ κA2C

2(2π)3
A(1) ∧ F (2)

A ∧ F (2)
C + s d

(
A(1) ∧ F (2)

A ∧ C(1)
)
, s ∈ R . (2.16)

The ambiguity parametrized by s is an exact 5-form, and hence it corresponds to a local

counterterms in four dimensions,

SC.T.[A
(1), C(1)] = 2πi s

∫

M4

CS(3)(A) ∧ C(1) , CS(3)(A) = A(1) ∧ F (2)
A . (2.17)

Here CS(3)(A) denotes the Chern-Simons 3-form. Adjusting the counterterm (2.17) amounts

to dialing the parameter s in (2.16). In terms of the general expressions (2.5) and (2.6),

this example has J (p−1) = J (3) ∼ CS(3)(A) and K(d+1−p) = K(1) ∼ C(1). A similar

ambiguity, parametrized by t ∈ R, arises when we apply the descent procedure to the term

proportional to F
(2)
A ∧ F (2)

C ∧ F (2)
C in I(6).

In summary, the descent 5-form I(5) that arises from the anomaly polynomial I(6)
in (2.13) is given by

I(5)= 1

(2π)3

(
κA3

3!
A(1)∧F (2)

A ∧F
(2)
A +

κA2C

2!
A(1)∧F (2)

A ∧F
(2)
C +

κAC2

2!
A(1)∧F (2)

C ∧F
(2)
C

+
κC3

3!
C(1)∧F (2)

C ∧F
(2)
C

)
+sd

(
A(1)∧F (2)

A ∧C(1)
)
+td

(
A(1)∧C(1)∧F (2)

C

)
. (2.18)

As explained above, the coefficients s, t ∈ R of the exact terms in I(5) can be adjusted using

local counterterms in four dimensions. We now use (2.2) to compute the anomalies AA

36Since they are quantized, the ’t Hooft anomaly coefficients cannot depend on any continuous coupling

constants (which can be promoted to background fields), and hence they are one-loop exact. This is similar

to the argument of [3] for the non-renormalization of Chern-Simons terms [50].
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and AC under U(1)
(0)
A and U(1)

(0)
C background gauge transformations, parametrized by λ

(0)
A

and λ
(0)
C , that result from (2.18),

AA=
i

4π2

∫

M4

λ
(0)
A

(
κA3

3!
F

(2)
A ∧F

(2)
A +

(κA2C

2!
−s
)
F

(2)
A ∧F

(2)
C +

(κAC2

2!
−t
)
F

(2)
C ∧F

(2)
C

)
,

AC =
i

4π2

∫

M4

λ
(0)
C

(
κC3

3!
F

(2)
C ∧F

(2)
C +sF

(2)
A ∧F

(2)
A +tF

(2)
A ∧F

(2)
C

)
. (2.19)

The couplings of the currents j
(1)
A and j

(1)
C to the background gauge fields A(1) and C(1)

are normalized as in (1.3). Therefore, the anomalies in (2.19) imply the following non-

conservation equations,

d ∗ j(1)A = − i

4π2

(
κA3

3!
F

(2)
A ∧ F (2)

A +
(κA2C

2!
− s
)
F

(2)
A ∧ F (2)

C +
(κAC2

2!
− t
)
F

(2)
C ∧ F (2)

C

)
,

d ∗ j(1)C = − i

4π2

(κC3

3!
F

(2)
C ∧ F (2)

C + s F
(2)
A ∧ F (2)

A + t F
(2)
A ∧ F (2)

C

)
. (2.20)

Note that (2.19) and (2.20) do not to treat U(1)
(0)
A and U(1)

(0)
C symmetrically for generic s, t.

The symmetry can be restored by choosing s = 1
4κA2C and t = 1

4κAC2 .

In section 3 we would like to gauge U(1)
(0)
C . We must then ensure that U(1)

(0)
C gauge

transformations are completely anomaly free, i.e. that the anomalous shift AC = 0 in (2.19)

vanishes, and hence that d ∗ j(1)C = 0 in (2.20). This is only possible if the cubic U(1)
(0)
C

anomaly vanishes,

κC3 = 0 , (2.21)

but it also requires adjusting the counterterms so that

s = t = 0 . (2.22)

Once this is done, the form of the U(1)
(0)
A anomaly AA in (2.19) is completely fixed,

AA =
i

4π2

∫

M4

λ
(0)
A

(
κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
, (2.23)

and the corresponding non-conservation equation in (2.20) is

d ∗ j(1)A = − i

4π2

(
κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
. (2.24)

These equations will important in section 3. Having fixed the counterterms to render

U(1)
(0)
C anomaly free (and hence gaugeable), the non-vanishing of either mixed anomaly

coefficient, κA2C or κAC2 , obstructs the further gauging of U(1)
(0)
A , even if κA3 = 0.

For future reference, we present the analogue of the κA2C anomaly in (2.23) for higher-

rank abelian flavor symmetries of the form

G(0) =
∏

I

U(1)
(0)
I ×U(1)

(0)
C . (2.25)
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The relevant terms in the anomaly polynomial are (see (2.7))

I(6) ⊃ 1

2!(2π)3

∑

I,J

κIJC F
(2)
I ∧ F (2)

J ∧ F (2)
C , κIJC = κ(IJ)C . (2.26)

By suitably adjusting the counterterms that arise in the context of these reducible anoma-

lies, we can choose a symmetric presentation for the descent 5-form,

I(5) ⊃ 1

2!(2π)3

∑

I,J

κIJC A
(1)
(I ∧ F

(2)
J) ∧ F

(2)
C . (2.27)

The resulting anomalous shift AI of the effective action under a U(1)
(0)
I background gauge

transformation, parametrized by λ
(0)
I , is then given by

AI =
i

4π2

∑

J

κIJC
2!

∫

M4

λ
(0)
I F

(2)
J ∧ F (2)

C . (2.28)

If we set I = J = A and write κAAC = κA2C , we reproduce the corresponding term in (2.23).

2.4 Nonabelian flavor symmetries and background gauge fields

We now generalize the discussion of the previous subsection to include nonabelian 0-form

symmetries. For simplicity, we focus on flavor symmetries of the from

G(0) = SU(N)
(0)
A ×U(1)

(0)
C . (2.29)

For the SU(N)
(0)
A background gauge fields, we follow the conventions of [51], and write

A(1) = A(1)a ta , a = 1, . . . , N2 − 1 , (2.30)

where the ta are antihermitian SU(N)
(0)
A generators in the fundamental representation

(i.e. they are N × N matrices), which are normalized so that tr(tatb) = −1
2δab. The field

strength 2-form is then given by

F
(2)
A = dA(1) +A(1) ∧A(1) , (2.31)

with a commutator implicit in the second term on the right-hand side. An infinitesi-

mal SU(N)
(0)
A group element is parametrized by 1+ λ

(0)
A , with

λ
(0)
A = λ

(0)a
A ta , λ

(0)a
A ∈ R . (2.32)

An infinitesimal background gauge transformation then acts via the following shifts,

A(1) → A(1) + dλ
(0)
A + [A(1), λ

(0)
A ] , F

(2)
A → F

(2)
A + [F

(2)
A , λ

(0)
A ] . (2.33)

The most general anomaly 6-form that can be constructed out of SU(N)
(0)
A and U(1)

(0)
C

background fields is (see (2.8) and (2.9))

I(6) = 1

(2π)3

(
− iκA3

3!
tr
(
F

(2)
A ∧ F (2)

A ∧ F (2)
A

)
− κA2C

2!
tr
(
F

(2)
A ∧ F (2)

A

)
∧ F (2)

C

+
κC3

3!
F

(2)
C ∧ F (2)

C ∧ F (2)
C

)
.

(2.34)

– 28 –



J
H
E
P
0
2
(
2
0
1
9
)
1
8
4

A Weyl fermion ψα in the fundamental representation of SU(N)
(0)
A , with U(1)

(0)
C charge qC ,

contributes

I(6) = tr exp

(
i

2π
F

(2)
A

)
exp

(
1

2π
F

(2)
C

) ∣∣∣∣
6-form

. (2.35)

Expanding the exponential and comparing with (2.34) leads to

κA3 = 1 , κA2C = qC , κC3 = Nq3C . (2.36)

As discussed around (2.9), the irreducible cubic anomaly κA3 is only possible if N ≥ 3.

The abelian anomaly proportional to κC3 was already discussed in section 2.3 above. Since

we would eventually like to gauge U(1)
(0)
C , we will assume that it vanishes, κC3 = 0. Our

primary interest is in the mixed, reducible anomaly proportional to κA2C . In the remainder

of this section we will therefore simplify the formulas by dropping terms proportional to κA3 .

If we use

tr
(
F

(2)
A ∧ F (2)

A

)
= dCS(3)(A) , CS(3)(A) = tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.37)

we can apply descent to the mixed term in (2.34). This leads to the following descent 5-

form,

I(5) = − κA2C

2!(2π)3
CS(3)(A) ∧ F (2)

C + s d
(
CS(3)(A) ∧ C(1)

)
, s ∈ R . (2.38)

As in the abelian case (see the discussion around (2.22)) we set the parameter s in (2.38)

to zero using a local counterterm. The shift of the nonabelian Chern-Simons term in (2.37)

under a background gauge transformation (2.33) is given by

CS(3)(A) −→ CS(3)(A) + d tr
(
λ
(0)
A dA(1)

)
. (2.39)

Note that this shift is linear in A(1) and cannot be written in terms of the field strength F
(2)
A

defined in (2.31). This leads to the following anomaly under SU(N)
(0)
A background gauge

transformations,

AA = − iκA2C

8π2

∫

M4

tr
(
λ
(0)
A dA(1)

)
∧ F (2)

C . (2.40)

We normalize the coupling of the SU(N)
(0)
A current j

(1)
A to the associated background

gauge field A(1) as follows,

S ⊃
∫

d4xAa
µj

aµ
A = −2

∫
tr
(
A(1) ∧ ∗j(1)A

)
. (2.41)

The anomaly in (2.40) then leads to the following non-conservation equation,

d ∗ j(1)A =
iκA2C

16π2
dA(1) ∧ F (2)

C . (2.42)

This is nearly identical to the abelian κA2C term in (2.24), up to a relative factor of −1
2

which is due to tr(tatb) = −1
2δab.
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2.5 Poincaré symmetry and background gravity fields

As for nonabelian gauge fields, we follow the conventions of [51] for background gravity

fields. It is convenient (and, in theories with spinor fields, unavoidable) to describe gravity

using an orthonormal frame eaµ, so that the riemannian metric is gµν = δabe
a
µe

b
ν . Here a, b

and µ, ν are, respectively, frame indices (which are raised and lowered with δab, δab) and

spacetime indices (which are raised and lowered with gµν , gµν). The indices a, b are acted

on by local SO(4) frame rotations, and the indices µ, ν by diffeomorphisms. Together,

these are the gauge transformations of gravity. An infinitesimal local frame rotation is

an SO(4) group element δab + (θ(0))ab(x), with (θ(0))ab = (θ(0))[ab], and an infinitesimal

diffeomorphism is parametrized by a vector field ξµ(x). Under these transformations,

the 1-form frame field e(1)a = eaµdx
µ shifts as follows,

e(1)a −→ e(1)a − (θ(0))abe
(1)b + Lξe(1)a , (2.43)

where Lξ is the Lie derivative along the vector field ξµ. We will also need the spin connec-

tion 1-form ω(1)a
b, which is defined by the relations

de(1)a + ω(1)a
b ∧ e(1)b = 0 , ω

(1)
ab = ω

(1)
[ab] , (2.44)

as well as the Riemann curvature 2-form,

R(2)a
b = dω(1)a

b + ω(1)a
c ∧ ω(1)c

b , R
(2)
ab = R

(2)
[ab] . (2.45)

Both ω(1)a
b and R(2)a

b are valued in the SO(4) Lie algebra. Under a local frame rota-

tion (2.43), parametrized by (θ(0))ab, the spin connection and the Riemann curvature shift

as follows,

ω(1)a
b −→ ω(1)a

b + d(θ(0))ab + ω(1)a
c (θ

(0))cb − (θ(0))ac ω
(1)c

b ,

R(2)a
b −→ R(2)a

b +R(2)a
c (θ

(0))cb − (θ(0))acR
(2)c

b .
(2.46)

Note the similarity between (2.45), (2.46) and the corresponding formulas (2.31), (2.33)

for nonabelian gauge fields. The former can be obtained from the latter by interpreting

frame indices as fundamental SO(4) gauge indices and replacing A(1) → ω(1), F
(2)
A → R(2),

and λ
(0)
A → θ(0).

In a gravitational background, an insertion of the stress tensor Tµν = eaµe
b
νTab is defined

as the response to a variation in the frame field, i.e. it is a functional derivative of the

partition function,
√
g Tab(x) = −ebµ

δZ

δeaµ(x)
. (2.47)

Note that this definition of Tab is not obviously symmetric in a, b. Together with the

transformation rule of the vielbein in (2.43), it implies the following shift of the effective

action W under local frame rotations and diffeomorphisms,

W −→ W −
∫ √

g d4x θ(0)ab T[ab] −
∫ √

g d4x ξν∇µT
µν . (2.48)
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In the absence of anomalies, this shift vanishes and the stress tensor is symmetric and

(covariantly) conserved.

It is a non-trivial fact that one can always regulate a QFT in such a way as to preserve

invariance under either local frame rotations or diffeomorphisms. It is therefore always

possible to set one of the terms in (2.48) to zero by adjusting certain local counterterms in

the background gravity fields [46, 51]. For instance, as in [52], one can choose to preserve

invariance under local frame rotations. It then follows from (2.48) that Tab = T(ab) is

symmetric, but potentially not conserved due to a diffeomorphism ’t Hooft anomaly. For

our purposes, it is more convenient to assume that the counterterms have been chosen to

preserve diffeomorphisms. There may then be an ’t Hooft anomaly associated with local

frame rotations. In this case (2.48) implies that the stress tensor is conserved, but may

develop an antisymmetric part T[ab] in the presence of suitable background fields.

The most general anomaly 6-form that can be constructed out of background U(1)
(0)
C

and gravity fields (see (2.10)) is given by

I(6) = 1

(2π)3

(
κCP2

48
tr
(
R(2) ∧R(2)

)
∧ F (2)

C +
κC3

3!
F

(2)
C ∧ F (2)

C ∧ F (2)
C

)
. (2.49)

Here we use tr to denote a trace over SO(4) frame indices, so that

tr
(
R(2) ∧R(2)

)
= R(2)a

b ∧R(2)b
a . (2.50)

In our conventions, a collection of Weyl fermions ψi
α with U(1)

(0)
C charges qiC contributes

I(6) =
∑

i

Â exp

(
qiC
2π
F

(2)
C

) ∣∣∣∣
6-form

, Â = 1 +
1

192π2
tr
(
R(2) ∧R(2)

)
+ · · · . (2.51)

Here Â is the Dirac genus (see appendix A). Comparing with (2.50) then implies that

κCP2 =
∑

i

qiC , κC3 =
∑

i

(
qiC
)3
. (2.52)

Below, we would like to gauge U(1)
(0)
C , so we assume that κC3 = 0.

Note that (up to an overall sign) the mixed U(1)
(0)
C -P anomaly in (2.49) takes the

same form as the mixed U(1)
(0)
C -SU(N)

(0)
A anomaly in (2.34), after substituting

κA2C →
κCP2

24
, F

(2)
A → R(2) . (2.53)

We can therefore follow the same steps that were described there (including adjusting a

certain counterterm proportional to CS(3)(ω) ∧ C(1), where CS(3)(ω) is the gravitational

Chern-Simons term defined in (2.55) below, to ensure that U(1)
(0)
C is free of anomalies) to

obtain the following descent 5-form from (2.49),

I(5) = κCP2

48(2π)3
CS(3)(ω) ∧ F (2)

C . (2.54)
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Here the gravitational Chern-Simons term CS(3)(ω) is given by

CS(3)(ω) = tr

(
ω(1) ∧ dω(1) +

2

3
ω(1) ∧ ω(1) ∧ ω(1)

)
, (2.55)

and it satisfies

dCS(3)(ω) = tr
(
R(2) ∧R(2)

)
. (2.56)

Using (2.46), the variation of the Chern-Simons term (2.55) under a local frame rotation

parametrized by θ(0) is given by the gravitational analogue of (2.39),

CS(3)(ω) −→ CS(3)(ω) + d tr
(
θ(0) dω(1)

)
. (2.57)

This allows us to determine the anomaly in Poincaré symmetry from (2.54),

AP =
iκCP2

192π2

∫

M4

tr
(
θ(0) dω(1)

)
∧ F (2)

C . (2.58)

This anomaly follows (up to an overall sign) from the nonabelian formula (2.40), if we

substitute κA2C →
κ
CP2

24 , as in (2.53), as well as λ
(0)
A → θ(0), and A(1) → ω(1). Compar-

ing (2.58) with the definition of the stress tensor in (2.47) leads to

T[ab] =
iκCP2

192π2
∗
(
dω

(1)
ab ∧ F

(2)
C

)
. (2.59)

The fact that the stress tensor develops and antisymmetric part in the presence of back-

ground fields is the analogue of the anomalous non-conservation equations (2.24) and (2.42).

3 2-group symmetries from mixed ’t Hooft anomalies

Here we elaborate on sections 1.2 and 1.3, where it was pointed out that theories with

continuous 2-group symmetries arise from parent theories with a U(1)
(0)
C flavor symmetry

and suitable mixed ’t Hooft anomalies, by gauging U(1)
(0)
C .37 We review and expand on

the simplest abelian case discussed in section 1.2, before explaining the origin of the more

general abelian, nonabelian, and Poincaré 2-group symmetries summarized in section 1.3.

3.1 Constructing the simplest abelian 2-groups

As in sections 1.2 and 2.3, we first consider parent theories with the following abelian 0-form

flavor symmetry,

G(0) = U(1)
(0)
A ×U(1)

(0)
C . (3.1)

The corresponding background fields are A(1) and C(1). For now we ignore all other back-

ground fields, including gauge fields for possible nonabelian flavor symmetries, or gravity.

(They are discussed in section 3.2 below.) As in (1.18), we would like to gauge U(1)
(0)
C , by

promoting the background gauge field C(1) and its field strength F
(2)
C to dynamical fields,

U(1)
(0)
C → U(1)(0)c , C(1) → c(1) , F

(2)
C → f (2)c . (3.2)

37See [16] for a discrete analogue.
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We then perform the functional integral over gauge orbits of c(1). This typically requires

adding a suitably positive-definite quadratic action,

S ⊃ 1

2e2

∫
f (2)c ∧ ∗f (2)c +

iθ

8π2

∫
f (2)c ∧ f (2)c . (3.3)

Here e is the gauge coupling, and we have also included a θ-term. Since the theories we are

interested in generally contain fermions, we will always take the spacetime manifold M4

to be spin. Therefore, 1
8π2

∫
M4

f
(2)
c ∧ f (2)c ∈ Z, so that θ ∼ θ+2π has standard periodicity.

As was explained in section 2.3, it is only possible to gauge U(1)
(0)
C if κC3 = 0

(see (2.21)) and if the counterterms are adjusted as in (2.22). The anomalous c-number

shift AA under U(1)
(0)
A background gauge transformations (parametrized by λ

(0)
A ) and the

non-conservation equation for j
(1)
A are then given by (2.23), (2.24), which we repeat here,

AA =
i

4π2

∫
λ
(0)
A

(
κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
,

d ∗ j(1)A = − i

4π2

(
κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
.

(3.4)

Upon gauging, the background field strength F
(2)
C turns into the operator f

(2)
c (see (3.2)).

This converts the anomalous shifts proportional to κA2C and κAC2 in (3.4) from c-numbers

into operators. (The term proportional to κA3 remains a c-number, but its status as an

’t Hooft anomaly changes, see section 5.3.) Unlike ’t Hooft anomalies, such operator-

valued shifts cannot be thought of as variations of the c-number effective action W [B] for
background fields B. In the remainder of this section we explain how to correctly account for

such operator-valued shifts. As in section 1.2, some of them give rise to 2-group symmetries.

We first examine the mixed κAC2 anomaly in (3.4). Upon gauging U(1)
(0)
C , it gives rise

to an ABJ anomaly for the U(1)
(0)
A current (see the comments below (1.19) and (2.1)),

d ∗ j(1)A ⊃ − iκAC2

8π2
f (2)c ∧ f (2)c . (3.5)

Since f
(2)
c ∧ f (2)c is a nontrivial operator, the ABJ anomaly violates current conservation,

even in the absence of background fields and at separated points inside correlation functions.

The ABJ non-conservation equation (3.5) is associated with the following operator-valued

shift, which arises upon substituting F
(2)
C → f

(2)
c into AA (see (3.4)),

AA

(
F

(2)
C → f (2)c

)
⊃ iκAC2

8π2

∫
λ
(0)
A f (2)c ∧ f (2)c . (3.6)

As was already mentioned above, such operator-valued shifts cannot be interpreted as a

non-invariance of the effective action W [B], which is a c-number that only depends on

background fields B. Instead, they are accounted for by modifying the transformation

rules of some background fields in such a way that all operator-valued shifts ultimately

cancel. (There may of course still be ’t Hooft anomalies that shift W [B] by a c-number.)

Note that this does not change the dynamics of the theory. As such, it is distinct from
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what is typically referred to as anomaly cancellation, which involves coupling the theory

to additional propagating fields.

As is well known, the ABJ anomaly (3.6) can be described by promoting the θ-angle

in (3.3) to a background field θ(x) that acts as a source for the operator f
(2)
c ∧ f (2)c . Un-

der U(1)
(0)
A background gauge transformations, θ(x) shifts jointly with the gauge field A(1),

A(1) −→ A(1) + dλ
(0)
A , θ −→ θ − κAC2 λ

(0)
A . (3.7)

If θ were a dynamical scalar field, this transformation rule would mean that U(1)
(0)
A is

spontaneously broken, and θ would be the corresponding NG boson.38 Freezing θ into a

fixed background field configuration converts spontaneous into explicit breaking, because

no fixed configuration θ(x) is invariant under the shift in (3.7). In the remainder of this

paper, we will focus on U(1)
(0)
A flavor symmetries that are not explicitly broken by ABJ

anomalies. We thus require

κAC2 = 0 . (3.8)

We now repeat the preceding analysis for the κA2C anomaly in (3.4). After we gauge

U(1)
(0)
C , it leads to the following non-conservation equation for the U(1)

(0)
A current,

d ∗ j(1)A ⊃ − iκA2C

8π2
F

(2)
A ∧ f (2)c . (3.9)

The right-hand side contains both the background field F
(2)
A and the operator f

(2)
c . The

current j
(1)
A is broken by the operator if the U(1)

(0)
A background field strength is non-

trivial. However, if F
(2)
A = 0 the right-hand side of (3.9) vanishes. Thus j

(1)
A is a conserved

current operator, i.e. it satisfies d∗j(1)A = 0 at separated points inside correlation functions.

This is the first of many ways in which (3.9) is fundamentally different from the ABJ

anomaly reviewed above, which breaks current conservation even at separated points. It is

also distinct from ’t Hooft anomalies such as (3.4) (prior to gauging U(1)
(0)
C ), which only

break current conservation by c-number terms in the background fields. As before, the

non-conservation equation (3.9) is associated with an operator-valued shift (see (3.4)),

AA

(
F

(2)
C → f (2)c

)
⊃ iκA2C

8π2

∫
λ
(0)
A F

(2)
A ∧ f (2)c . (3.10)

We must now understand which background fields can be used to cancel (3.10) at the level

of the effective action W [B].
As explained in [1], and reviewed in section 1.1, gauging U(1)

(0)
C gives rise to a new

1-form global symmetry: the magnetic U(1)
(1)
B symmetry associated with the dynami-

cal U(1)
(0)
c gauge field strength f

(2)
c , with 2-form current J

(2)
B given by (1.11) (see also

footnote 5),

J
(2)
B =

i

2π
∗ f (2)c . (3.11)

38In this case, θ would be an axion and U(1)
(0)
A the corresponding Peccei-Quinn [53] symmetry.
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It is conserved because f
(2)
c satisfies the Bianchi identity, so that d ∗ J (2)

B ∼ df
(2)
c = 0.39

The magnetic 1-form charges, evaluated by integrating 1
2π f

(2)
c over closed 2-cycles Σ2

(see (1.7)), are integers because f
(2)
c is a U(1)

(0)
c field strength, so that 1

2π

∫
Σ2
f
(2)
c ∈ Z.

(This was explained around (1.5) for U(1)(0) background gauge fields, but it also applies

in the dynamical case.) As explained around (1.8) and (1.21), the appropriate classical

source for J
(2)
B is a 2-form background gauge field B(2),

S ⊃
∫
B(2) ∧ ∗J (2)

B =
i

2π

∫
B(2) ∧ f (2)c . (3.12)

This is a BF-term for the background field B(2) and the dynamical field f
(2)
c . As in (1.9)

and (1.10), the 2-form B(2) is subject to U(1)
(1)
B background gauge transformations, which

are parametrized by a (locally-defined) 1-form Λ
(1)
B with suitably quantized periods,

B(2) −→ B(2) + dΛ
(1)
B ,

1

2π

∫

Σ2

dΛ
(1)
B ∈ Z . (3.13)

Invariance under small U(1)
(1)
B background gauge transformations (for which Λ

(1)
B has trivial

fluxes) captures the Bianchi identity df
(2)
c = 0. The possibility of large U(1)

(1)
B gauge

transformations, under which the BF term in (3.13) is also invariant, arises because the

magnetic 1-form charges (measured by integrals of 1
2π f

(2)
c ) are quantized. In general,

invariance under large U(1)
(1)
B gauge transformations requites BF terms to have quantized

coefficients, in
2π

∫
B(2) ∧ f (2)c with n ∈ Z. This fact will play an important role in section 5.

Given that the background 2-form gauge field B(2) in (3.12) is the appropriate source

for the operator f
(2)
c , we can cancel the operator-valued shift in (3.10) by declaring that B(2)

undergoes a GS, or 2-group, shift under U(1)
(0)
A background gauge transformations. As

in (1.22), this shift takes the following form,

B(2) −→ B(2) +
κ̂A
2π

λ
(0)
A F

(2)
A , κ̂A = −1

2
κA2C , (3.14)

with the 2-group structure constant κ̂A determined by the mixed κA2C anomaly coeffi-

cient. Recall from section 1.2 that κ̂A ∈ Z, which requires κA2C ∈ 2Z. These quantization

conditions are explained in section 7.1 and appendix A. If B(2) were a dynamical 2-form

gauge field, the transformation rule (3.14) would implement the conventional GS mecha-

nism, with the BF-term (3.12) playing the role of the associated GS term. As explained

in section 1.2, freezing B(2) into a background field instead leads to the abelian 2-group

global symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B in (1.17).

Note the similarity between (3.14) and the shift of the θ-angle in (3.7), which accounts

for the ABJ anomaly. However, an important difference is that the θ-angle in (3.7) shifts

under U(1)
(0)
A , which indicates that the symmetry is explicitly broken. By contrast, the

2-form gauge field B(2) only shifts under U(1)
(0)
A if the background field strength F

(2)
A is

nonzero. This mirrors the fact that the right-hand side of the 2-group non-conservation

equation (3.9) vanishes if F
(2)
A = 0, which ensures that j

(1)
A is a conserved current.

39Note that the electric 1-form symmetry of free Maxwell theory (see appendix C and [1]) is explicitly

broken in the presence of electrically charged matter, because 1
e2
d ∗ f

(2)
c ∼ ∗j

(1)
C 6= 0.
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3.2 More general abelian, nonabelian, and Poincaré 2-groups

We now explain how to obtain the more general 2-group symmetries summarized in sec-

tion 1.3 by gauging a U(1)
(0)
C flavor symmetry with suitable mixed ’t Hooft anomalies. We

start with the higher-rank abelian 2-group symmetries
(∏

I U(1)
(0)
I

)
×κ̂IJ

U(1)
(1)
B introduced

around (1.23). These arise from parent theories with flavor symmetry

G(0) =
∏

I

U(1)
(0)
I ×U(1)

(0)
C . (3.15)

Since we would like to gauge U(1)
(0)
C while preserving all U(1)

(0)
I symmetries, we de-

mand that the κC3 gauge anomaly and all κIC2 ABJ anomalies vanish. As explained

around (2.28), it is possible to choose counterterms so that operator-valued shift un-

der U(1)
(0)
I background gauge transformations (parametrized by λ

(0)
I ) that arises after

gauging U(1)
(0)
C is given by

AI(F
(2)
C → f (2)c ) ⊃ i

4π2

∑

J

κIJC
2!

∫
λ
(0)
I F

(2)
J ∧ f (2)c . (3.16)

Here κIJC = κ(IJ)C are the mixed U(1)
(0)
I -U(1)

(0)
J -U(1)

(0)
C ’t Hooft anomaly coefficients

that appear in the anomaly polynomial (2.26). In order to cancel the operator-valued

shift (3.16) for all U(1)
(0)
I background gauge transformations, we again use the BF term

in (3.12) as a GS term and assign the following 2-group shift to B(2) (see (1.23)),

B(2) −→ B(2) +
1

2π

∑

I,J

κ̂IJ λ
(0)
I F

(2)
J , κ̂IJ = κ̂(IJ) = −

1

2
κIJC . (3.17)

Now the 2-group structure constants κ̂IJ determine a symmetric matrix with integer

entries.40

We now show how a theory with nonabelian and Poincaré 2-group symmetry (see (1.24)

and (1.25)) can be constructed by gauging U(1)
(0)
C in a parent theory with flavor symmetry

G(0) = SU(N)
(0)
A ×U(1)

(0)
C . (3.18)

The possible ’t Hooft anomalies for such a theory were reviewed in sections 2.4 and 2.5.

Here we focus on the following mixed terms in the anomaly 6-forms (2.34) and (2.49),

which involve the SU(N)
(0)
A and U(1)

(0)
C background gauge fields A(1) and C(1), as well as

background gravity fields,

I(6) ⊃ 1

(2π)3

(
− κA2C

2!
tr
(
F

(2)
A ∧ F (2)

A

)
∧F (2)

C +
κCP2

48
tr

(
R(2) ∧R(2)

)
∧ F (2)

C

)
. (3.19)

As above, gauging U(1)
(0)
C is only possible if κC3 = 0. Moreover, we must adjust the

counterterms so that the operator-valued shifts under background SU(N)
(0)
A gauge trans-

formations and local frame rotations that arise after gauging U(1)
(0)
C are given by (2.40)

40It is straightforward to extend the arguments in appendix A to show that the ’t Hooft anomaly co-

efficients satisfy κIJC ∈ 2Z. This always holds for the off-diagonal entries with I 6= J . For the diagonal

entries κIIC = κI2C it follows from the assumption that the ABJ anomaly κIC2 vanishes.
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and (2.58),

AA(F
(2)
C → f (2)c ) ⊃ − iκA2C

8π2

∫
tr
(
λ
(0)
A dA(1)

)
∧ f (2)c ,

AP(F
(2)
C → f (2)c ) ⊃ iκCP2

192π2

∫
tr
(
θ(0) dω(1)

)
∧ f (2)c .

(3.20)

We also recall the corresponding non-conservation equations (2.42) and (2.59),

d ∗ j(1)A =
iκA2C

16π2
dA(1) ∧ f (2)c , T[ab] =

iκCP2

192π2
∗
(
dω

(1)
ab ∧ f (2)c

)
. (3.21)

Just as (3.9), these non-conservation equations have the property that their right-hand

sides involve both a background field (either dA(1) or dω(1)) and the operator f
(2)
c . This

ensures that d ∗ j(1)A = T[ab] = 0 in the absence of background fields, or inside correlation

functions at separated points. As before, these conservation equations are broken by the

operator f
(2)
c — either in sufficiently non-trivial backgrounds, or by δ-function contact

terms inside correlation functions.

In order to cancel the operator-valued shifts in (3.20), we utilize the BF term (3.12)

and assign the following 2-group shift to B(2) under SU(N)
(0)
A background gauge transfor-

mations and local frame rotations,

B(2) → B(2) +
κ̂A
4π

tr
(
λ
(0)
A dA(1)

)
+
κ̂P

16π
tr
(
θ(0) dω(1)

)
, κ̂A = κA2C , κ̂P = −κCP2

6
.

(3.22)

As in (1.24), (1.25), this amounts to a 2-group symmetry
(
SU(N)

(0)
A ×P

)
×κ̂A , κ̂P

U(1)
(1)
B .

In section 7.1 we show that both 2-group structure constants in (3.22) are quantized,

κ̂A, κ̂P ∈ Z, which requires κA2C ∈ Z and κCP2 ∈ 6Z. As is explained in appendix A,

the factor of 6 in the quantization of κCP2 is present whenever κC3 = 0, which we had to

assume in order to gauge U(1)
(0)
C .

The presentation of the 2-group symmetries discussed above can be modified by re-

defining the background fields. This is particularly natural for Poincaré 2-group symmetry.

As was mentioned below (2.48), ’t Hooft anomalies involving background gravity fields can

manifest as anomalies in local frame rotations, or in diffeomorphisms. The two presen-

tations are related by suitable local counterterms [46, 51, 52]. Before we gauge U(1)
(0)
C ,

the κCP2 anomaly can therefore be viewed as involving U(1)
(0)
C and either (i) local frame

rotations or (ii) diffeomorphisms. Above, we have chosen option (i) by assuming that dif-

feomorphisms are preserved. It differs from option (ii) by a counterterm that involves

the U(1)
(0)
C background field strength, as well as background gravity fields. Once we

gauge U(1)
(0)
C , it follows from (3.12) that the counterterms relating the two presentations

(i) and (ii), which now involve the dynamical field strength f
(2)
c , can be absorbed by a

field redefinition that shifts B(2) by background gravity fields. The Poincaré 2-groups that

result from (i) and (ii) are therefore physically equivalent. In description (ii), the 2-form

background field B(2) is invariant under local frame rotations, but it undergoes a 2-group

shift under diffeomorphisms.
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4 2-group currents in conformal and non-conformal theories

In this section, we continue our discussion of 2-group Ward identities from sections 1.4

and 1.5 of the introduction. We use these Ward identities to analyze the possible patterns

of spontaneous 2-group breaking, and other aspects of RG flows with 2-group symmetries.

4.1 2-group Ward identities and characteristic three-point functions

In section 1.4, we considered the abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B introduced in (1.17)

and showed that the 2-group OPE (1.34) leads to the Ward identity in (1.36) for the

characetristic 〈j(1)A j
(1)
A J

(2)
B 〉 three-point function,

∂

∂xµ

〈
jAµ (x)j

A
ν (y)J

B
ρσ(z)

〉
=
κ̂A
2π

∂λδ(4)(x− y)
〈
JB
νλ(y)J

B
ρσ(z)

〉
. (4.1)

Additionally, JB
ρσ is conserved inside the correlation function,

∂

∂zρ

〈
jAµ (x)j

A
ν (y)J

B
ρσ(z)

〉
= 0 (4.2)

We will now explain in detail how the Ward identity (4.1) encodes the 2-group symmetry,

including the structure constant κ̂A, in the characteristic 〈j(1)A j
(1)
A J

(2)
B 〉 three-point function

at separated points. As we will see, this is true as long as J
(2)
B is a non-trivial operator. An

important exception occurs when J
(2)
B is redundant. The characteristic three-point function

then vanishes at separated points, but the theory may still possess 2-group symmetry. For

instance, this can happen in TQFTs, where both j
(1)
A and J

(2)
B are redundant operators

(see sections 5.3 and 6.5 for more details and examples).

As in the discussion around (1.37), we pass from position space to momentum space,

where scheme-independent information is encoded in non-analytic terms. By contrast,

terms that are polynomials in the momenta are typically scheme-dependent and can be

modified by adjusting local counterterms. (Some exceptions are discussed in section 5.1

below.) In momentum space,41 the characteristic three-point function takes the form

〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 (here p, q are independent euclidean momenta), and Bose symme-

try implies that it is symmetric under the simultaneous exchange µ , p ↔ ν , q. The J
(2)
B

conservation equation (4.2) implies

(p+ q)ρ 〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 = 0 , (4.3)

while the 2-group Ward identity (4.1) takes the form

pµ〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 =

κ̂A
2π

pλ 〈JB
νλ(p+ q)JB

ρσ(−p− q)〉 . (4.4)

41Given local operators A(x), B(y), C(z), we define the momentum space two-point function 〈A(p)B(−p)〉

and the momentum space three-point function 〈A(p)B(q)C(−p− q)〉 as follows (see also appendix B),

〈A(p)B(−p)〉 =

∫
d
4
x e

−ip·x 〈A(x)B(0)〉 , 〈A(p)B(q)C(−p− q)〉 =

∫
d
4
x d

4
y e

−i(p·x+q·y) 〈A(x)B(y)C(0)〉 .
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The momentum-space two-point function 〈JB
µν(p)J

B
ρσ(−p)〉 that appears on the right-hand

side is invariant under the simultaneous Bose exchange µν , p ↔ ρσ , −p and satisfies the

following conservation equation,

pµ 〈JB
µν(p)J

B
ρσ(−p)〉 = 0 . (4.5)

In order to analyze these equations, it is helpful to decompose the momentum-space

correlators into independent Lorentz structures, multiplied by dimensionless, Lorentz-

invariant structure functions. This task is carried out in appendix B. Here we summarize

the results and highlight their implications, starting with the 〈J (2)
B J

(2)
B 〉 two-point function.

As is shown in appendix B.1, current conservation (4.5) and Bose symmetry imply that it

is determined by a single real, dimensionless structure function J

(
p2

M2

)
,

〈JB
µν(p)J

B
ρσ(−p)〉 =

1

p2
J

(
p2

M2

) (
pµpρδνσ − pνpρδµσ − pµpσδνρ

+ pνpσδµρ − p2δµρδνσ + p2δνρδµσ

)
,

(4.6)

where M is some mass scale. Note that the overall normalization of the structure func-

tion J

(
p2

M2

)
is meaningful, essentially because J

(2)
B is a conserved current. In a CFT, scale

invariance implies that J
(

p2

M2

)
= J is a constant, while reflection positivity requires J ≥ 0.

If this inequality is saturated, J = 0, the 〈J (2)
B J

(2)
B 〉 correlator vanishes at separated points,

which happens if and only if J
(2)
B is a redundant operator.42

The two-point function in (4.6) only contains parity-even Lorentz structures, i.e. struc-

tures without an explicit Levi-Civita ε-symbol. Since we would like to understand which

terms in the characteristic three-point function 〈jAµ (p)jAν (q)JB
ρσ(−p − q)〉 give rise to the

nontrivial right-hand side of the Ward identity (4.4), it suffices to focus on the parity-even

part of that three-point function. (The parity-odd part is necessarily annihilated by pµ.) In

appendix B.3, we decompose the parity-even part of 〈jAµ (p)jAν (q)JB
ρσ(−p−q)〉 into indepen-

dent Lorentz structures, multiplied by dimensionless, Lorentz-invariant structure functions.

This task is simplified by restricting the momenta p, q to special configurations,

p2 = q2 = (p+ q)2 = Q2, p · q = −1

2
Q2 . (4.7)

Here Q is a Lorentz-scalar with dimensions of energy; all dimensionless structure functions

only depend on Q2

M2 . Note that (4.7) fixes the magnitude of the momenta p and q, as well

as the angle between them, but their directions are otherwise arbitrary.

The analysis of appendix B.3 shows that imposing (4.7), as well as (4.3) and (4.4)

allows two independent parity-even Lorentz structures. The first structure is annihilated

by pµ, i.e. it is conserved; the second structure matches the right-hand side of the Ward

42More generally, J
(2)
B is redundant whenever J

(
p2

M2

)
is a polynomial without a term of degree 0.
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identity (4.4) and is therefore determined by the structure function J

(
p2

M2

)
in (4.6),

〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 ⊃

κ̂A
2πQ2

J

(
Q2

M2

)(
δµρ (pν + qν) (pσ − qσ)

− δµσ (pν + qν) (pρ − qρ) + δνρ (pµ + qµ) (qσ − pσ)− δνσ (pµ + qµ) (qρ − pρ)
)
.

(4.8)

As long as J
(2)
B is not redundant and κ̂A 6= 0, the non-analytic structure in (4.8) contributes

to the three-point function on the left-hand side at separated points in position space. For

instance, if J

(
p2

M2

)
= J is a constant, the right-hand side of (4.8) is proportional to a

pole ∼ κ̂AJ

Q2 , which can only arise from separated points in position space.

The Ward identities for the abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B discussed

above were derived using the 2-group OPE in (1.34), which in turn followed from the non-

conservation equation d ∗ j(1)A ∼ κ̂A F
(2)
A ∧ ∗J (2)

B in (1.33). In order to generalize these

results to nonabelian and Poincaré 2-groups (see section 1.2), we need the correspond-

ing non-conservation equations. As in the abelian case, they can be derived from the

2-group shifts of B(2) in (1.24) and (1.25). Here we will use a shortcut: in section 3.1, we

constructed examples with abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B , where U(1)

(1)
B

was the magnetic 1-form symmetry with 2-form current J
(2)
B ∼ ∗f (2)c in (3.11). The non-

conservation equation in (3.9) then agrees with the general formula (1.33) if we also use

the relation κ̂A = −1
2κA2C from (3.14). We can immediately repeat this argument for non-

abelian and Poincaré 2-groups by using the construction in section 3.2. Starting with the

non-conservation equations (3.21) and making the identifications in (3.11), (3.22), we thus

find the following equations for the nonabelian flavor current j
(1)
A and the antisymmetric

part of the stress tensor,

d ∗ j(1)A =
κ̂A
8π

dA(1) ∧ ∗J (2)
B , T[ab] = −

κ̂P

16π
∗
(
dω

(1)
ab ∧ ∗J

(2)
B

)
. (4.9)

Just as in the abelian case, this leads to operator-valued contact terms proportional to J
(2)
B

in the OPE of d ∗ j(1)A with another U(1)
(0)
A current, or in the OPE of T[ab] with another

stress tensor. These contact terms give rise to Ward identities that schematically read 〈(d∗
j
(1)
A ) j

(1)
A J

(2)
B 〉 ∼ κ̂A 〈J (2)

B J
(2)
B 〉 and 〈T[ab]TcdJ

(2)
B 〉 ∼ κ̂P 〈J (2)

B J
(2)
B 〉. As before, this implies

that the corresponding 2-group symmetries (including the structure constants κ̂A, κ̂P)

are encoded in the characteristic three point functions 〈j(1)A j
(1)
A J

(2)
B 〉 and 〈TabTcdJ

(2)
B 〉 at

separated points, unless J
(2)
B is a redundant operator.

4.2 Primary currents and unbroken 2-group symmetry in CFT

We proceed to analyze the characteristic three-point functions introduced above in CFTs.

For now, we assume that all currents are (non-redundant) conformal primaries. As we

will see, this is equivalent to the assumption that the U(1)
(1)
B subgroup of the 2-group is

spontaneously broken, while all other symmetries are preserved. In the abelian case, this

would amount to the breaking pattern U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)

(0)
A . We will argue
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that this breaking pattern, and its analogues for other 2-groups, is inconsistent with the

2-group Ward identities, by showing that the characteristic three-point functions vanish

at separated points. This establishes the claims around (1.38) that the U(1)
(1)
B subgroup

of a 2-group can only be spontaneously broken if the same is true of the entire 2-group

symmetry. This scenario will be discussed in section 4.3 below.

The U(1)
(0)
A current j

(1)
A and the U(1)

(1)
B current J

(2)
B are conformal primaries that

satisfy the conservation equations

d ∗ j(1)A = 0 , d ∗ J (2)
B = 0 . (4.10)

They must therefore reside in short multiplets of the conformal group, since the conser-

vation equations (4.10) constitute null descendants. Along with unitarity, this determines

the conformal scaling dimensions of the currents (see for instance [19–21] and references

therein),

∆
(
j
(1)
A

)
= 3 , ∆

(
J
(2)
B

)
= 2 . (4.11)

Note that the corresponding charges, which are obtained by integrating ∗j(1)A over 3-cycles

and ∗J (2)
B over 2-cycles, are dimensionless.

We will rely on a special feature of four-dimensional CFTs:43 a two-form current J
(2)
B ,

with scaling dimension ∆
(
J
(2)
B

)
= 2, is not only conserved, but also necessarily closed. In

fact, the structure of possible conformal null states implies that all three statements are

equivalent (see [19–21]),

∆
(
J
(2)
B

)
= 2 ⇐⇒ d ∗ J (2)

B = 0 ⇐⇒ dJ
(2)
B = 0 . (4.12)

This implies that J
(2)
B is proportional to the field strength f (2) of a free Maxwell field,

or its dual J
(2)
B ∼ ∗f (2).44 Here we choose the latter option, to match with (3.11). The

operator equations for J
(2)
B in (4.12) are the free Maxwell equations for f (2). Therefore the

action of J
(2)
B ∼ ∗f (2) on the vacuum creates a one-photon state. It follows that the U(1)

(1)
B

symmetry is spontaneously broken, and the photon is the corresponding NG particle (see [1]

and references therein, as well as section 1.1 and appendix C). By contrast, the fact that j
(1)
A

is a conformal primary means that U(1)
(0)
A is unbroken (see section 4.3 below). The presence

of a free Maxwell field implies that the algebra of local CFT operators contains a closed

subsector generated by the field strength f (2). It follows that the theory has an unbroken,

unitary Z2 charge conjugation symmetry C, which only acts on the Maxwell subsector

via f (2) → −f (2), i.e. f (2) is C-odd. All local operators from other sectors are not acted on

by charge conjugation and are therefore C-even.

43Some other physical consequences of this feature were discussed in [54, 55].
44This determines whether J

(2)
B is the electric (e) or the magnetic (m) 2-form current of free Maxwell

theory, which has U(1)
(1)
e × U(1)

(1)
m global symmetry [1] (see also appendix C). We can split the field

strength into its self-dual and anti-self-dual parts, f (2) = f (2)+ + f (2)−, both of which are separately closed

and conserved. Following the notation in table 26 of [21], the operators f (2)± are the conformal primaries

of the multiplets [2; 0]2 and [0; 2]2.
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Given our assumption that the currents j
(1)
A , J

(2)
B are conformal primaries, with scaling

dimensions (4.11), it is straightforward to impose the constraints of conformal symmetry on

the characteristic three-point function, and to show that it must vanish at separated points,

〈jAµ (x)jAν (y)JB
ρσ(z)〉 ∼ 〈jAµ (x)jAν (y)f̃ρσ(z)〉 = 0 . (4.13)

Here f̃ρσ = 1
2ερσαβf

αβ is the Hodge dual ∗f (2) with its Lorentz indices written out. This

result also holds if j
(1)
A is a nonabelian flavor current, or if we replace one of the U(1)

(0)
A

currents by a different abelian flavor current. There is a simple argument for (4.13) based

on charge conjugation: let j
(1)
± be the projections of j

(1)
A onto its C-even (+) and C-odd (−)

parts, which also have scaling dimension ∆
(
j
(1)
±

)
= 3. The only C-odd operators contain

an odd number of Maxwell field strength operators f (2). Since ∆
(
f (2)

)
= 2, this implies

that the C-odd part of the current is necessarily a product j
(1)
− ∼ Of (2), where O is a

conformal primary of dimension ∆
(
O
)
= 1 that belongs to the non-Maxwell sector of the

CFT. (Since the sectors are decoupled, the product is non-singular.) Conformal unitarity

bounds (see [19–21]) imply that the only such operator O is a free scalar field, but this is not

compatible with the fact that j
(1)
− and f (2) transform in different Lorentz representations.

Therefore j
(1)
− = 0, and hence j

(1)
A = j

(1)
+ is C-even. This implies that the characteristic

three-point function in (4.13) violates charge conjugation and must therefore vanish.

An analogous result holds for the characteristic three-point function for Poincaré 2-

group symmetry P ×κ̂ U(1)
(1)
B . If we assume that the stress tensor Tµν and the 2-form

current J
(2)
B are conformal primaries, it can again be shown that the constraints of conformal

symmetry force this three-point function to vanish at separated points,

〈Tµν(x)Tρσ(y)JB
ρσ(z)〉 ∼ 〈Tµν(x)Tρσ(y)f̃ρσ(z)〉 = 0 . (4.14)

Alternatively, this result follows from charge conjugation: since C commutes with the

hamiltonian, it follows that Tµν must be C-even. The fact that f (2) is C-odd then estab-

lishes (4.14).

As explained in section 4.1, the fact that the characteristic three-point functions (4.13)

and (4.14) for conformal primary currents vanish at separated points implies one of the

following two scenarios:

1.) If J
(2)
B is not a redundant operator, its two-point function is non-vanishing at sepa-

rated points and the Ward identities in section 4.1 imply that the 2-group structure

constants κ̂A, κ̂P vanish and the 2-groups decompose into conventional product sym-

metries. In this scenario U(1)
(1)
B is spontaneously broken, because J

(2)
B ∼ ∗f (2) is a

free Maxwell field.

2.) The current J
(2)
B is a redundant operator, which vanishes inside correlation functions

at separated points. In particular, U(1)
(1)
B is not spontaneously broken. This scenario

is compatible with 2-group symmetry.
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4.3 Non-primary currents and spontaneous 2-group breaking

In this subsection we consider the abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B and show

that U(1)
(1)
B can be spontaneously broken, as long as U(1)

(0)
A , and hence the entire 2-group,

are spontaneously broken as well. The results of setion 4.2 show that this scenario cannot

occur if all currents are conformal primaries, so we begin by relaxing this assumption.

In a CFT, any local operator can be expressed as a linear combination of conformal

primaries and descendants. For the currents j
(1)
A or J

(2)
B , this gives rise to the following

Hodge-like decompositions,

j
(1)
A = j

(1)
C.P. + dχ+ ∗dU (2) , J

(2)
B = J

(2)
C.P. + dX(1) + ∗dY (1) . (4.15)

The operators with subscript C.P. are conformal primaries, while the operators χ, U (2),

X(1), Y (1) may themselves be linear combinations of primaries and descendants. The

conservation of j
(1)
A separately requires d∗ j(1)C.P. = 0 and d∗dχ = 0.45 This implies that χ is

a free scalar field of scaling dimension ∆(χ) = 1. If the term dχ ⊂ j(1)A is present in (4.15),

then the U(1)
(0)
A flavor symmetry is spontaneously broken, and χ is the corresponding NG

boson. The term ∗dU (2) ⊂ j
(1)
A is an improvement term, which is automatically conserved

and does not contribute to the U(1)
(0)
A charge.46

We can repeat this discussion for J
(2)
B . Its conservation separately requires d∗J (2)

C.P. = 0,

so that J
(2)
C.P. ∼ ∗f (2) is a free Maxwell field,47 as well as d∗dX(1) = 0. The latter condition

is the free wave equation for X(1). Thus X(1) is a free field, which creates an on-shell,

free, massless particle. The only possibility is X(1) = dφ, where φ is a free scalar field

satisfying d ∗ dφ = 0,48 but such an X(1) does not contribute to J
(2)
B in (4.15). The

term ∗dY (1) ⊂ J
(2)
B is an improvement term, which is automatically conserved and does

not contribute to the U(1)
(1)
B charge.49

Note that both j
(1)
A and J

(2)
B may contain improvement terms. In a given CFT, it is

possible (and often convenient) to redefine the currents so that they are free of such terms.

However, this may no longer be possible if we consider RG flows between different CFTs,

because improvement terms can be generated along the flow. In a typical scenario, the

UV currents are defined to be conformal primaries, without the improvement or NG terms

in (4.15).50 However, in the IR these currents can flow to non-primary operators, which

may contain improvement terms. Moreover, j
(1)
A mixes with the NG current dχ if U(1)

(0)
A

is spontaneously broken.

45This is because the only null state condition for the conformal primary j
(1)
C.P. that is allowed by conformal

representation theory and involves one derivative is the conservation equation d ∗ j
(1)
C.P. = 0.

46Conformal unitarity bounds require any operator contributing to U (2) that is not annihilated by d to

have scaling dimension > 2. Therefore ∗dU (2) has a higher scaling dimension than j
(1)
C.P.. It therefore decays

more rapidly at long distances and cannot contribute to the U(1)
(0)
A charge.

47The only allowed conformal null state conditions for the primary J
(2)
C.P. that involve one derivative are

the free Maxwell equations d ∗ f (2) = df (2) = 0 (see also the discussion around (4.12)).
48The massless free-field representations allowed by conformal representation theory were analyzed

in [20, 56]. Of these, only spin-0 scalars, spin- 1
2
fermions, and spin-1 Maxwell fields are allowed by the

Weinberg-Witten theorem [57] (see also the recent discussion in [58]).
49Conformal unitarity bounds imply that ∗dY (1) has a higher scaling dimension than J

(2)
C.P.. It therefore

decays more rapidly at long distances and does not contribute to the U(1)
(1)
B charge (see also footnote 46).

50The absence of NG bosons in the UV is expected because spontaneously broken symmetries are typically

restored at high energies.
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We now assume that U(1)
(1)
B is spontaneously broken, so that the conformal primary

Maxwell term J
(2)
C.P. ∼ ∗f (2) ⊂ J

(2)
B is present in (4.15). Our goal is to show that this

assumption, together with 2-group symmetry, necessarily implies the presence of a NG

term dχ ⊂ j
(1)
A in (4.15), so that U(1)

(0)
A is also spontaneously broken. We will estab-

lish this by demanding that the non-primary currents in (4.15) satisfy the 2-group Ward

identity (4.1), which we repeat here for convenience,

∂

∂xµ

〈
jAµ (x)j

A
ν (y)J

B
ρσ(z)

〉
=
κ̂A
2π

∂λδ(4)(x− y)
〈
JB
νλ(y)J

B
ρσ(z)

〉
. (4.16)

As in section 4.2, we will also use the charge conjugation symmetry C of the free Maxwell

sector, under which the field strength f (2) is odd.

From the argument after (4.13) in section 4.2, we know that the conformal primary

contribution j
(1)
C.P. ⊂ j

(1)
A to the U(1)

(0)
A current is C-even. The same is true for χ, since it

is a free field, decoupled from the Maxwell sector. We can decompose the improvement

term U (2) into its C-even part U
(2)
+ , and its C-odd part U

(2)
− ∼ f (2)O, where O is a C-even

operator. In principle, O could contain various Lorentz representations, as well as arbitrary

even powers of f (2). Below we will see that O must have overlap with the NG boson χ, and

ultimately only the term χ ⊂ O will be important. Note that the ∂
∂xµ

derivative in (4.16) an-

nihilates the improvement term in jAµ at separated and coincident points. Together with C-

invariance, this implies that only the terms 〈(j(1)C.P.(x) + dχ(x)) (∗dU (2)
− )(y) (∗f (2))(z)〉 in

the characteristic three-point function can contribute to the right-hand side of the Ward

identity (4.16). Wick-contracting f (2)(y) ⊂ U (2)
− (y) with f (2)(z), we find a factorized Ward

identity. Schematically,

∂

∂xµ

〈(
jC.P.
µ (x) + ∂µχ(x)

)
∂λO(y)

〉 〈
f̃νλ(y) f̃ρσ(z)

〉
+ · · · ∼

∼ κ̂A ∂λδ(4)(x− y)
〈
f̃νλ(y)f̃ρσ(z)

〉
+ · · · .

(4.17)

Here the ellipses on both sides involve improvement terms ∗dY (1) ⊂ J (2)
B . Since ∗dY (1) has

a higher scaling dimension than f (2) (see footnote 49), the f (2)-dependent terms in (4.17)

are the leading long-distance effects. The conformal primary current jC.P.
µ only has a non-

vanishing two-point function with itself, and such a two-point function cannot give rise to

the δ-function on the right-hand side of (4.17). The only remaining possibility is that the

free NG boson χ has non-zero overlap with the operator O, so that ∂µ〈∂µχ(x)∂λO(y)〉 ∼
∂λ∂2〈χ(x)χ(y)〉 ∼ ∂λδ(4)(x−y). This shows that the Ward identity (4.17) can only be sat-

isfied in the presence of a NG boson term dχ ⊂ j(1)A , so that U(1)
(0)
A must be spontaneously

broken. Note that, in addition to the NG boson χ, spontaneous U(1)
(0)
A ×κ̂A

U(1)
(1)
B break-

ing requires a C-odd improvement term ∗dU (2)
− ⊂ j(1)A , where U

(2)
− ∼ χf (2). In section 6.6,

we explore the simplest model that explicitly realizes this scenario.

4.4 Constraints of 2-group symmetry on RG flows

In sections 4.2 and 4.3, we have seen that the realization of 2-group symmetry in CFTs

is highly constrained. For instance, we saw that the U(1)
(1)
B subgroup of an abelian 2-

group U(1)
(0)
A ×κ̂A

U(1)
(1)
B can only be spontaneously broken if the same is true for U(1)

(0)
A ,
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and hence the entire 2-group. This is a manifestation of the general theme articulated

in section 1.5, according to which U(1)
(0)
A is not a good subgroup of the full 2-group.

(This statement should be understood at the level of current algebra, see footnote 23.) In

this subsection, we consider another manifestation of the same theme, which involves the

decoupling or emergence of the 2-group currents in the deep IR or the deep UV of RG

flows with 2-group symmetry.

Consider an RG flow with unbroken abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B . As

discussed in sections 4.2 and 4.3, this implies that J
(2)
B flows to zero in the deep IR, i.e. it

decouples from the low-energy theory and becomes a redundant operator. (More precisely,

J
(2)
B flows to a pure improvement term, which is a descendant that decays rapidly at long

distances and does not contribute to the U(1)
(1)
B charge.) Let us assume that J

(2)
B decouples

at an energy scale ∼ EIR(J
(2)
B ). The flavor current j

(1)
A may persist all the way to the IR, or

it may also decouple at another energy scale ∼ EIR(j
(1)
A ). We will now argue that 2-group

symmetry requires J
(2)
B to decouple first,

EIR(J
(2)
B ) & EIR(j

(1)
A ) . (4.18)

The reason this inequality is not sharp is that the decoupling scales EIR(J
(2)
B ) and EIR(j

(1)
A )

are themselves not sharply defined.

We can argue for (4.18) using the non-conservation equation for j
(1)
A in (1.33). At

energies below EIR(j
(1)
A ) the current j

(1)
A flows to zero and decouples. The same must

therefore be true of d ∗ j(1)A ∼ κ̂A F
(2)
A ∧ ∗J (2)

B , and hence the operator J
(2)
B on the right-

hand side. However, J
(2)
B can only decouple at energies below EIR(J

(2)
B ), which establishes

the inequality (4.18). Equivalently, we can examine the 2-group Ward identity (4.1) that re-

lates 〈j(1)A j
(1)
A J

(2)
B 〉 ∼ κ̂A〈J

(2)
B J

(2)
B 〉. The characteristic three-point function on the left-hand

side decays exponentially at energies below EIR(j
(1)
A ), while the two-point function on the

right-hand side decays exponentially at energies below EIR(J
(2)
B ). This again implies (4.18).

So far we have mostly focused on the possible IR behavior of RG flows with 2-group

symmetry. We will now examine such flows at high energies. There are two fundamentally

different scenarios for the UV behavior of RG flows with 2-group symmetry:

1.) If the 2-group symmetry is exact, it must persist up to arbitrarily high energies. In

UV-complete theories, with CFT fixed points at short distances, we expect that J
(2)
B

is redundant in the UV CFT. This follows from the results of section 4.2, because j
(1)
A

and J
(2)
B should be conformal primaries at the UV fixed point.51 However, if J

(2)
B is

redundant in the UV, it remains so along the entire RG flow.52

51As discussed around (4.15), the only obstructions to the currents being conformal primaries are im-

provement terms and the mixing of j
(1)
A with a U(1)

(0)
A NG boson. In the UV, we can always redefine the

currents so that they are free of improvement terms. Moreover, any spontaneously broken symmetry is

typically restored at high energies, so that we do not expect NG bosons at the UV fixed point.
52An example is a purely topological theory with 2-group symmetry, such as the deformed Z|qC | gauge

theory discussed around (1.49), as well as in section 6.5. Note that the redundant currents of such a TQFT

can mix with the non-redundant currents of a CFT with conventional global symmetries.
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Alternatively, the theory may not admit a UV completion with a CFT fixed point,

in which case J
(2)
B can be a non-trivial operator. All abelian gauge theory examples

constructed in section 3 (with J
(2)
B ∼ ∗f (2)) fall into this category. Any attempt to

UV-complete these models in QFT, e.g. by embedding them into asymptotically-free

nonabelian gauge theories, is incompatible with 2-group symmetry.

2.) The 2-group symmetry may be emergent. In this case it is an accidental symmetry

of the low-energy theory that is explicitly broken at short distances. This scenario is

compatible with conventional UV completions; an example is discussed in section 6.2.

In the second scenario, we would like to argue in favor of an approximate inequality

between the energy scale ∼ EUV(J
(2)
B ) at which the 2-form current emerges, and the energy

scale ∼ EUV(j
(1)
A ) at which the 1-form current emerges,

EUV(J
(2)
B ) & EUV(j

(1)
A ) . (4.19)

This inequality states that a non-trivial 2-group symmetry (with κ̂A 6= 0) can only emerge

if J
(2)
B emerges at higher energies than j

(1)
A . It is similar to (4.18), which constrains the

possible decoupling of the currents in the IR. Both inequalities intuitively follow from the

general principle reviewed at the beginning of this subsection, which states that U(1)
(1)
B is

a good subgroup of the full U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, while this is not the case

for U(1)
(0)
A . However, the argument we present in favor of (4.19), which involves the back-

ground fields A(1) and B(2) that couple to the emergent currents, is not as straightforward

(and therefore perhaps not as robust) as the argument for (4.18).

The argument for (4.19) is based on the observation (explained in section 7.1) that a

2-group shift B(2) → B(2)+ κ̂A

2π λ
(0)
A F

(2)
A (see (1.15)) under U(1)

(0)
A background gauge trans-

formations is only consistent if B(2) is a 2-form background gauge field, which is also subject

to U(1)
(1)
B background gauge transformations. Here we make the additional assumption

that the emergent U(1)
(0)
A flavor symmetry (like all abelian symmetries in this paper) is

compact. In the presence of a 2-group shift for B(2), the ambiguity λ
(0)
A ∼ λ

(0)
A + 2πn

(with n ∈ Z) of the U(1)
(0)
A gauge parameter leads to an ambiguity B(2) ∼ B(2)+ κ̂AnF

(2)
A .

As explained in section 7.1, this unphysical ambiguity must be absorbed by U(1)
(1)
B back-

ground gauge transformations, which are only available if B(2) is a background gauge field

that couples to a conserved 2-form current. If the inequality (4.19) is violated, then j
(1)
A

emerges as a conserved current when J
(2)
B is still a non-conserved 2-form operator, so that

its source B(2) is not subject to 1-form background gauge transformations. Then A(1) is a

standard U(1)
(0)
A background gauge field, but we cannot assign a 2-group shift to B(2).

It is straightforward to extend the arguments above to nonabelian and Poincaré 2-

groups. We would like to make a few comments about the Poincaré case. As in the abelian

case, the Poincaré group P does not behave like a good subgroup of the full Poincaré

2-group P ×κ̂P
U(1)

(1)
B . This leads to an analogue of the inequality (4.19), with the stress

tensor Tµν replacing the U(1)
(0)
A current j

(1)
A . Explicitly, the inequality in the Poincaré case

states that the scale ∼ EUV(Tµν) at which the stress tensor emerges (if it does so at all)
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must be bounded from above by the emergence scale ∼ EUV(J
(2)
B ) of the 2-form current,

EUV(J
(2)
B ) & EUV(Tµν) . (4.20)

If we assume that the theory is Poincaré invariant and local at all energy scales, there

should be a conserved stress tensor along the entire RG flow. In this case Tµν is not

emergent, and (4.20) implies that the same is true for J
(2)
B . Therefore the entire Poincaré

2-group symmetry P ×κ̂P
U(1)

(1)
B is exact along the entire RG flow. It then follows from

point 1.) above (4.19) that such theories, with exact Poincaré 2-group symmetry and non-

redundant J
(2)
B , do not have UV completions as continuum QFTs, with standard CFT fixed

points in the UV. A simple example of such a theory is explored in section 6.3.

5 Green-Schwarz contact terms and 2-group ’t Hooft anomalies

In this section we present the details that underly our summary of 2-group ’t Hooft anoma-

lies in section 1.6. As was pointed out there, GS contact terms and counterterms, which

are discussed in section 5.1, play a crucial role in our analysis. In section 5.2 we review the

approach of [22, 23] to the κA3 ’t Hooft anomaly for an ordinary U(1)
(0)
A flavor symmetry,

which is based on an analysis of the 〈j(1)A j
(1)
A j

(1)
A 〉 three-point function in momentum space.

In section 5.3 we reanalyze the κA3 ’t Hooft anomaly in the presence of U(1)
(0)
A ×κ̂A

U(1)
(1)
B

2-group symmetry — both from the point of view of the 2-group background gauge fields,

and using the 2-group Ward identity satisfied by the 〈j(1)A j
(1)
A j

(1)
A 〉 correlator. More general

2-group anomalies are briefly discussed in section 5.4.

5.1 Green-Schwarz contact terms and counterterms

In preparation for our discussion in section 5.3 below, we take a small detour and examine

the 〈J (2)
B j

(1)
A 〉 two-point function. This will lead to observables that we refer to as GS contact

terms. They are four-dimensional analogues of the three-dimensional Chern-Simons contact

terms analyzed in [2, 3]. Due to the many similarities, we will keep the discussion brief

and refer to [2, 3] for additional details and background. The discussion in this subsection

does not require 2-group symmetry and may be of independent interest.

In appendix B.2, it is shown that conservation of JB
µν and jAρ requires their two-point

function in momentum space to take the following form,

〈JB
µν(p)j

A
ρ (−p)〉 = −

1

2π
K

(
p2

M2

)
εµνρλp

λ . (5.1)

Here K

(
p2

M2

)
is a real, dimensionless structure function and M is some mass scale. In a

CFT (or in a TQFT) this function must be a constant, K
(

p2

M2

)
= K, in which case (5.1)

is linear in the momentum. It therefore gives rise to a contact term in position space,

〈JB
µν(x)j

A
ρ (0)〉 =

iK

2π
εµνρλ∂

λδ(4)(x) . (5.2)

For reasons that will become apparent below, we refer to (5.2) as a GS contact term. The

fact that the 〈J (2)
B j

(1)
A 〉 two-point function vanishes at separated points is required by the
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conformal Ward identities, because the two currents reside in different representations of

the conformal group (they have different Lorentz quantum numbers and scaling dimen-

sions). If K 6= 0, these Ward identities are violated at coincident points. As we will explain

momentarily, global issues may prevent us from setting K to zero using valid local countert-

erms, even though it is a pure contact term. This constitutes a kind of global conformal

anomaly, which is similar to the superconformal anomaly for three-dimensional N = 2

theories analyzed in [2, 3] (see [59] for a recent generalization to five dimensions).

The GS contact term (5.2) is closely related to the following GS counterterm, which

is constructed out of the background gauge fields B(2) and A(1),

SGS =
in

2π

∫
B(2) ∧ F (2)

A , n ∈ Z . (5.3)

The quantization condition on n comes from the requirement that the GS counterterm (5.3)

should be invariant (modulo 2πiZ) under large U(1)
(1)
B background gauge transforma-

tions B(2) → B(2) + dΛ(1), for which the gauge parameter Λ
(1)
B has non-trivial integer

fluxes 1
2π

∫
Σ2
dΛ

(1)
B ∈ Z. (Below, we will comment on the possibility of allowing non-

integer n.) Taking a functional derivative of (5.3) with respect to the background gauge

fields (and using (1.3), (1.8)), we find that adding the GS counterterm (5.3) to the action

shifts the GS contact term K in (5.2) by the integer n,

K → K+ n , n ∈ Z . (5.4)

Consequently, the integer part of K is scheme dependent. By contrast, its fractional part,

K (mod 1) is an intrinsic observable, which does not depend on the choice of regularization

scheme. If this observable vanishes, then K can be set to zero using a properly quantized

GS counterterm (5.3).

We would like to offer another perspective on the observable K (mod 1). In the discus-

sion around (5.3) and (5.4), we insisted on invariance under large U(1)
(1)
B gauge transforma-

tions. If we are willing to relax this requirement, we can add a GS counterterm (5.3) with

a potentially non-integer coefficient n = −K to set the GS contact term K in (5.2). Under

a U(1)
(1)
B gauge transformation, the partition function now picks up an anomalous phase,

Z[A(1), B(2) + dΛ
(1)
B ] = Z[A(1), B(2)]e2πiKN , N =

1

(2π)2

∫
dΛ

(1)
B ∧ F

(2)
A ∈ Z . (5.5)

On suitable spacetime manifolds M4, the integer N can be made to take any value by

appropriately choosing the U(1)
(0)
A background flux and the U(1)

(1)
B gauge parameter.53

Small, topologically trivial U(1)
(1)
B background gauge transformations have N = 0, while

large ones can have non-zero N . The anomalous phase in (5.5) can be used to extract

the fractional part K (mod 1), which therefore remains observable, but it is not sensitive

to the scheme-dependent integer part of K. This shows that the anomaly discussed be-

low (5.2) can be understood as a clash between conformal symmetry and invariance under

53For instance, we can take M4 = S2 ×S2 with N units of A(1) flux through one of the two-spheres, and

one unit of Λ
(1)
B flux through the other.
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large U(1)
(1)
B gauge transformations. The observable K (mod 1) is the associated anomaly

coefficient; whenever it is non-zero, the anomaly is present.

In light of the above discussion, it is tempting to think of the entire GS contact term K

as a (typically improperly quantized) GS term in the effective action for background fields,

W [A(1), B(2)] ⊃ iK

2π

∫
B(2) ∧ F (2)

A . (5.6)

Indeed, varying this term with respect to B(2) and A(1) correctly reproduces (5.2), and

comparing with (5.3) gives (5.4). However, as we will illustrate below using a simple

example, (5.6) cannot be taken at face value for arbitrary background field configurations

and requires additional qualification. Nevertheless, it is occasionally a useful mnemonic for

the GS contact term (5.2).

A simple example of a CFT for which the observable K (mod 1) is nonzero is topo-

logical Zp gauge theory. We use its presentation as a BF theory [24–26], which involves a

dynamical U(1)
(1)
b gauge field b(2), and a dynamical U(1)

(0)
c gauge field c(1). We also couple

these dynamical fields to the background fields B(2) and A(1). This leads to the following

quadratic action,

SBF[A
(1), B(2), b(2), c(1)] =

ip

2π

∫
b(2) ∧ f (2)c +

i

2π

∫
B(2) ∧ f (2)c

+
iq

2π

∫
b(2) ∧ F (2)

A +
in

2π

∫
B(2) ∧ F (2)

A , p ∈ Z≥1 , q, n ∈ Z .

(5.7)

As was reviewed around (1.49) (see also section 6.5), this is the low-energy effective action

of a U(1)
(0)
c gauge theory with an elementary scalar Higgs field of U(1)

(0)
c gauge charge p

that also carries charge q under a U(1)
(0)
A flavor symmetry. The background fields A(1)

and B(2) couple to the 1-form flavor current and the magnetic 2-form current,

j
(1)
A =

iq

2π
∗ db(2) , J

(2)
B =

i

2π
∗ f (2)c . (5.8)

In our definition of the theory, we have also included a bare GS counterterm (5.3) for the

background fields. Note that all BF terms for dynamical and background fields in (5.7)

are properly quantized.

We would now like to compute K in the theory (5.7). Using the expressions for the

currents in (5.8), it can be computed using Feynman diagrams. Instead, we will compute

it by attempting to integrate out the dynamical fields in the presence of the background

fields, since this will allow us to clarify a few subtle points. The equations of motion set

p f (2)c + q F
(2)
A = 0 , p db(2) + dB(2) = 0 . (5.9)

These equations can be used to express the currents (5.8) in terms of background fields.

This shows that the currents are redundant operators, as expected in a topological theory.

As a result, none of the extended operators of the TQFT are charged under either U(1)
(0)
A
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or U(1)
(1)
B . If we naively substitute (5.9) back into (5.7), we obtain an effective action of

the form (5.6) for the background fields,

W [A(1), B(2)] =
iK

2π

∫
B(2) ∧ F (2)

A , K = −q
p
+ n . (5.10)

Several comments are in order (for simplicity, we assume that p, q are relatively prime):

• The effective action (5.10) takes the same form as a GS counterterm (5.3), but if p 6= 1

the coefficient K is fractional. This coefficient determines the GS contact term (5.2)

in the two-point function of J
(2)
B and j

(1)
A . The freedom to change its integer part

using a properly quantized GS counterterm is parametrized by n, while its fractional

part − q
p
(mod 1) is an intrinsic, scheme-independent property of the theory.

• If p = 1, the topological Zp gauge theory becomes invertible and describes a fully

gapped phase with short-range entanglement. In this case (5.10) reduces to a properly

quantized GS counterterm (5.3), as is expected on general grounds.

• The effective action (5.10) is not invariant under large gauge transformations of B(2),

even though the original action (5.7) was invariant under such transformations. The

resolution of this apparent paradox is that (5.10) is imprecise: it is not in general

permissible to solve the equations of motion in (5.9) as we did to obtain (5.10),

because both c(1) and A(1) have integer fluxes. This manipulation is only valid when

the flux of A(1) is divisible by p, in which case the fractional coefficient − q
p
in (5.10)

is harmless. In all other A(1) flux sectors the equations of motion do not admit a

solution, and hence the functional integral vanishes. With this caveat, the effective

action is fully invariant under U(1)
(1)
B gauge transformations. See section 3.2 of [3]

for a closely related discussion.

Along RG flows, the structure function K

(
p2

M2

)
in (5.1) interpolates between a GS con-

tact term (5.2) in the UV, KUV = limp2→∞ K

(
p2

M2

)
, and a different one in the IR, KIR =

limp2→0 K

(
p2

M2

)
. The interpolating structure function K

(
p2

M2

)
is scheme-independent mod-

ulo overall shifts by an integer, which are brought about by adding a properly quan-

tized GS counterterm (5.3). (Typically we imagine adjusting such counterterms in the

UV.) Note that the difference KUV − KIR is not affected by such shifts. It is therefore

scheme-independent and can be extracted from the 〈JB
µν(x)j

A
ρ (0)〉 correlator at separated

points. (See p.7 of [3] for a closely related discussion.) By contrast, only the fractional

parts of KUV and KIR are scheme independent.

5.2 More on conventional ’t Hooft anomalies

Consider a U(1)
(0)
A flavor symmetry with conserved current j

(1)
A and background gauge

field A(1).54 As explained in section 2.3, such a flavor symmetry can have a reducible

54In this subsection we assume that U(1)
(0)
A does not participate in a 2-group symmetry. As we will see in

section 5.3 below, the presence of 2-group symmetry has dramatic consequences for the ’t Hooft anomalies.
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cubic ’t Hooft anomaly characterized by the following 6-form anomaly polynomial

I(6) = 1

(2π)3
κA3

3!
F

(2)
A ∧ F (2)

A ∧ F (2)
A . (5.11)

Here κA3 is the ’t Hooft anomaly coefficient. Under a U(1)
(0)
A background gauge transfor-

mation, A(1) → A(1) + dλ
(0)
A , the anomaly polynomial (5.11) gives rise to the following

anomalous c-number shift of the effective action (see for instance (2.19)),

W [A(1) + dλ
(0)
A ] =W [A(1)] +AA , AA =

iκA3

24π2

∫
λ
(0)
A F

(2)
A ∧ F (2)

A . (5.12)

Recall from section 2.1 that κA3 is not affected by local counterterms, i.e. it is an intrinsic,

scheme-independent observable. Moreover, the anomalous variation AA in (5.12) must

be reproduced in any description of the theory. This implies ’t Hooft anomaly matching,

which states that κA3 is constant along RG flows and must match when it is computed

using the UV or IR degrees of freedom,55

κUV
A3 = κIRA3 = κA3 . (5.13)

We will now examine the consequences of the anomaly term AA in (5.12) for correlation

functions of the current j
(1)
A . As usual, it leads to the a non-conservation equation for j

(1)
A ,

d ∗ j(1)A = − iκA3

24π2
F

(2)
A ∧ F (2)

A ⇐⇒ ∂µjAµ = − iκA3

24π2
εµναβ ∂µAν ∂αAβ . (5.14)

Taking variational derivatives of (5.14) with respect to −Aν(y), −Aρ(z) inserts jAν (y),

jAρ (z) on the left-hand side, but leads to a c-number contact term on the right-hand side,

∂

∂xµ
〈jAµ (x)jAν (y)jAρ (z)〉 =

iκA3

12π2
ενραβ ∂

αδ(4)(x− y)∂βδ(4)(x− z) . (5.15)

In momentum space (see footnote 41 or appendix B), this equation takes the form

pµ1
〈
jAµ (p1)j

A
ν (p2)j

A
ρ (p3)

〉
= − κA3

12π2
ενραβ p

α
2 p

β
3 , p1 + p2 + p3 = 0 . (5.16)

Even though the right-hand side is a polynomial in the momenta, its presence leads to

non-analytic structures in the three-point function on the left-hand side. These structures

contribute to the position-space correlator at separated points. This crucial feature of ’t

55The argument for anomaly matching can be sharpend using inflow from a five-dimensional bulk (see

also footnote 35), which plays the role of the spectator fermions in ’t Hooft’s original argument [18]. We can

couple the four-dimensional theory on M4 to a non-dynamical theory on M5, with boundary ∂M5 = M4.

The bulk action only involves the extension of the background field A(1), S5 = −
iκ

A3

24π2

∫
M5

A(1)∧F
(2)
A ∧F

(2)
A .

It is invariant under five-dimensional gauge transformations of A(1) with support in the bulk, but shifts

by −
iκ

A3

24π2

∫
M4

λ
(0)
A F

(2)
A ∧ F

(2)
A if the gauge parameter λ

(0)
A has support on the boundary M4. This cancels

the four-dimensional anomaly (5.12), so that the combined bulk-boundary system is anomaly free. Since

this property is preserved under RG flow (e.g. because we could imagine weakly gauging A(1)), and the

bulk (being non-dynamical) always supplies the same ’t Hooft anomaly, we conclude that the anomaly of

the boundary theory is also unchanged along the entire RG flow.
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Hooft anomalies was thoroughly studied by the authors of [22, 23], and we now briefly

recall some of their conclusions.

Following [22, 23] (see also the discussion around (4.7) above), we can simplify the

analysis of
〈
jAµ (p1)j

A
ν (p2)j

A
ρ (p3)

〉
by specializing the momenta to configurations that satisfy

p21 = p22 = p23 = Q2 , p1 + p2 + p3 = 0 . (5.17)

For such configurations, the parity-odd part of the j
(1)
A three-point function is controlled

by a single dimensionless structure function A

(
Q2

M2

)
(see appendix B.4),

〈
jAµ (p1)j

A
ν (p2)j

A
ρ (p3)

〉
⊃ 1

Q2
A

(
Q2

M2

)(
εµναβ p

α
1 p

β
2 p3ρ + ενραβ p

α
2 p

β
3 p1µ + ερµαβ p

α
3 p

β
1 p2ν

)
,

(5.18)

where M is some mass scale. Substituting into (5.16) shows that the structure func-

tion A

(
Q2

M2

)
reduces to a constant that is completely determined by the anomaly coeffi-

cient κA3 ,

A

(
Q2

M2

)
= − κA3

12π2
. (5.19)

If we insert this result back into (5.18), we see that the entire parity-odd part of the three-

point function is fixed by the anomaly to be a pole ∼ κ
A3

Q2 . This pole can be tracked along

the entire RG flow, from the UV (corresponding to Q2 → ∞) to the IR (corresponding

to Q2 → 0). The fact that the residue of this pole is always given by κA3 is another

argument for the ’t Hooft anomaly matching relation (5.13). Beyond that, we also learn

that κA3 can be computed using only the massless, local degrees of freedom that are present

in the theory, since only they can give rise to such a pole. Massive or topological degrees

of freedom cannot contribute.56

The discussion above highlights the fact that the ’t Hooft anomaly coefficient κA3

controls two different, a priori unrelated, quantities:

1.) By definition, κA3 determines the anomalous variation AA of the effective action

in (5.12). The value of κA3 is not affected by local counterterms, and hence it

is an intrinsic, scheme-independent observable. The anomalous variation AA, and

hence κA3 , is inert under RG flows, which leads to the ’t Hooft anomaly matching

condition (5.13).

2.) Via the anomalous Ward identity (5.16), κA3 also fixes the structure function A

(
Q2

M2

)

to the constant in (5.19), which leads to a pole with residue ∼ κA3 in the j
(1)
A three-

point function (5.18). This is consistent with anomaly matching (5.13) and implies

the stronger staement that only massless, local degrees of freedom contribute to κA3 .

As we will see below, both statements above are modified in the presence of 2-group

symmetry, and the link between them is broken.

56In fact, anomaly matching implies that even degrees of freedom that are massless, but obtain a mass

under deformations that preserve U(1)
(0)
A , do not contribute to κA3 .
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5.3 ’t Hooft anomalies for abelian 2-group symmetries

We will now repeat the analysis of the previous subsection for a theory with abelian 2-group

symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B . Recall from section 2.1 that ’t Hooft anomalies are local c-

number shifts of the effective action W [B] for background fields B under background gauge

transformations that cannot be removed using local counterterms. Now the relevant back-

ground fields are the 2-group background fields A(1) and B(2), whose gauge transformations

are given by (1.4) and (1.15),

A(1) −→ A(1) + dλ
(0)
A , B(2) −→ B(2) + dΛ

(1)
B +

κ̂A
2π

λ
(0)
A F

(2)
A . (5.20)

Note that the analysis of candidate anomalies around (5.11) and (5.12) remains valid in

the presence of 2-group symmetry. This is because only the transformation rule for B(2)

is modified when κ̂A 6= 0. As was pointed out in section 2 (see in particular the discus-

sion at the end of section 2.2), the only possible anomaly 6-form polynomial that can be

constructed using A(1) and B(2) is (5.11), which does not involve B(2). However, the can-

didate anomalies that can be absorbed using local counterterm must be reanalyzed in light

of (5.20).

The counterterm that will play a crucial role in our analysis of 2-group ’t Hooft anoma-

lies is the GS counterterm (5.3) introduced in section 5.1 above, which we repeat here,

SGS =
in

2π

∫
B(2) ∧ F (2)

A . (5.21)

Under the 2-group background gauge transformation (5.20), this term shifts by

SGS → SGS +
inκ̂A
4π2

∫
λ
(0)
A F

(2)
A ∧ F (2)

A . (5.22)

These formulas take exactly the same form as in the conventional GS mechanism, except

that they lead to an ’t Hooft anomaly involving background fields, rather than a gauge

anomaly for dynamical fields. Comparing (5.22) to (5.12), we conclude that adding the

counterterm (5.21) shifts the anomaly coefficient κA3 as follows,

κA3 → κA3 + 6nκ̂A . (5.23)

This shows that κA3 is no longer scheme independent.

In order to proceed, we must decide which values for n to allow in (5.23). Here we

closely follow the discussion of GS counterterms in section 5.1. As was the case there, we

can take two points of view:

1.) If we insist on invariance under large U(1)
(1)
B gauge transformations, the counterterm

coefficient n in (5.21) must be quantized, n ∈ Z. It then follows from (5.23) that the

’t Hooft anomaly coefficient κA3 is only scheme-independent mod 6κ̂A. Alternatively,

only the fractional part
κ
A3

6κ̂A
(mod 1) is intrinsic, while the integer part is scheme

dependent and can be set to any value using a properly quantized GS counterterm.
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Once a particular scheme has been chosen, κA3 is a well-defined number and the

arguments for anomaly matching leading to (5.13) apply; both the intrinsic and the

scheme-dependent part of κA3 must match between the UV and the IR. It is conve-

nient (but not essential) to choose a scheme where the integer part of
κ
A3

6κ̂A
vanishes.

The anomalous shift AA of the effective action under U(1)
(0)
A gauge transformations

is then determined by the intrinsic observable
κ
A3

6κ̂A
(mod 1).

2.) If we give up on invariance under large U(1)
(1)
B gauge transformations, then n can take

any value and we can add a GS counterterm with potentially fractional coefficient n =

−κ
A3

6κ̂A
to set κA3 = 0. In this case the theory is invariant under U(1)

(0)
A background

gauge transformations but, exactly as in (5.5), the partition function picks up an

anomalous phase under large U(1)
(1)
B gauge transformations that is sensitive to the

observable
κ
A3

6κ̂A
(mod 1). Since this anomalous phase is also subject to matching, we

again conclude that
κ
A3

6κ̂A
(mod 1) must match between the UV and the IR.

Let us summarize our conclusions so far:

• Rather than being characterized by an arbitrary integer κA3 ∈ Z, the 2-group anomaly

is only intrinsically meaningful mod 6κ̂A. Equivalently, it is characterized by the

fractional part
κ
A3

6κ̂A
(mod 1), which must match along RG flows.

• Unlike the conventional κA3 anomaly, which only involves U(1)
(0)
A gauge transforma-

tions, the 2-group anomaly arises from a clash between U(1)
(0)
A and (large) U(1)

(1)
B

gauge transformations: if
κ
A3

6κ̂A
(mod 1) 6= 0 we can preserve one or the other, but

not both. As we will see below, as well as in section 6.5, this sensitivity to global

issues makes it possible for non-trivial TQFTs to contribute to the 2-group ’t Hooft

anomaly.

This general picture can be made more explicit in theories with 2-group symmetry

that arise via the construction described in section 3, from parent theories with a U(1)
(0)
A ×

U(1)
(0)
C flavor symmetry and suitable mixed ’t Hooft anomalies, by gauging U(1)

(0)
C . Recall

that the parent theory must have κAC2 = κC3 = 0 (to ensure that the gauging is not

obstructed, and that U(1)
(0)
A is not broken by an ABJ anomaly), but both κA2C and κA3

may be non-zero. In the parent theory, we are free to choose any basis to describe the two

flavor symmetries. This freedom is restricted after gauging, but we can still shift the U(1)
(0)
A

flavor charges by the U(1)
(0)
c gauge charges,

U(1)
(0)
A → U(1)

(0)
A − nU(1)(0)c . (5.24)

If we use κAC2 = κC3 = 0, this leads to the following changes in the ’t Hooft anomalies,57

κA2C → κA2C , κA3 → κA3 − 3nκA2C . (5.25)

The fact that κA2C is unaffected ensures that the 2-group constant κ̂A = −1
2κA2C that

emerges after gauging (see (3.14)) is unambiguous. Moreover, the shift of κA3 in (5.25)

57TD would like to thank E. Witten for a useful conversation suggesting the shifts in (5.24) and (5.25).
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exactly coincides with (5.23), which was the result of adding the GS counterterm (5.21). To

see how this counterterm arises in the present context, note that the redefinition of U(1)
(0)
A

in (5.24) modifies the couplings of gauge fields to currents as follows,

A(1) ∧ ∗j(1)A + c(1) ∧ ∗j(1)C −→ A(1) ∧ ∗
(
j
(1)
A − nj

(1)
C

)
+ c(1) ∧ ∗j(1)C . (5.26)

In addition, both sides include the BF coupling i
2π B

(2) ∧ f (2)c . The two-sides of (5.26)

can be made to agree by redefining c(1) → c(1) + nA(1), but due to the BF coupling this

also generates a GS counterterm (5.21). When n is an integer, this counterterm is properly

quantized, and so are the shifted U(1)
(0)
A charges in (5.24) and the redefined c(1) gauge field.

As in point 2.) between (5.23) and (5.24) above, we can also contemplate fractional n, but

this requires a more careful treatment of global issues.

We will now reanalyze the 〈j(1)A j
(1)
A j

(1)
A 〉 correlation function in the presence of 2-

group symmetry. In light of the preceding discussion, we will insist on invariance un-

der large U(1)
(1)
B gauge transformations, so that all GS counterterms (5.21) are properly

quantized. This means that κA3 is scheme-independent mod 6κ̂A, but once we fix a par-

ticular scheme κA3 is a well-defined number. With these caveats, the anomalous shift of

the effective action is still given by (5.12) and leads to a contact term (5.15) in the Ward

identity satisfied by the j
(1)
A three-point function. However, even in the absence of anoma-

lies, this Ward identity is modified by the 2-group symmetry. Using the 2-group OPE

in (1.34), which reads ∂µjAµ (x)j
A
ν (y) =

κ̂A

2π ∂
λδ(4)(x− y) JB

νλ(y), we find that the right-hand

side of the Ward identity also contains terms that involve the 〈J (2)
B j

(1)
A 〉 correlator analyzed

in section 5.1,

∂

∂xµ
〈jAµ (x)jAν (y)jAρ (z)〉 =

κ̂A
2π

(
∂λδ(4)(x− y) 〈JB

νλ(y)j
A
ρ (z)〉+ ∂λδ(4)(x− z) 〈jAν (y)JB

ρλ(z)〉
)

+
iκA3

12π2
ενραβ ∂

αδ(4)(x− y)∂βδ(4)(x− z) . (5.27)

Fourier-transforming to momentum space (with p1 + p2 + p3 = 0), we find

pµ1
〈
jAµ (p1)j

A
ν (p2)j

A
ρ (p3)

〉
=
κ̂A
2π

(
pλ1
〈
JB
νλ(−p3)jAρ (p3)

〉
+ pλ1

〈
JB
ρλ(−p2)jAν (p2)

〉)

− κA3

12π2
ενραβ p

α
2 p

β
3 .

(5.28)

Recall from (5.1) that the two-point functions on the right-hand side are parity odd

(i.e. they contain an explicit Levi-Civita ε-symbol) and determined by the structure func-

tion K

(
p2

M2

)
. The entire right-hand side of (5.28) is therefore parity odd, so that the

parity-even part of the j
(1)
A three-point function is annihilated by pµ1 . To match the right-

hand side, we must examine the parity-odd part of the three-point function. If we restrict

the kinematics as in (5.17), it is entirely determined by the structure function A

(
Q2

M2

)

in (5.18). Substituting into (5.28), we find that

A

(
Q2

M2

)
= − 1

12π2

(
κA3 − 6κ̂A K

(
Q2

M2

))
. (5.29)

Let us comment on some implications of this formula:
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• The structure function A

(
Q2

M2

)
arises from the j

(1)
A three-point function at separated

points, which is scheme-independent. If we add a GS counterterm (5.21) to the action,

the anomaly coefficient κA3 shifts as in (5.23), κA3 → κA3+6nκ̂A, while the structure

function K

(
Q2

M2

)
shifts as in (5.4), K

(
Q2

M2

)
→ K

(
Q2

M2

)
+ n. These contributions

cancel in (5.29), so that A
(

Q2

M2

)
remains unchanged, as had to be the case.

• The structure function A

(
Q2

M2

)
can be used to define an effective, scale-dependent

quantity κeff.
A3

(
Q2

M2

)
, which only receives contributions from massless, local degrees of

freedom (this definition should be compared to (5.19)),

A

(
Q2

M2

)
= − 1

12π2
κeff.A3

(
Q2

M2

)
. (5.30)

Without 2-group symmetry κ̂A = 0 and (5.30) reduces to (5.19), κeff.
A3

(
Q2

M2

)
= κA3 ,

where κA3 is the conventional ’t Hooft anomaly coefficient. If κ̂A 6= 0, it follows

from (5.29) that κeff.
A3

(
Q2

M2

)
∼ A

(
Q2

M2

)
evolves along the RG flow in a way that is cor-

related with the evolution of K
(

Q2

M2

)
. In general the UV values κeff.UV

A3 , KUV (corre-

sponding toQ2 →∞) and the IR values κeff. IR
A3 , KIR (corresponding to Q2 → 0) do not

match, i.e. κeff.UV
A3 6= κeff. IR

A3 , and similarly for KUV, IR. By contrast, κUV
A3 = κIR

A3 = κA3

satisfies the ’t Hooft anomaly matching relation (5.13) (see also point 1.) after (5.23)).

Substituting these UV and IR quantities into (5.29), we find the following relations

κeff. UV, IR
A3 = κA3 − 6κ̂A K

UV, IR . (5.31)

• Recall from section 5.1 that the GS contact terms KUV, IR can receive contributions

from massive or topological degrees of freedom. The same must therefore be true

of κA3 , to ensure that the two contributions cancel in (5.31), since κeff.
A3

(
Q2

M2

)
only

receives contributions from massless, local degrees of freedom. For example, a GS

counterterm (5.21), which can arise by integrating out massive states, contributes

to both κA3 and K, but not to A or κeff.
A3 . Examples of non-trivial TQFTs with this

property appeared in section 1.7 and will be further discussed in section 6.5.

• It follows from (5.31) that the effective UV-IR anomaly mismatch satisfies

κeff. UV
A3 − κeff. IRA3 = −6κ̂A

(
K
UV − K

IR
)
. (5.32)

The differences on both sides are scheme independent and can be extracted from

the 〈j(1)A j
(1)
A j

(1)
A 〉 or 〈J

(2)
B j

(1)
A 〉 correlation functions at separated points. Equivalently,

they can be computed by integrating out massive sates along the RG flow. Of course

the actual 2-group ’t Hooft anomaly κA3 satisfies UV-IR matching and drops out of

the differences in (5.32),
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5.4 Generalization to nonabelian and Poincaré 2-groups

Here we briefly comment on ’t Hooft anomalies in theories with nonabelian or Poincaré

2-group symmetries, where the 2-group shift of B(2) takes the form in (1.24) and (1.25)

B(2) −→ B(2) +
κ̂A
4π

tr
(
λ
(0)
A dA(1)

)
+
κ̂P

16π
tr
(
θ(0) dω(1)

)
. (5.33)

If the theory also has another, abelian flavor symmetry U(1)
(0)
Y (which may or may not

participate in a 2-group), we can consider a GS counterterm (5.21) for B(2) and the U(1)
(0)
Y

field strength F
(2)
Y ,

SGS =
in

2π

∫
B(2) ∧ F (2)

Y , n ∈ Z . (5.34)

Substituting (5.33) into (5.34) and comparing with (2.40), (2.58) shows that the GS coun-

terterm shifts the mixed ’t Hooft anomalies κA2Y (involving U(1)
(0)
Y and nonabelian back-

ground fields) and κY P2 (involving U(1)
(0)
Y and background gravity fields) as follows,

κA2Y → κA2Y − κ̂An , κY P2 → κY P2 + 6κ̂Pn . (5.35)

As discussed around (5.23) in section 5.3 above, this implies that some parts of these ’t

Hooft anomalies are scheme dependent. Similarly, as in (5.27) and (5.28), the 2-group Ward

identities relate 〈j(1)A j
(1)
A j

(1)
Y 〉 ∼ κ̂A〈J

(2)
B j

(1)
Y 〉+κA2Y and 〈TµνTρσj(1)Y 〉 ∼ κ̂P〈J (2)

B j
(1)
Y 〉+κY P2 ,

which can be used to generalize the discussion around (5.29).

Note that 2-group symmetries only affect the properties of reducible ’t Hooft anoma-

lies, such as κA2Y or κY P2 in (5.35), or the reducible abelian κY 3 anomaly discussed in

section 5.3 above. Irreducible ’t Hooft anomalies, such as a κA3 anomaly for an SU(N)
(0)
A

flavor symmetry, are not affected by 2-group symmetry. In particular, the anomaly coef-

ficient κA3 is scheme-independent and fixes a certain structure function (proportional to

the totally symmetric dabc symbol associated with the cubic Casimir of SU(N)
(0)
A ) in the

three-point function of the SU(N)
(0)
A current j

(1)
A . This is expected from the analogy be-

tween 2-group symmetry and the conventional GS mechanism, since the latter can only be

used to cancel reducible gauge anomalies.

6 Examples

6.1 Overview

In this section we illustrate our general observations about theories with 2-group symme-

tries using a variety of simple, explicit examples. All of our examples are weakly-coupled

Lagrangian theories with scalars, fermions, and gauge fields. Many of them are renormal-

izable abelian gauge theories (albeit with Landau poles in the UV), while others (such as

the CP
N models in section 6.4) are non-renormalizable effective theories. Given a model

with 2-group symmetry, we can deform it and flow to new models with 2-group symmetry

by tracking the RG flow. The deformations we consider in this section are mass terms,
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Figure 1. Horizontal arrows represent the gauging of U(1)
(0)
C in a parent theory T1 with U(1)

(0)
A ×

U(1)
(0)
C flavor symmetry and a mixed κA2C ’t Hooft anomaly to produce a theory T2 with U(1)

(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry. Vertical arrows represent the RG flows interpolating between TUV

1 →
T IR
1 and TUV

2 → T IR
2 . The diagram is commutative.

scalar potentials, and Yukawa couplings. To streamline the discussion below, we intro-

duce the notation VH(ρ) for a Higgs potential that leads to a vev 〈ρ〉 = v around which

the ρ-fluctuations have mass MH , so that

VH(ρ) = VH(v) +
1

2
M2

H (ρ− v)2 + · · · . (6.1)

Another natural deformation consists of gauging the 2-group background fields. We refer

to section 7.2 for a general discussion. Some of the models considered in this section have

dynamical string excitations that are charged under the U(1)
(1)
B subgroup of the various 2-

group symmetries. These strings will be discussed further in section 7.5, where it is shown

that 2-group symmetry fixes certain ’t Hooft anomalies on their world sheets.

All our examples of theories with 2-group symmetry can be viewed as arising from

the gauging construction explained in section 3. (This is unavoidable, because this pro-

cedure has an inverse, which is explained in section 7.2.) Here we briefly recall how this

works for the simplest abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B (see section 3.1). The con-

struction is illustrated by the right-pointing arrow in the top half of figure 1. The start-

ing point is a parent theory T1 with U(1)
(0)
A × U(1)

(0)
C flavor symmetry and vanishing ’t

Hooft anomalies κAC2 = κC3 = 0, but a nonzero κA2C ’t Hooft anomaly. We can then

gauge U(1)
(0)
C → U(1)

(0)
c without spoiling the conservation of the U(1)

(0)
A current j

(1)
A via

an ABJ anomaly. As explained in section 3.1, we must ensure that the dynamical U(1)
(0)
c
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gauge fields have suitable kinetic terms by adjusting the counterterms for the U(1)
(0)
C back-

ground fields before gauging (this is not explicitly indicated in figure 1).

The resulting theory T2 has a new global symmetry U(1)
(1)
B associated with the mag-

netic 2-form current J
(2)
B = i

2π f
(2)
c . Here f

(2)
c is the field strength of the dynamical U(1)

(0)
c

gauge field, which is closed because of the Bianchi identity, df
(2)
c = 0. (See the discussion

around (1.11) and (3.11).) The mixed κA2C ’t Hooft anomaly in T1 implies that the global

symmetry of T2 is not a standard product of U(1)
(0)
A and U(1)

(1)
B . Rather, these symmetries

are fused into a non-trivial abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B . As in (3.14), the 2-group

structure constant is given by κ̂A = −1
2κA2C . As was mentioned in section 1.5, and ex-

plained in section 4, U(1)
(1)
B is a good subgroup of the 2-group, e.g. we can spontaneously

break U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)

(1)
B . This is not the case for U(1)

(0)
A , and as we will review

below, the spontaneous breaking pattern U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)

(0)
A cannot occur.

We would like to understand how the theory T2 evolves under RG flow, which is

represented by the downward arrow in the right half of figure 1. A useful complementary

description of this RG flow comes from the fact that the diagram in figure 1 is commutative:

we can either gauge U(1)
(0)
C in T1 and then follow the RG flow in T2, or we can first flow to

low energies in T1 and gauge U(1)
(0)
C in the resulting IR effective theory to obtain a low-

energy description of T2. One reason this perspective is useful is that T1 has a κA2C mixed

’t Hooft anomaly for its U(1)
(0)
A ×U(1)

(0)
C flavor symmetry, which is subject to conventional

’t Hooft anomaly matching. In T2, one consequence of this is that the 2-group structure

constant κ̂A = −1
2κA2C is inert under RG flow.58

We will use the simple models described below to exhibit various general features of

the 2-group symmetric theory T2 and its RG flows:

1.) The possible realizations of U(1)
(0)
A ×κ̂A

U(1)
(1)
B in the IR of theory T2 were sum-

marized in section 1.5, and analyzed in sections 4.2, 4.3, and 4.4. Here we present

the possibilities uncovered there from the perspective of ’t Hooft anomaly matching

for κA2C in the parent theory T1 with U(1)
(0)
A ×U(1)

(0)
C flavor symmetry, i.e. we follow

the arrows in the part of figure 1 that lies below the NW-SE diagonal.

1a.) If U(1)
(0)
A × U(1)

(0)
C is unbroken in T1, there are no NG bosons for either sym-

metry. ’t Hooft anomaly matching for κA2C implies that both symmetries act

non-trivially on some massless, local degrees of freedom in the deep IR.

In T2, the dynamical U(1)
(0)
c gauge symmetry is IR-free: it is not higgsed, and

the scale-dependent gauge coupling e2
(

p2

M2

)
logarithmically runs to zero in the

deep IR, because the massless degrees of freedom charged under U(1)
(0)
c ensure

that the β-function is strictly positive. Here M is some energy scale, which

may be the UV cutoff. This implies that the two-point function of J
(2)
B ∼ ∗f (2)c

decays more rapidly at long distances than in free Maxwell theory (where e

is constant), so that the operator J
(2)
B ∼ ∗f (2)c effectively flows to zero (i.e. it

becomes redundant) in the deep IR. Schematically (and in particular, omitting

58In fact, it is quantized, κ̂A ∈ Z, see section 7.1.
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all tensor structures),

〈J (2)
B (p)J

(2)
B (−p)〉 ∼ 〈f (2)c (p)f (2)c (−p)〉 ∼ e2

(
p2

M2

)
→ 0 as p2 → 0 . (6.2)

Since there is no free Maxwell field at low energies that could act as a NG boson

for U(1)
(1)
B , it follows that the entire 2-group U(1)

(0)
A ×κ̂A

U(1)
(1)
B , is unbroken.

1b.) If U(1)
(0)
C is spontaneously broken in T1, there is an associated NG boson χ that

shifts as χ→ χ+λ
(0)
C . Any mismatch in the κA2C ’t Hooft anomaly can therefore

be accounted for by a term ∼
∫
χF

(2)
A ∧ F (2)

A in the low-energy effective action.

Then U(1)
(0)
A can either act on the massless degrees of freedom (in which case it

may be broken or unbroken), or it can only act on massive degrees of freedom

and decouple in the deep IR.

In T2, the U(1)
(0)
c gauge symmetry is higgsed, so that the photon acquires a

mass mγ . Therefore J
(2)
B ∼ ∗f (2)c decouples exponentially at long distances

& m−1
γ and is therefore unbroken. If U(1)

(0)
A does not act on massless, local

degrees of freedom in the IR, the entire 2-group is unbroken. Note that this

scenario is compatible with the theory having a gap and no massless, local IR

degrees of freedom whatsoever. However, there may be non-local, topological

degrees of freedom (see point 2.) below).

If U(1)
(0)
A acts on massless, local degrees of freedom in the deep IR, it may or may

not be spontaneously broken. In the former case the 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B

is unbroken, and in the latter case it is spontaneously broken to its U(1)
(1)
B

subgroup.

1c.) If U(1)
(0)
C is unbroken in T1, but U(1)

(0)
A is spontaneously broken, there is

a U(1)
(0)
A NG boson χ, which shifts as χ→ χ+ λ

(0)
A . In this case any mismatch

in the κA2C ’t Hooft anomaly can be accounted for by a term ∼
∫
χF

(2)
A ∧ F (2)

C

in the IR effective action. Additional massless degrees of freedom charged un-

der U(1)
(0)
A or U(1)

(0)
C (with the exception of a NG boson for U(1)

(0)
C , which is

assumed to be unbroken) may be present in the IR, but this is not necessary.

In the absence of such additional degrees of freedom, the low-energy effec-

tive theory of T2 consists of a free U(1)
(0)
c Maxwell field, which spontaneously

breaks U(1)
(1)
B (the free photon is the corresponding NG boson), and the NG

boson χ for the spontaneously broken U(1)
(0)
A symmetry. Therefore the entire

2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B is spontaneously broken in this Goldstone-Maxwell

model. In this model, 2-group symmetry is realized via a particular improvement

term ∼ κ̂A ∗ (f (2)c ∧dχ) ⊂ j
(1)
A . This is the mechanism described around (4.17).

Even though it is a free theory, the Goldstone-Maxwell model has a number of

interesting features, some of which are discussed in section 6.6 below. In partic-

ular, we will see that the 2-group symmetry of the model is actually embedded

inside a larger 3-group symmetry.

The symmetry-breaking pattern is unmodified if there are additional massless

degrees of freedom that are only charged under U(1)
(0)
A . By contrast, if there
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are massless degrees of freedom charged under U(1)
(0)
c , then the gauge cou-

pling is IR-free and J
(2)
B ∼ ∗f (2)c decouples at long distances (see the discus-

sion around (6.2) above). In this case the 2-group is spontaneously broken to

its U(1)
(1)
B subgroup.

2.) 2-group symmetry is compatible with all local degrees of freedom being massive, and

the theory having a gap (see point 1b.) above). The IR theory can be a TQFT

with 2-group symmetry and short- or long-range entanglement. (In the former case,

the theory effectively has no non-trivial dynamical degrees of freedom and can be

formulated using only background fields.) This remains true in the presence of certain

reducible 2-group ’t Hooft anomalies, which can be matched by the topological theory.

RG flows to gapped theories are described in sections 6.2.1 and 6.3. A more detailed

discussion of topological sectors with 2-group symmetry is in section 6.5.

3.) Some RG flows with 2-group symmetry naively appear to violate ’t Hooft anomaly

matching. More precisely, the effective ’t Hooft anomaly κeff.
A3 defined in (5.30), which

is only sensitive to the massless, local degrees of freedom, may change along the

RG flow. The actual ’t Hooft anomaly κA3 must match, but in theories with 2-

group symmetry it may receive contributions from gapped or topological degrees of

freedom (see point 2.) above). As explained in section 5.3, this discrepancy is due to

the presence of GS contact terms (see section 5.1) in the Ward identity (5.27).

We will also consider examples with 2-group symmetries that fuse U(1)
(1)
B with mul-

tiple abelian or nonabelian flavor symmetries, as well as with Poincaré symmetry. (See

section 3.2 for a general discussion of how such examples arise from parent theories with

suitable mixed ’t Hooft anomalies.) As discussed at the end of section 4.4, exact 2-group

symmetry is an obstruction to conventional UV completion in continuum QFT (see point 1.)

below (4.18)). As discussed below (4.20), this is particularly dramatic in examples with

Poincaré 2-group symmetry (see section 6.3). However, if the 2-group symmetry is an emer-

gent, accidental symmetry of the low-energy theory, which is explicitly broken at high en-

ergies, conventional UV completions are possible (see in particular point 2.) below (4.18)).

We will give explicit examples in section 6.2.3.

6.2 QED-like models

In this subsection we consider theories T2 that are mild generalizations of conventional

QED. These are U(1)
(0)
c gauge theories with Nf flavors of massless Dirac fermions of U(1)

(0)
c

charge q ∈ Z. In the absence of additional fields or interactions, this model has flavor

symmetry G(0) = SU(Nf )
(0)
L × SU(Nf )

(0)
R . We first focus on abelian subgroups U(1)

(0)
A ⊂

G(0) and show that some of them belong to an abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B . We

then use the full flavor symmetry G(0) to give examples of nonabelian 2-groups. Finally,

we show that some of these QED-like examples have conventional UV completions as

asymptotically-free nonabelian gauge theories, in which the 2-group symmetry is explicitly

broken at high energies, but emerges as an accidental symmetry in the IR.
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Field ψ1
α ψ2

α ψ3
α ψ4

α φ

U(1)
(0)
A q1 q2 q3 q4 qA

U(1)
(0)
C q q −q −q qC

Table 1. Charge assignments in the parent theory T1. All charges are integers and q 6= 0.

6.2.1 Examples of abelian 2-group symmetries

The simplest QED-like example with 2-group symmetry has Nf = 2 flavors of Dirac

fermions with U(1)
(0)
c gauge charge q.59 We view the theory as arising from a parent

theory T1 (see figure 1) with U(1)
(0)
A × U(1)

(0)
C flavor symmetry. The two Dirac fermions

can be decomposed into four Weyl fermions ψ1
α, ψ

2
α, ψ

3
α, ψ

4
α, whose U(1)

(0)
A × U(1)

(0)
C flavor

charges are summarized in table 1. We also add a complex scalar field φ with charges qA, qC .

The anomaly coefficients are readily computed from the fermion charges in table 1,

κC3 = κCP2 = 0 ,

κAC2 = q2 (q1 + q2 + q3 + q4) ,

κA2C = q
(
q21 + q22 − q23 − q24

)
,

κA3 = q31 + q32 + q33 + q34 ,

κAP2 = q1 + q2 + q3 + q4 .

(6.3)

Since κC3 = 0, we are free to gauge U(1)
(0)
C . However, we must also impose κAC2 = 0, so

that U(1)
(0)
A does not suffer from an ABJ anomaly after gauging. Since q 6= 0, this requires

q1 + q2 + q3 + q4 = 0 . (6.4)

This homogenous constraint admits three linearly independent solutions, which can be

parametrized by (q1, q2, q3) ∈ Z
3. Comparing with (6.3), we see that this constraint also

forces the mixed U(1)
(0)
A -Poincaré ’t Hooft anomaly to vanish, κAP2 = 0, while the remain-

ing anomaly coefficients simplify as follows,

κA2C = −2q (q1 + q3) (q2 + q3) ,

κA3 = −3 (q1 + q2) (q1 + q3) (q2 + q3) .
(6.5)

Note that κA2C ∈ 2Z is even (and also that κA3 ∈ 6Z, because κAP2 = 0) in accord with

the discussion after (3.14) and in appendix A.

We now follow the procedure explained in section 3.1 (see also the review below figure 1)

and gauge U(1)
(0)
C → U(1)

(0)
c in the parent theory T1. The resulting theory T2 has abelian

2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B , where U(1)

(1)
B is the magnetic 1-form symmetry

with current J
(2)
B ∼ ∗f (2)c that emerges as a result of the gauging. The 2-group structure

constant is given by (see (3.14)),

κ̂A = −1

2
κA2C = q (q1 + q3) (q2 + q3) . (6.6)

59Massless QED with Nf = 1 has no flavor symmetries, because U(1)
(0)
axial suffers from an ABJ anomaly.
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As explained in section 5.3, between (5.23) and (5.24), the κA3 ’t Hooft anomaly of the

parent theory T1 is truncated in T2, because only κA3 (mod 6κ̂A) is scheme independent.

The anomaly is therefore encoded by the fractional part
κ
A3

6κ̂A
(mod 1). Using (6.5) and (6.6),

κA3

6κ̂A
= −q1 + q2

2q
. (6.7)

The integer part of this quantity is scheme dependent and can be adjusted using a properly

quantized GS counterterm (5.21) (see also section 5.1). Equivalently, this follows from the

discussion around (5.25): if we redefine the flavor symmetry U(1)
(0)
A → U(1)

(0)
A − nU(1)

(0)
c

(with n ∈ Z) by admixing an integer multiple of the gauge symmetry, then q1,2 → q1,2−nq,
so that the quantity in (6.7) shifts by the integer n. However, the fractional part of (6.7)

constitutes a scheme-independent, intrinsic 2-group ’t Hooft anomaly,60 which must match

along RG flows. We will explicitly demonstrate this in various examples below.

As long as φ has a sufficiently positive mass term, so that it does not acquire a vev,

the U(1)
(0)
c charged massless fermions in table 1 lead to a positive beta function and render

the theory T2 IR free. Therefore J
(2)
B ∼ ∗f (2)c decouples in the deep IR, and U(1)

(0)
A ×κ̂A

U(1)
(0)
B is unbroken. The parent theory T1 consists of free fermions and a decoupled scalar φ

with zero vev, so that U(1)
(0)
A ×U(1)

(0)
C is unbroken. This is scenario 1a.) in section 6.1.

If we add a Higgs potential VH(φ), as in (6.1), then φ acquires a vev 〈φ〉 = v. As

long as qC 6= 0, this spontaneously breaks U(1)
(0)
C in T1, and higgses the U(1)

(0)
c gauge

symmetry to Z|qC | in T2, so that U(1)
(0)
A ×κ̂A

U(1)
(1)
B is unbroken. This is scenario 1b.)

in section 6.1. If qC = 0, then U(1)
(0)
C is unbroken in T1, while U(1)

(0)
A is spontaneously

broken. In T2, this means that the U(1)
(0)
c gauge symmetry is unbroken (and IR free), but

the 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B is spontaneously broken to its U(1)

(1)
B subgroup.

This is scenario 1c.) in section 6.1.

Things get more interesting if we supplement the Higgs potential for φ with Yukawa

couplings of φ to the fermions. We will consider two different deformations of this kind. If

we add a Yukawa interaction of the form

LYukawa = λ13 φψ
1ψ3 + λ24 φψ

2ψ4 + (c.c.) , (6.8)

we must take the charges of φ to be qA = −(q1 + q3) = q2 + q4 (which is compatible

with (6.4)) and qC = 0 in order to preserve U(1)
(0)
A × U(1)

(0)
C in T1. If both Yukawa

couplings λ13, λ24 are non-zero, then the vev 〈φ〉 = v gives mass to all fermions. It also

spontaneously breaks U(1)
(0)
A , while U(1)

(0)
C remains unbroken. The IR of T1 therefore

consists only of a U(1)
(0)
A NG boson that matches the κA2C ’t Hooft anomaly via a term

induced by integrating out the massive fermions. This is scenario 1c.) in section 6.1.

The theory T2 obtained after gauging is the Goldstone-Maxwell model, which describes

spontaneous breaking of the full U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry (see also section 6.6).

If one of the Yukawa couplings in (6.8) vanishes, only some of the fermions acquire a mass.

60As was explained between (5.23) and (5.24), this anomaly should be thought of as mixed anomaly

between U(1)
(0)
A and large U(1)

(1)
B gauge transformations. Demanding that n ∈ Z preserves the latter.
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We can also consider a different set of Yukawa couplings,

L
′
Yukawa = λ12 φψ

1ψ2 + λ34 φψ
3ψ4 + (c.c.) , (6.9)

Now the charges of φ are qA = −(q1 + q2) = q3 + q4 (see (6.4)) and qC = −2q, which
differ from those needed in (6.8). (We can therefore not combine the deformations (6.8)

and (6.9) without introducing a second Higgs field.) Since qC 6= 0, the vev 〈φ〉 = v spon-

taneously breaks U(1)
(0)
A × U(1)

(0)
C to a diagonal subgroup in theory T1. If the Yukawa

coupligs λ12, λ34 are both non-vanishing, then all fermions acquire masses. This is sce-

nario 1b.) in section 6.1. In theory T2, the U(1)
(0)
c gauge symmetry is higgsed, so that the

photon, along with the Higgs field φ and all fermions, acquires a mass. Therefore the theory

is gapped. Since φ has charge qC = −2q ∈ 2Z, it leaves a discrete subgroup Z2|q| ⊂ U(1)
(0)
c

of the gauge symmetry unbroken. The low-energy theory is therefore a non-trivial topologi-

cal Z2|q| gauge theory, with unbroken U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry (see section 6.5

for additional details).

The RG flow induced by the Yukawa couplings (6.9) explicitly shows that a theory

with 2-group symmetry can flow to a gapped phase. However, this flow is also naively in-

consistent with conventional ’t Hooft anomaly matching for κA3 : in the UV, the fermions

contribute the (generally nonzero) value for κA3 in (6.5), but the gapped IR theory super-

ficially does not contribute. As explained at the end of section 5.3 (see also point 3.) in

section 6.1), this mismatch only affects the effective quantity κeff.
A3 defined in (5.30). Recall

that κeff.
A3 only receives contributions from massless, local degrees of freedom, just as the

conventional κA3 ’t Hooft anomaly in theories without 2-group symmetry. However, in

the presence of 2-group symmetry, κeff.
A3 generally does not match between the UV and the

IR. By contrast, the genuine 2-group ’t Hooft anomaly does satisfy anomaly matching,

but can receive contributions from the topological Z2|q| gauge theory in the IR. As we

will explain in section 6.5, this topological theory contributes
κ
A3

6κ̂A
= − qA

qC
= − q1+q2

2q , which

precisely matches the 2-group ’t Hooft anomaly in (6.7). There we will also check that

the difference between the effective quantity κeff.
A3 and the genuine ’t Hooft anomaly κA3 is

correctly accounted for by a non-trivial GS contact term K, as in (5.31).

As before, we can keep some of the fermions massless by setting one of the Yukawa

couplings in (6.9) to zero. In this case the low-energy topological theory must account for

the effective anomaly mismatch between the UV and IR fermion spectrum (see section 6.5).

6.2.2 Examples of nonabelian 2-group symmetries

We now generalize the model considered in the previous section from Nf = 2 flavors of

Dirac fermions to arbitrary Nf . The parent theory T1 consists of 2Nf free, massless Weyl

fermions, which we separate into two groups: ψi
α and ψ̃ĩ

α with i, ĩ = 1, . . . , Nf . We focus on

a SU(Nf )
(0)
L ×SU(Nf )

(0)
R ×U(1)

(0)
C subgroup of the full U(2Nf ) flavor symmetry that exists

in T1.
61 The fermions ψi

α carry charge q under U(1)
(0)
C and transform in the fundamental

representation of SU(Nf )
(0)
L , but are neutral under SU(Nf )

(0)
R . Similarly, the fermions ψ̃ĩ

α

have U(1)
(0)
C charge −q and are neutral under SU(Nf )

(0)
L , but transform in the fundamental

representation of SU(Nf )
(0)
R . These charge assignments are summarized in table 2.

61The commutant of U(1)
(0)
C ⊂ U(2Nf ) that remains after gauging is SU(Nf )

(0)
L × SU(Nf )

(0)
R ×U(1)

(0)
axial.

However, U(1)
(0)
axial suffers from an ABJ anomaly after gauging.
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Field SU(Nf )
(0)
L SU(Nf )

(0)
R U(1)

(0)
C

ψi
α � 1 q

ψ̃ĩ
α 1 � −q

Table 2. Transformation properties of fields in QED-like model with Nf massless flavors. Here �

denotes the fundamental representation of SU(Nf )
(0)
L,R.

In the conventions of section 2.4, the fermions in table 2 give rise to the following

anomaly 6-form polynomial (see (2.34)),

I(6) = 1

(2π)3

(
− iκL3

3!
tr
(
F

(2)
L ∧ F (2)

L ∧ F (2)
L

)
− κL2C

2!
tr
(
F

(2)
L ∧ F (2)

L

)
∧ F (2)

C

− iκR3

3!
tr
(
F

(2)
R ∧ F (2)

R ∧ F (2)
R

)
− κR2C

2!
tr
(
F

(2)
R ∧ F (2)

R

)
∧ F (2)

C

)
.

(6.10)

Here F
(2)
L , F

(2)
R and F

(2)
C are the field strength 2-forms for the backgrond SU(Nf )

(0)
L ,

SU(Nf )
(0)
R , and U(1)

(0)
C flavor symmetries. Note that the κC3 anomaly vanishes. Com-

paring with (2.36), we see that

κL3 = κR3 = 1 , κL2C = −κR2C = q . (6.11)

The mixed anomalies κL2C , κR2C are present for all Nf , while the irreducible anoma-

lies κL3 , κR3 are only present if SU(Nf )
(0)
L,R has a cubic Casimir, which happens for Nf ≥ 3.

The diagonal subgroup SU(Nf )
(0)
diag ⊂ SU(Nf )

(0)
L × SU(Nf )

(0)
R is free of ’t Hooft anomalies.

This is reflected by the vanishing of I(6) in (6.10) upon setting F
(2)
L = −F (2)

R .

If we follow the discussion in section 3.2 and gauge U(1)
(0)
C , we obtain a theory T2

with nonabelian 2-group symmetry. For instance, SU(Nf )
(0)
L participates in a nonabelian

2-group SU(Nf )
(0)
L ×κ̂L

U(1)
(1)
B with κ̂L = κL2C = q (see (3.22) and (6.11)). Similarly,

SU(Nf )
(0)
R is part of a nonabelian 2-group SU(Nf )

(0)
R ×κ̂R

U(1)
(1)
B , with κ̂R = κR2C = −q.

We can summarize this by saying that the full global symmetry is the following 2-group,62

(
SU(Nf )

(0)
L × SU(Nf )

(0)
R

)
×κ̂L = q , κ̂R =−q U(1)

(1)
B . (6.12)

Note that SU(Nf )
(0)
diag. × U(1)

(1)
B is a good subgroup of (6.12). The abelian 2-group

U(1)
(0)
A ×κ̂A

U(1)
(1)
B analyzed in section 6.2.1 above is a subgroup of (6.12) for Nf = 2.63

As explained in section 5.4, the irreducible ’t Hooft anomalies κL3 , κR3 in (6.11) that

are present for Nf ≥ 3 are not modified in the presence of the 2-group symmetry (6.12).

Correspondingly, they enjoy conventional ’t Hooft anomaly matching, which requires mass-

less, local degrees of freedom in the IR. In particular, this means that it is impossible to

62The same 2-group symmetry (with q = 1) arises in QCD with SU(Nc) gauge group and Nf massless

quark flavors, if we gauge its U(1)
(0)
baryon flavor symmetry.

63This is true up to an overall rescaling of the U(1)
(0)
A charges, as well as mixing of U(1)

(0)
A with U(1)

(0)
C .
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Field SU(Nf )
(0) SU(2)

(0)
c

Ψi
α � 2

Φ 1 3

Table 3. Field content of the Georgi-Glashow model.

gap the model while preserving the full global symmetry. (See section 6.4 for some de-

formations of the model that are consistent with this claim.) The same conclusion holds

for Nf = 2, because of ’t Hooft anomaly matching for the flavor-symmetry analog of the

global anomaly described in [60], which is associated with π4(SU(2)
(0)
L,R) = Z2 (see also the

recent discussion in [61]). Note that the deformation (6.9), which leads to a gapped theory,

preserves the abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B , but explicitly breaks SU(2)

(0)
L,R.

6.2.3 UV-complete models with emergent 2-group symmetry

As discussed at the end of sections 4.4 and 6.1, theories with exact 2-group symmetry cannot

be UV completed in continuum QFT. However, this does not preclude the possibility of

standard UV-complete theories with emergent 2-group symmetry at low energies, as long as

the symmetry is explicitly violated at sufficiently high energies. We will briefly illustrate

this using simple UV completions for some of the QED-like models that were shown to

possess 2-group symmetry in subsections 6.2.1 and 6.2.2 above.

We consider a variant of the Georgi-Glashow model [62] with matter content de-

scribed in table 3. In this model, a low-energy U(1)
(0)
c gauge field arises from higgsing

an SU(2)
(0)
c gauge theory using a real scalar field Φ in the adjoint (i.e triplet) representa-

tion 3 of SU(2)
(0)
c . (We omit the SU(2)

(0)
c indices.) We also add Nf Weyl fermions Ψi

α in

the doublet representation 2 of SU(2)
(0)
c . Here i = 1, . . . , Nf is a fundamental index for

the SU(Nf )
(0) flavor symmetry of the model. As was shown in [60], the SU(2)

(0)
c gauge

symmetry suffers from a gauge anomaly (associated with large SU(2)
(0)
c gauge transforma-

tions), unless the number Nf of fermion doublets is even, Nf ∈ 2Z. If we demand that the

theory is also asymptotically free (and hence UV complete), Nf must be an even integer

in the range 0 ≤ Nf ≤ 20.

In the low-energy U(1)
(0)
c gauge theory, every SU(2)

(0)
c fermion doublet gives rise to a

Dirac fermion of U(1)
(0)
c charge 1. This is nothing but ordinary QED with Nf massless

flavors, which coincides with the model in section 6.2.2 if we set q = 1 there. In the IR,

the microscopic SU(Nf )
(0) flavor symmetry is enhanced to SU(Nf )

(0)
L × SU(Nf )

(0)
R (with

the microscopic symmetry embedded as the diagonal subgroup). Furthermore, the low-

energy theory has an emergent U(1)
(1)
B symmetry, with magnetic current J

(2)
B ∼ ∗f (2)

U(1)
(0)
c

.

Together, these symmetries form the nonabelian 2-group (6.12). At high energies, the

emergent (i.e. non-diagonal) part of the SU(Nf )
(0)
L ×SU(Nf )

(0)
R flavor symmetry, as well as

the emergent U(1)
(1)
B symmetry, are both explicitly violated. For instance, at high energies,

the U(1)
(0)
c field strength f

(2)

U(1)
(0)
c

∼ tr
(
Φ f

(2)

SU(2)
(0)
c

)
does not satisfy the Bianchi identity,

so that J
(2)
B is explicitly broken. The energies scales at which the symmetries emerge are

subject to the inequality (4.19).
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Field ψ1
α ψ2

α ψ3
α ψ4

α φ

U(1)
(0)
A qA1 = x− 4y qA2 = x qA3 = −x qA4 = y qA

U(1)
(0)
C qC1 = 3 qC2 = 4 qC3 = 5 qC4 = −6 qC

U(1)
(0)
X qX1 = 1 qX2 = 1 qX3 = −1 qX4 = 0 −

U(1)
(0)
Y qY1 = −4 qY2 = 0 qY3 = 0 qY4 = 1 −

Table 4. Charges in the parent theory T1 of the Fermat Model. Here x, y ∈ Z are integers.

6.3 Chiral Fermat model with Poincaré 2-group symmetry

In this subsection, T2 will be a chiral U(1)
(0)
c gauge theory with Poincaré 2-group symme-

try P×κ̂P
U(1)

(1)
B , as well as abelian 2-group symmetries. For reasons explained below, we

will refer to it as the Fermat model. Unlike (non-) abelian 2-group symmetry, which can

emerge as an accidental symmetry in the IR of theories with conventional UV completions

(see section 6.2.3), Poincaré 2-group symmetry obstructs such UV completions (see the

discussion around (4.20)). Therefore, the Fermat model analyzed below does not have a

UV completion in continuum QFT, with a conformal fixed point at short distances.

As before, we first consider a parent theory T1 (see figure 1) with U(1)
(0)
A × U(1)

(0)
C

flavor symmetry and four Weyl fermions ψ1
α, ψ

2
α, ψ

3
α, ψ

4
α, whose U(1)

(0)
A × U(1)

(0)
C charge

assignments are summarized in table 4. We also include a complex scalar Higgs field φ

charged under U(1)
(0)
A ×U(1)

(0)
C . We first consider the U(1)

(0)
C charges; the U(1)

(0)
A symmetry

(including its relation to the U(1)
(0)
X,Y symmetries in table 4) is discussed after (6.17).

Since we would like to gauge U(1)
(0)
C to obtain a theory T2 with 2-group symmetry, we

must ensure that the κC3 anomaly vanishes,

κC3 =
(
qC1
)3

+
(
qC2
)3

+
(
qC3
)3

+
(
qC4
)3

= 0 . (6.13)

The QED-like models considered in section 6.2 are based on solutions of the form qC2,4 =

−qC1,3. Here we will focus on chiral solutions that assign different charges to the four Weyl

fermions. Perhaps the simplest such solution is the one displayed in table 4. Since the

cubic equation (6.13) over the integers is an example of a Fermat equation,64 we refer to

the resulting model as the Fermat model.65 Note that there is a mixed ’t Hooft anomaly

64This fact also makes it impossible to find a model with κC3 = 0 based on three Weyl fermions with

non-vanishing charges qC1,2,3 ∈ Z, since this would require a non-trivial solution of (qC1 )3+(qC2 )2+(qC3 )3 = 0

over the integers. Fermat’s last theorem states that such solutions do not exist.
65Variants of the Fermat model can be constructed using other solutions of (6.13), such as [63],

q
C
1 = 1− (a− 3b)(a2 + 3b2) , q

C
2 = (a2 + 3b2)2 − (a+ 3b) ,

q
C
3 = (a+ 3b)(a2 + 3b2)− 1 , q

C
4 = (a− 3b)− (a2 + 3b2)2 .

(6.14)

Here a, b ∈ Z. Note that κC = 6b(a2 + 3b2 − 1) ∈ 6Z, as expected on general grounds (see appendix A).

For certain choices of a, b, the charges in (6.14) have a common integer divisor, which can be scaled out.

For instance, a = b = 1 gives qC1,2,3,4 = (9, 12, 15,−18), which can be divided by 3 to obtain the charges

in table 4.
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between U(1)
(0)
C and Poincaré symmetry P,

κCP2 = qC1 + qC2 + qC3 + qC4 = 6 . (6.15)

The fact that κCP2 ∈ 6Z is consistent with the general discussion below (3.22) and in

appendix A. This implies that the theory T2 obtained by gauging U(1)
(0)
C has Poincaré

2-group symmetry P ×κ̂P
U(1)

(1)
B , with 2-group coefficient given by (3.22),

κ̂P = −κCP2

6
= −1 . (6.16)

Note that κ̂P ∈ Z is required by global considerations (see section 7.1).

As in the discussion around (6.8) and (6.9), we can deform the model using the Higgs

field φ. If we set qC = 1, we can add the following Yukawa couplings,

LYukawa = λ1 φ
6(
ψ1
)2

+ λ2 φ
8(
ψ2
)2

+ λ3 φ
10(
ψ3
)2

+ λ4 φ
12
(
ψ4
)2

+ (c.c.) . (6.17)

If we also add a potential VH(φ) (see (6.1)), so that φ acquires a vev 〈φ〉 = v, then U(1)
(0)
c

is higgsed and we can give mass to any fermion by dialing the Yukawa couplings λ1,2,3,4
in (6.17). If all of these couplings are present, the model is gapped.

We will now analyze the flavor symmetries of the Fermat model. For this purpose,

we consider the model without the Yukawa couplings (6.17), and we also temporarily omit

the Higgs field φ. Then any flavor symmetry U(1)
(0)
A only acts on the fermions ψ1,2,3,4

α . In

order to avoid an ABJ anomaly after gauging U(1)
(0)
C , we must impose

κAC2 = 9qA1 + 16qA2 + 25qA3 + 36qA4 = 0 . (6.18)

Different solutions of this homogenous constraint over the integers correspond to indepen-

dent flavor symmetries. There are three linearly independent solutions of this kind. One of

them is given by U(1)
(0)
C and corresponds to the charge vector (3, 4, 5,−6). We denote the

other two linearly independent flavor symmetries by U(1)
(0)
X and U(1)

(0)
Y , and assign them

the charge vectors (1, 1,−1, 0) and (−4, 0, 0, 1) (see table 4). We use U(1)
(0)
A to denote a

general integer linear combination xU(1)
(0)
X +yU(1)

(0)
Y , parametrized by x, y ∈ Z.66 Below,

we will again include the Higgs field φ, and assign it U(1)
(0)
A ×U(1)

(0)
C charges qA, qC .

Using the fermion charges in table 4, we compute the remaining anomaly coefficients,

κA2C = 6
(
2x2 − 4xy + 7y2

)
,

κA3 = (x− 3y)
(
x2 − 9xy + 21y2

)
,

κAP2 = x− 3y .

(6.19)

Note that κA2C never vanishes for any x, y ∈ Z, because it is quadratic form with negative

discriminant. However, both κA3 and κAP2 vanish when x = 3y (and nowhere else over

the integers, because the quadratic factor of κA3 also has negative discriminant). Upon

66For simplicity, we do not consider the most general mixing of U(1)
(0)
A with U(1)

(0)
C , as we did

around (6.4).
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gauging U(1)
(0)
C , the κA2C anomaly leads to an abelian 2-group symmetry U(1)

(0)
A ×κ̂A

U(1)
(1)
B , with 2-group structure constant κ̂A = −1

2κA2C (see (3.14)). Together with the

Poincaré 2-group discussed around (6.16), the symmetry is

(
U(1)

(0)
A ×P

)
×κ̂A , κ̂P

U(1)
(1)
B , κ̂A = −3

(
2x2 − 4xy + 7y2

)
, κ̂P = −1 . (6.20)

We would now like to discuss the interplay of the κA3 and κAP2 ’t Hooft anomalies

in (6.19) with the 2-group symmetry in (6.20). As was explained around (5.23) and (5.35),

a properly quantized GS counterterm (5.21) (see also section 5.1),

SGS =
in

2π

∫
B(2) ∧ F (2)

A , n ∈ Z , (6.21)

leads to the following joint shifts of the anomaly coefficients,

κA3 → κA3 + 6nκ̂A , κAP2 → κAP2 + 6nκ̂P , n ∈ Z . (6.22)

The anomalies are only scheme-independent modulo these shifts. Once we chose a partic-

ular scheme,67 they must match between the UV and the IR. As discussed after (6.9) (see

also section 6.5 below), the IR degrees of freedom that match the anomaly could either

be massless and local, or topological. By contrast, the corresponding effective anoma-

lies κeff.
A3 , κ

eff.
AP2 , which only detect massless, local degrees of freedom, need not match. This

will be apparent below, where we exhibit deformations that gap the theory, but preserve

the symmetry (6.20).

The contribution of a gapped, topological sector to the anomalies is entirely due to a

GS contact term KTQFT (see sections 5.3 and 6.5). Here we will be slightly imprecise and

think of the GS contact term KTQFT as a GS counterterm (6.21) with (possibly non-integer)

coefficient. (A more careful treatment that distinguishes these two notions can be found in

section 5.1.) Comparing with (6.22), we see that the contributions of a topological sector

to κA3 and κAP2 are not independent,

κTQFT
A3 = 6KTQFT κ̂A , κTQFT

AP2 = 6KTQFT κ̂P . (6.23)

It is therefore not possible to gap the Fermat model, unless the anomaly coefficients κA3 ,

κAP2 in (6.19) take the form (6.23) for some choice of KTQFT. If this is not the case, it

is necessary to break some of the symmetry in order to gap the model. For instance, the

Yukawa couplings in (6.17) lead to a gapped theory, but they only preserve the Poincaré

2-group P ×κ̂P
U(1)

(1)
B and explicitly break U(1)

(0)
A .

The choices of x, y ∈ Z in table 4 for which the ’t Hooft anomalies κA3 and κAP2

in (6.19) can in principle be saturated by a TQFT are determined by imposing (6.23) as a

necessary condition. Using the explicit expressions in (6.19) and (6.20), this leads to the

following possibilities,

x = 0 , y ∈ Z or x = 3y , y ∈ Z , or x = 3p , y = 5p , p ∈ Z . (6.24)

67For instance, since κ̂P = −1 (see (6.20)), we can reduce κAP2 mod 6. Then any κA3 ∈ Z is meaningful.
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In each case, we will exhibit a deformation that gaps the model, but preserves the full

2-group symmetry in (6.20). The deformation consists of a Higgs potential VH(φ) for φ,

which leads to a vev 〈φ〉 = v. As long as the U(1)
(0)
c charge qC of φ is non-zero, the gauge

symmetry is higgsed: both φ and the U(1)
(0)
c photon acquire a mass. We also add Yukawa

couplings that give mass to all fermions. These couplings turn out to preserve the full

symmetry in (6.20) if we judiciously dial the U(1)
(0)
A charge qA of the Higgs field φ. As was

already discussed around (5.10) and (6.9), and will be explained more fully in section 6.5

below, the topological Z|qC | gauge theory that remains in the deep IR after higgsing gives

rise to a non-trivial GS contact term,

KTQFT = −qA
qC

. (6.25)

In every case we will explicitly check that this value indeed matches with the one in (6.23).

The Z|qC | gauge theory in the IR has non-trivial dynamical degrees freedom if and only

if |qC | ≥ 2. In this case it can give rise to a fractional GS contact term in (6.25). If |qC | = 1,

the TQFT does not contain any non-trivial dynamics and can be formulated using only the

background fields. (In other words, it is invertible and the entanglement is short range.)

The contact term (6.25) must therefore be an integer.

We now consider the three classes of possibilities for x, y ∈ Z listed in (6.24):

• If x = 0 and y ∈ Z, then the U(1)
(0)
A charges of the fermions in table 4, the anomaly

coefficients in (6.19), and the 2-group structure constant κ̂A in (6.20) reduce to

(qA1 , q
A
2 , q

A
3 , q

A
4 ) = y · (−4, 0, 0, 1) , κA3 = −63y3 , κAP2 = −3y , κ̂A = −21y2 .

(6.26)

We can therefore add the following Yukawa couplings, if we choose qA, qC accordingly,

L
(x=0)
Yukawa ∼ φ4 ψ1ψ3 + φψ2ψ4 + (c.c.) , qA = y ∈ Z , qC = −2 . (6.27)

From (6.25), we find KTQFT = − qA
qC

= 1
2 y, which agrees with (6.23) once we use (6.26).

The deep IR is described by a dynamical Z2 gauge theory, which gives rise to a

fractional GS contact term KTQFT when y is odd.

• If x = 3y, for any y ∈ Z, the U(1)
(0)
A charges of the fermions in table 4, the anomaly

coefficients in (6.19), and the 2-group structure constant κ̂A in (6.20) are given by

(qA1 , q
A
2 , q

A
3 , q

A
4 ) = y · (−1, 3,−3, 1) , κA3 = κAP2 = 0 , κ̂A = −39y2 . (6.28)

The Yukawa couplings and qA, qC charges can then be chosen as follows,

L
(x=3y)
Yukawa ∼ φψ1ψ4 + φ

3
ψ2ψ3 + (c.c.) , qA = 0 , qC = 3 . (6.29)

Note that KTQFT = − qA
qC

= 0, which is consistent with the fact that the ’t Hooft

anomalies in (6.28) vanish. The IR is described by a dynamical Z3 gauge theory.
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• If x = 3p and y = 5p, with p ∈ Z, the U(1)
(0)
A charges of the fermions in table 4, the

anomaly coefficients in (6.19), and the 2-group structure constant κ̂A in (6.20) take

the form

(qA1 , q
A
2 , q

A
3 , q

A
4 )=p · (−17, 3,−3, 5) , κA3 =−4788p3, κAP2 =−12p , κ̂A=−399p2.

(6.30)

This leads to the following choice of Yukawa couplings and qA, qC charge

assignements,

L
(x=3p , y=5p)
Yukawa ∼ φ7 ψ1ψ2 + φψ3ψ4 + (c.c.) , qA = 2p , qC = −1 . (6.31)

In this example KTQFT = − qA
qC

= 2p, which agrees with (6.23) if we substitute the

values in (6.30). Since |qC | = 1, the IR is described by an invertible TQFT for the

background fields, and the GS contact term KTQFT is an integer.

We would like to conclude our discussion of the Fermat model by showing that,

in the absence of the Higgs field φ or any Yukawa couplings, it has an even larger 2-

group symmetry than (6.20). This will also illustrate the higher-rank abelian 2-groups

described around (1.23) and in section 3.2. The Fermat model has an abelian flavor

symmetry U(1)
(0)
X × U(1)

(0)
Y of rank two (see table 4). So far we have focused on its

subgroup U(1)
(0)
A = xU(1)

(0)
X + yU(1)

(0)
Y , but now we consider the interplay of U(1)

(0)
X

and U(1)
(0)
Y . The ’t Hooft anomalies of the form κIJC =

∑4
i=1 q

I
i q

J
i q

C
i , with I, J ∈ {X,Y },

are given by

κXXC = 12 , κXY C = −12 , κY Y C = 42 . (6.32)

Gauging U(1)
(0)
C therefore gives rise to a theory T2 whose global symmetry is a 2-group

that involves a rank-2 abelian flavor symmetry, as well as Poincaré symmetry,

(
U(1)

(0)
X ×U(1)

(0)
Y ×P

)
×κ̂IJ , κ̂P

U(1)
(1)
B . (6.33)

The Poincaré 2-group coefficient κ̂P is as in (6.20), but the abelian 2-group coefficients κ̂IJ
now give rise to a non-diagonal, symmetric matrix,

( κ̂IJ) = −
1

2

(
κXXC κXY C

κXY C κY Y C

)
=

(−6 6

6 −21

)
. (6.34)

6.4 CP
N models

Every U(1)
(0)
c gauge theory T2 without magnetic charges has a U(1)

(1)
B symmetry with

current J
(2)
B ∼ ∗f (2)c . All such models can be deformed to a CP

1 sigma model (coupled to

other degrees of freedom), by adding two complex scalar fields φ1,2 of U(1)
(0)
c charge +1,

and a Higgs potential VH (ρ) that induces a vev 〈ρ〉 = v, with ρ2 = |φ1|2 + |φ2|2. In the

parent theory T1, where U(1)
(0)
C is a global symmetry, the Higgs sector has an SO(4)(0)

flavor symmetry, which is spontaneously broken to SO(3)(0) by 〈ρ〉 = v. This leads to a

sigma model with target space S3. The U(1)
(0)
C ⊂ SO(4)(0) flavor symmetry rotates the

Hopf fiber of the S3. After we gauge it, the NG boson that parametrizes the Hopf fiber
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is eaten by the U(1)
(0)
c photon, leaving only the CP

1 base of the Hopf fibration in the IR.

At low energies, the magnetic two-form current J
(2)
B ∼ ∗f (0)c of the U(1)

(0)
c gauge theory

flows to ∗Ω(2), where Ω(2) is the pullback to spacetime of the Kähler 2-form of the CP
1

model. In particular, Ω(2) is closed. Therefore the presence of a continuous 1-form global

symmetry does not require abelian gauge fields (see also [1, 25, 64]).

The deformation described above can applied to every U(1)
(0)
c gauge theory with 2-

group global symmetry analyzed in sections 6.2 and 6.3 above. This produces examples

of CP1 models coupled to fermions, with (non-) abelian or Poincaré 2-group symmetries.

A variant of the preceding discussion leads to CP
N models with 2-group symmetry:

we can deform conventional QED with Nf massless flavors, which was shown to possess

nonabelian 2-group symmetry (6.12) in section 6.2.2, by adding a Higgs field Φi that is

charged under both U(1)
(0)
c and SU(Nf )

(0)
L . If Φi acquires a vev, the gauge symmetry is

higgsed, and SU(Nf )
(0)
L is spontaneously broken to S

(
U(1)

(0)
L ×U(Nf − 1)

(0)
L

)
, leading to

a CP
Nf−1 target space for the associated NG bosons. The resulting model (which also

contains massless fermions) has the same 2-group symmetry as the original QED theory.

As before, the magnetic U(1)
(1)
B current J

(2)
B ∼ ∗f (0)c of QED flows to ∗Ω(2) at low energies,

with Ω(2) now the pullback to spacetime of the CP
Nf−1 Kähler 2-form.

6.5 Theories with topological sectors

In previous subsections, we have discussed a variety of 2-group symmetric RG flows. In the

IR, these flows either ended in gapped, topological theories, or in theories that contain a

topological sector along with massless, local degrees of freedom. The TQFTs that appear

in this context must also have 2-group symmetry. Moreover, as explained in section 5.3,

they can contribute to reducible ’t Hooft anomalies via non-trivial GS contact terms. Here

we will analyze these theories by thinking of them as arising from a parent theory T1
with U(1)

(0)
A ×U(1)

(0)
C global symmetry.

Assume that T1 contains a complex scalar field φ with U(1)
(0)
A × U(1)

(0)
C charges qA

and qC . If φ acquires a vev 〈φ〉 = v, e.g. via a Higgs potential VH(φ) (see (6.1)), its

radial mode typically becomes massive, but its phase χ ∼ χ + 2π remains light. At low

energies, we can approximate φ ≈ veiχ, where χ shifts as follows under U(1)
(0)
A × U(1)

(0)
C

transformations,

χ → χ+ qAλ
(0)
A + qCλ

(0)
C . (6.35)

Thus χ is the NG boson associated with the spontaneous breaking of U(1)
(0)
A × U(1)

(0)
C to

the U(1)
(0)
X subgroup under which χ is invariant.

At very low energies, χ is a nearly free scalar field described by the quadratic action

Sχ
kin.[A

(1), C(1), χ] = v2
∫ (

dχ− qAA(1) − qC C(1)
)
∧ ∗
(
dχ− qAA(1) − qC C(1)

)
. (6.36)

There could also be another IR sector, which decouples from χ at low energies (i.e. the

two sectors only interact through irrelevant operators), but is also charged under

U(1)
(0)
A ×U(1)

(0)
C ,

SIR[A(1), C(1)] ⊃
∫ (

A(1) ∧ ∗(jIRA )(1) + C(1) ∧ ∗(jIRC )(1)
)
. (6.37)
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We will not need a detailed description of this sector, except the fact that it typically

gives rise to all possible ’t Hooft anomalies κIR
C3 , κ

IR
AC2 , κ

IR
A2C

, and κIR
A3 . We choose the

counterterms as in (2.22), so that the anomalies contributed by the IR sector under U(1)
(0)
A ×

U(1)
(0)
C background gauge transformations take the following form,

AIR
A =

i

4π2

∫
λ
(0)
A

(
κIR
A3

3!
F

(2)
A ∧ F (2)

A +
κIR
A2C

2!
F

(2)
A ∧ F (2)

C +
κIR
AC2

2!
F

(2)
C ∧ F (2)

C

)
,

AIR
C =

iκIR
C3

24π2

∫
λ
(0)
C F

(2)
C ∧ F (2)

C .

(6.38)

In general, the NG boson χ also contributes to the anomalies, via suitable couplings to

background fields,

Sχ
ano.[A

(1), C(1), χ] = − iα

4π2

∫ (
dχ− qC C(1)

)
∧A(1) ∧ F (2)

A

− iβ

4π2

∫ (
dχ− qC C(1)

)
∧A(1) ∧ F (2)

C − iγ

4π2

∫
dχ ∧ C(1) ∧ F (2)

C .

(6.39)

These couplings give rise to the following U(1)
(0)
A ×U(1)

(0)
C anomalies,

Aχ
A=

i

4π2

∫
λ
(0)
A

(
αqAF

(2)
A ∧F

(2)
A +(αqC+βqA) F

(2)
A ∧F

(2)
C +(βqC+γqA) F

(2)
C ∧F

(2)
C

)
,

Aχ
C =

iγqC
4π2

∫
λ
(0)
C F

(2)
C ∧F

(2)
C . (6.40)

Adding the contributions in (6.38) and (6.39), the total ’t Hooft anomalies are given by68

κA3 = κIRA3 + 6αqA ,

κA2C = κIRA2C + 2 (αqC + βqA) ,

κAC2 = κIRAC2 + 2 (γqA + βqC) ,

κC3 = κIRC3 + 6γqC .

(6.41)

As on previous occasions, would like to eventually gauge U(1)
(0)
C without ruining U(1)

(0)
A ,

and hence we assume that κC3 = κAC2 = 0. Using (6.41), we can then solve for β and γ,

β = −κ
IR
AC2

2qC
+
κIR
C3qA

6q2C
, γ = −κ

IR
C3

6qC
. (6.42)

It is instructive to dualize the NG boson χ to a dynamical 2-form gauge field b(2).

As usual, the dual description can be derived by replacing dχ in (6.36) and (6.39) with

an unconstrained 1-form field u(1). The fact that u(1) should be closed on shell, with

appropriately quantized periods
∫
Σ1
u(1) ∈ 2πZ around closed 1-cycles Σ1, is enforced

68Due to anomaly matching, these are both the UV and the IR values of the total ’t Hooft anomalies.
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by a dynamical U(1)
(1)
b gauge field b(2), which acts as a Lagrange multiplier. We therefore

consider the following action for the dynamical fields u(1), b(2), as well as background fields,

S̃[A(1),C(1),u(1), b(2)]

= v2
∫ (

u(1)−qAA(1)−qCC(1)
)
∧∗
(
u(1)−qAA(1)−qCC(1)

)

− iα

4π2

∫ (
u(1)−qCC(1)

)
∧A(1)∧F (2)

A −
iβ

4π2

∫ (
u(1)−qCC(1)

)
∧A(1)∧F (2)

C

− iγ

4π2

∫
u(1)∧C(1)∧F (2)

C +
i

2π

∫
b(2)∧du(1) . (6.43)

This action is invariant under U(1)
(0)
A × U(1)

(0)
C background gauge transformations, up to

the ’t Hooft anomalies in (6.40), if we assign the following transformation rules to the

dynamical fields,

u(1) −→ u(1) + qA dλ
(0)
A + qC dλ

(0)
C ,

b(2) −→ b(2) +
α

2π
λ
(0)
A F

(2)
A +

β

2π
λ
(0)
A F

(2)
C +

γ

2π
λ
(0)
C F

(2)
C .

(6.44)

In addition, b(2) → b(2) + dΛ
(1)
b under U(1)

(1)
b gauge transformations. The transformation

rule for u(1) is expected, since it coincides with that of dχ (see (6.35)). The GS shifts of b(2)

are required to cancel terms proportional to du(1), which does not vanish off shell. If we

integrate out b(2) in (6.43), we can set u(1) = dχ, with χ ∼ χ+2π, which shows that (6.43)

is physically equivalent to the sum of the NG actions (6.36) and (6.39).

The dual description is obtained by instead integrating out the unconstrained 1-

form u(1) in (6.43). It is convenient to define a modified 3-form field strength h(3) for b(2)

that is invariant under the transformations in (6.44) (see (1.16) and section 7.1),

h(3) = db(2) − α

2π
A(1) ∧ F (2)

A − β

2π
A(1) ∧ F (2)

C − γ

2π
C(1) ∧ F (2)

C . (6.45)

The equation of motion for u(1) that follow from the action (6.43) can then be written as

u(1) − qAA(1) − qC C(1) = − i

4πv2
∗ h(3) . (6.46)

Substituting back into (6.43), we find

S̃[A(1), C(1), b(2)] =
1

16π2v2

∫
∗h(3) ∧ h(3) + i

2π

∫
b(2) ∧

(
qA F

(2)
A + qC F

(2)
C

)

− iγqA
4π2

∫
A(1) ∧ C(1) ∧ F (2)

C .

(6.47)

This is a dual description of the NG boson actions (6.36) and (6.39) in terms of a U(1)
(1)
b

gauge field b(2). The counterterm on the second line of (6.47), which is automatically

supplied by the duality, ensures that the ’t Hooft anomalies take the form (6.40).

As in previous subsections, we can obtain a new, 2-group symmetric theory T2 by gaug-

ing U(1)
(0)
C in T1. We also include a suitable Maxwell kinetic term, with gauge coupling e,
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for the U(1)
(0)
c field strength f

(2)
c , as well as a coupling of the U(1)

(1)
B background field B(2)

to the magnetic current J
(2)
B ∼ ∗f (2)c . The U(1)

(0)
c photon acquires a mass mγ ∼ ev and

can be integrated out. In the deep IR, we can then drop the Maxwell kinetic term, as well

as the kinetic term ∼ ∗h(3)∧h(3) in (6.47). The resulting low-energy theory takes the form

of a BF theory, coupled to the IR sector described around (6.37),

SBF[A
(1), B(2), b(2), c(1)] =

i

2π

∫
b(2) ∧

(
qA F

(2)
A + qC f

(2)
c

)
+

i

2π

∫
B(2) ∧ f (2)c

− iγqA
4π2

∫
A(1) ∧ c(1) ∧ f (2)c + SIR[A(1), c(1)] .

(6.48)

The terms in the first line of (6.48) coincide with the BF description of Zp gauge theory

coupled to 1- and 2-form background gauge fields in (5.7) (see also [24–26]), if we identify

p = qC and q = qA. The transformations of A(1) and c(1) under background U(1)
(0)
A and

dynamical U(1)
(0)
c gauge transformations are standard, while b(2) undergoes the GS shifts

in (6.44), which now involve the dynamical field strength f
(2)
c and the background field

strength F
(2)
A . As usual, the κA2C ’t Hooft anomaly in (6.41) implies that the theory (6.48)

has U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, with κ̂A = −1

2κA2C . This leads to the 2-group

shift B(2) → B(2) + κ̂A

2π λ
(0)
A F

(0)
A under U(1)

(0)
A background gauge transformations.

We will now examine how the BF theory in (6.48) realizes the κA3 ’t Hooft anomaly of

the parent theory T1. As on previous occasions, a GS contact term will play a crucial role.

Integrating out b(2) in (6.48) enforces the constraint qA F
(2)
A + qCf

(2)
c = 0, which encodes

the unbroken subgroup U(1)
(0)
X ⊂ U(1)

(0)
A ×U(1)

(0)
c (see the discussion after (6.35)). Being

imprecise about global issues (see section 5.1 for details), we can therefore set c(1) =

− qA
qC
A(1) and substitute back into (6.48),

SBF[A
(1), B(2)] =

iKTQFT

2π

∫
B(2) ∧ F (2)

A + SIR[A(1),−qA
qC
A(1)] , KTQFT = −qA

qC
. (6.49)

The Z|qC | gauge theory therefore gives rise to a GS contact term − qA
qC

, exactly as in (5.10)

(see also the discussions below (1.50) and (6.9), as well as around (6.25)). Using (6.49), it

is straightforward to determine the anomaly under U(1)
(0)
A background gauge transforma-

tions. The GS contact term contributes an anomaly AGS
A via the 2-group shift of B(2),

AGS
A =

iKTQFTκ̂A
4π2

∫
λ
(0)
A F

(2)
A ∧ F (2)

A =
iκA2CqA
8π2qC

∫
λ
(0)
A F

(2)
A ∧ F (2)

A . (6.50)

In a theory that is gapped, without an additional IR sector, (6.50) is the only contribution

of the low-energy theory to the ’t Hooft anomaly. This observation played an important

role in the discussions below (6.9) and around (6.25).

If present, the IR sector contributes an anomaly AIR
A,tot. which is the sum of two con-

tributions: the anomaly AIR
A in (6.38), and the anomaly obtained from AIR

C in (6.38) by

substituting C(1) = − qA
qC
A(1) and λ

(0)
C = − qA

qC
λ
(0)
A . The resulting total anomaly is given by

AIR
A,tot. =

i

8π2

(
κIR
A3

3
− κIR

A2C
qA

qC
+
κIR
AC2q

2
A

q2C
− κIR

C3q
3
A

3q3C

)∫
λ
(0)
A F

(2)
A ∧ F (2)

A

=
i

8π2

(
κA3

3
− κA2CqA

qC

)∫
λ
(0)
A F

(2)
A ∧ F (2)

A .

(6.51)
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Here the second line was obtained from the first one using the formulas in (6.41) and (6.42).

If we add the anomalies AGS
A and AIR

A,tot. in (6.50) and (6.51), we find that the terms

proportional to κA2C cancel, so that only the expected κA3 anomaly remains.

6.6 The Goldstone-Maxwell model of spontaneous 2-group breaking

In the previous subsection we considered parent theories T1 containing a NG boson with

U(1)
(0)
A × U(1)

(0)
C charges qA and qC . We considered this theory, and its descendant T2

obtained by gauging U(1)
(0)
C , under the assumption that qC 6= 0, which lead to topolog-

ical Z|qC | gauge theories with 2-group symmetry. Here we will analyze the case qC = 0,

which is qualitatively very different. In the absence of additional charged degrees of free-

dom, the resulting model consists of a free U(1)
(0)
A NG boson χ and a free U(1)

(0)
c Maxwell

field, which plays the role of NG boson for the spontaneously broken U(1)
(1)
B symmetry. As

discussed in point 1c.) in section 6.1, this Goldstone-Maxwell (GM) model describes the

low-energy dynamics of any theory in which the entire 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B

is spontaneously broken. The GM model is among the simplest examples of theories with

2-group symmetry. Nevertheless, it displays a number of subtle features. For instance,

the U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry of the model is embedded in an even larger

3-group symmetry, with an intricate anomaly structure.

As before, we first discuss the parent theory T1 with U(1)
(0)
A ×U(1)

(0)
C flavor symmetry

and a mixed κA2C ’t Hooft anomaly. We will assume that this is the only nonzero ’t Hooft

anomaly, so that κC3 = κAC2 = κA3 = 0. The vanishing of κC3 , κAC2 is needed in order

to gauge U(1)
(0)
C without spoiling U(1)

(0)
A . By contrast, the assumption that κA3 = 0 is

only for simplicity, and can be relaxed. Similarly, we will take the U(1)
(0)
A charge of χ to

be qA = 1, but it is straightforward to restore general qA.

Under U(1)
(0)
A ×U(1)

(0)
C background gauge transformations, parametrized by λ

(0)
A and

λ
(0)
C , the NG boson χ and the background gauge fields A(1), C(1) shift as follows,

χ → χ+ λ
(0)
A , A(1) → A(1) + dλ

(0)
A , C(1) → C(1) + dλ

(0)
C . (6.52)

The quadratic action for χ takes the same form as in (6.36) and (6.39), except that we

set qA = 1, qC = α = γ = 0, β = 1
2κA2C , and we integrate by parts in the anomalous term,

Sχ[A
(1), C(1), χ] = v2

∫ (
dχ−A(1)

)
∧ ∗
(
dχ−A(1)

)
+
iκA2C

8π2

∫
χF

(2)
A ∧ F (2)

C . (6.53)

We now gauge U(1)
(0)
C and add a Maxwell kinetic term (with gauge coupling e) for the field

strength f
(2)
c , to obtain a theory T2 with 2-group symmetry — the GM model,

SGM[A(1),B(1), χ,c(1)] = v2
∫ (

dχ−A(1)
)
∧∗
(
dχ−A(1)

)
− iκ̂A
4π2

∫
χF

(0)
A ∧f (2)c

+
1

2e2

∫
f (2)c ∧∗f (2)c +

i

2π

∫
B(2)∧f (2)c , κ̂A=−1

2
κA2C . (6.54)

The GM model has U(1)
(0)
A ×κ̂A

U(1)
(1)
B abelian 2-group symmetry, with 2-group struc-

ture constant κ̂A = −1
2κA2C , and is therefore invariant under 2-group background gauge
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transformations (see for instance (1.15) or (3.14)),

SGM

[
A(1) + dλ

(0)
A , B(2) + dΛ

(1)
B +

κ̂A
2π

λ
(0)
A F

(2)
A , χ+ λ

(0)
A , c(1)

]
= SGM[A(1), B(2), χ, c(1)] .

(6.55)

Note that there is no c-number ’t Hooft anomaly under these transformations, because we

assumed that κA3 = 0. If the background fields A(1) and B(2) are set to zero, then (6.54)

reduces to a theory of two decoupled free fields: a NG boson χ, and a Maxwell field f
(2)
c .

However, in the presence of the background field A(1), the dynamical fields χ and f (2)

couple to each other. This coupling is responsible for the 2-group symmetry of the model.

To see this explicitly, we examine the currents j
(1)
A and J

(2)
B in the GMmodel. We would

like to verify that they satisfy the non-conservation equation (1.33), which we repeat here,

d ∗ jA =
κ̂A
2π

F
(2)
A ∧ ∗J (2)

B , (6.56)

and that their characteristic three-point function satisfies the 2-group Ward identity (1.36),

∂

∂xµ
〈jAµ (x)jAν (y)JB

ρσ(z)〉 =
κ̂A
2π

∂λδ(4)(x− y)〈JB
νλ(y)J

B
ρσ(z)〉 . (6.57)

If we vary the action (6.54) with respect to A(1) and B(2), we find that

j
(1)
A = −2v2

(
dχ−A(1)

)
− iκ̂A

4π2
∗
(
dχ ∧ f (2)c

)
, J

(2)
B =

i

2π
∗ f (2)c . (6.58)

The current j
(1)
A has several unusual features:

• Even though the theory is conformal in the absence of background fields, the cur-

rent j
(1)
A is not a conformal primary operator, because the special conformal genera-

tors Kµ annihilate f
(2)
c , but not dχ.

• Without background fields, the theory has a charge conjugation symmetry C, under

which f
(2)
c is odd. The term in j

(1)
A that is bilinear in χ and f

(2)
c makes it impossible to

choose a C-transformation for χ that renders the current C-even or -odd. It therefore

violates the assumptions used to derive the vanishing of the characteristic three-point

function in (4.13).

• The term in j
(1)
A that is bilinear in χ and f

(2)
c , which arises from the second term in

the first line of (6.54), is automatically conserved: it is a pure improvement term. As

we will explicitly see below, this term is responsible for the 2-group symmetry of the

GM model, along the lines described around (4.17).

In order to compute the divergence of j
(1)
A , we need the χ equation of motion from (6.54),

2v2 d ∗
(
dχ−A(1)

)
= − i κ̂A

4π2
F

(2)
A ∧ f (2)c = − κ̂A

2π
F

(2)
A ∧ ∗J (2)

B . (6.59)

Together with (6.58), this implies the 2-group non-conservation equation for j
(1)
A in (6.56).
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We would now like to explicitly verify the 2-group Ward identity (6.57). Using (6.58)

and restoring Lorentz indices, the U(1)
(0)
A current in the absence of background fields can

be written as follows

jAµ = −2v2 ∂µχ−
κ̂A
2π

JB
µα ∂

αχ . (6.60)

Applying Wick’s theorem, the characteristic three-point function then takes the form

〈jAµ (x)jAν (y)JB
ρσ(z)〉 = −

κ̂A v
2

π
∂ν∂

α〈χ(x)χ(y)〉 〈JB
µα(x)J

B
ρσ(z)〉

− κ̂A v
2

π
∂µ∂

β〈χ(x)χ(y)〉 〈JB
νβ(y)J

B
ρσ(z)〉 .

(6.61)

Since the χ propagator satisfies ∂2〈χ(x)χ(y)〉 = − 1
2v2
δ(4)(x − y) (see (6.54)), and J

(2)
B is

conserved, we conclude that (6.61) satisfies the Ward identity (6.57).

As was already pointed out below (6.55), the GM model is free of ’t Hooft anomalies

under 2-group background gauge transformations of A(1) and B(2). However, as in free

Maxwell theory (see appendix C), we can introduce another gauge field B
(2)
e that couples

to the electric 2-form current. In order to make the notation more uniform, we will denote

the magnetic 2-form gauge field B(2), which has already appeared throughout this paper,

by B
(2)
m for the remainder of this subsection. We will also denote the electric and magnetic

1-form symmetries of the theory by U(1)
(1)
e and U(1)

(1)
m . Following the discussion for

free Maxwell theory in appendix C, it is straightforward to introduce B
(2)
e into the GM

action (6.54),69

SGM[A(1), B(2)
e , B(2)

m , χ, c(1)] = v2
∫ (

dχ−A(1)
)
∧ ∗
(
dχ−A(1)

)

+
i

2π

∫ (
B(2)

m −
κ̂A
2π

χF
(2)
A

)
∧ f (2)c +

1

2e2

∫ (
f (2)c −B(2)

e

)
∧ ∗
(
f (2)c −B(2)

e

)
.

(6.62)

The background and dynamical fields transform as follows under background gauge trans-

formations for the 2-group U(1)
(1)
A ×κ̂A

U(1)
(1)
m and the electric 1-form symmetry U(1)

(1)
e ,

A(1) −→ A(1) + dλ
(0)
A ,

B(2)
e −→ B(2)

e + dΛ(1)
e ,

B(2)
m −→ B(2)

m + dΛ(1)
m +

κ̂A
2π

λ
(0)
A F

(2)
A ,

χ −→ χ+ λ
(0)
A ,

c(1) −→ c(1) + Λ(1)
e . (6.63)

Under these transformations, the GM action (6.62) shifts by the following c-number,

SGM −→ SGM +
i

2π

∫
Λ(1)
e ∧ dB(2)

m . (6.64)

Comparing with (C.6) in appendix C, we recognize (6.64) as the ’t Hooft anomaly of

free Maxwell theory. This anomaly is unavoidable, because it arises from the free 〈f (2)c f
(2)
c 〉

69Compared to (6.54), we now write B(2) = B
(2)
m .
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two-point function at separated points (see appendix B.1). This constitutes a serious

conundrum: the anomaly (6.64) arises via inflow from the five-dimensional action

S5 =
i

2π

∫

M5

B(2)
e ∧ dB(2)

m . (6.65)

As was mentioned around (2.2), experience suggests that all ’t Hooft anomalies in local

QFTs admit such a description in terms of anomaly inflow. However, the 2-group shift

of B
(2)
m implies that the anomaly-inflow action (6.65) is not gauge invariant in the five-

dimensional bulk. This problem cannot be fixed using the background fields in (6.63).

The resolution is that we have not correctly identified the symmetry of the GM model:

as we will see shortly, the U(1)
(0)
A ×κ̂A

U(1)
(1)
m 2-group symmetry and the electric 1-form

symmetry U(1)
(1)
e are in fact fused into an even larger 3-group symmetry, which is based

on a U(1)
(2)
Θ 2-form symmetry. The associated 3-form background gauge field Θ(3) couples

to the tautologically conserved 3-form current ∗dχ via

SΘχ[Θ
(3), χ] =

i

2π

∫
Θ(3) ∧ dχ . (6.66)

We now postulate the following transformation rule to Θ(3),

Θ(3) −→ Θ(3) + dΛ
(2)
Θ +

κ̂A
2π

Λ(1)
e ∧ F (2)

A . (6.67)

Hence Θ(3) not only shifts under its own U(1)
(2)
Θ 2-form gauge transformation, parametrized

by Λ
(2)
Θ , but also under the electric 1-form symmetry U(1)

(1)
e , by an amount dictated by

the U(1)
(0)
A field strength F

(2)
A and the 2-group structure constant κ̂A. Therefore all gauge

transformations are unified into a 3-group. Note that the U(1)
(0)
A ×κ̂A

U(1)
(1)
m 2-group is

a good subgroup of this 3-group (this should be understood in the sense of footnote 23),

since the 3-group shift of Θ(3) in (6.67) is only activated by U(1)
(1)
e background gauge

transformations.

The total action Stot. = SGM + SΘχ, with SGM in (6.62) and SΘχ in (6.66), is now

invariant under the gauge transformations in (6.63) and (6.67), up to the following c-number

’t Hooft anomalies,

Stot. −→ Stot.+
i

2π

∫
Λ(1)
e ∧dB(2)

m +
i

2π

∫
λ
(0)
A dΘ(3)+

iκ̂A
4π2

∫
λ
(0)
A dΛ(1)

e ∧F (2)
A . (6.68)

This includes the expected mixed electric-magnetic 1-form anomaly of free Maxwell theory,

as well as the anomaly between the 1-form current dχ and the three-form current ∗dχ that

arises from the structure of the free 〈χχ〉 two-point function. There is also an ’t Hooft

anomaly that mixes the Maxwell and the NG currents, which is proportional to the 2-

group structure constant κ̂A and bilinear in the gauge parameters. The anomaly (6.68)

arises via inflow from the following five-dimensional action, which is fully gauge invariant

in the bulk,

S5[A
(1),Θ(3), B(2)

e , B(2)
m ] =

i

2π

∫

M5

A(1)∧dΘ(3)+
i

2π

∫

M5

B(2)
e ∧

(
dB(2)

m −
κ̂A
2π

A(1) ∧ F (2)
A

)
.

(6.69)
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The 3-group shift of Θ(3) in (6.67) precisely cancels the bulk non-invariance of the second

term under U(1)
(1)
e gauge transformations of B

(2)
e . Therefore all ’t Hooft anomalies arise

from inflow, once the correct symmetry of the model has been identified.70

Finally, we should point out that if the GM model arises in the deep IR of a non-

trivial RG flow with spontaneous 2-group breaking, the 3-group symmetry of the model

is typically an emergent, accidental symmetry. This is due to the fact that the U(1)
(1)
e

symmetry of free Maxwell theory is explicitly broken by electrically charged matter.

7 Further aspects of 2-group symmetries

In this section we discuss global consistency conditions on 2-group background gauge fields,

the gauging of these background fields, and the properties of strings and line defects in

the presence of 2-group symmetry, all of which were briefly mentioned in previous sections.

We also touch on two additional topics: the holographic dictionary for QFTs with 2-group

symmetries, and the reduction of 2-group symmetries to lower dimensions.

7.1 Global properties of 2-group background fields

Consider an abelian 2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B , with background gauge fields A(1), B(2)

that transform as in (1.4) and (1.15) under background gauge transformations,

A(1) −→ A(1) + dλ
(0)
A , B(2) −→ B(2) + dΛ

(1)
B +

κ̂A
2π

λ
(0)
A F

(2)
A . (7.1)

As explained in section 1.1, the fact that U(1)
(0)
A and U(1)

(1)
B are compact implies that the

gauge parameters λ
(0)
A and Λ

(1)
B have quantized, generally non-zero, periods around closed

1- and 2-cycles Σ1,2,

1

2π

∫

Σ1

dλ
(0)
A ∈ Z ,

1

2π

∫

Σ2

dΛ(1) ∈ Z . (7.2)

This means that the gauge parameters are ambiguous, e.g. λ
(0)
A ∼ λ

(0)
A +2π, but since they

parametrize elements of the compact groups U(1)
(0)
A or U(1)

(1)
B , these ambiguities should

be invisible — even at the level of the transformation rules in (7.1). This is the case for the

transformation rule of A(1), which only depends on dλ
(0)
A . However, the 2-group shift of B(2)

implies that the ambiguity λ
(0)
A ∼ λ

(0)
A +2π induces an ambiguity in B(2) ∼ B(2)+ κ̂A F

(2)
A .

The resolution of this apparent paradox is that B(2) also shifts under U(1)
(1)
B gauge

transformations, B(2) → B(2) + dΛ
(1)
B . Since the periods of F

(2)
A satisfy the same quantiza-

tion condition 1
2π

∫
Σ2
F

(2)
A ∈ Z (see (1.5)) as those of dΛ

(1)
B in (7.2), it is possible to absorb

the ambiguity B(2) ∼ B(2) + κ̂A F
(2)
A if and only if the 2-group structure constant κ̂A is

an integer, κ̂A ∈ Z. This establishes the quantization condition for κ̂A that was men-

tioned throughout this paper.71 It also shows that a 2-group shift of B(2) is inconsistent

70A similar inflow puzzle was posed, and ultimately resolved, for discrete n-group symmetries [11, 29, 30].
71As was discussed above (1.17) in section 1.2, the quantization of κ̂A also follows from the fact that it

labels a group cohomology class β ∈ H3(U(1)
(0)
A ,U(1)

(1)
B ) = Z.
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under large U(1)
(0)
A background gauge transformations, unless B(2) is separately invariant

under U(1)
(1)
B background gauge transformations. This fact played an important role in

establishing the inequality (4.19).

It is straightforward to generalize the arguments above to nonabelian and Poincaré

2-groups, which give rise to the 2-group shifts of B(2) in (1.24) and (1.25),

B(2) −→ B(2) +
κ̂A
4π

tr
(
λ
(0)
A dA(1)

)
+
κ̂P

16π
tr
(
θ(0) dω(1)

)
. (7.3)

Using a suitable U(1)(0) subgroup of the Cartan torus and appealing to the abelian case

described above leads to the quantization condition κ̂A ∈ Z. (The relative factor of 2 be-

tween (7.1) and (7.3) is due to our conventions for nonabelian gauge fields, see section 2.4).

A similar, but slightly more involved, argument shows that consistency of (7.3) on non-

trivial spacetime manifolds M4 requires the Poincaré 2-group structure constant to be

quantized as well, κ̂P ∈ Z. For instance, we can take M4 = S2 × R
2 and cover S2 with

two patches that overlap near the equator. The local frame rotation θ(0) that relates the

two patches has monodromy around the equator of the S2. Using (7.3), this leads to an

ambiguity in B(2) that can only be absorbed by a U(1)
(1)
B background gauge transformation

of B(2) if κ̂P ∈ Z.

We will now show that the 2-group transformation rules in (7.1) and (7.3) lead to

restrictions on the topology of the spacetime manifold M4 and the allowed bundles for

background 1-form gauge fields A(1). For simplicity, we focus on a 2-group of the form(
U(1)

(0)
A ×P

)
×κ̂A,κ̂P

U(1)
(1)
B , but it is straightforward to generalize the discussion. As

was explained around (1.16), the 2-group shift of B(2) implies that the conventional field

strength dB(2) is not invariant under U(1)
(0)
A background gauge transformations or local

frame rotations, but we can instead consider a modified field strength H(3) for B(2) that

also includes suitable Chern-Simons terms,

H(3) = dB(2) − κ̂A
2π

CS(3)(A)− κ̂P

16π
CS(3)(ω) . (7.4)

Here CS(3)(A) = A(1) ∧ F (2)
A , while CS(3)(ω) is the gravitational Chern-Simons 3-form for

the spin connection ω(1) defined in (2.55). Using the properties of the Chern-Simons terms

under background gauge transformations (see in particular (2.57)), we find that H(3) is

gauge invariant. However, it is not closed; instead, it satisfies the following modified

Bianchi identity (here we use (2.56)),

dH(3) =
κ̂A
2π

F
(2)
A ∧ F (2)

A +
κ̂P

16π
tr
(
R(2) ∧R(2)

)
. (7.5)

If we choose spacetime to be a compact riemannian manifoldM4, we can integrate this

equation over all ofM4. Since the left-hand side of (7.5) is an exact 4-form, because H(3)

is well defined, it integrates to zero, so that

κ̂A
2π

∫

M4

F
(2)
A ∧ F (2)

A +
κ̂P

16π

∫

M4

tr
(
R(2) ∧R(2)

)
= 0 . (7.6)
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This topological constraint relates the Chern class c1(F
(2)
A ) = 1

2π F
(2)
A of the U(1)

(0)
A bundle

to the signature of the spacetime manifoldM4, which is proportional to
∫
M4

tr
(
R(2)∧R(2)

)
.

Constraints such as (7.6) are common in situations where a GS mechanism modifies the

Bianchi identity as in (7.5). This includes classic examples of string compactification [9, 10].

It is instructive to examine the global restriction in (7.6) through the lens of section 3,

where theories with 2-group symmetry were constructed by gauging U(1)
(0)
C in parent the-

ories with U(1)
(0)
A × U(1)

(0)
C flavor symmetry and non-vanishing κA2C or κCP2 mixed ’t

Hooft anomalies. Naively, such anomalies appear to violate the U(1)
(0)
c gauge symmetry

in the presence of the U(1)
(0)
A background field A(1), or in the presence of a curved back-

ground metric. As we have seen this is not the case once we add the background gauge

field B(2), because its 2-group shifts effectively cancels the mixed anomalies via a GS mech-

anism. Equivalently, if we insist on U(1)
(0)
c gauge invariance, the presence of a mixed κA2C

anomaly means that the background gauge field A(1) is specified by more data than a

conventional, geometric connection. Similarly, if we insist on U(1)
(0)
c gauge invariance, the

presence of a mixed κCP2 anomaly implies that we must specify additional information,

beyond a conventional riemannian metric, to place the theory on a curved 4-manifold. In

both cases, the additional data is supplied by the background gauge field B(2).

The upshot is that there is no local obstruction to specifying any configuration for the

background gauge field A(1), or for the background metric. There is, however, a global topo-

logical constraint (7.6) on the allowed backgrounds, via the modified Bianchi identity (7.5),

which is an unavoidable consequence of 2-group symmetry. This constraint can be viewed as

a global remnant of the original mixed κA2C and κCP2 anomalies. A similar phenomenon,

which also involves the transmutation of a local anomaly into a global issue, arises in the

context of ’t Hooft anomalies for 2-group symmetries. As discussed in section 5.3 (espe-

cially between (5.23) and (5.24)), a reducible κA3 ’t Hooft anomaly can superficially be

removed by a GS counterterm (5.21). However, the fractional part
κ
A3

6κ̂A
(mod 1) persists as

a genuine ’t Hooft anomaly, due to a clash between conventional U(1)
(0)
A background gauge

transformations, and topologically non-trivial U(1)
(1)
B background gauge transformations.

7.2 Gauging 2-group symmetries

In this section we consider a theory with abelian 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B .

(Generalizations to other 2-groups are straightforward.) In order to match the terminology

introduced in section 6.1 (see in particular figure 1) we will refer to this theory as theory 2,

or simply T2. We use T1 to refer to a parent theory with U(1)
(0)
A ×U(1)

(0)
C flavor symmetry

and mixed κA2C ’t Hooft anomaly, from which T2 arises by gauging U(1)
(0)
C . As we will show

below, such a parent theory T1 exists for every theory T2 with 2-group symmetry. Later we

will also introduce a third theory T3, which results form T1 by gauging U(1)
(0)
A . Note that

the possibility of simultaneously gauging both U(1)
(0)
A and U(1)

(0)
C in T1 is obstructed by

its mixed κA2C ’t Hooft anomaly. The three theories T1,2,3 are represented by grey boxes in

figure 2. The purpose of this subsection is to supply a detailed explanation of this figure.

Theory T2 has 2-group background gauge fields A(1) and B(2). We would like to

understand what happens if we gauge the 2-group symmetry, or a subgroup thereof, by
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Figure 2. Possible gaugings of a theory T2 with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry and no

’t Hooft anomalies. Theory T1 is the parent theory with U(1)
(0)
A × U(1)

(0)
C flavor symmetry and a

mixed κA2C = −2κ̂A ’t Hooft anomaly; it can be obtained from T2 by gauging U(1)
(1)
B . Theory T3

results from T2 by gauging U(1)
(0)
A ×κ̂A

U(1)
(1)
B , or from T1 by gauging U(1)

(0)
C .

promoting the appropriate background gauge fields to dynamical gauge fields and doing

the functional integral over their gauge orbits. It follows from the comments below (1.15)

that it is not consistent to gauge U(1)
(0)
A without also gauging U(1)

(1)
B , because the 2-

group shift B(2) → B(2) + κ̂A

2π λ
(0)
A F

(2)
A mixes B(2) with A(1). This is consistent with the

general principle we have encountered repeatedly, according to which U(1)
(0)
A is not a good

subgroup of the full 2-group. (As always, this statement should be understood in the sense

of current algebra, see footnote 23.) However, U(1)
(1)
B is a good subgroup, and it can be

gauged by while keeping U(1)
(0)
A a global symmetry and A(1) a background gauge field.

The allowed possibilities are therefore to either gauge all of U(1)
(0)
A ×κ̂A

U(1)
(1)
B , or to only

gauge its U(1)
(1)
B subgroup,

U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)(0)a ×κ̂A

U(1)
(1)
b , A(1) → a(1) , B(2) → b(2) ,

or

U(1)
(0)
A ×κ̂A

U(1)
(1)
B → U(1)

(0)
A ×κ̂A

U(1)
(1)
b , B(2) → b(2) .

(7.7)

The fact that U(1)
(0)
A cannot by itself be gauged in T2 also follows from the parent theory T1.

Since T2 is the result of gauging U(1)
(0)
C in T1, gauging U(1)

(0)
A in T2 amounts to simulta-
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neously gauging U(1)
(0)
A and U(1)

(0)
C in T1. As was already mentioned above, this is not

possible because T1 has a mixed κA2C ’t Hooft anomaly. As we will see below, gauging the

entire 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B of T2 circumvents this problem by cancelling

the mixed anomaly via a conventional GS mechanism for the dynamical gauge fields.

Before considering the gaugings in (7.7), we recall, and expand on, some basic facts that

have already been used in previous sections. (See [1] and references therein for additional

background. Until further notice, we assume that all possible ’t Hooft anomalies are

absent.) For the moment, we consider a simplification of the setup in figure 2, in which

the parent theory only has a U(1)
(0)
C flavor symmetry. Gauging U(1)

(0)
C then leads to

a new theory with a global U(1)
(1)
B symmetry, which arises from the magnetic 2-form

current J
(2)
B = i

2π ∗ f
(2)
c (see (1.11)). Here f

(2)
c is the U(1)

(0)
c Maxwell field strength. It is a

useful fact that this procedure has an inverse: gauging the U(1)
(1)
B 1-form global symmetry

of the U(1)
(0)
c gauge theory returns us to the original parent theory with U(1)

(0)
C flavor

symmetry. In terms of the dynamical U(1)
(1)
b gauge field b(2), the U(1)

(0)
C flavor current is

given by j
(1)
C = i

2π ∗ db(2).
The fact that gauging U(1)

(0)
C and U(1)

(1)
B are inverse operations can be made explicit

by considering the partition functions of the two theories in the presence of their respective

background gauge fields. As we have done throughout the paper, we can start with the

partition function Z[C(1)] of the parent theory in the presence of a U(1)
(0)
C background

gauge field, and construct a new theory with partition function Z̃[B(2)] that depends on

a U(1)
(1)
B background gauge field B(2) by gauging U(1)

(0)
C . This involves coupling B(2)

to J
(2)
B and promoting C(1) → c(1) to a dynamical U(1)

(0)
c gauge field, by doing a suitably

gauge-fixed functional integral over its gauge orbits,

Z̃[B(2)] =

∫
Dc(1) Z[c(1)] exp

(
i

2π

∫
B(2) ∧ dc(1)

)
. (7.8)

Here we use the notation Z̃ because (7.8) can be thought of as a functional Fourier trans-

form.72 Any gauge-invariant terms for the dynamical gauge field c(1), such as a Maxwell

kinetic term, are included in Z[c(1)]. Prior to gauging, they correspond to gauge-invariant

local counterterms for the U(1)
(0)
C background gauge field C(1) in Z[C(1)]. Just as an

ordinary Fourier transform, it is possible to invert (7.8) by gauging U(1)
(1)
B , i.e. by promot-

ing B(2) to a dynamical gauge field b(2) and doing an appropriately gauge-fixed functional

integral over its gauge orbits,

Z[C(1)] =

∫
Db(2) Z̃[b(2)] exp

(
− i

2π

∫
b(2) ∧ dC(1)

)
. (7.9)

Note that the background gauge field C(1) in (7.9) couples to the current j
(1)
C = i

2π ∗ db(2)
described above. In order for (7.9) to be the inverse of (7.8) (as will be established below),

it is important that we do not include any additional terms for b(2) in (7.9), beyond what

is supplied by Z̃[b(2)]. It may nevertheless be helpful (e.g. for convergence or conceptual

72Similar observations in three dimensions appear in [65, 66].
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reasons) to include such additional terms. For instance, we can add a standard b(2) kinetic

term ∼ 1
g2
db(2) ∧ ∗db(2). Then (7.9) corresponds to the limit g →∞.

To see that (7.9) is the inverse of (7.8), we substitute the expression for Z̃[B(2)] in (7.8)

into the b(2) functional integral on the right-hand side of (7.9). This integral reduces to
∫
Db(2) exp

(
i

2π

∫
b(2) ∧

(
dc(1) − dC(1)

))
= δg.i.

(
c(1) − C(1)

)
. (7.10)

Here δg.i.(c
(1)−C(1)) is a gauge-invariant δ-functional, which sets c(1) = C(1), up to (back-

ground) gauge transformations. It is normalized so that a suitably gauge-fixed functional

integral over gauge orbits of c(1) gives
∫
Dc(1)δg.i.(c

(1) − C(1)) = 1 (see for instance the

recent discussion in [67]). Using this fact, the remaining c(1) functional integral on the

right-hand side of (7.9) collapses to
∫
Dc(1)δg.i(c

(1) − C(1))Z[c(1)] = Z[C(1)]. A similar

line of reasoning shows that substituting the expression for Z[C(1)] in (7.9) into the c(1)

functional integral on the right-hand side of (7.8) correctly reproduces Z̃[B(2)].

We will now repeat the preceding discussion in the presence of an additional U(1)
(0)
A

flavor symmetry. If U(1)
(0)
A has no mixed ’t Hooft anomalies with the U(1)

(0)
C flavor sym-

metry of the parent theory, it simply comes along for the ride. Instead, we will consider

a parent theory T1 which has a non-zero mixed κA2C ’t Hooft anomaly, while all other ’t

Hooft anomalies vanish. This theory resides in the top-left corner of figure 2. As usual,

gauging U(1)
(0)
C int T1 then leads to a theory T2 (in the top-right corner of figure 2)

with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry, with 2-group structure constant κ̂A = −1

2κA2C

(see for instance (1.22)). The partition function Z2[A
(1), B(2)] of theory T2 in the presence

of the 2-group background gauge fields A(1), B(2) is obtained from the partition func-

tion Z1[A
(1), C(1)] of theory T2 by gauging U(1)

(1)
C , which is represented by the top, right-

pointing arrow in figure 2,

Z2[A
(1), B(2)] =

∫
Dc(1) Z1[A

(1), c(1)] exp

(
i

2π

∫
B(2) ∧ dc(1)

)
. (7.11)

This expression is analogous to (7.8). As was the case there, Maxwell kinetic terms (or any

other gauge-invariant couplings) for c(1) are included in Z1[A
(1), c(1)].

We saw around (7.9) and (7.10) that gauging U(1)
(1)
B in the absence of 2-group sym-

metry restores the parent theory with U(1)
(0)
C flavor symmetry. We will now repeat this

discussion in theory T2, which has U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry. Our assump-

tion that T1 only has a κA2C ’t Hooft anomaly is equivalent to the assumption that T2 is

free of 2-group ’t Hooft anomalies (see section 5.3, as well as below). We can therefore

gauge U(1)
(1)
B and repeat (essentially verbatim) the discussion around (7.9) and (7.10): we

invert (7.11) and reconstruct the partition function Z1[A
(1), C(1)] of the parent theory T1

from the partition function Z2[A
(1), B(2)] of T2 by gauging U(1)

(1)
B (see figure 2),

Z1[A
(1), C(1)] =

∫
Db(2) Z2[A

(1), b(2)] exp

(
− i

2π

∫
b(2) ∧ dC(1)

)
. (7.12)

This expression is manifestly invariant under U(1)
(0)
C background gauge transformations.

Under a U(1)
(0)
A background gauge transformation, we have A(1) → A(1) + dλ

(0)
A . If we
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accompany this by a change of variables b(2) → b(2)+ κ̂A

2π λ
(0)
A F

(2)
A in the functional integral,

we can use the 2-group invariance of Z2 to conclude that only the exponential phase factor

on the right-hand side of (7.12) contributes, via a c-number phase factor. This amounts to

the following anomalous shift A1 of the effective action W1 = − logZ1 under U(1)
(0)
A ,

A1 = −
iκ̂A
4π2

∫
λ
(0)
A F

(2)
A ∧ F (2)

C =
iκA2C

8π2

∫
λ
(0)
A F

(2)
A ∧ F (2)

C , (7.13)

which correctly reproduces the κA2C ’t Hooft anomaly of T1, with the choice of countert-

erms (2.22) used throughout this paper.

The preceding discussion shows that any theory T2 with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group

symmetry arises from a parent theory T1 with U(1)
(0)
A × U(1)

(0)
C flavor symmetry and a

mixed κA2C = −2κ̂A ’t Hooft anomaly. The parent theory can be found explicitly by

gauging the U(1)
(1)
B subgroup of the 2-group, as in (7.12). If T2 has a presentation as

a U(1)
(0)
C gauging of T1, as is the case for the U(1)

(0)
c gauge theories considered in sections 6.2

and 6.3, gauging U(1)
(1)
B simply turns the dynamical U(1)

(0)
c gauge field back into a U(1)

(0)
C

background gauge field, as in (7.10). A more interesting example, which does not have

such a presentation, is the CP
1 model with 2-group symmetry discussed in section 6.4. If

we gauge its U(1)
(1)
B symmetry, we can dualize the dynamical b(2) gauge field to a periodic

scalar, which reconstructs the Hopf fiber of the parent S3 sigma model.

Recall from (7.9) that the coupling of C(1) to b(2) in (7.12) amounts to taking the U(1)
(0)
C

current to be j
(1)
C = i

2π ∗ b(2). Here j
(1)
C is conserved, but not invariant under U(1)

(0)
A

background gauge transformations, due to the 2-group shift of b(2). As was explained

around (7.13), this reflects the κA2C ’t Hooft anomaly of T1, given the particular choice

of counterterms in (2.22). Another natural choice is to couple C(1) in (7.12) to a different

current j̃
(1)
C , which is defined in terms of the gauge-invariant field strength h(3) of b(2),

j̃
(1)
C =

i

2π
∗ h(3) , h(3) = db(2) − κ̂A

2π
A(1) ∧ F (2)

A , d ∗ j̃(1)C = − iκ̂A
4π2

F
(2)
A ∧ F (2)

A . (7.14)

Observe that j̃
(1)
C is invariant under U(1)

(0)
A background gauge transformations, but not

conserved in a U(1)
(0)
A background gauge field. This is an alternative presentation of

the κA2C ’t Hooft anomaly of T1, which differs from the one used above by a countert-

erm S ⊃ − iκ̂A

4π2

∫
C(1)∧A(1)∧F (2)

A . Adding this counterterm amounts to setting s = 1
2κA2C

in (2.19) and (2.20), which renders the theory invariant under U(1)
(0)
A background gauge

transformations, at the expense of replacing the conserved current j
(1)
C by j̃

(1)
C . This presen-

tation of the anomaly is mandatory if we want to gauge U(1)
(0)
A , as we will do momentarily.

We would now like to gauge the entire 2-group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B of T2. This

gauging can be obstructed by a 2-group ’t Hooft anomaly, which arises if the parent theory

has a κA3 ’t Hooft anomaly. (Here we are using a presentation of the anomaly where U(1)
(1)
B

is preserved, while U(1)
(0)
A is anomalous, see section 5.3 for details.) This obstruction is

present unless κA3 ≡ 0 (mod 6κ̂A), in which case the genuine 2-group anomaly vanishes,

while its scheme-dependent remainder can be set to zero using a properly quantized GS

counterterm (5.3). The condition κA3 ≡ 0 (mod 6κ̂A) also has a natural interpretation

– 86 –



J
H
E
P
0
2
(
2
0
1
9
)
1
8
4

in the parent theory T1: if it holds, we can set the κA3 ’t Hooft anomaly to zero by

redefining U(1)
(0)
A → U(1)

(0)
A − nU(1)

(0)
C , as in (5.24) and (5.25). We therefore continue

to assume that T2 is free of 2-group ’t Hooft anomalies, and that T1 has vanishing κA3 ’t

Hooft anomaly, as we had done previously.

We now consider the theory that arises by gauging U(1)
(0)
A ×κ̂A

U(1)
(1)
B in T2. (As we

will show below, it is the same theory T3 that can obtained from T1 by gauging U(1)
(0)
A .)

On general grounds we expect that gauging U(1)
(0)
A → U(1)

(1)
a will result in a new U(1)

(1)
X 1-

form symmetry (with conserved current J
(2)
X = i

2π ∗da(1) and background gauge field X(2)),

while gauging U(1)
(1)
B → U(1)

(1)
b should give rise to a 0-form symmetry U(1)

(0)
C , with back-

ground gauge field C(1). However, the expected U(1)
(0)
C flavor symmetry suffers from an

ABJ anomaly. Here the discussion around (7.14) is relevant: since U(1)
(0)
a is now a dynam-

ical gauge symmetry, it is not acceptable to couple the U(1)
(0)
C background gauge field C(1)

to the current j
(1)
C ∼ ∗db(2), as we did in (7.12), because it is not gauge invariant. Instead

we must use the gauge-invariant current j̃
(1)
C in (7.14). However, the non-conservation

equation in (7.14) now constitutes an ABJ anomaly for j̃
(1)
C . This can be described by

promoting the Θ-parameter, which appears in the action S ⊃ iΘ
8π2

∫
da(1) ∧ da(1), to a

background field and declaring that Θ shifts under U(1)
(0)
C background gauge transforma-

tions (see the discussion around (3.7)). Therefore T3 is obtained from T2 by following the

arrow in the bottom-right corner of figure 2, according to which

Z3[X
(2), C(1),Θ] =

∫
Da(1)Db(2) Z2[a

(1), b(2)] exp

(
i

2π

∫
X(2) ∧ da(1)

)

exp

(
− i

8π2

∫
Θ da(1) ∧ da(1)

)
exp

(
i

2π

∫ (
db(2) − κ̂A

2π
a(1) ∧ da(1)

)
∧ C(1)

)
.

(7.15)

This partition function is invariant under U(1)
(1)
X gauge transformations of X(2), as well as

simultaneous shifts C(1) → C(1)+dλ
(0)
C and Θ → Θ−2κ̂Aλ

(0)
C under U(1)

(0)
C background

gauge transformations, which reflect the fact that U(1)
(0)
C suffers from an ABJ anomaly.

In order to see that the theory obtained by gauging the entire 2-group symmetry

of T2 really is T3, we evaluate the functional integral in (7.15) in two steps: we first do

the b(2) integral, which amounts to gauging only U(1)
(1)
B . As discussed around (7.12),

this returns us to the parent theory T1. However, as discussed around (7.14), the fact

that C(1) in (7.15) couples to the gauge-invariant current j̃
(1)
C furnishes the counterterm

that renders T1 invariant under U(1)
(0)
A background gauge transformations, while leading to

the non-conservation equation d∗ j̃(1)C ∼ κ̂A F (2)
A ∧F

(2)
A . It is now possible to gauge U(1)

(0)
A ,

which leads to theory T3, with an ABJ anomaly for the U(1)
(0)
C current j̃

(1)
C , as was claimed

above. The gauging of U(1)
(0)
A in T1 to obtain T3 is represented by the arrow in the bottom-

left corner of figure 2. Finally, we can close the loop by pointing out that this gauging can

be inverted by gauging the U(1)
(1)
X symmetry of T3.

7.3 Holographic interpretation of 2-group symmetries

Since the early days of the AdS/CFT correspondence [68–70], it has been understood

that global symmetries of the boundary theory correspond to gauge symmetries in the
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bulk.73 The boundary values of the dynamical bulk gauge fields serve as background

gauge fields that can be turned on in the boundary theory. In particular, the form of the

corresponding background gauge transformations is dictated by the bulk gauge transfor-

mations. This leads to the following basic facts about the AdS5 duals for symmetries of

four-dimensional QFTs:

a) A conventional U(1)
(0)
A flavor symmetry is represented by an abelian gauge field a(1),

with gauge symmetry a(1) → a(1) + dλ
(0)
a , which propagates in the bulk. It bound-

ary value a(1)| = A(1) is a non-dynamical background gauge field that couples to

the U(1)
(0)
A current j

(1)
A of the boundary theory. Gauge transformations that do not

vanish on the boundary are non-trivial background gauge transformations that act

on A(1), rather than gauge redundancies. A bulk Maxwell term for a(1) gives rise to

the conformal 〈j(1)A j
(1)
A 〉 two-point function on the boundary.

b) The holographic dual of a U(1)
(1)
B symmetry was recently discussed in [74, 75] (see

also [73]). It is given by a 2-form gauge field b(2), with gauge redundancy b(2) →
b(2) + dΛ

(1)
b , whose boundary value b(2)| = B(2) is a background gauge field for

the U(1)
(1)
B current J

(2)
B of the boundary theory. As emphasized in [75], a kinetic

term ∼
∫
AdS5

db(2) ∧ ∗db(2) does not lead to solutions that respect the symmetries of

AdS5.
74 Instead, b(2) behaves logarithmically near the boundary. In [75], this was in-

terpreted as the bulk manifestation of a logarithmic RG flow in an IR-free theory with

2-form current J
(2)
B and double-trace coupling ∼ J (2)

B ∧∗J
(2)
B , just as in abelian gauge

theories with charged matter, where J
(2)
B ∼ ∗f (2) is the magnetic 2-form current.

c) As reviewed in section 4.2, the only four-dimensional CFT that admits a 2-form

current is free Maxwell theory, which possesses a U(1)
(1)
e ×U(1)

(1)
m global symmetry.

The corresponding electric and magnetic 2-form currents, which are proportional

to f (2) and ∗f (2) on the boundary, are represented by two propagating bulk 2-form

gauge fields b
(2)
e,m. The dynamics is governed by a topological action in the bulk,

S5 =
i

2π

∫

AdS5

b(2)e ∧ db(2)m . (7.16)

The free Maxwell fields on the boundary arise from this topological theory as single-

ton, or edge, modes (see for instance [24] and references therein). Note that (7.16) is

a gauged version of the five-dimensional anomaly-inflow action (6.65) that captures

the U(1)
(1)
e ×U(1)

(1)
m ’t Hooft anomalies of free Maxwell theory (see also appenidx C).

Here we would like to comment on the holographic dictionary for a boundary QFT

with 2-group symmetry, starting with the abelian case U(1)
(0)
A ×κ̂A

U(1)
(1)
B . The boundary

currents j
(1)
A and J

(2)
B are represented by 1- and 2-form gauge fields a(1) and b(2) in the

73See [71] for an intuitive discussion of this basic point. A reexamination from the perspective of recent

advances in bulk reconstruction (some of which are reviewed in [72]) will appear in [73].
74This is similar to the fact that a free Maxwell field in AdS3, without a Chern-Simons term, does not

admit solutions that respect the symmetries of AdS3.
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bulk. As was reviewed above, the bulk gauge transformations should take the same form

as the corresponding background gauge transformations on the boundary. For an abelian

2-group, this implies that a(1) and b(2) are subject to the following bulk gauge redundancy,

a(1) → a(1) + dλ(0)a , b(2) → b(2) + dΛ
(1)
b +

κ̂A
2π

λ(0)a f (0)a . (7.17)

Therefore the bulk gauge transformations of b(2) include a conventional GS shift that in-

volves a(1). Analogously, the bulk dual of theory with Poincaré 2-group symmetry involves

a GS shift of b(2) by the dynamical bulk gravity fields.

While the Maxwell kinetic term for a(1) is invariant under the bulk gauge transfor-

mations (7.17), the kinetic term ∼ db(2) ∧ ∗db(2) is not invariant. Following the discussion

around (1.16), as well as in section 7.1, we can define a modified, gauge-invariant 3-form

field strength,

h(3) = db(2) − κ̂A
2π

a(1) ∧ f (2)a . (7.18)

Using h(3), we can construct a gauge-invariant kinetic term proportional to
∫

AdS5

∗h(3)∧h(3) =
∫

AdS5

∗db(2)∧db(2)− κ̂A
π

∫

AdS5

∗db(2)∧a(1)∧f (2)a +O
(
(a(1))4

)
. (7.19)

The second term, which contains the 2-group structure constant κ̂A and is an inevitable

consequence of the bulk gauge symmetry (7.17), leads to a three-point coupling between

the 2-form gauge field b(2) and two 1-form gauge fields a(1). This coupling has the required

form to generate the characteristic three-point function 〈j(1)A j
(1)
A J

(2)
B 〉 associated with the

boundary 2-group symmetry (which was discussed at length in sections 1.5 and 4) via a

Witten diagram.

As in point b) at the beginning of this subsection, the kinetic term for b(2) in (7.19)

implies that b(2) behaves logarithmically near the boundary, in a way that is not compatible

with the symmetries of AdS5. However, unlike in point c) above, it is not possible to cure

this behavior by including a second 2-form gauge field b
(2)
e in the bulk, which couples

to b(2) = b
(2)
m as in (7.16). The reason is that this coupling is not invariant under the GS

shift of b(2) in (7.17). This is consistent with our results in section 4.2: 2-group symmetry

and conformal invariance are not compatible, as long as the currents j
(1)
A and J

(2)
B are

conformal primaries.

However, we saw in section 4.3 that there are conformally invariant models with 2-

group symmetry in which the currents are not primaries and the 2-group symmetry is

spontaneously broken. The simplest example of this kind is the free Goldstone-Maxwell

(GM) model discussed in section 6.6. As was explained there, the non-invariance of the

five-dimensional anomaly-inflow action ∼
∫
M5

B
(2)
e ∧ dB(2)

m for the Maxwell field under

2-group shifts of B
(2)
m is cured by the fact that the model has a larger 3-group symme-

try. This gives rise to additional background gauge fields and a modified anomaly-inflow

action (6.69) in five dimensions. By analogy with conventional Maxwell theory (see the

discussion around (7.16) and in [24]), it is plausible that a gauged version of this modi-

fied anomaly-inflow action furnishes a bulk representation of the GM model in terms of

singleton edge modes, but we have not checked this in detail.
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7.4 Dimensional reduction of 2-group symmetries

When a U(1)
(1)
B global symmetry in four dimensions is reduced to three dimensions, it splits

into a 1-form symmetry and a 0-form symmetry [1]. Here we will briefly examine what

happens when U(1)
(1)
B is part of an abelian 2-group U(1)

(0)
A ×κ̂A

U(1)
(1)
B .75 We phrase the

discussion in terms of the four-dimensional 2-group background gauge fields Aµ and Bµν .

If we reduce along the x4 direction (and drop all ∂4 derivatives), Aµ splits into a three-

dimensional 1-form gauge field Ai (i = 1, 2, 3), with gauge symmetry Ai → Ai + ∂iλA
and field strength FA

ij = ∂iAj − ∂jAi, as well as a gauge-invariant scalar A4. If Bµν is a

conventional 2-form gauge field, it splits into conventional 2- and 1-form gauge fields Bij

and Bi4 in three dimensions. This reflects the splitting of the four-dimensional U(1)
(1)
B

symmetry into separate 1-form and 0-form symmetries that was mentioned above.

However, if Bµν undergoes a 2-group shift under U(1)
(0)
A gauge transformations, the

three-dimensional fields Bij and Bi4 transform as follows,

Bij −→ Bij + ∂iΛ
B
j − ∂jΛB

i +
κ̂A
2π

λA F
A
ij ,

Bi4 −→ Bi4 + ∂iΛ
B
4 +

κ̂A
2π

λA ∂iA4 .

(7.20)

Here the 1-form gauge parameter ΛB
µ in four dimensions splits into a three-dimensional 1-

form ΛB
i and a scalar ΛB

4 . The first line of (7.20) shows that the three-dimensional 2-form

gauge field Bij inherits the 2-group shift of Bµν from four dimensions. By contrast, the

term proportional to κ̂A in the Bi4 gauge transformation on the second line of (7.20) can be

removed by redefining the three-dimensional fields and their gauge symmetries as follows,

B̃i = Bi4 +
κ̂A
2π

A4Ai , λ
B̃
= ΛB

4 +
κ̂A
2π

λAA4 . (7.21)

Then B̃i → B̃i + ∂iλB̃ transforms like a conventional 1-form gauge field in three dimen-

sions. Note that the field redefinition in (7.21) has no Lorentz-invariant uplift to four

dimensions. We conclude that the reduction of U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-group symmetry to

three dimensions leads to the same 2-group symmetry, as well as another, conventional

0-form symmetry associated with the background gauge field B̃i in (7.21).

It is also interesting to go from a four-dimensional theory with U(1)
(0)
A ×κ̂A

U(1)
(1)
B 2-

group symmetry to a two-dimensional theory. One way to do this involves dimensional re-

duction, as above. Alternatively we can compactify the four-dimensional theory on R
2×Σ2,

where Σ2 is a compact Riemann surface. We can consider sectors of fixed U(1)
(1)
B charge qB,

i.e. with
∫
Σ2
∗J (2)

B = qB, by adding a counterterm ∼ qB
∫
B(2) ∧ vol(Σ2) and integrating

over the background gauge field B(2), which acts as a chemical potential for the U(1)
(1)
B

symmetry. Due to the 2-group shift of B(2), the resulting two-dimensional theory on R
2 has

a U(1)
(0)
A ’t Hooft anomaly ∼ qBκ̂A

∫
R2 λ

(0)
A F

(2)
A . Alternatively, as explained in section 7.2,

integrating over B(2) transforms the theory into its parent with U(1)
(0)
A × U(1)

(0)
C global

symmetry and a mixed κA2C ’t Hooft anomaly. From this point of view, the countert-

erm fixes the flux of the U(1)
(0)
C background field strength through Σ2 to be qB. In this

75We would like to thank N. Seiberg for asking a question that led to the comments in this subsection.
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flux sector, the ’t Hooft anomaly in two dimensions arises from the four-dimensional κA2C

anomaly via

κA2C

∫

R2×Σ2

λ
(2)
A F

(2)
A ∧ F (2)

C ∼ qBκA2C

∫

R2

λ
(0)
A F

(2)
A . (7.22)

A different relation between 2-group symmetries in four dimensions and ’t Hooft anomalies

in two dimensions appears in subsection 7.5 below.

7.5 2-group symmetries, strings, and line defects

As reviewed in section 1.1, the basic objects that are charged under a U(1)
(1)
B symme-

try are dynamical strings and line defects. Here we will examine what happens to these

objects if U(1)
(1)
B is part of a 2-group, starting with dynamical strings and an abelian

2-group U(1)
(0)
A ×κ̂A

U(1)
(1)
B . Consider a string that extends along its two-dimensional

worldsheet Σ2, and let Σ′
2 be the transverse two-dimensional space. The presence of the

string is characterized by the 1-form string charge qB =
∫
Σ′

2
∗J (2)

B . We can now take the

non-conservation equation (1.33) that characterizes the 2-group,

d ∗ j(1)A =
κ̂A
2π

F
(2)
A ∧ ∗J (2)

B , (7.23)

and integrate it over the transverse directions Σ′
2 to obtain the following equation on the

string world sheet Σ2,
76

d ∗ j(1)A

∣∣
Σ2

= −κ
2d
A2

4π
F

(2)
A , κ2dA2 = −2 κ̂A qB , qB =

∫

Σ′
2

∗J (2)
B . (7.24)

The world-sheet theory therefore has a two-dimensional U(1)
(0)
A ’t Hooft anomaly κ2d

A2 ,

which is determined by the 2-group structure constant κ̂A of the four-dimensional theory

and the total string charge qB. Similarly, a nonabelian 2-group induces a world-sheet ’t

Hooft anomaly for the nonabelian flavor symmetry, while a Poincaré 2-group P×κ̂P
U(1)

(1)
B

leads to a non-zero gravitational anomaly on the string world sheet,77

cL − cR = −6 κ̂P qB . (7.25)

Many of the theories with 2-group symmetry discussed in section 6 have solitonic strings

charged under U(1)
(1)
B . For instance, the CP

N models in section 6.4 have skyrmion strings

described by maps of the transverse plane Σ′
2 into the CPN target space that wrap the non-

trivial 2-cycle CP
1 ⊂ CP

N . The string charge qB is the degree of this map. Similarly, in

sections 6.2.1 and 6.3, we considered U(1)
(0)
c gauge theories with Higgs fields, which admit

ANO strings. Here the string charge is given by the magnetic flux in the transverse plane,

qB = 1
2π

∫
Σ′

2
f
(2)
c . The general formulas (7.24) and (7.25) apply to all of these examples.

We will now show this more explicitly for examples with ANO strings, by examining the

76In two-dimensions, a complex Weyl fermion of chirality σ = ±1 and U(1)
(0)
A charge q yields an ’t Hooft

anomaly κ2d
A2 = σq2. The corresponding non-conservation equation takes the form d ∗ j

(0)
A = −

κ2d

A2

4π
F

(2)
A .

77A complex fermion of chirality σ = ±1 contributes cL − cR = σ.
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fermion zero modes on the string. Our discussion is similar to that in [76], except that we

take U(1)
(0)
A to be a flavor symmetry, rather than a gauge symmetry.

As in sections 6.2.1 and 6.3, we consider examples with a single Higgs field φ. For

simplicity, we take its charges under the U(1)
(0)
c gauge and the U(1)

(0)
A flavor symmetry to

be qC = −1 and qA = 0.78 If we add a suitable potential VH(φ) (see (6.1)), then φ acquires

a vev 〈φ〉 = v, and the U(1)
(0)
c gauge symmetry is higgsed. Consider an ANO string

of U(1)
(1)
B charge (i.e. magnetic flux) qB stretched along x3, and located at x1 = x2 = 0 in

the transverse plane, for which we introduce a complex coordinate z = x1 + ix2 = |z|eiθ.
The profile of the U(1)

(0)
c gauge field c(1) and the Higgs field φ in the z-plane takes the

following asymptotic form, which is valid far away from the string,

cz =
qB
2iz

+ · · · , φ = veiqBθ + · · · , |z| → ∞ . (7.26)

The phase of the Higgs field has monodromy 2πqB as we traverse a large S1 in the z-plane.

Now assume that the theory has chiral fermions, which we separate into ψi and ψ̃i for

notational purposes. We denote their U(1)
(0)
c charges by qic, q̃

i
c ∈ Z, but take their U(1)

(0)
A

charges qiA and q̃iA = −qiA to be equal and opposite. The Yukawa couplings then take the

following schematic form,

LYukawa =
∑

i

λi φ
qic+q̃ic ψiψ̃i + (c.c.) . (7.27)

Since φ is neutral under U(1)
(0)
A and qiA + q̃iA = 0, these Yukawa couplings preserve

the U(1)
(0)
A flavor symmetry, as well as the gauge symmetry. The expression in (7.27) is only

valid if qic + q̃ic ≥ 0. In every term where qic + q̃ic < 0, we must replace φq
i
c+q̃ic → (φ)−(qic+q̃ic)

to ensure that only positive powers of φ, φ appear. Once φ acquires a vev, 〈φ〉 = v, all

fermions in (7.27) are massive.

In the presence of the string, the fermions ψi and ψ̃i have normalizable zero modes [77,

78], which propagate on the string worldsheet but are localized in the transverse direction.79

By examining the index of the world-sheet Dirac operator, as well as from other consider-

ations (see for instance [77, 78]), it can be shown that the number of zero modes, and their

chirality, is determined by the string charge qB and the gauge charges qic, q̃
i
c of the bulk

fermions. Explicitly, ψi has |qBqic| zero modes of chirality σi = sgn(qBq
i
c) and ψ̃

i has |qB q̃ic|
zero modes of chirality σ̃i = sgn(qB q̃

i
c).

80 Since the zero modes carry the same U(1)
(0)
A

flavor charges qiA and q̃iA = −qiA as their parent fermions, we can directly evaluate the

corresponding ’t Hooft anomaly on the string world sheet (see footnote 76),

κ2dA2 =
∑

i

(qiA)
2
(
|qBqic|σi + |qB q̃ic|σ̃i

)
= qB

∑
(qiA)

2
(
qic + q̃ic

)
= qBκA2C = −2 κ̂A qB .

(7.28)

78Once we assume that qC = −1, we can always redefine U(1)
(0)
A by an integer multiple of the U(1)

(0)
c

gauge symmetry to set qA = 0 (see the discussion around (5.24)).
79The Yukawa couplings (7.27) ensure that the zero modes of ψi and ψ̃i decay exponentially rapidly,

as ∼ exp (−v|λi||z|), at large transverse distances, |z| → ∞, and are therefore normalizable.
80Here σ = +1 indicates left-movers and σ = −1 corresponds to right-movers.
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Here we have used the expression κ̂A = −1
2κA2C for the 2-group structure constant

(see (3.14)), which leads to agreement between (7.28) and the general formula (7.24) for

the world-sheet ’t Hooft anomaly that was derived on the basis of 2-group symmetry. Sim-

ilarly, the gravitational anomaly on the string world sheet can be computed as follows (see

footnote 77),

cL − cR =
∑

i

(
|qBqic|σi + |qB q̃ic|σ̃i

)
= qB

∑

i

qic = qBκCP2 = −6 κ̂P qB , (7.29)

in agreement with (7.25). Here we have used the relation κ̂P = −1
6κCP2 from (3.22).

In the U(1)
(0)
c gauge theory examples discussed above, the line defects that carry

magnetic 1-form charge U(1)
(1)
B are ’t Hooft lines. In the Higgs phase, an ’t Hooft line

extended along the time direction can serve as an endpoint for ANO strings. Similarly,

a spatially extended ’t Hooft line at a fixed moment in time creates an ANO string. As

discussed above, these strings have chiral zero modes and ’t Hooft anomalies on their

worldsheets. One might suspect that this leads to some unusual, or even pathological,

features of ’t Hooft lines in theories with 2-group symmetry, but we are not aware of any

such pathologies.

To make this more concrete, we consider ’t Hooft lines in the Goldstone-Maxwell (GM)

model (see section 6.6). In the absence of background fields, the model reduces to a free

NG boson χ and a free Maxwell field f
(2)
c . An ’t Hooft line Hn(L) of integer charge n ∈ Z

can then be written as an open surface operator (see appendix C),

Hn(L) = exp

(
2πn

e2

∫

Σ2

∗f (2)c

)
. (7.30)

Here Σ2 is a 2-cycle with boundary ∂Σ2 = L. It can be viewed as the worldsheet of

an unobservable Dirac string that is needed to properly define the magnetic monopole

singularity characterizing the ’t Hooft defect. Note that (7.30) does not depend on the

choice of Σ2, because the source-free Maxwell equations imply d∗f (2)c = 0. Since n ∈ Z, this

remains true in the presence of Wilson lines with electric charge m ∈ Z (see appendix C).

In the presence of the 2-group background fields A(1) and B(2), the action of the GM

model takes the form (6.54), which leads to the following equation of motion for f
(2)
c ,

d

(
1

e2
∗ f (2)c +

i

2π

(
B(2) − κ̂A

2π
χF

(2)
A

))
= 0 . (7.31)

We can therefore modify the definition of the ’t Hooft line in (7.30) as follows,

Hn(L) = exp

(
2πn

e2

∫

Σ2

∗f (2)c + in

∫

Σ2

(
B(2) − κ̂A

2π
χF

(2)
A

))
. (7.32)

Note that this reduces to (7.30) if the background fields A(1) and B(2) are set to zero. It

follows from (7.31) that (7.32) does not depend on the choice of Σ2, and as before, this even

remains true in the presence of integer-charge Wilson lines. The term ∼
∫
Σ2
χF

(2)
A that in-

volves the NG boson induces a U(1)
(0)
A ’t Hooft anomaly on the Dirac-string world sheet Σ2,
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but this anomaly is cancelled by the 2-group shift of the surface counterterm ∼
∫
Σ2
B(2).

Without this cancellation, it would be possible to detect the Dirac string, and (7.32)

would not define a genuine line operator. As in conventional Maxwell theory, the sur-

face counterterm also ensures that Hn(L) transforms with the correct charge n under the

magnetic U(1)
(1)
B symmetry (see appendix C).

Acknowledgments

We are grateful to F. Benini, L. Bhardwaj, S. Gukov, E. D’Hoker, D. Harlow, P.-S. Hsin,

Z. Komargodski, N. Seiberg, K. Ohmori, H. Ooguri, Y. Tachikawa, J. Trnka, and E. Witten

for helpful discussions. C.C. is supported by the Marvin L. Goldberger Membership at the

Institute for Advanced Study, and DOE grant de-sc0009988. The work of TD is supported

by the National Science Foundation under grant number PHY-1719924, and by the John

Templeton Foundation under award number 52476. KI is supported by DOE grant DE-

SC0009919 and the Dan Broida Chair.

A Quantization of some ’t Hooft anomaly coefficients

Consider two abelian flavor symmetries and Poincaré symmetry,81

U(1)
(0)
A ×U(1)

(0)
C ×P . (A.1)

The possible ’t Hooft anomaly coefficients are κA3 , κA2C , κAC2 , κC3 , κAP2 , and κCP2 . In

theories of free fermions ψi
α with U(1)

(0)
A ×U(1)

(0)
C charges qiA and qiC , they are given by

κA3 =
∑

i

(qiA)
3 , κA2C =

∑

i

(qiA)
2qiC , κAC2 =

∑

i

qiA(q
i
C)

2 ,

κC3 =
∑

i

(qiC)
3 , κAP2 =

∑

i

qiA , κCP2 =
∑

i

qiC .
(A.2)

Since the flavor symmetries are compact, all charges are integers, qiA, q
i
C ∈ Z, and hence

the same is true of the various κ’s in (A.2).

The anomaly coefficients are not completely independent; they satisfy the constraints

κA3 ≡ κAP2 (mod 6) , κC3 ≡ κCP2 (mod 6) , κA2C ≡ κAC2 (mod 2) , (A.3)

To see this, reduce the formulas in (A.2) mod 2 and mod 3. Since (qiA)
3 is odd if and only

if qiA is odd, we have (qiA)
3 ≡ qiA (mod 2). The same result is true mod 3 (this can be checked

by examining the cases qiA ≡ 0, 1, 2 (mod 3) in turn), and hence also mod 6. Summing

over charges gives the first constraint in (A.3), and replacing A→ C gives the second one.

Finally, note that (qiA)
2qiC and qiA(q

i
C)

2 are both even, and hence vanish (mod 2), unless qiA,

qiC are both odd, in which case they are both equal to 1 (mod 2). Summing over charges

establishes the third constraint in (A.3). In this paper, we have often assumed that

κC3 = κAC2 = 0 , (A.4)

81It is straightforward to extend the arguments in this appendix to more general flavor symmetries.
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so that U(1)
(0)
C can be gauged without ruining U(1)

(0)
A through an ABJ anomaly. Together

with the general constraints in (A.3), this assumption leads to stronger quantization con-

ditions for the anomaly coefficients κA2C and κCP2 ,

κA2C ∈ 2Z , κCP2 ∈ 6Z . (A.5)

We will now show that the anomaly coefficients are integers satisfying (A.3) without

appealing to free fermions. This can be argued in a variety of ways (see for instance [51] for

additional details). Here we will do so from the perspective of the five-dimensional action S5
for the U(1)

(0)
A and U(1)

(0)
C background gauge fields A(1), C(1) and the spin connection ω(1)

that gives rise to the anomalies via inflow. As explained in section 2.2, S5 = 2πi
∫
I(5)

consists of various Chern-Simons terms that arise from the anomaly 6-form polynomial I(6)
via the descent equation I(6) = dI(5). This anomaly polynomial takes the form

I(6) = κA3

6
X
(6)
AAA+

κA2C

2
X
(6)
AAC+

κAC2

2
X
(6)
ACC+

κC3

6
X
(6)
CCC+κAP2 Y

(6)
A +κCP2 Y

(6)
C . (A.6)

Here we have defined the following wedge products of Chern and Pontryagin densities,

X
(6)
IJK =

1

(2π)3
F

(2)
I ∧ F (2)

J ∧ F (2)
K , Y

(6)
I =

1

384π3
F

(2)
I ∧ tr

(
R(2) ∧R(2)

)
, (A.7)

with I, J,K ∈ {A,C}. Applying descent to (A.6), and choosing the counterterms as

in (2.22) and (2.54), leads to the following Chern-Simons terms in five dimensions,

S5[A
(1),C(1),ω(1)] = 2πi

∫

M5

I(5)

=
iκA3

24π2

∫

M5

A(1)∧F (2)
A ∧F

(2)
A +

iκA2C

8π2

∫

M5

A(1)∧F (2)
A ∧F

(2)
C

+
iκAC2

8π2

∫

M5

A(1)∧F (2)
C ∧F

(2)
C +

iκC3

24π2

∫

M5

C(1)∧F (2)
C ∧F

(2)
C

+
iκAP2

192π2

∫

M5

CS(3)(ω)∧F (2)
A +

iκCP2

192π2

∫

M5

CS(3)(ω)∧F (2)
C . (A.8)

Here CS(3)(ω) is the gravitational Chern-Simons 3-form defined in (2.55). Demanding that

the Chern-Simons terms in (A.8) are well defined on any oriented five-manifold M5 with

a spin structure, and for arbitrary U(1)
(0)
A and U(1)

(0)
C connections, leads to quantization

conditions for their coefficients.82

One way to see this involves extendingM5 to a oriented, spin six-manifoldM6, with

boundary ∂M6 =M5. Similarly, the connections A(1), C(1) are also extended overM6. We

can then define S5 = 2πi
∫
M6
I(6), where I(6) = dI(5) is the 6-form anomaly polynomial. In

general, different six-dimensional extensions can lead to different answers for S5. In order to

ensure that S5 only depends on five-dimensional data, we demand that all extensions give

the same answer, up to integer multiples of 2πi. By a standard argument, which involves

gluing two different extensions alongM5, this translates into the requirement that
∫

M6

I(6) ∈ Z , (A.9)

for any closed, oriented six-manifoldM6 with a spin structure.

82If M5 is not spin, there are more stringent quantization conditions than those discussed below.
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We must therefore determine the integrality properties of the 6-forms X
(6)
IJK and Y

(6)
I

defined in (A.7) that appear in the anomaly polynomial (A.6). Since M6 is spin, these

are constrained by the Atiyah-Singer index theorem. Let /D be the spin-12 Dirac operator

on M6 that couples to the connections A(1), C(1) with charges qA, qC ∈ Z. The Atiyah-

Singer theorem states that the index of /D, which is necessarily an integer, is given by

I( /D) =

∫

M6

Â exp

(
1

2π
(qA F

(2)
A + qC F

(2)
C )

)
. (A.10)

In the conventions of [51], the Â-genus is given by Â = 1 + 1
192π2 tr

(
R(2) ∧R(2)

)
+ · · · , so

that (A.10) has the following expansion in terms of X
(6)
IJK and Y

(6)
I (see (A.7)),

I( /D) =
q3A
6

∫

M6

X
(6)
AAA +

q2AqC
2

∫

M6

X
(6)
AAC +

qAq
2
C

2

∫

M6

X
(6)
ACC +

q3C
6

∫

M6

X
(6)
CCC

+ qA

∫

M6

Y
(6)
A + qC

∫

M6

Y
(6)
C .

(A.11)

Since I( /D) ∈ Z, we obtain various quantization conditions by choosing different qA and qC :

• If qA = 1 and qC = 0, or vice versa, we find that

1

6

∫

M6

X
(6)
III +

∫

M6

Y
(6)
I ∈ Z , I ∈ {A,C} . (A.12)

• If we choose qA = qC = 1 and subtract the integer combination in (A.12) for both I =

A and I = C, we find that

1

2

∫

M6

(
X
(6)
AAC + X

(6)
ACC

)
∈ Z . (A.13)

Independently of the index theorem, X
(6)
IJK has integer periods (even ifM6 is not spin),

∫

M6

X
(6)
IJK ∈ Z , I, J,K ∈ {A,C} . (A.14)

This is because X
(6)
IJK was defined as a product of Chern classes, c1(F

(2)
A,C) = 1

2π F
(2)
A,C ,

in (A.7). Together with (A.12), the constraint (A.14) implies that

6

∫

M6

Y
(6)
I ∈ Z , I ∈ {A,C} (A.15)

By combining the quantization conditions (A.12), (A.13), (A.14), and (A.15), we find that

the most general anomaly polynomial I(6) that satisfies (A.9) is given by

I(6) =
∑

I∈{A,C}

(
ℓIX

(6)
III + 6mIY

(6)
I + nI

(1
6
X

(6)
III + Y

(2)
I

))

+ pX
(6)
AAC + q X

(6)
ACC +

r

2

(
X
(6)
AAC + X

(6)
ACC

)
, ℓI ,mI , nI , p, q, r ∈ Z .

(A.16)

Comparing with (A.6), we see that the anomaly coefficients can be expressed as

κA3 = 6ℓA + nA , κA2C = 2p+ r , κAC2 = 2q + r ,

κC3 = 6ℓC + nC , κAP2 = 6mA + nA , κCP2 = 6mC + nC .
(A.17)

This implies the constraints in (A.3), and if we assume (A.4), also those in (A.5).

– 96 –



J
H
E
P
0
2
(
2
0
1
9
)
1
8
4

B Select current correlation functions in momentum space

In this appendix, we analyze several two- and three-point correlation functions of 1-form

and 2-form currents that are needed in the main text (mostly in sections 4 and 5). Working

in four-dimensional, euclidean momentum space, we present the decomposition of these

correlators into Lorentz-invariant structure functions. We then use this decomposition to

discuss some properties of interest, including possible ’t Hooft anomalies.

As in footnote 41, our conventions are that the momentum-space two-point func-

tion 〈A(p)B(−p)〉 of two local operators A(x),B(x) is given by

〈A(p)B(−p)〉 =
∫
d4x e−ip·x 〈A(x)B(0)〉 , (B.1)

while the momentum-space three-point function 〈A(p)B(q)C(−p− q)〉 of three local oper-

ators A(x),B(y), C(z) is defined by

〈A(p)B(q)C(−p− q)〉 =
∫
d4x d4y e−i(p·x+q·y) 〈A(x)B(y)C(0)〉 . (B.2)

B.1 The 〈J
(2)
B

J
(2)
B′ 〉 two-point function

We first consider the two-point function 〈JB
µν(p)J

B′

αβ(−p)〉 of two distinct 2-form currents

JB
µν = JB

[µν] and J
B′

αβ = JB′

[αβ]. In position space, their mass dimension is [JB
µν ] = [JB′

αβ ] = 2,

and hence the momentum-space two-point function is dimensionless. Prior to imposing any

conservation equations, the most general Lorentz structures that can appear are given by

〈JB
µν(p)J

B′

αβ(−p)〉 = A(p2)εµναβ +B(p2) (pµpαδνβ − pνpαδµβ − pµpβδνα + pνpβδµα)

+ C(p2) (δµαδνβ − δµβδνα) +D(p2) (εµναρp
ρpβ − εµνβρpρpα) .

(B.3)

Here A,B,C,D are Lorentz-invariant structure functions,83 whose mass dimensions are

[A] = [C] = 0, [B] = [D] = −2.
In momentum space, the fact that ∂µJB

µν = ∂αJB′

αβ = 0 at separated points implies that

pµ〈JB
µν(p)J

B′

αβ(−p)〉 ∼ 0 , pα〈JB
µν(p)J

B′

αβ(−p)〉 ∼ 0 . (B.4)

Here the notation X ∼ Y means that the expressions X and Y are equal, up to a poly-

nomial expression in the momenta. Such polynomials correspond to δ-function contact

terms in position space, or their derivatives. In the context of (B.4), they violate current

conservation at coincident points and indicate a possible ’t Hooft anomaly.

If we apply (B.4) to (B.3), we find that

A(p2) ∼ 0 , C(p2) ∼ − p2B(p2) , p2D(p2) ∼ 0 . (B.5)

83Note that another Lorentz structure proportional to εαβµρp
ρpν − εαβνρp

ρpµ can be reduced to a linear

combination of the A and D structures using the Schouten identity ε[µναβpγ] = 0. This is related to the

discussion after (B.8) below.
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By tuning local counterterms in the background fields B(2) and B′(2) that couple to the con-

served currents J
(2)
B and J

(2)
B′ , we can adjust the contact terms in their two-point function.84

This amounts to shifting the structure functions in (B.3) by polynomials in p2. Using such

shifts, we can set A(p2) = 0, C(p2) = −p2B(p2), and D(p2) =
iκBB′

4πp2
, where κBB′ is a

dimensionless constant. (The normalization is for future convenience, see below.) Finally,

using the fact that [B] = −2, we can write B(p2) = 1
p2
J

(
p2

M2

)
, where J is a dimensionless

structure function and M is some mass scale. Substituting back into (B.3), we obtain

〈JB
µν(p)J

B′

αβ(−p)〉 =
1

p2
J

(
p2

M2

)(
pµpαδνβ − pνpαδµβ − pµpβδνα + pνpβδµα

− p2δµαδνβ + p2δναδµβ

)
+
iκBB′

4πp2
(εµναρp

ρpβ − εµνβρpρpα) .
(B.6)

Reflection positivity implies that the structure function J and the constant κBB′ are real.

The term proportional to κBB′ in (B.6) is annihilated by pµ, but not by pα, correspond-

ing to a non-trivial polynomial on the right-hand side of the second equation in (B.4),

pµ〈JB
µν(p)J

B′

αβ(−p)〉 = 0 , pα〈JB
µν(p)J

B′

αβ(−p)〉 = −
iκBB′

4π
εµνβρp

ρ . (B.7)

This indicates a mixed ’t Hooft anomaly between the two currents. At the level of the

anomaly 6-form polynomial, it is captured by a term (see also the discussion in [1]),85

I(6) ⊃ κBB′

(2π)2
dB(2) ∧ dB′(2) . (B.8)

Given the choice of contact terms in (B.6), we find that JB
µν is conserved at separated and

coincident points, but conservation of JB′

αβ is violated by contact terms. By adjusting the

counterterm
∫
M4

B(2) ∧ B′(2) we can redefine the contact terms so that JB
µν is anomalous

and JB′

αβ is conserved. This is consistent with the general discussion of reducible anomalies

after (2.3). Finally, arguments analogous to those in appendix A show that the anomaly

coefficient κBB′ is quantized, κBB′ ∈ Z, so that
iκBB′

2π

∫
M5

B′(2) ∧ dB(2) is invariant under

large 1-form gauge transformations of B(2), B′(2). The quantization condition implies

that κBB′ does not depend on continuously variable couplings, and that it is inert under

RG flows.

If the two currents JB
µν and JB′

αβ are identical (i.e B = B′), there are additional con-

straints on 〈JB
µν(p)J

B′

αβ(−p)〉 from Bose symmetry, which exchanges

µν , p ←→ αβ , −p . (B.9)

84Occasionally, some physical principle may restrict the space of allowed counterterms, and hence the

freedom to adjust or remove certain contact terms in correlation functions. Some examples appear in

sections 5.1 and 5.3.
85Applying descent leads to I(5) = −

κBB′

4π2 B′(2) ∧ dB(2). From this it follows that the anomaly un-

der U(1)
(1)

B′ gauge transformations, parametrized by Λµ

B′ , is given by AB′ = −
iκBB′

4π

∫
d4x εµαβγΛ

µ

B′∂
αBβγ .

This implies the non-conservation equation ∂µJB′

µν =
iκBB′

4π
εναβγ∂

αBβγ , and hence a contact term

in ∂α
y 〈J

B
µν(x)J

B′

αβ(y)〉 =
iκBB′

4π
εµνβρ∂

ρδ(4)(x − y). In momentum space, this becomes the second equation

in (B.7).
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In terms of the structure functions in (B.3), such an exchange leaves B(p2) and C(p2)

invariant, but shifts A(p2) → A(p2) + p2D(p2) and D(p2) → −D(p2). Therefore, Bose

symmetry sets D(p2) = 0, which in turn implies the vanishing of the mixed ’t Hooft

anomaly coefficient κBB′ = 0. The absence of an ’t Hooft anomaly for a single 2-form

current immediately follows from the anomaly polynomial (B.8), because dB(2) ∧ dB′(2)

vanishes if B(2) = B′(2).

B.2 The 〈J (2)
B j

(1)
A 〉 two-point function

We examine the two-point function 〈JB
µν(p)j

A
ρ (−p)〉 between a 2-form current JB

µν = JB
[µν]

and a 1-form current jAρ . In position space, their mass dimensions are [JB
µν ] = 2 and [jAρ ] =

3. It follows that the momentum-space two-point function has mass dimension +1. Before

imposing the conservation laws, the decomposition into Lorentz structures takes the form

〈JB
µν(p)j

A
ρ (−p)〉 = T

(
p2

M2

)
(δµρpν − δνρpµ)−

1

2π
K

(
p2

M2

)
εµνρλp

λ . (B.10)

Here T,K are dimensionless, Lorentz-invariant structure functions, and M is a mass scale.

In accordance with section 5.1, the normalization of K is such that a properly quantized

Green-Schwarz counterterm SGS = in
2π

∫
B(2) ∧ F (2)

A (n ∈ Z) shifts K → K + n. As in the

discussion around (B.4), conservation of JB
µν and jAρ at separated points implies

pµ〈JB
µν(p)j

A
ρ (−p)〉 ∼ 0 , pρ〈JB

µν(p)j
A
ρ (−p)〉 ∼ 0 . (B.11)

Imposing these conditions on (B.10) leads to T ∼ 0, so that T is a polynomial in p2, which

can be set to zero using local counterterms.

B.3 The 〈j
(1)
A

j
(1)
A

J
(2)
B

〉 three-point function

Here we consider the three-point function 〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 of two identical 1-form

currents jAµ and jAν , as well as a 2-form current JB
µν = JB

[µν]. In position space, the currents

have mass dimensions [j
(1)
A ] = 3 and [J

(2)
B ] = 2, and hence the momentum-space three-point

function is dimensionless. Bose symmetry exchanges

µ , p ←→ ν , q . (B.12)

We would like to decompose the three-point function into Lorentz structures. Here we

distinguish between parity-odd structures, which contain an ε-symbol, and parity-even

structures, which do not. We will only consider the parity-even structures, since only these

are needed in section 4. Moreover, we restrict the momenta to the Bose-symmetric locus

p2 = q2 = (p+ q)2 = Q2 , p · q = −1

2
Q2 . (B.13)

All structure functions only depend on Q2 and are therefore invariant under (B.12). This

simplifies the enumeration Lorentz structures that are compatible with Bose symmetry.
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Before imposing conservation laws or Ward identities, the parity-even part of the three-

point function can involve the following Lorentz structures,

〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 = A(Q2) (δµρpνpσ − δµσpνpρ + δνρpµpσ − δνσpµpρ)

+
(
A(Q2)→ B(Q2) , p→ q

)
+ C(Q2)

(
δµρpνqσ − δµσpνqρ + δνρqµpσ − δνσqµpρ

)

+
(
C(Q2)→ D(Q2) , p↔ q

)
+ E(Q2) (pµpν − qµqν) (pρqσ − pσqρ) .

(B.14)

Since the three-point function is dimensionless, the structure functions A,B,C,D,E have

mass dimensions [A] = [B] = [C] = [D] = −2 and [E] = −4. We would now like to impose

conservation of JB
ρσ, as in (4.3), and the 2-group Ward identity (4.4) satisfied by jAµ . The

former constraint leads to86

A(Q2) = −C(Q2) , B(Q2) = −D(Q2) , A(Q2) +B(Q2) =
1

2
Q2E(Q2) , (B.15)

while the latter one imposes the following relation,

A(Q2) + 2B(Q2) = − κ̂A
2πQ2

J

(
Q2

M2

)
. (B.16)

Here J is the structure function that controls the J
(2)
B two-point function, as in (B.6), which

appears on the right-hand side of the Ward identity (4.4).

Note that (B.15) and (B.16) are linear equations for the structure functions A, B,

C, D, E, while J can be viewed as an inhomogenous source term. Consequently, the

general solution of these equations can be obtained by adding to the general solution of the

homogenous system (with J = 0) any particular solution of the inhomogenous equations:

• The general solution of the homogenous system, with J = 0, can be parametrized by

a single structure function, which we take to be E(Q2). Then

A(Q2) = −C(Q2) = Q2E(Q2) , B(Q2) = −D(Q2) = −1

2
Q2E(Q2) ,

which leads to the following Lorentz structure,

〈jAµ (p)jAν (q)JB
ρσ(−p−q)〉⊃E(Q2)

(
(pµpν−qµqν)(pρqσ−pσqρ)

+Q2δµρ

(
pν+

1

2
qν

)
(pσ−qσ)−Q2δµσ

(
pν+

1

2
qν

)
(pρ−qρ)

+Q2δνρ

(
qµ+

1

2
pµ

)
(qσ−pσ)−Q2δνσ

(
qµ+

1

2
pµ

)
(qρ−pρ)

)
.

(B.17)

Using (B.13), it is straightforward to verify that this structure is annihilated by both

pµ and (p+ q)ρ.

86Here, as in section 4.1, we impose conservation equations and Ward identities at separated and co-

incident points. In momentum space, this means that these relations hold exactly, rather than up to

polynomials in the momenta (see the discussion around (B.4)).
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• We also need a particular solution to the inhomogenous system, where the source J is

turned on. Since the structure in (B.17) was parametrized by E(Q2), it is convenient

to chose a particular inhomogenous solution with E(Q2) = 0,

A(Q2) = −B(Q2) = −C(Q2) = D(Q2) =
κ̂A

2πQ2
J

(
Q2

M2

)
, E(Q2) = 0 .

This gives rise to the Lorentz structure in (4.8),

〈jAµ (p)jAν (q)JB
ρσ(−p− q)〉 ⊃

κ̂A
2πQ2

J

(
Q2

M2

)(
δµρ (pν + qν) (pσ − qσ)

− δµσ (pν + qν) (pρ − qρ) + δνρ (pµ + qµ) (qσ − pσ)− δνσ (pµ + qµ) (qρ − pρ)
)
.

(B.18)

Again one can use (B.13) to check that this structure is annihilated by (p+ q)ρ and

satisfies the Ward identity (4.4).

B.4 The 〈j
(1)
A

j
(1)
A

j
(1)
A

〉 three-point function

Here we consider the three-point function 〈jAµ (p1)jAν (p2)jAρ (p3)〉 of three identical 1-form

currents j
(1)
A . The momenta satisfy p1 + p2 + p3 = 0. In position space, these currents

have mass dimension [j
(1)
A ] = 3, and hence the momentum-space three-point function has

dimension +1. Bose symmetry arbitrarily permutes the pairs

µ , p1 ←→ ν , p2 ←→ ρ , p3 . (B.19)

We would like to decompose the three-point function into Lorentz structures. For our

purposes, it suffices to focus on parity-odd structures, which contain an explicit ε-symbol.

We can simplify the action (B.19) of Bose symmetry by following [23] and specializing the

momenta to configurations that satisfy (see also appendix B.3 above),

p21 = p22 = p23 = Q2 , p1 + p2 + p3 = 0 , (B.20)

where Q is a Lorentz-scalar quantity with dimensions of energy. A more general analysis,

which is also valid away from these special momenta, was carried out in [22]. All structure

functions only depend on Q2 and are therefore invariant under the Bose exchanges (B.19).

There is in fact a unique parity-odd Lorentz structure that satisfies this requirement (see

for instance section 2 of [23]),

〈jAµ (p1)jAν (p2)jAρ (p3)〉 ⊃
1

Q2
A

(
Q2

M2

)(
εµναβ p

α
1 p

β
2p3ρ + ενραβ p

α
2 p

β
3p1µ + ερµαβ p

α
3 p

β
1p2ν

)
.

(B.21)

Here A is a dimensionless structure function, and M is some mass scale. Contracting both

sides with pµ1 leads to

pµ1 〈jAµ (p1)jAν (p2)jAρ (p3)〉 = A

(
Q2

M2

)
ενραβ p

α
2 p

β
3 . (B.22)

This formula is a basic ingredient in our analysis of ’t Hooft anomalies in sections 5.2

and 5.3.
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C Aspects of free Maxwell theory

In this appendix we briefly recall some basic facts about Maxwell theory, i.e. free U(1)
(0)
c

gauge theory with field strength f
(2)
c = dc(1) (see [1] for additional details and references).

The theory has two 1-form global symmetries, one electric (e) and one magnetic (m),

U(1)(1)e ×U(1)(1)m . (C.1)

The corresponding currents are

J (2)
e = − 1

e2
f (2)c , J (2)

m =
i

2π
∗ f (2)c . (C.2)

They are conserved if we use the source-free Maxwell equations, d ∗ f (2)c = df
(2)
c = 0.

The background fields that couple to the currents in (C.2) are B
(2)
e and B

(2)
m , with

1-form background gauge transformations parametrized by Λ
(1)
e,m (see also the discussion

around (1.9) and (1.10)),

B(2)
e,m → B(2)

e,m + dΛ(1)
e,m . (C.3)

The electric description of the theory is based on the dynamical U(1)
(0)
c gauge field c(1),

which satisfies f
(2)
c = dc(1). It shifts under U(1)

(1)
e background gauge transformations, but

is neutral under U(1)
(1)
m , and hence the same is true for f

(2)
c ,

c(1) −→ c(1) + Λ(1)
e , f (2)c −→ f (2)c + dΛ(1)

e . (C.4)

We take the action of the theory coupled to background fields to be87

S[B(2)
e , B(2)

m , c(1)] =
1

2e2

∫ (
f (2)c −B(2)

e

)
∧ ∗
(
f (2)c −B(2)

e

)
+

i

2π

∫
B(2)

m ∧ f (2)c . (C.5)

This action includes the couplings S ⊃
∫ (
B

(2)
e ∧ ∗J (2)

e + B
(2)
m ∧ ∗J (2)

m

)
to the currents

in (C.2), as well as a seagull counterterm ∼
∫
B

(2)
e ∧ ∗B(2)

e , which ensures that the kinetic

term is invariant under (C.4). The second term is invariant under B
(2)
m gauge transfor-

mations, since f
(2)
c = dc(1) is automatically closed. However, it leads to a c-number shift

under U(1)
(1)
e background gauge transformations, so that

S
[
B(2)

e +dΛ(1)
e , B(2)

m +dΛ(1)
m , c(1)+Λ(1)

e

]
= S[B(2)

e , B(2)
m , c(1)]+

i

2π

∫
Λ(1)
e ∧dB(2)

m . (C.6)

The shift in (C.6) constitutes a mixed ’t Hooft anomaly between U(1)
(1)
e and U(1)

(1)
m ,

which cannot be removed using local counterterms. It can be viewed as arising (via inflow)

from the following five-dimensional topological action for the background fields,

S5[B
(2)
e , B(2)

m ] =
i

2π

∫

M5

B(2)
e ∧ dB(2)

m , (C.7)

or equivalently, from a term I(6) ⊃ 1
4π2 dB

(2)
e ∧ dB(2)

m in the 6-form anomaly polynomial.

As is typical of mixed anomalies, we can change the presentation of the anomaly by adding

87For simplicity, we do not include a θ-term.
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local counterterms. If we integrate (C.7) by parts and add a four-dimensional countert-

erm ∼
∫
M4

B
(2)
e ∧ B(2)

m to cancel the resulting boundary contribution (which amounts to

replacing f
(2)
c → f

(2)
c − B

(2)
e in the last term of (C.5)), the five-dimensional action be-

comes ∼
∫
M5

B
(2)
m ∧ dB(2)

e . This is invariant under U(1)
(1)
e , but gives rise to an ’t Hooft

anomaly under U(1)
(1)
m background gauge transformations.

It is instructive to examine electric-magnetic duality in the presence of the background

fields B
(2)
e,m. As usual, we dualize f

(2)
c by considering an extended theory that includes a

Lagrange multiplier c̃(1),

S̃[B(2)
e , B(2)

m , c(1), c̃(1)] = S[B(2)
e , B(2), c(1)]− i

2π

∫
dc̃(1) ∧ f (2)c . (C.8)

The Lagrange multiplier c̃(1) is also a 1-form gauge field, associated with its own U(1)
(0)
c̃

gauge symmetry. Integrating over c̃(1) enforces the Bianchi identity on f
(2)
c , which is now

an unconstrained two-form field. Moreover, summing over the fluxes of c̃(1), which satisfy

the usual quantization condition 1
2π

∫
Σ2
dc̃(1) ∈ Z, ensures that the fluxes of f

(2)
c satisfy the

same quantization condition. (This requirement fixes the normalization of the coupling

between c̃(1) and f
(2)
c in (C.8).) In order to maintain invariance under background gauge

transformations (up to the ’t Hooft anomaly in (C.6)), we must assign the following shift

to c̃(1) under U(1)
(1)
m gauge transformations,

c̃(1) −→ c̃(1) + Λ(1)
m . (C.9)

We can now integrate out the unconstrained two-form f
(2)
c using its equation of motion,

∗
(
f (2)c −B(2)

e

)
=
ie2

2π

(
dc̃(1) −B(2)

m

)
. (C.10)

Substituting back into (C.8), we obtain a dual presentation of the theory in terms of the

magnetic gauge field c̃(1),

S̃[B(1)
e , B(1)

m , c̃(1)] =
e2

8π2

∫ (
dc̃(1) −B(2)

m

)
∧ ∗
(
dc̃(1) −B(2)

m

)
− i

2π

∫
B(2)

e ∧
(
dc̃(1) −B(2)

m

)
.

(C.11)

We can therefore identify the magnetic coupling ẽ2 = 4π2

e2
and the currents in (C.2), which

are given by J
(2)
e = − i

2π ∗ dc̃(1) = −J̃ (2)
m and J

(2)
m = − 1

ẽ2
dc̃(1) = J̃

(2)
e .88 Note that the

duality automatically generates a counterterm ∼
∫
B

(2)
e ∧ B(2)

m in (C.11), which ensures

that the mixed U(1)
(1)
e -U(1)

(1)
m ’t Hooft anomaly takes the same form as in (C.6).

Wilson loops Wm(L) of charge m ∈ Z and ’t Hooft loops Hn(L) of charge n ∈ Z are

defined as holonomies of the electric and magnetic gauge fields c(1) and c̃(1) around a closed

1-cycle L,

Wm(L) = exp

(
im

∫

L

c(1)
)
, Hn(L) = exp

(
in

∫

L

c̃(1)
)
. (C.12)

88The relative sign in the transformation of the currents is a standard property of electric-magnetic

duality.
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Electric-magnetic duality exchanges c(1) ↔ c̃(1), and hence Wm(L)↔ Hm(L). Using (C.4)

and (C.9), we see that the charges of Wm(L) and Hn(L) under U(1)
(1)
e ×U(1)

(1)
m are (m, 0)

and (0, n), respectively. It is often useful to express the loop operators in (C.12) as open

surface operators, which are obtained by integrating f
(2)
c and ∗f (2)c over a 2-cycle Σ2 with

boundary ∂Σ2 = L. In the electric description, where f
(2)
c = dc(1), this is straightforward

for the Wilson loop,

Wm(L) = exp

(
im

∫

Σ2

f (2)c

)
. (C.13)

Similarly, we can use the duality relation (C.10) to obtain the following presentation of the

’t Hooft loop in terms of purely electric variables,

Hn(L) = exp

(
2πn

e2

∫

Σ2

∗
(
f (2)c −B(2)

e

)
+ in

∫

Σ2

B(2)
m

)
. (C.14)

Here Σ2 can be viewed as the worldsheet of an unobservable Dirac string used to define

the ’t Hooft loop. The surface counterterms ∼ B
(2)
e,m ensure some important properties

of Hn(L):

• It transforms correctly, with charges (0, n), under U(1)
(1)
e ×U(1)

(1)
m .

• It is invariant under small deformations of the bounding surface Σ2, because the 2-

form integrand in the exponent of (C.14) is closed. This follows from the equations

of motion for the action (C.5),

d

(
1

e2
∗
(
f (2)c −B(2)

e

)
+

i

2π
B(2)

m

)
= 0 . (C.15)

Since this statement holds in the presence of the background fields B
(2)
e,m, it also

applies to deformations of Σ2 that cross insertions of the field strength f
(2)
c and its

dual ∗f (2)c , which are obtained by taking variational derivatives with respect to B
(2)
e,m.

This shows that the Dirac string cannot be detected using such insertions.

• The independence of Hn(L) on the choice of Σ2 continues to hold in the presence

of charged Wilson lines. To see this, consider another 2-cycle Σ′
2 with ∂Σ′

2 = L.

The union of Σ2 and the orientation-reversal of Σ′
2 is a closed 2-cycle, which can be

viewed as the boundary ∂Σ3 of its interior Σ3. Using Σ′
2 rather than Σ2 in (C.14)

changes the exponent by an integral over ∂Σ3, which can be evaluated using Stokes’

theorem and the equations of motion (C.15). In the presence of a Wilson line with

charge m, (C.15) acquires a term imδ
(3)
L on its right-hand side.89 Therefore, using Σ′

2

rather than Σ2 multiplies Hn(L) by a phase eiϕ, with ϕ = 2πmtot.n. Here mtot. is

the net charge of all Wilson lines passing through the region Σ3. Since each Wilson

line carries integer charge, it follows that mtot. ∈ Z, so that eiϕ = 1. The Dirac

string thus remains unobservable in the presence of Wilson lines and the background

fields B
(2)
e,m.

89Here δ
(3)
L is a 3-form current with support on the line, so that

∫
L
c(1) =

∫
M4

c(1) ∧ δ
(3)
L .
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