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Abstract: Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are
pushing the prediction accuracy of protein structures to an unprecedented level that is on par with
experimental structural quality. Despite its outstanding structural modeling capability, further
experimental validations and performance assessments of AF2 predictions are still required, thus
necessitating the development of integrative structural biology in synergy with both computational
and experimental methods. Focusing on the B318L protein that plays an essential role in the African
swine fever virus (ASFV) for viral replication, we experimentally demonstrate the high quality of the
AF2 predicted model and its practical utility in crystal structural determination. Structural alignment
implies that the AF2 model shares nearly the same atomic arrangement as the B318L crystal structure
except for some flexible and disordered regions. More importantly, side-chain-based analysis at the
individual residue level reveals that AF2′s performance is likely dependent on the specific amino acid
type and that hydrophobic residues tend to be more accurately predicted by AF2 than hydrophilic
residues. Quantitative per-residue RMSD comparisons and further molecular replacement trials
suggest that AF2 has a large potential to outperform other computational modeling methods in terms
of structural determination. Additionally, it is numerically confirmed that the AF2 model is accurate
enough so that it may well potentially withstand experimental data quality to a large extent for
structural determination. Finally, an overall structural analysis and molecular docking simulation
of the B318L protein are performed. Taken together, our study not only provides new insights into
AF2′s performance in predicting side-chain conformations but also sheds light upon the significance
of AF2 in promoting crystal structural determination, especially when the experimental data quality
of the protein crystal is poor.

Keywords: AlphaFold2; B318L protein; structure determination; molecular docking; side-chain

1. Introduction

Traditionally, three-dimensional macromolecular structures are primarily elucidated
by X-ray crystallography, cryo-electron microscopy (Cryo-EM), nuclear magnetic resonance
(NMR), or a combination of these techniques. Although tremendous efforts have been
dedicated to increasingly unraveling protein structures, the procedure of structure determi-
nation remains painstaking in large part due to the difficulties of experimentally acquiring
stable and pure protein samples on a large scale. As a result, both the released number and
deposition speed of novel protein structures in the protein data bank (PDB) are significantly
limited [1]. Of particular note, it falls far short of the structural coverage of currently
deciphered proteins despite the fact that the Human Genome Project finished plotting
the whole gene map of the human proteome nearly two decades ago [2]. To this end, the
ability to accurately predict how proteins with complex architectures assemble and fold
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in three dimensions, based solely on their amino acid sequences, has long been supposed
to enable high-throughput structural characterization and thereby hopefully bridge such
a dramatic protein sequence-structure gap [3]. However, this possibility has previously
been bottlenecked by the relatively low model prediction accuracy or the requirement of
highly similar homologous structures. Strikingly, recent advances in artificial intelligence
(AI) have aided computational methods in combination with a technique of multiple se-
quence alignments (MSA) of related proteins to push the prediction accuracy of protein
structures to an unprecedented level that is comparable to experimental accuracy [4]. Such
machine-learning-based model prediction methods with sufficiently high confidence are
powerful enough that they are generally believed to be able to revolutionize structural
biology profoundly and open up new avenues for its future development [5].

The outstanding prediction performance of AF2 has been extensively demonstrated in
the challenging 14th Critical Assessment of protein Structure Prediction
(CASP14) [6,7], which has recently been reinforced with ColabFold, a more computationally
effective and conveniently accessible platform [8]. The advent of such cutting-edge struc-
tural prediction tools has henceforth driven a myriad of interests in further exploring its
potential applications in a wide range of fields [9–11]. For example, the predicted model
that presumably shares high structural similarity to the target protein can be directly used
as a search template for molecular replacement (MR) in protein crystallography [12–15],
thus circumventing the stringent requirement for nontrivial chemical modifications or ad-
ditions to the macromolecule when the target protein has no homologous structures. In the
realm of cryo-EM, accurate models can also serve as an important source of structural infor-
mation for 3D atomic model building [16–18] and de novo reconstruction of low-abundance
proteins directly from cryo-EM maps [19]. As for NMR, the in silico models can assist with
predictions of chemical shifts and building structures amenable to experimentally derived
distance and angle restraints [20–22]. Recently, impressive progress in the AlphaFold protein
structure database has been made to massively expand the structural landscapes covering
the human proteome and other key organisms (https://alphafold.ebi.ac.uk/, accessed on
24 December 2022), thus providing a far more structural basis for the rational design of
mutations and functional analyses of specific proteins [23–25]. Collectively, experimental
methods in conjunction with accurate computational models can synergize to advance our
comprehension of proteins.

Focusing on the field of the ASFV, we attempt to experimentally demonstrate the
accuracy and usability of the AF2-predicted model in crystal structural determination
using viral prenyltransferases (PTs). Previous studies have confirmed that the B318L
protein encoded by the ASFV represents a new member of the viral PT family, according
to sequence alignment and a follow-up enzymatic assay [26]. These experiments have
shown that the B318L protein catalyzes the condensation of isopentenyl diphosphate (IPP)
with allylic diphosphates to produce C20-geranylgeranyl diphosphate (GGPP) and longer
chain prenyl diphosphates [26]. It is noteworthy that the B318L protein is identified to be
a membrane-anchoring geranyl pyrophosphate synthase (GGPPS) due to its unique N-
terminal transmembrane region [27]. The above features raise the hypothesis that the GGPP
synthesized by the B318L protein serves as a substrate for the prenylation of cellular or viral
proteins and that this post-translational modification is required during virus replication
and morphogenesis [28]. Subsequently, it is examined that isopentenyl inhibitors can
effectively inhibit ASFV invasion, replication, and release [28]. Taken together, these
experiments indicate that B318L is an essential gene for viral replication.

In this study, taking advantage of an accurate model predicted from AF2, the crystal
structure of the B318L protein was successfully solved by MR at 3.2 Å. Importantly, based
on the new crystal structure, a quantitative performance assessment of AF2 predictions in
terms of overall model quality and specific side-chain conformations was analyzed. More-
over, the experimental validation of AF2 predictions in crystal structural determination
was performed both quantitatively and comparatively. Finally, the effect of data quality
on the crystal structure determination in the context of the AF2 predicted structure was
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explored and a further structural analysis and molecular docking simulation of the B318L
protein were made. We conclude that AF2 predictions can be sufficiently accurate for
effective crystal structural determination, whereas some hydrophilic residues, even with
high confidence scores, tend to be less accurately predicted on side-chain conformations
than hydrophobic residues and therefore should be treated with caution.

2. Results
2.1. Overall Analysis of AF2 Model against B318L Crystal Structure

Despite the great success in determining the crystal structure of B318L with the aid
of AF2, a quantitative and in-depth analysis of the accuracy of the AF2 model against
the experimental structure is indispensable for a better understanding of its prediction
performance. Prior to the availability of experimental structure, the accuracy of the AF2
model could be readily evaluated based on the calculated predicted local distance difference
test (pLDDT) scores that correlate well with the confidence level of the model prediction.
In general, a pLDDT score greater than 90 is taken as the benchmark for very high accuracy
and a pLDDT score greater than 70 corresponds to a generally correct backbone prediction,
whereas a pLDDT score lower than 50 indicates unreliable random positions [24]. All
five predicted AF2 models have overall pLDDT scores ranging from 91 to 92 and exhibit
approximately identical atomic arrangement with a Cα root-mean-square deviation (RMSD)
of 0.174 Å on average. The predicted per-residue pLDDT scores of the highest-ranked AF2
model are plotted in Figure 1A, revealing that most residues in the predicted structure
have very high confidence scores (pLDDT > 90). In order to structurally visualize the
distribution of the pLDDT scores, the predicted B318L structure is color-coded according
to the pLDDT scores (Figure 1B). It can be observed that a large portion of the structure
can be predicted with sufficiently high accuracy except for certain less conserved regions.
The superposition of the predicted model with experimental structure yields an RMSD of
0.574 Å for 213 aligned Cα atoms, demonstrating that they are highly similar (Figure 1C).
The homolog with the highest structural similarity to the B318L protein is also compared
with our experimental structure (Figure 1D). Although the homologous structure adopts
a very similar spatial arrangement of α-helices to the experimental structure, the RMSD
between both structures is 2.2 Å for 216 aligned Cα atoms, indicating the remarkable
structural difference. These results suggest that the AF2 model holds great promise of
being a highly accurate MR search model candidate for crystal structure determination in
comparison with homologous structures.

In order to evaluate model accuracy in more detail, some representative fragments of
the aligned predicted and experimental structures with the final refined 2Fo-Fc electron
density map overlaid are displayed in Figure 2. Overall, most of the electron densities
are observed to be well resolved to allow accurate model building, and the AF2 predicted
model on the whole adopts very similar or nearly identical backbone and side-chain
conformations to the experimental crystal structure (Figure 2A). However, there are still
minor structural differences present in some side-chain positions and some flexible loop
regions owing to their intrinsically disordered or dynamic features. Such discrepancies
usually appear as incorrect side-chain orientations, minor main chain deviations, and
unstructured fragments that are commonly found at terminal domains, inter-domain
linkers, and peripheral regions devoid of electron density (Figure 2B–I). It is noteworthy
that most of these unmatched regions typically correspond to lower pLDDT scores in
the AF2 predicted model (Figure 2B–D), which probably originate from crystal disorder,
flexible conformations, or even erroneous prediction. These results are overall in good
agreement with the above pLDDT analyses of the AF2 predicted model, further confirming
the reliability of pLDDT scores for not only measuring model confidence but also identifying
potentially disordered protein regions. However, there still exist some exceptions of several
amino acid side-chain positions that deviate dramatically from the experimental structure,
whereas the corresponding pLDDT scores are unexpectedly high (Figure 2F–I); this is
probably due to the origin of the pLDDT score that is calibrated only against the local Cα
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atomic difference [4]. Therefore, it raises a further challenge for AF2 to accurately measure
the prediction confidence of protein side-chains, which will become particularly important
since some functions are heavily dependent on the precise arrangements of amino acid
side-chains.
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Figure 1. Accuracy analysis of the AF2 predicted B318L structure. (A) The predicted pLDDT scores
as a function of residue numbers ranging from A31 to T318. The shadowed regions correspond to
pLDDT scores less than 80, indicating lower prediction confidence than others. The four regions
consist of the N-terminus (A31-N48), the connected linker (Q102-A107), the broken fragment (H262-
N269), and the C-terminus (L316-T318). (B) Cartoon representation of the structure of B318L as
predicted by AF2. The AF2 prediction is color-coded by the pLDDT scores indicating the confidence
level of the prediction. Several less well-predicted regions, together with an accurately predicted
standard α-helix, are specifically labeled for clarity. (C) Cartoon representation of the determined
B318L experimental structure. (D) Cartoon representation of the closest homolog to the B318L protein
with a PDB code of 3UCA.
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Figure 2. Structural comparison of the unmodified AF2 model against the fully refined B318L crystal
structure in some representative regions with the final 2Fo-Fc electron density map overlaid. The fully
refined B318L crystal structure and AF2 model are colored yellow and cyan, respectively. The 2Fo-Fc
electron density map is contoured at 1.0 σ and represented as a gray mesh. (A) A standard α-helix
region (P111-I128) showing a nearly excellent agreement between the two models. (B) The N-terminus
(A31-H39) showing significant backbone deviations. (C) The C-terminal region (I307-T318) presenting
some minor main-chain displacements. (D) The connecting loop region (Q102-A107) exhibiting both
main-chain and side-chain discrepancies. (E) A highly flexible region (Y270-D282) at the periphery of
a piece of the broken structural fragment (H262-N269) displaying completely different conformations.
(F–I) Some selected local regions sharing the same Cα atomic coordinates while adopting remarkably
different side-chain orientations with the key residues labeled accordingly. The pLDDT scores for
these four residues are 97.3 (H295), 97.9 (H200), 98.2 (R244), and 97.3 (Y79), respectively.
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2.2. Assessing Prediction Accuracy of B318L Protein Side-Chains at the Individual Amino Acid
Residue Level

Protein side-chains generally play an important role in specific substrate recognition
and ligand binding, thus making them crucial targets for drug discovery. However, ac-
curately predicting protein side-chain conformations remains a challenge and is always
hampered by the intrinsic flexibility that multiple possible side-chain orientations for a
specific residue can be assumed under different circumstances. In this section, in order to
gain a better understanding of AF2′s performance on its ability to model side-chain posi-
tions, we evaluated the predicted side-chain confidence by calculating local RMSD values
with only aligned non-hydrogen side-chain atoms that are common in both predicted and
experimental B318L structures at the individual amino acid residue level.

Figure 3A shows the correlation between the calculated RMSD values of side-chain
coordinates and the corresponding pLDDT scores for the compared 243 residues in the
B318L crystal structure. Overall, most amino acid residues, accounting for nearly 91.4%
of all compared residues, are found to fall within the very bottom left part of the plot
with pLDDT scores greater than 70 and side-chain RMSD values less than 5 Å. Residues
in this region and the upper right region are considered in line with the general hypoth-
esis that accurately predicted residues often have higher pLDDT scores, whereas poorly
modeled residues are accompanied by lower confidence. In spite of such consistency, no
obvious strong correlation could be made between side-chain RMSD values and pLDDT
scores, as evidenced by a relatively low Pearson’s correlation coefficient, possibly due
to the dynamic nature of amino acid side-chains. It should also be noticed that several
unexpected outliers in Figure 3A show significant discordance between side-chain RMSD
values and pLDDT scores. Among them, some exhibit sufficiently high pLDDT scores
while corresponding side-chains have large RMSD values, indicating that even residues
with very high pLDDT scores cannot be confidently relied upon to reproduce the genuine
conformations, particularly when knowledge of amino acid side-chain positions is critical.
In contrast, others exhibit low pLDDT scores while their corresponding side-chains are ac-
curately placed, indicating that AF2 occasionally underestimates the prediction confidence
for some residues. Next, we analyzed the correlation between the calculated RMSD values
of side-chain positions and backbone atoms, which is shown in Figure 3B. In contrast to
the relatively low correlation between side-chain RMSD values and pLDDT scores, the
side-chain RMSD values correlate well with the backbone RMSD values with a much
higher Pearson’s correlation coefficient up to 0.92. It can also be observed in Figure 3B that
the least-squared fitted line is significantly steeper than the diagonal along which RMSD
values of side-chains are equal to main-chain atoms, indicating that AF2 generally predicts
side-chain coordinates with less accuracy than backbone coordinates.

The accuracy of AF2 predicted side-chains may vary remarkably for different kinds of
amino acids. To identify whether predicted side-chain accuracy depends on the specific
amino acid type, we focused on each type of amino acid and calculated their mean side-
chain RMSD values for comparison (Figure 3C). Intriguingly, the effect of amino acid
type is glaringly obvious when dividing these amino acids into polar (or hydrophilic)
and nonpolar (or hydrophobic) groups. The best predicted amino acids, especially with
sub-Angstrom accuracy, tend to be tryptophan, valine, isoleucine, alanine, leucine, and
methionine, which are mostly nonpolar and hydrophobic. The worst described amino acids
whose side-chain RMSD values noticeably exceed 1 Å are mostly polar and hydrophilic,
such as arginine, histidine, lysine, glutamate, glutamine, serine, threonine, aspartate, and
asparagine. Among them, positively charged amino acid residues composed of arginine,
histidine, and lysine are the most difficult to predict. Unlike the above hydrophilic residues,
the polar cysteine can be predicted with sufficiently high accuracy, likely because of its
ability to form an intramolecular disulfide bond that can stabilize its conformation. These
results are also in good accord with the distribution of residues belonging to the same type
of amino acid divided into various RMSD regions (Figure 3C). Figure 3D shows that typical
poorly predicted amino acid residues are located on the surface of the protein molecule
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with their side-chains protruding into the solvent region. The above observation can be
explained by the fact that protein folding prefers to bury hydrophobic residues inside the
molecule while simultaneously exposing hydrophilic residues on the surface, thus making
hydrophobic residues more stable than hydrophilic residues. As a result, buried residues
can generally be predicted more accurately by AF2 than surface-exposed residues, which is
also consistent with a recent study assessing AF2 performance based on residue solvent
exposure [29].
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Figure 3. Accuracy analysis of the AF2 predicted B318L protein side-chains. Note that 243 residues
extracted from a total of 261 experimentally solved residues are used for side-chain analysis, excluding
18 residues of glycine which comprises only one hydrogen atom in its side-chain. (A) A comparison
of side-chain RMSD values with per-residue pLDDT scores. Each dot in the scatter plot represents
one residue common in both the predicted and experimental B318L structures. Some outliers are
labeled for clarity. The red line is the line of best fit. Pearson’s r = −0.3794 and the least-squares linear
fit is y = (−0.0879± 0.0138)× x + (9.712± 1.283). The dotted blue lines indicate a pLDDT score of
70 and RMSD of 5 Å. (B) Correlation between side-chain RMSD values and main-chain RMSD values.
The red line shows the best fit and the blue line shows x = y for comparison. Pearson’s r = 0.9196 and
the least-squares linear fit is y = (1.23± 0.034)× x + (0.169± 0.071). (C) Mean RMSD values for
each amino acid type (red line) and the fraction of the residues belonging to the same amino acid type
divided into different regions of RMSD values (bar graph). All residues are divided into three groups
and colored according to their names, classified into polar (red), nonpolar (yellow), and aromatic
amino acids (orange). Note that only residues with side-chain RMSD values less than 5 Å are used
for statistical analysis to avoid sufficiently large model bias. (D) Examples of representative amino
acid residues with apparent disagreement of side-chain positions are plotted on the protein molecule
as sticks.
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2.3. Comparing AF2 Predicted Structure with Other Computational Models

Before the advent of state-of-the-art machine-learning-based prediction methods, com-
putational biologists had to resort to conventional template-based or ab initio modeling
programs for structural prediction and bioinformatics analysis. Therefore, it is meaning-
ful to compare AF2 with other AI-based or conventional computational methods with
respect to both model prediction accuracy and crystal structural determination. In this
section, another six computational models of the B318L protein were also generated us-
ing OmegaFold [30], ESMFold [31], RoseTTAfold [32], SWISS-MODEL [33], Phyre2 [34], and
i-TASSER [35] for comparison.

First, in order to acquire information about the prediction accuracy of each model at
the individual residue level, the above six models alongside the AF2 model were aligned
against the experimental structure using Superpose from the CCP4 interface, which gave
rise to a local Cα RMSD value for each pair of aligned residues. The schematic diagram
of the calculated full-length RMSD distributions for the seven models with respect to the
B318L crystal structure at per-residue level is shown in Figure 4A, suggesting significantly
divergent prediction accuracies among various computational methods. Specifically, the
AF2 model shares a sufficiently high structural similarity to the experimental structure
since the vast majority of its residues fall below the RMSD value of 1 Å. Analogous to
the AF2 model, another three AI-based models generated from OmegaFold, ESMFold, and
RoseTTAfold also present outstanding performance with a large number of residues pre-
dicted with sub-Angstrom accuracy. However, since there are some residues present in
these three models exhibiting dramatically higher RMSD values than the AF2 model, other
AI-based computational methods are considered slightly inferior to AF2 with respect to
model prediction accuracy. On the contrary, very few residues in the other three models
produced by conventional methods could coincide well with the experimental structure
and there are numerous residues showing pronounced deviations when compared with
the AI-based models. Among them, the template-based SWISS-MODEL appears to per-
form best with most RMSD values distributed between 1 Å and 3 Å, possibly due to the
existence of numerous homologous templates of the B318L protein, whereas the worst
model of the B318L protein comes from i-TASSER, with most RMSD values far beyond 4 Å.
Taken together, our per-residue RMSD analysis of these seven models implies that the
current AI-based computational methods have a large potential to substantially outperform
conventional modeling methods in terms of prediction accuracy.

Next, MR trials with each above model as a search template were carried out to further
distinguish between their different levels of utility in crystal structural determination. In
addition, a homologous structure (PDB code: 2J1P) sharing the highest sequence similarity
to the B318L protein with a score of 28% was also used for comparison. After numerous
rotation and translation searches for every input model, the translation-function Z-score
(TFZ) for each placed model was ultimately given by MR for identifying correct solutions.
In general, it is considered that a TFZ higher than 8 reflects a correct solution, and the higher
this score is, the more the search model is similar to the target structure. The best TFZs
obtained from all MR trials for each search model are shown in Figure 4B. Obviously, the
AI-based models generated from AF2, OmegaFold, ESMFold, and RoseTTAfold all have TFZs
higher than 8, indicating that these models were correctly positioned and led to successful
MR solutions. It is also worth noting that the best TFZ obtained from the AF2 model is
appreciably higher than TFZs from other AI-based models, illustrating that the AF2 model
performs better than other AI-based models in crystal structural determination. In contrast
to the AI-based models, the best TFZs obtained from conventional models are all lower
than 8, suggesting that these solutions tend to be incorrect. It is most likely that the large
structural deviations between these models and the experimental structure are responsible
for their possible failures in crystal structural determination. Irrespective of whether or not
the MR solution is correct, an initial refinement of each placed model against experimental
data was performed by Phenix.refine with the same default parameters to further explore
the quality of each MR solution. The resulting pairs of Rwork and Rfree factors obtained
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from the initial refinement for all MR solutions are plotted in Figure 4C. Once again, the
solution from the AF2 model is appreciably better than the other solutions, as evidenced by
the much lower Rwork and Rfree values than those of the best solutions from other models.
Of particular note, all AI-based models could produce interpretable and well-connected
electron density maps which ultimately contribute to the successful determination of the
crystal structure after iterative cycles of refinement (Figure S1A–D). On the other hand,
another four solutions generated from conventional models all yielded significantly higher
Rwork and Rfree values (>40% and >50%, respectively) that are typical of unsuccessful MR
trials. As expected, all these solutions make it difficult or even impossible to accurately
build crystal structures, owing to numerous chaotic and broken electron densities abundant
in both protein backbones and side-chains (Figure S1E–H).
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Figure 4. Comparison of different computational models with respect to B318L crystal structure and
their applications in crystal structural determination. (A) Stripe diagram depicting the calculated
per-residue RMSD distribution of each predicted model against the B318L crystal structure after
pairwise structural alignment. The series of amino acid residues serve as the x-axis and the N/C
termini are annotated at both ends of the stripe. The color codes for different regions of RMSD values
are indicated at the bottom left corner. Note that the light gray bar represents broken backbones
in the crystal structure that cannot be built due to the lack of observed electron densities or that
cannot be predicted in the models. (B) A comparison of the best TFZ scores obtained from molecular
replacement trials with each model as a search template. The dashed line indicates a TFZ value of 8.0,
above which is usually deemed as a correct solution. (C) A comparison of paired Rwork and Rfree
factors generated by Phenix.refinement from each MR solution against experimental data. The dashed
line suggests an R factor of 0.4, below which is generally considered a potentially solvable structure.
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2.4. Effect of Data Quality on AF2-Assistant Crystal Structural Determination

The reason for the failure in crystal structural determination using conventional
models not only lies in their larger structural deviations but also relates to the poor quality
of our experimental data. As can be seen from Table 1, the scaled and merged diffraction
data present a very high overall Rmerge value of 29.7% and its resolution is as low as
3.2 Å. Despite the poor data quality, AF2 still leads to successful structural determination.
Nevertheless, it remains unclear how data quality influences crystal structure determination,
even with the aid of AF2. In this section, we evaluate the effect of data quality such as
data error, data completeness, and data resolution on the AF2-assistant crystal structural
determination.

Table 1. Data collection and refinement statistics.

ASFV B318L N∆30

Data collection statistics
Data collection SSRF BL10U2
Wavelength (Å) 0.9792
Resolution (Å) 48.2–3.2 (3.28–3.20)
Space group P6522
Unit cell parameters a = 56.13Å, b = 56.13 Å, c = 376.69 Å, α = β = 90◦, γ = 120◦

No. of unique reflections 6579 (472)
Completeness (%) 99.7 (99.2)
Redundancy 31.7 (28.3)
Mean I/σ (I) 15.6 (2.2)
Molecules in asymmetric unit 1
Rmerge (%) 29.7 (251.3)
Rmeas (%) 30.2 (256.0)
CC1/2 0.998 (0.718)

Structure refinement statistics
Rwork/Rfree (%) 24.6/28.4
Number of atoms 2058
Protein residues 261

Root-mean-square deviations
Bond length (Å) 0.008
Bond angles (◦) 1.421

Ramachandran plot
Favored (%) 94.5
Allowed (%) 5.1

Average B-factor (Å) of protein 99.5

First, we numerically corrupted the raw diffraction data with different levels of Gaus-
sian noise. The added errors can be quantified with a classical R factor calculated between
the raw data and degraded data. In total, we generated ten sets of degraded data with R
factors ranging from 17.3% to 173% for comparison, after which, routine MR with the AF2
model as a search template and initial refinement as above were carried out. In addition to
metrics such as TFZ and Rfree, we also adopted the local correlation coefficient (CC) as a
quality indicator of structure determination, which is calculated with phenix.get_cc_mtz_pdb
and used to measure consistency between the electron density map and experimental
structure. The effect of data error on structural determination is shown in Figure 5A. It
can be observed that all TFZs obtained are higher than 10, indicating the robustness of MR
against data error in the presence of an accurate search model. It should also be noticed
that TFZ and local CC gradually decrease while Rfree increases as data error incrementally
accumulates, revealing that data accuracy still has a non-negligible impact on structural
determination even with a sufficiently accurate AF2 model. Similarly, we also evaluated the
effect of data resolution and data completeness on the AF2-assistant crystal structural deter-
mination. The results are shown in Figure 5B,C, respectively. Likewise, TFZ progressively
decreases with the reduction in both resolution and completeness while always holding
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its value greater than 10, suggesting correct MR solutions for all these tests. In contrast,
both Rfree and local CC seem to display only small changes regardless of significant res-
olution alteration, reflecting that AF2-assistant structural determination is least affected
by data resolution (Figure 5B). Intriguingly, as shown in Figure 5C, Rfree is observed to
fluctuate only within a small range of around 40%, whereas there is a marked decline in
local CC as data completeness decreases. Since local CC directly measures the quality of
the electron density map, it is more likely that data completeness has some influence on the
AF2-assistant structural determination. Overall, based on the above analyses, we may draw
the conclusion that the AF2-assistant structural determination seems not to be susceptible
to data error and may even tolerate the data quality of protein crystals to a large extent.
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Figure 5. Influence of data quality on crystal structural determination with the aid of the AF2 model.
The blue bar represents the best TFZ obtained from each MR trial. The red bar represents the Rfree
factor given by Phenix.refinement. The green line indicates the local CC between each initially refined
electron density map and the final crystal structure. (A) Effect of data error. (B) Effect of data
resolution. (C) Effect of data completeness.

2.5. Crystal Structure of B318L Protein and Comparison with Its Homologs

PTs catalyze the consecutive condensation of IPP with allylic diphosphates to produce
a variety of prenyl diphosphates with well-defined chain lengths [36]. Generally, PTs
are classified into ascis- and trans-PTs according to the stereochemistry of double bonds
from IPP condensation [37]. Trans-PTs generally feature an all-helix fold that contains
9-13 α-helices connected with loops. There are two conserved aspartate-rich motifs sitting
opposite to each other, forming a large catalytic cavity for allyl substrate binding, termed
FARM (the first aspartate-rich motif, DDx2-4D, where x is any amino acid) and SARM (the
second aspartate-rich motif, DDxxD). FARM and SARM motifs interact with the substrates
via Mg2+ [38]. The amino acid sequences of six representative members of the trans-PTs
family are compared with B318L in Figure S2. These GGPPS share 20% to 25% sequence
identities with B318L, indicating a significant evolutionary drift in this family.

To understand the structural basis of ASFV PTS, we determined the crystal structure
of the B318L protein. The full-length B318L gene encodes 318 amino acid residues. For crys-
tallization, the N-terminal putative transmembrane region (residues 1–30) was truncated.
Thus, the truncated form of B318L (residues 31–318) was expressed in E. coli. As depicted
in Figure 6A, the overall structure of B318L adopts a canonical all-helix fold and contains
11 helices (A to K) which can be divided into three layers. The front helical layer is formed
by helices A, B, and E. The front layer is orthogonal to the other layers. In the middle layer,
there are helices C, D, F, I, and K. The conserved Asp-rich motifs FARM (residues 129–135)
and SARM (residues 257–261) are located at helices D and I, respectively. The remaining
helices G, H, and J, surrounding the catalytic core, form the back layer. However, there are
three loop regions (S133 to K143, Q209 to P214, and H262 to N269) that could not be built
due to the lack of interpretable electron density.
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Figure 6. The overall structure of the B318L protein and structural comparison to its homologs.
(A) Cartoon view showing the overall fold of the ASFV B318L structure. The structural cartoon
is colored in rainbow, from blue (N-terminus) to red (C-terminus). (B) Superposition of B318L,
Clostridium perfringens GGPPS, and Mentha piperita GGPPS structures. Structures are shown as ribbons
and are colored red (B318L), blue (Clostridium perfringens GGPPS), and green (Mentha piperita GGPPS).
(C) Superposition of the structures of the ASFV B318L and Clostridium perfringens GGPPS in a front
view and back view. The structure of B318L and Clostridium perfringens GGPPS are shown as a cartoon
in red and blue, respectively.

We used the DALI server to search for structural homologs of B318L in the Protein
Data Bank (PDB) [39]. The best hit is the C. perfringens GGPPS (PDB ID: 3UCA) with
a Z-score of 22.5 and the second highest score goes to the D chain of the M. Piperita
GGPPS (PDB ID: 3KRF) with a Z-score of 22.3, both of which correspond to an RMSD
of 2.2 Å for 216 equivalent Cα atoms. As shown in Figure 6B, both homologs share
nearly the same backbone conformation with the B318L structure, indicating that the ASFV
B318L protein is conserved across the trans-PTs family. Nevertheless, there are still some
conformational variations among the structures. The most significant difference is the
various conformations of their N-terminal extensions [40,41], where the N-terminus of
B318L starts with a long loop, whereas helices are observed in the N-terminus of other
GGPPS (Figure 6B). It is conceivable that the unique N-terminal loop of B318L may extend
to its transmembrane region. Another striking difference is that in B318L, the helices G
and H in the back layer are significantly shorter than that in the C. perfringens GGPPS
(Figure 6C).
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2.6. Molecular Docking with Crystal Structure and AF2 Model for B318L Protein

In order to understand the molecular interactions of GGPP with the B318L protein
and further explore the performance of the AF2 model on ligand binding, we performed
molecular docking simulations for both the B318L crystal structure and the AF2 model. The
calculated binding affinity value for each docking trial is shown in Table 2. The observation
that all binding affinity values are lower than a previously reported stringent binding
affinity threshold of −7 kcal/mol [42] indicates that all structures can bind tightly with
GGPP. Of particular note, the crystal structure of the B318L protein exhibits weaker binding
affinity with GGPP when compared with the AF2 model, suggesting somewhat distinct
ligand binding capability for the experimental and predicted structures.

Table 2. The binding affinity values for three different structures in complex with GGPP.

Protein Structure Binding Affinity (kcal/mol)

Crystal structure of B318L −7.2
AF2 model of B318L −7.8
Homologous structure (2J1P) −7.8

Consistent with the above difference in binding affinity values, it is observed that
GGPP interacts with the B318L protein at slightly different binding sites for the crystal
structure and AF2 model (Figure S3). To identify which binding mode is more likely to occur
in the B318L protein, we chose the homologous structure in complex with GGPP (PDB code:
2J1P) as the reference for ligand binding. After overall structural alignment, it is observed
that both the predicted binding site and GGPP conformation of the AF2 model coincide
better with the homologous structure than that of the crystal structure (Figure S3). To make
a more detailed comparison, we further performed molecular interaction analyses for the
above two docked structures and the homologous structure using LigPlot+ (Figure 7A–C).
It can be seen that the AF2 model and the homologous structure make more hydrogen-
bonding interactions with GGPP than the crystal structure, which is likely responsible for
their variations in binding affinity values. Moreover, the AF2 model interacts with the
diphosphoric acid of GGPP with highly similar amino acids to the homologous structure,
such as histidine, lysine, and arginine, while only arginine is commonly observed to form
hydrogen bonds in the crystal structure. Above all, the AF2 model used for molecular
docking seems to better describe the GGPP binding mode with the B318L protein than the
crystal structure.
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Figure 7. Schematic diagrams of the detailed interactions between the B318L protein and GGPP
simulated with molecular docking. (A–C) Visualization of the detailed molecular interaction of
GGPP with the B318L crystal structure (A), the AF2 predicted model (B), and the 2J1P homologous
structure (C), respectively. In the left panels, all GGPP molecules and residues for hydrogen-bonding
interactions are displayed as stick-ball models and the hydrogen bonds are marked by green dashed
lines. All residues for hydrophobic interactions are also labeled and shown as eyebrow symbols.
In the right panels, all GGPP molecules are displayed as stick-ball models in gray. Residues for
hydrogen-bonding interactions are displayed as stick models in pink and the hydrogen bonds are
marked by yellow solid lines. Residues for hydrophobic interactions are displayed as stick models
in blue.

To explore the reason behind such a difference in ligand binding behaviors between
the predicted and experimental structures, we carried out an analysis of AF2 templates
that were used for modeling the B318L protein. All the templates were divided into
ligand-bound and ligand-unbound groups in order to evaluate the possible influence of
ligand binding on the performance of AF2 predictions. Templates in the ligand-bound
and ligand-unbound states are named holo and apo templates, respectively. All template
structures regardless of whether in holo form or apo form were aligned with the AF2
model and further merged with the GGPP that was docked to the AF2 model in order to
focus on the same binding pocket for direct comparison. To identify whether the ligand
binding capability correlates with different types of template structures, we calculated the
protein-ligand contact area for each template (Table S1). Figure 8A shows the distribution
of protein-ligand contact areas of AF2 templates that are separated into apo and holo types,
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indicating the significantly different ligand binding capabilities between apo and holo
templates. Notably, it is also observed that the protein-ligand contact areas corresponding
to holo templates are remarkably higher than apo templates, suggesting the much stronger
ligand binding capability of holo templates. The overall statistical results of the protein-
ligand contact areas for the apo and holo templates are displayed in Table 3, together with
the AF2 model and experimental structure for reference. Since the experimental structure
inherently belongs to the apo form of the B318L protein, its protein-ligand contact area is
much closer to the apo templates. Intriguingly, for the AF2 model, its protein-ligand contact
area lies between the apo templates and holo templates, with a bias toward holo templates.
Since the AF2 model is trained based on structural information from both apo and holo
templates, an explanation could be that the AF2 model has learned some knowledge of
ligand binding from the holo templates, allowing it to accommodate the ligand in a similar
manner that resembles ligand-bound homologs such as 2J1P. In addition, we also compared
the pocket Cα distance against the apo and holo templates (Figure 8B), which unfortunately
shows a negligible difference between both templates. Therefore, we speculate that the
ligand binding pocket may be more correlated with protein side-chain conformations rather
than main-chain atoms.
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Figure 8. Comparison of the ligand binding capability with respect to both apo and holo templates
that are used by AF2 for modeling the B318L protein. (A) Distribution of protein-ligand contact
areas separated into apo and holo groups. (B) Distribution of pocket Cα distances divided into apo
and holo groups. The three horizontal dotted lines in each group from up to down indicate the
75th percentile value, median value, and 25th percentile value, respectively. Each dot represents a
template structure.

Table 3. Statistics of protein-ligand contact areas for apo and holo templates. The AF2 model and
experimental structure are also shown for reference.

Apo Holo AF2 Model Crystal Structure

Mean value (Å2) 458.56 510.84 498.8 462.6
Standard deviation 34.83 26.4 0 0

No. of structures 61 43 1 1

3. Discussion

With the advent of the machine-learning-based protein structure prediction software
AF2, it is now possible to perform highly accurate structural analyses of functionally im-
portant but otherwise structurally unknown proteins [43–45]. Additionally, it also holds
great promise for facilitating structure-based drug discoveries [42,46,47] and directing site-
specific mutagenesis [48,49]. However, further experimental validations of the accuracy
of AF2 predictions are still required, thus necessitating the development of integrative
structural biology in synergy with both computational and experimental methods. In this
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study, benefiting from an in silico model predicted by AF2, we successfully determined
the crystal structure of B318L at a resolution of 3.2 Å. However, common MR trials using
several homologs with the highest similarity scores and other models generated from
traditional computational methods have all failed to yield correct solutions, as manifested
by the low TFZ and high R factors during structural determination. Though slightly inferior
to AF2, other cutting-edge AI-based prediction methods, such as OmegaFold, ESMFold, and
RoseTTAfold, have also been found to provide a correct MR solution and eventually lead to
successful structural determination. These results are further confirmed by quantitative and
in-depth analyses of each model regarding the final crystal structure based on per-residue
RMSD comparisons and careful inspections of each resolved electron density map. To this
end, it can be anticipated that MR, further armed with highly accurate AI-based predicted
models, will undoubtedly dominate the future crystal structural determination of indi-
vidual proteins and even protein complexes, thereby making traditional derivative-based
methods such as anomalous scattering and isomorphous replacement gradually secondary.

It has been extensively demonstrated that the AF2-predicted models present suffi-
ciently high accuracy on average, however, predictions specific to side-chain conformations
are always less accurate [50–52]. In our study, it is observed that there are some residues
showing significant deviations in the predicted side-chain positions whereas their con-
fidence scores given by AF2 are unexpectedly high. That is to say, pLDDT scores alone
cannot accurately measure whether some side-chain orientations are correct, which may
hinder the analysis of potential active sites for drug design. Therefore, further development
of AF2 is needed to improve its prediction accuracy, especially for side-chain conformations,
and to propose a more reliable criterion to measure side-chain confidence. In addition, our
side-chain analysis at the individual residue level reveals that AF2′s performance is likely
dependent on the specific amino acid type, with hydrophilic amino acids predicted less
accurately than hydrophobic amino acids. As a result, more attention should be paid to
hydrophilic residues when using AF2 models to predict potential binding sites or interpret
protein interaction mechanisms. In particular, we also find that positively charged amino
acid residues are the most difficult to predict and further speculate that buried residues can
potentially be predicted more accurately by AF2 than surface-exposed residues. Therefore,
the predicted residues with less accuracy in side-chain positions should be treated with
more caution in the further analysis of AF2 models, especially when protein side-chain
conformations play an important role.

Despite its spectacular structural modeling performance, AF2 is at the moment ham-
pered by its limited abilities to accurately predict how multiple protein components assem-
ble into functionally important integral machinery and how peptide-protein interactions
or site-specific mutations induce conformational changes [53–56]. For example, it has
recently been reported that AF2 shows limitations in predicting the assembly between
extracellular domains and transmembrane domains for the family of G protein-coupled
receptors which delineates a common paradigm of typical flexible multi-domain struc-
tures [51]. Although there have been some studies showing AF2′s potential applications in
protein complex predictions [57–60] and mutational analyses [48,49], more experimental
validations are certainly indispensable. Currently, AF2 is still unable to model protein
structures in complexes with nucleic acids or reveal structures binding chemical com-
pounds, which is of fundamental importance for identifying protein interaction sites and
for future drug discovery [46]. Moreover, AF2 generally provides a single static picture
of a protein structure that it thinks is most likely to appear in the PDB, whereas proteins
exist in many different conformations, and AF2 currently cannot capture all aspects of a
protein’s biological function [61,62]. Taken together, experimental techniques currently
remain the only methods capable of tackling biologically important challenges associated
with complex formation, ligand binding, and conformational dynamics. Nevertheless,
with the ongoing improvement of machine-learning-based model prediction algorithms, it
is expected that AI-based techniques will not only make progress toward more accurate
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and versatile structural predictions but may also promote increased structural diversity in
deciphering a protein’s interaction mechanisms with various types of substrates.

4. Materials and Methods
4.1. In Silico Model Predictions of B318L Protein

A total of seven in silico models of the B318L protein were generated in this study
for comparison, including the state-of-the-art machine-learning-based models from Al-
phaFold2, OmegaFold, ESMFold, and RoseTTAfold, and three conventional models from
SWISS-MODEL, Phyre2, and i-TASSER. Conventional models were predicted from their
available web servers with the query sequence as the only input information. The OmegaFold
model was predicted from the BioLib platform, a library of biological data science applica-
tions (https://biolib.com/protein-tools/omegafold, accessed on 24 December 2022). The
ESMFold model was retrieved from the prediction server provided by the ESM Metage-
nomics Atlas. The AF2 model was predicted on a local computer equipped with AF2
which was installed as instructed with all databases downloaded and accelerated with
two NVIDIA GeForce RTX 3090 GPUs. The input information to AF2 only included the
query sequence and the default running parameters were used during prediction. A total
of five independent models ranked by pLDDT scores indicating the confidence level of
the predictions were produced by AF2 and the model with the highest pLDDT score was
selected for further analysis. No additional refinement or truncation was performed on the
above in silico models.

4.2. Plasmid Construction

The full-length DNA sequence encoding the ASFV B318L (Uniprot accession number
Q65164) was purchased from GenScript Corp. (Nanjing, China). The gene lacking 30 N-
terminal residues (referred to as B318L∆N30) was cloned into the bacterial expression vector
pET28a (Novagen, Madison, WI, USA), fused with a hexa-histidine tag and a SUMO tag at
the N-terminus. The sequences of the primers were: 5′- ACAGATTGGTGGATCCGCACCG
CGTAGTGTCG-3′ (forward) and 5′-TGGTGGTGGTGCTCGAGTTAGGTCCCCAATGCAA
CATTTATA-3′ (reverse). The accuracy of the inserts was verified by sequencing. The
recombinant vector was then transformed into Escherichia coli BL21 (DE3) competent cells
(Invitrogen, CA, USA) for protein expression.

4.3. Protein Expression, Purification, and Crystallization

The frozen recombinant strains were revived in Lysogeny broth (LB) medium sup-
plemented with 50 µg/mL kanamycin at 37 ◦C overnight. Every 5 mL revived bacterium
suspension was inoculated into 1 L LB medium supplemented with 50 µg/mL kanamycin
and grown to an optical density at OD600 of 0.6 to 0.8 at 37 ◦C. Protein expression was
induced by adding isopropyl-β-D-1-thiogalactopranoside (IPTG) at a final concentration
of 0.1 mM, and then the induced cultures were grown at 16 ◦C for an additional 18 to
20 h. The cells were harvested by centrifugation at 5000× g for 35 min at 4 ◦C. The cell
pellets were resuspended in Buffer A (20 mM Tris pH 8.0 and 300 mM NaCl) and were
further lysed with a low-temperature ultra-high pressure cell disrupter (JNBIO, Guangzhou,
China). The lysate was clarified by centrifugation at 10,000× g for 60 min at 4 ◦C. The
supernatant was purified by affinity chromatography with nickel-charged IMAC resin (GE
Healthcare, Chicago, IL, USA). The fusion protein was eluted from the column using Buffer
B (20 mM Tris pH 8.0, 300 mM NaCl, and 300 mM imidazole). The fractions containing
the desired fusion proteins were dialyzed against Buffer A at 4 ◦C overnight, and Ulp1
protease was added to the protein solution during the dialysis process. The mixture was
then loaded again onto the Ni-NTA column and the untagged proteins were washed using
Buffer A supplemented with 30 mM imidazole. Proteins were further purified by gel
filtration chromatography using a Superdex 75 column (GE Healthcare, IL, USA). The
column was equilibrated in Buffer C (20 mM Tris pH 8.0 and 100 mM NaCl) using an ÄKTA
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purifier system (GE Healthcare, USA). The highly purified protein fractions were pooled
and concentrated to 12 mg/mL using a membrane concentrator (Millipore, MA, USA).

Initial crystallization screening was performed manually using several commercial
crystal screen kits (Hampton Research, Aliso Viejo, CA, USA). The crystallization experi-
ments were conducted at 20 ◦C, using the sitting-drop vapor diffusion method. The crystals
of B318L∆N30 were obtained with precipitant conditions using Crystal Screen 2 NO. 36
(0.1 M HEPES pH 7.5, 4.3 M NaCl).

4.4. Experimental Data Collection and Structural Determination

X-ray diffraction data were collected on the beamline BL10U2 at the Shanghai Syn-
chrotron Radiation Facility (SSRF). All crystals were cryoprotected using their reservoir
solution supplemented with 20% (vol/vol) glycerol and snap-frozen in liquid nitrogen be-
fore data collection. A total of 360 diffraction frames were recorded on a DECTRIS EIGER X
16M pixel array detector. The exposure time and oscillation range per frame were set to 0.1
s and 1◦, respectively. Diffraction data were processed using XDS and merged and scaled
using XSCALE [63]. The crystal structure of B318L was determined by molecular replace-
ment using Phaser [64] with the highest-ranked AF2 model as the search template. Only one
molecule could be positioned in the asymmetric unit according to the Matthews coefficient
analysis. The structure was refined via iterative cycles of refinement performed using
Phenix.refine [65] and manual model rebuilding using Coot [66]. Data collection and refine-
ment statistics details are shown in Table 1. The program PyMOL (http://www.pymol.org,
accessed on 24 December 2022) was used to prepare structural figures.

4.5. Structural Alignment and RMSD Calculations

The overall structural alignment between any pair of protein structures was ac-
complished with the “align” function in PyMOL, which yields an overall Cα RMSD
value. In order to calculate the main-chain RMSD value for each aligned residue pair,
we adopted the Superpose software from the CCP4 interface, which outputs a list of per-
residue main-chain RMSD values. To calculate the per-residue RMSD value concentrating
only on amino acid side-chains, we modified and ran the Python script “pairwise_dist.py”
(https://pymolwiki.org/index.php/Pairwise_distances, accessed on 24 December 2022)
within the PyMOL environment to compare only equivalent non-hydrogen side-chain
atoms and output the averaged side-chain RMSD value for each residue pair after overall
structural alignment. The atoms used for side-chain RMSD calculation are only present in
amino acid side-chains, excluding main-chain C, O, N, and Cα atoms.

4.6. Molecular Docking

We used AutoDock Vina 1.2.0 [67] to dock GGPP against the B318L crystal structure
and AF2 predicted model for comparison. The molecular structure of GGPP was extracted
from the homologous structure (PDB code: 2J1P) and saved in a single PDB format file.
To acquire a more accurate docking result, a proper grid box centered at the potential
active site should be specified for docking. Since the B318L protein structure shares some
similarities with the PDB structure of 2J1P, we hypothesized that the binding sites of GGPP
for both proteins should also be similar. As a result, we defined the coordinates of GGPP in
the homologous structure as the center of the cubic box with a grid size of 42 × 42 × 42 Å
and further aligned both the B318L crystal structure and AF2 model to the homologous
structure. To prepare the protein and ligand for docking, we next used AutoDock Tools [68]
to convert each PDB file into AutoDock Vina’s PDBQT format. For receptor preparation, we
deleted all water molecules and added polar hydrogen atoms to the protein structure. The
Gasteiger charges model was further used to add partial charges to the receptor. For ligand
preparation, we assigned bond torsion as either rotatable or non-rotatable and directly
saved it into a PDBQT format file.

Docking was performed with a default exhaustiveness of 32, which specifies the
number of runs that start with a random ligand conformation, and a default n_poses of

http://www.pymol.org
https://pymolwiki.org/index.php/Pairwise_distances


Int. J. Mol. Sci. 2023, 24, 2740 20 of 23

9, which specifies the final number of ligand poses to report. To demonstrate the validity
of our docking simulations, we re-docked GGPP against the PDB structure of 2J1P with
GGPP artificially removed. The predicted best pose with the lowest binding affinity of
−7.8 kcal/mol was compared with the known structure using PyMOL and we observed a
good agreement between the predicted and experimental GGPP binding conformations,
confirming the feasibility of our molecular docking. To further improve the quality of
our docking predictions, we repeated the molecular docking for each case multiple times,
aiming to find the best-predicted pose with the lowest binding affinity. Finally, the predicted
ligand pose with the lowest binding affinity was selected as the docking model for further
analysis. Receptor-ligand interactions were analyzed using LigPlot+ (v2.2) [69].

4.7. Analysis of AF2 Templates Used for Modeling B318L Protein

The templates used by AF2 for training the B318L model are listed in Table S1, which
are further grouped into ligand-bound structures (in holo form) and ligand-unbound
structures (in apo form) for comparison. The probability of each template for AF2 prediction
is also shown.

To identify the potential binding pocket in each template, all templates were struc-
turally aligned to the AF2 model which was docked with GGPP as above. For holo
templates, the originally bound ligand was removed. After that, each aligned template
was merged with the docked GGPP to form a synthetic structure in a complex with the
same ligand for further analysis. To quantitatively measure the relationship between
each template and docked ligand, the protein-ligand contact area as well as the mean
distance between the ten nearest neighbor protein Cα atoms and the docked ligand (pocket
Cα distance) were calculated for each template. To calculate the protein-ligand contact
area for each synthetic complex structure, the Python script “contact_surface.py” (https:
//pymolwiki.org/index.php/Contact_Surface, accessed on 24 December 2022) was run
within the PyMOL environment. For calculation of the pocket Cα distance, we modified and
ran the Python script “distancesRH.py” (https://pymolwiki.org/index.php/DistancesRH,
accessed on 24 December 2022) within the PyMOL environment using only protein Cα

atoms adjacent to the docked ligand. The resulting protein-ligand contact area and pocket
Cα distance for each template are also listed in Table S1.

5. Conclusions

In summary, our study reports the crystal structure of the B318L protein which was
experimentally determined with the aid of an accurately predicted AF2 model. Under the
condition of relatively poor data quality and low sequence similarity, attempts to adopt
search models generated from previous modeling methods as well as several homologs
with the highest similarity scores have all failed. The quantitative structural comparison
demonstrates that the AF2 model is overall in good agreement with the B318L crystal
structure except for some intrinsically disordered loops and unstructured regions. Our
side-chain-based analysis at the individual amino acid residue level suggests that side-chain
RMSD values tend to have a weak correlation with corresponding pLDDT scores and AF2
generally predicts side-chain coordinates with less accuracy than backbone coordinates.
More importantly, it is observed that AF2′s performance is presumably dependent on the
specific amino acid type and hydrophobic residues are apt to be more accurately predicted
than hydrophilic residues. In addition, our molecular docking simulations against both
experimental and predicted B318L structures suggest that the AF2 model unexpectedly
seems to be more suitable for correctly binding GGPP, in large part, due to its ability to
learn structural information from ligand-bound homologs. Looking forward, we envision
that AF2 will have a prominent impact on future structural biology and help to accelerate
our understanding of life sciences that require structural knowledge.
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