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Abstract

Background: Commonly in surgical randomised controlled trials (RCT) the experimental treatment is a relatively

new technique which the surgeons may still be learning, while the control is a well-established standard. This can

lead to biased comparisons between treatments. In this paper we discuss the implementation of approaches for

addressing this issue in the ROLARR trial, and points of consideration for future surgical trials.

Methods: ROLARR was an international, randomised, parallel-group trial comparing robotic vs. laparoscopic surgery

for the curative treatment of rectal cancer. The primary endpoint was conversion to open surgery (binary). A

surgeon inclusion criterion mandating a minimum level of experience in each technique was incorporated.

Additionally, surgeon self-reported data were collected periodically throughout the trial to capture the level of

experience of every participating surgeon.

Multi-level logistic regression adjusting for operating surgeon as a random effect is used to estimate the odds ratio

for conversion to open surgery between the treatment groups. We present and contrast the results from the primary

analysis, which did not account for learning effects, and a sensitivity analysis which did.

Results: The primary analysis yields an estimated odds ratio (robotic/laparoscopic) of 0.614 (95% CI 0.311, 1.211; p = 0.16),

providing insufficient evidence to conclude superiority of robotic surgery compared to laparoscopic in terms of the risk of

conversion to open.

The sensitivity analysis reveals that while participating surgeons in ROLARR were expert at laparoscopic surgery, some, if

not all, were still learning robotic surgery. The treatment-effect odds ratio decreases by a factor of 0.341 (95% CI 0.121,

0.960; p = 0.042) per unit increase in log-number of previous robotic operations performed by the operating surgeon.

The odds ratio for a patient whose operating surgeon has the mean experience level in ROLARR – 152.46 previous

laparoscopic, 67.93 previous robotic operations – is 0.40 (95% CI 0.168, 0.953; p = 0.039).

Conclusions: In this paper we have demonstrated the implementation of approaches for accounting for learning in a

practical example of a surgery RCT analysis. The results demonstrate the value of implementing such approaches, since

we have shown that without them the ROLARR analysis would indeed have been confounded by the learning effects.
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Background

Commonly in a surgical randomised controlled trial (RCT)

the experimental treatment is a relatively new technique

which the surgeons – both individually and as a community

– may still be learning, while the control treatment is a

well-established standard. One of the primary concerns

when designing and analysing a surgical RCT is that this

disparity between the levels of expertise that the participat-

ing surgeons have in each treatment may distort the com-

parison between the treatments, potentially leading to

biased treatment-effect estimates [1–4].

The need to account for learning effects in surgical

RCTs has long been recognised [1–4], and approaches

for minimising and accounting for the potentially con-

founding effects of learning have been developed in the

methodological literature [3]. However, there has been

limited uptake of these methods and few examples of

their application in surgical trial literature [5]. In this

paper we present the details of implementing these ap-

proaches in a practical example of a surgery RCT to

complement the more methodological papers such as

Ramsay and Cook’s [3]. Specifically, we demonstrate that

the results would have been vulnerable to the confound-

ing effects of learning if these methods were not imple-

mented, validating the concerns that motivated the

development of the methodology. We demonstrate the

value that these methods bring, and discuss points of

consideration for their use in future surgical trials.

The practical example is the Robotic vs. Laparoscopic

Resection for Rectal Cancer (ROLARR) trial, funded by

the National Institute of Health Research (NIHR) Effi-

cacy and Mechanism Evaluation Programme (EME)

programme. The aim of the trial was to compare the

safety, efficacy and short- and long-term outcomes of

robotic-assisted as compared to standard laparoscopic

rectal cancer surgery. In contrast to standard laparo-

scopic surgery, robotic-assisted surgery was not a

well-established approach at the beginning of the trial,

with many participating centres obtaining their first sur-

gical robot close to the time at which they began partici-

pating in the trial. This disparity only accentuated the

need to implement measures of estimating and adjusting

for the learning effects.

Methods

The ROLARR trial

ROLARR was an international, multicentre, randomised,

unblinded, parallel-group trial comparing robotic vs. lap-

aroscopic surgery for the curative treatment of rectal

cancer. The trial received national ethical approval in

the United Kingdom or either local Ethical Committee/

Institutional Review Board approval at international cen-

tres. An independent Trial Steering Committee and Data

Monitoring and Ethics Committee oversaw the trial

conduct. All participants provided written, informed

consent. The trial design has been reported previously

[6].

Consenting patients were randomised to receive either

laparoscopic mesorectal resection as per standard prac-

tice (referred to as ‘laparoscopic surgery’ hereafter) or

robotic-assisted laparoscopic mesorectal resection (re-

ferred to as ‘robotic surgery’ hereafter), which included

both totally robotic operations and hybrid operations in-

volving the use of standard laparoscopic techniques for

some aspects of the otherwise robotic-assisted operation.

Randomisation (minimisation incorporating a random

element) was on a 1:1 basis and was stratified by treating

surgeon and other selected prognostic patient factors

such as sex and Body Mass Index (BMI). This meant

that each participating surgeon in ROLARR was re-

quired to perform both robotic and laparoscopic surgery

on their trial patients.

The primary aim of the trial was to compare robotic

surgery to laparoscopic surgery for rectal cancer resec-

tion in terms of the technical difficulty of the operation.

The primary endpoint was intra-operative conversion to

open surgery, which is a binary indicator of technical

difficulty of the operation, and thus lower odds of con-

version to open would imply a less technically challen-

ging operation. A reduction of 50% to the odds of

conversion to open was considered to be the minimum

clinically important difference.

Design considerations for potential learning effects

In order to minimise confounding due to learning ef-

fects, a surgeon inclusion criterion mandating a mini-

mum level of experience in each technique was

included. The aim of this was to ensure that all partici-

pating surgeons were experts at both techniques, in the

sense that they would not still be in the process of learn-

ing either of the techniques while contributing to the

trial, ultimately leading to a fair comparison between

two expertly performed techniques at analysis. At the

design stage, the nature of the learning curve in robotic

surgery had relatively little evidence from which to de-

rive our inclusion criteria; the evidence base for laparo-

scopic learning curve was much stronger [7].

Furthermore, the feasibility of recruitment to the trial

had to be considered. As the mandated minimum level

of experience required increases, recruitment to the trial

becomes restricted to a smaller pool of surgeons. There-

fore, a pragmatic balance between minimising the

chances of learning effects via greater mandated mini-

mum surgeon experience and not compromising feasi-

bility of recruitment had to be found. Ultimately,

participating surgeons had to perform a minimum of 30

minimally invasive (laparoscopic or robotic) rectal can-

cer resections before taking part in the trial, of which at
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least 10 had to be laparoscopic and at least 10 robotic

resections.

In addition to this, data were collected periodically

throughout the trial to capture the level of experience of

every participating surgeon in performing each of the in-

terventions. All participating surgeons were asked to re-

port the number of previous laparoscopic operations

and the number of previous robotic operations that they

had performed prior to randomising their first patient.

Furthermore, throughout the recruitment period partici-

pating surgeons were asked at approximately 3-monthly

intervals to report how many laparoscopic and how

many robotic operations they had performed – including

operations performed outside of the ROLARR trial –

since their last reported figure. For each patient, the

level of experience of their operating surgeon at the time

of their operation was calculated assuming that the oper-

ation times within each interval between reported fig-

ures were uniform. For example, for a patient whose

operating surgeon had reported 98 laparoscopic opera-

tions and 56 robotic operations performed up to 30 June

2014, and a further three laparoscopic and one robotic

operations between 1 July 2014 and 30 September 2014,

and whose operation was on 24 September 2014 –

86 days into the 92-day interval between data captures

for their surgeon – the derived number of laparoscopic

operations performed by the operating surgeon at the

time of the operation was 98 + 3×(86/92) = 100.8, and

similarly for robotic, 56 + 1×(86/92) = 56.9.

Statistical analysis

The primary analysis included the use of multi-level lo-

gistic regression to estimate the odds ratios for conver-

sion to open surgery between the treatment groups

adjusting for the stratification factors as fixed effects, ex-

cept for operating surgeon which was adjusted for as a

random effect via a random intercept term.

The primary analysis did not include an adjustment

for the derived experience levels in laparoscopic and ro-

botic surgery of the operating surgeon at the time of op-

eration for each patient. The analysis of learning effects

extended the primary analysis model to include both

number of previous laparoscopic operations performed

and number of previous robotic operations performed

by the operating surgeon as main effects and also as in-

teractions with the treatment effect. Both a main effect

and an interaction effect with treatment for each of ro-

botic and laparoscopic learning was forced into the

model so that the effects of learning could be estimated

in each treatment arm separately. The main effects esti-

mate how learning affects outcomes in the laparoscopic

arm, while the interaction effects allow us to estimate

how learning affects outcomes in the robotic arm. To

parsimoniously account for the fact that the effect of

learning may be non-linear, fractional polynomials of de-

gree 1 were used to explore non-linear robotic and lap-

aroscopic effects by including power parameters for each

and selecting values for these parameters from a

pre-specified restricted space – {−2, −1, −0.5, 0, 0.5, 1, 2,

3} – which maximised the likelihood (minimised the de-

viance) of the model, as outlined by Royston and Altman

[8] and Royston and Sauerbrei [9]. Note that a power of

‘0’ in this context is defined as the natural log function.

The learning effects variables were also scaled and

centred at their mean values to improve the interpret-

ability of the corresponding regression coefficient esti-

mates. The Stata (v13) command fp was used, and the

selected fractional polynomial model was fitted in SAS

v9.4, for consistency with the primary analysis.

Both the primary analysis and the learning effects ana-

lysis were complete case analyses.

Missing data were minimal, and so sensitivity analyses

to quantify the potential impact of missing data on the

learning effects model were performed via brute-force

model re-fitting under a large number of potential values

of the missing fields.

Overly influential observations were identified for each

of the regression coefficients for treatment, laparoscopic

experience, robotic experience and the interaction terms

between treatment and laparoscopic and robotic experi-

ence in the learning effects analysis model via the deriv-

ation of exponentiated delta-betas. The exponentiated

delta-beta is calculated for each regression coefficient for

each patient, e.g. for patient i, the exponentiated

delta-beta for the treatment-effect regression coefficient

is:

exp β
ið Þ
1 −β1

� �

¼
exp β

ið Þ
1

� �

exp β1ð Þ
;

where β1 is the regression coefficient for the treatment

effect in the full model and β
ðiÞ
1 is the treatment-effect

regression coefficient in the model where patient i has

been omitted. Note that this is the ratio of the estimated

odds ratios from the two models, e.g. an exponentiated

delta-beta for the treatment effect for patient i of 1.05

would imply that the omission of patient i increases the

treatment-effect odds ratio estimate by 5% compared to

the inclusion of patient i.

All analyses were pre-specified and were conducted on

the intention-to-treat (ITT) population, i.e. all rando-

mised patients were accounted for in the analyses, and

patients were categorised into treatment groups based

on their randomisation regardless of what they subse-

quently received. Estimates and their corresponding 95%

confidence intervals (CI) are presented. Analyses were

carried out in SAS v9.4 and Stata 13.
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Results

Figure 1 presents details on participant flow. A total of

471 patients were randomised, of which 466 (98.9%)

were included in the primary analysis; reasons for with-

drawals are given in Fig. 1. Four hundred and sixty-four

of the 466 patients from the primary analysis were in-

cluded in the learning effects analysis; two patients were

excluded due to missing experience data for their oper-

ating surgeons. The two treatment groups were well bal-

anced in terms of patient baseline characteristics

(Table 1).

The number of previous robotic and number of previ-

ous laparoscopic operations performed by the operating

surgeon at the time of operations was evaluated for each

patient (see ‘Methods’ section). The marginal summaries

of these measures over patients are presented in

Table 2 and the bivariate distribution of these mea-

sured over patients is visualised in a histogram in

Fig. 2. The average (median) patient in ROLARR re-

ceived an operation from a surgeon with experience

of 91.4 (interquartile range (IQR) 44.9, 180.1) previ-

ous laparoscopic and 49.5 (IQR 30.4, 101.3) previous

robotic rectal cancer operations. As seen in Fig. 2,

the large majority of operations were carried out by

an operating surgeon with experience lying within the

region bounded by 10–100 previous robotic and 10–

180 previous laparoscopic operations, with several

clusters of observations lying on the peripheries at

Fig. 1 Diagram showing the flow of participants
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high-robotic-low-laparoscopic and high-laparoscopic

regions. Conversions to open surgery were infrequent;

47/466 (10.1%) operations were converted to open,

28/230 (12.2%) in the laparoscopic group and 19/236

(8.1%) in the robotic group (Table 1). This made con-

versions to open surgery for patients whose operating

surgeon’s experience level was in these more periph-

eral regions capable of producing overly influential

observations in the learning effects analysis model.

Primary analysis (not adjusting for learning effects)

The primary analysis model yielded an adjusted odds ratio

of 0.614 (95% CI 0.311, 1.211; p = 0.16), suggesting that

the odds of conversion to open is reduced by around

38.6% (95% CI -21.1%, 68.9%) under robotic surgery com-

pared to laparoscopic. However, there is insufficient evi-

dence to conclude that robotic surgery reduces the odds

of conversion, since the confidence interval includes 1.

Learning effects analysis

Fractional polynomial fitting determined that the func-

tional forms for the robotic and laparoscopic learning ef-

fects in the model which best fitted the data were

natural log and cubed, respectively. The regression coef-

ficient estimates from the model resulting from adding

log robotic and cubic laparoscopic learning effects to the

primary analysis model (referred to hereafter as the

learning effects model) is presented in Table 3, and the

corresponding odds ratios are presented in Table 4.

The learning effects model yields an estimated odds

ratio for a patient whose operation is being performed

by a surgeon with the mean experience level in

ROLARR – 152.46 previous laparoscopic and 67.93 pre-

vious robotic operations performed – of 0.40 (95% CI

0.168, 0.953; p = 0.039).

Increasing operating surgeon laparoscopic and robotic

experience are estimated to have no notable effect on

the odds of conversion under laparoscopic surgery. This

is clear from the main effects estimates presented in

Table 3, which have negligible magnitude and

non-significant Wald tests. The effect of increasing oper-

ating surgeon laparoscopic experience is also estimated

to have no notable effect on the odds of conversion

under robotic surgery. This is reflected by the small ef-

fect size and non-significant Wald test for the inter-

action term for laparoscopic experience and treatment

in Table 3. However, the effect of increasing operating

surgeon robotic experience is clearly different under ro-

botic surgery compared to laparoscopic surgery. This is

clear from the significant Wald test for the interaction

term for robotic experience and treatment in Table 3.

The model suggests that the treatment-effect odds ratio

(robotic/laparoscopic) decreases by a factor of 0.341

(95% CI 0.121, 0.960; p = 0.042) per unit increase in

Table 1 Patient baseline characteristics and crude outcome data

Standard
laparoscopic
surgery (n = 234)

Robotic- assisted
laparoscopic surgery
(n = 237)

Total
(n = 471)

Gender

Male 159 (67.9%) 161 (67.9%) 320
(67.9%)

Female 75 (32.1%) 76 (32.1%) 151
(32.1%)

BMI classification

Underweight/
normal

87 (37.2%) 93 (39.2%) 180
(38.2%)

Overweight 92 (39.3%) 90 (38.0%) 182
(38.6%)

Obese 55 (23.5%) 54 (22.8%) 109
(23.2%)

Neo-adjuvant therapy

Yes 103 (44.0%) 109 (46.0%) 212
(45.0%)

No 131 (56.0%) 128 (54.0%) 259
(55.0%)

Intended procedure

High anterior
resection

34 (14.5%) 35 (14.8%) 69
(14.6%)

Low anterior
resection

158 (67.5%) 159 (67.1%) 317
(67.3%)

Abdominoperineal
resection

42 (17.9%) 43 (18.1%) 85
(18.0%)

Conversion to open surgery (outcome)

Yes 28 (12.2%) 19 (8.1%) 47
(10.1%)

No 202 (87.8%) 217 (91.9%) 419
(89.9%)

Missing 4 1 5

Percentages given are calculated using non-missing data only. Note that out

of the factors presented in this table, only ‘conversion to open surgery

(outcome)’ had missing data. BMI Body Mass Index

Table 2 Number of laparoscopic and robotic procedures

performed before the current operation, summarised across

patients

Number of. previous
laparoscopic procedures
performed by operating
surgeon

Number of previous
robotic procedures
performed by operating
surgeon

(n = 464) (n = 464)

Mean (SD) 152.5 (178.38) 67.9 (48.75)

Median (range) 91.4 (10.0, 853.0) 49.5 (10.3, 183.0)

Interquartile range (44.9, 180.1) (30.4, 101.3)
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log-number of previous robotic operations performed by

the operating surgeon.

Table 4 presents the estimated treatment-effect odds ra-

tio at various levels of operating surgeon laparoscopic and

robotic experience, and illustrates that increasing operat-

ing surgeon robotic experience notably affects the

treatment-effect odds ratio in favour of robotic surgery re-

gardless of the level of laparoscopic experience. Figure 3

presents the estimated treatment-effect odds ratios across

the entire range of robotic experience levels observed in

ROLARR while fixing laparoscopic experience at 91 (the

median). It shows a clear reduction in the odds ratio as ro-

botic experience increases. In particular, at levels of

robotic experience beyond 70 previous operations, the

model estimates clinically meaningful effect sizes (odds ra-

tios less than 0.5) which are statistically significant (confi-

dence intervals not spanning 1).

Furthermore, Fig. 4 presents the estimated

treatment-effect odds ratios across the entire range of ro-

botic experience levels at various selected levels of laparo-

scopic experience, and demonstrates that the relationship

seen in Fig. 3 holds regardless of laparoscopic experience

level. Figure 5 presents estimates of treatment-effects odds

ratios across a range of laparoscopic experience levels at

various selected levels of robotic experience, and demon-

strates that the estimated effect of laparoscopic experience

on the treatment effect is negligible.

Learning effects analysis: missing data

In order to test the robustness of the model against po-

tential effects of excluding the two patients with missing

data, sets of values of laparoscopic and robotic operating

surgeon experience were assumed for the two patients

and the model repeatedly re-fitted under various values.

In total this was done 625 times to cover all possible

combinations of number of previous laparoscopic opera-

tions in {10, 45, 91, 180, 500} and number of previous

robotic operations in {10, 30, 50, 101, 183} for each pa-

tient. None of the re-fitted models yielded estimates that

were notably different to the model which excluded

these two patients. The distributions of estimates from

these 625 models are summarised in Table 5.

Learning effects analysis: highly influential observations

To explore whether the learning effects analysis model

results were being disproportionately determined by

Fig. 2 Histogram of the bivariate distribution of number of laparoscopic and robotic procedures performed before the current operation (viewed

from two different angles)

Table 3 Estimated regression coefficients (log-odds ratios), 95%

confidence intervals and Wald test p values for the treatment

and learning effects from the primary analysis and learning

effects models

Model Effect Adjusted
estimate

95% confidence
interval for
adjusted estimate

p

Lower Upper

Primary
analysis
model

Robotic surgery
(vs. laparoscopic)

− 0.488 − 1.168 0.191 0.158

Learning
effects
model

Robotic surgery
(vs. laparoscopic)

− 0.916 − 1.784 −

0.049
0.039

Surgeon’s robotic
experience
(log; 1-unit increase)

0.074 − 0.706 0.854 0.852

Surgeon’s laparoscopic
experience
(cubic; 10^8-unit increase)

0.309 −

1.1033
0.4852 0.445

Interaction: surgeon’s
robotic experience
(log; 1-unit increase)
× robotic surgery

− 1.076 − 2.110 −

0.041
0.042

Interaction: surgeon’s
laparoscopic experience
(cubic; 10^8-unit increase)
× robotic surgery

− 0.160 − 2.153 1.833 0.875
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overly influential observations from regions of sparse

data, the exponentiated delta-betas for the treatment ef-

fect, main effects of laparoscopic and robotic experience,

and interactions between treatment effect and lap-

aroscopic and robotic experience were calculated.

Several overly influential observations were identi-

fied. For example, the most influential observation

on the robotic experience by treatment-effect inter-

action term had an exponentiated delta-beta of

0.730. When the model was fitted omitting that pa-

tient, it estimated that the treatment-effects odds ra-

tio (robotic/laparoscopic) decreases by a factor of

0.249 (95% CI 0.080, 0.773; p = 0.0163) per unit in-

crease in log-number of previous robotic operations

performed by the operating surgeon, rather than the

factor of 0.341 (95% CI 0.121, 0.960; p = 0.042) re-

ported above. That patient was operated on by a sur-

geon with 169.6 previous robotic and 21.02 previous

laparoscopic operations – in a peripheral area of ex-

perience with sparse data (see Fig. 2) – and was the

only conversion to open surgery out of the 49 pa-

tients operated on by two surgeons who lie in that

region. All of the overly influential observations were

similar to this example: legitimate observations, con-

versions to open and with operating surgeon experi-

ence towards the extremities of the observed

distribution, in areas of relatively sparse data.

A concern which naturally develops from that is

that if the model estimates are being highly influ-

enced by data in the extremities of the distribution of

Table 4 Estimated adjusted odds ratios (robotic vs. laparoscopic) for conversion to open surgery vs. operating surgeon’s level of

previous laparoscopic and robotic experience

Effect Surgeon’s
laparoscopic
experience level
(no. of previous
operations)

Surgeon’s robotic
experience level
(no. of previous
operations)

Adjusted odds
ratio (robotic vs.
laparoscopic)

95% confidence interval for adjusted odds ratio

Lower limit Upper limit

Primary analysis model
Robotic surgery (vs. laparoscopic)

– – 0.614 0.311 1.211

Learning effects model
Robotic surgery (vs. laparoscopic)

45 30 0.969 0.431 2.178

50 0.559 0.264 1.185

100 0.265 0.084 0.840

91 30 0.968 0.432 2.172

50 0.559 0.265 1.180

100 0.265 0.084 0.836

180 30 0.960 0.431 2.138

50 0.554 0.267 1.151

100 0.263 0.085 0.814

Fig. 3 Graph of estimated odds ratio (robotic vs. laparoscopic) and 95% confidence interval for conversion to open surgery vs. operating surgeon

previous robotic experience at the median level of laparoscopic experience
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experience levels, then the model may not be an ac-

curate representation of the majority of ROLARR par-

ticipants. Thus, in order to explore the robustness of

model estimates, the model was fitted again including

only patients whose operation was performed by a

surgeon whose laparoscopic and robotic experience

levels were lower than the upper quartiles – i.e. between

10 and 101.3 previous robotic and between 10 and 180.1

previous laparoscopic operations. This limited model

yielded very similar estimates. The estimated relationships

of robotic experience vs. treatment effect and laparoscopic

experience vs. treatment effect from this re-fitted model

Fig. 4 Panel plot of estimated odds ratio (robotic vs. laparoscopic) and 95% confidence interval for conversion to open surgery vs. operating

surgeon previous robotic experience at various levels of laparoscopic experience

Fig. 5 Panel plot of estimated odds ratio (robotic vs. laparoscopic) and 95% confidence interval for conversion to open surgery vs. operating

surgeon previous laparoscopic experience at various levels of robotic experience
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are presented in Figs. 6 and 7, and are clearly very

similar to the relationships seen from the full model

in Figs. 4 and 5.

Discussion

The primary analysis for ROLARR provided insufficient

evidence of superiority of robotic surgery. The estimated

odds ratio did not show a clinically important reduction

in the odds of conversion to open under robotic surgery

compared to laparoscopic. In isolation, the primary

analysis suggests that robotic surgery, as compared with

laparoscopic surgery, does not significantly reduce the

risk of conversion to open surgery when performed by

surgeons with varying experience of robotic surgery.

The results of the learning effects analysis suggest that

participating surgeons in ROLARR were already experts

in laparoscopic surgery with respect to the need to con-

vert to open surgery. This is clear from the negligible

estimated effect of increasing operating surgeon laparo-

scopic surgery experience on both the conversion rate in

Table 5 Summary of regression coefficients and standard errors produced by the 625 models which incorporated a range of

imputed operating experience data for the two patients who had missing data (see ‘Methods’ section)

Parameter Original learning effects
model parameter estimate

Median and range of parameter
estimates from the 625 models
of imputed data

Treatment effect: estimate − 0.916 − 0.946 (− 0.964, − 0.908)

Treatment effect: standard error 0.441 0.441 (0.438, 0.443)

Laparoscopic experience: estimate − 0.309 − 0.317 (− 0.338, − 0.205)

Laparoscopic experience: standard error 0.404 0.408 (0.349, 0.409)

Robotic experience: estimate 0.074 0.073 (− 0.080, 0.168)

Robotic experience: standard error 0.397 0.392 (0.382, 0.397)

Treatment × laparoscopic experience interaction: estimate − 0.160 − 0.144 (− 0.226, − 0.135)

Treatment × laparoscopic experience interaction: standard error 1.014 1.012 (0.989, 1.015)

Treatment × robotic experience interaction: estimate − 1.076 − 1.077 (− 1.149, − 0.970)

Treatment × robotic experience interaction: standard error 0.526 0.524 (0.518, 0.527)

Fig. 6 Panel plot of estimated odds ratio (robotic vs. laparoscopic) and 95% confidence interval for conversion to open surgery vs. operating

surgeon previous robotic experience at various levels of laparoscopic experience (fitted on subsample of patients). This model was only fitted on

patients whose operating surgeon had <= 101.3 previous robotic operations and <=180.1 previous laparoscopic operations. The graphs have

been split by colour to show the model estimates where the actual data is and the model estimates which are extrapolations
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the laparoscopic arm and on the difference between

arms, adjusting for prognostic patient factors as well as

other operating surgeon factors (caught by adjusting for

operating surgeon as a random effect). However, it

seems that the surgeon inclusion criterion did not fully

accomplish the aim of ensuring that all participating sur-

geons were experts in both treatments, since the results

also suggest that some, if not all, participating surgeons

in ROLARR were still learning robotic surgery. This is

clear from the notable effect of increasing operating sur-

geon robotic surgery experience on both the conversion

rate in the robotic arm and on the difference between

arms, again adjusting for prognostic patient factors as

well as other operating surgeon factors (caught by

adjusting for operating surgeon as a random effect).

Furthermore, the nature of the relationship between

operating surgeon robotic experience and the treatment

effect suggest that the desired clinically important differ-

ence between the treatments occurs at higher levels of

robotic surgery experience than the average (median) in

ROLARR. Given this, it could be argued that the pri-

mary analysis represents a comparison of laparoscopic

surgery and robotic surgery when performed by a sur-

geon who is an expert at laparoscopic surgery, but still

learning robotic surgery. While this may be representa-

tive of clinical practice during the period over which

ROLARR took place, it could be argued that it does not

tell us the whole story for the purpose of policy-making.

The learning effects analysis paints a clear picture,

suggesting that robotic surgery does in fact confer an ad-

vantage compared to laparoscopic surgery in terms of

the risk of converting to open surgery when the operat-

ing surgeon has more substantial previous experience

with robotic surgery. Model diagnostics and sensitivity

analyses for the learning effects model have shown it to

be a significantly better fit than the primary analysis

model, and have also shown it to be robust to the poten-

tial effects of the two excluded patients and to the ef-

fects of highly influential observations.

Limitations

One limitation of the learning effects analysis in

ROLARR is that the experience variables were fitted

as fixed effects in the model. This imposes the impli-

cit assumption that every surgeon has exactly the

same learning curve. This may be an overly strong

assumption and it may be more appropriate to in-

clude random effects for the experience variables –

both their main effects and their interactions – which

in particular would allow for the possibility that dif-

ferent surgeons learn at different rates and plateau at

different levels of proficiency. In this particular case,

attempting the inclusion of random effects led to

model convergence issues.

Another limitation is that the presented learning effects

model only accounts for learning on an individual level,

Fig. 7 Panel plot of estimated odds ratio (robotic vs. laparoscopic) and 95% confidence interval for conversion to open surgery vs. operating

surgeon previous laparoscopic experience at various levels of robotic experience (fitted on subsample of patients). This model was only fitted on

patients whose operating surgeon had <= 101.3 previous robotic operations and <=180.1 previous laparoscopic operations. The graphs have

been split by colour to show the model estimates where the actual data is and the model estimates which are extrapolations
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derived only from the number of previous operations

performed, and assumes that proficiency is monotonic

non-decreasing. The former is a simplification of a com-

plex mechanism by which an individual surgeon’s profi-

ciency is affected via multiple sources including learning

at an expert community level as well as from sheer case

volume [4, 10, 11], e.g. a surgeon with 30 operations

spread out over 3 years is perhaps not going to be as

proficient as a surgeon with 30 cases performed over

3 months, all else being equal. The latter is a simplifica-

tion of the nature of learning, which can involve deterio-

rations in proficiency; e.g. due to length of time since

the most recent operation [10]; e.g. a surgeon with 100

previous cases, but who has not performed a case in

over 5 years, may be expected to be less proficient than

a surgeon with 100 previous cases all performed within

the last year, all else being equal.

Conclusions

The learning effects analysis presented suggests, in con-

trast to the primary analysis, that robotic-assisted

laparoscopic surgery does confer an advantage over

standard laparoscopic surgery in terms of the risk of

conversion to open surgery, when performed by an oper-

ating surgeon with a substantial level of previous experi-

ence with robotic surgery, regardless of their level of

previous experience in standard laparoscopic surgery.

Beyond the ROLARR trial, in this paper we have dem-

onstrated the implementation of these approaches for

accounting for learning in a practical example of a

surgery RCT analysis which would otherwise have been

vulnerable to the confounding effects of learning. The

results demonstrate the value of implementing such

approaches since we can see that without them the

analysis would indeed have been confounded.
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