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Introduction

Motivation

Sampling-based approaches have been adopted to alleviate the burden of big data vol-

ume not only when approximate results are useful as exact ones [1–5], but also when the 

results from a small clean sample can be more accurate than those from the entire dirty 

data [6–9]. It is a common practice to iteratively generate small random samples of a big 

data set to explore the statistical properties of the entire data and define cleaning rules 

[10–19]. �is iterative process becomes impractical or impossible on small computing 

clusters due to the communication, I/O and memory costs of cluster computing frame-

works that implement a shared-nothing architecture [20–22]. While these distributed 

frameworks have not adapted well to the requirements of data exploration tasks, exist-

ing sequential techniques don’t scale easily to big data [23]. In fact, there are plenty of 

data exploration and analysis libraries in common data science languages, e.g., R and 

Python [24, 25]. To scale these libraries to big data on computing clusters, new distrib-

uted implementations are required to process distributed data. Even with distributed 

algorithms, the memory of the computing cluster may not be enough to hold the entire 
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data. �is is because the data growth rate is outpacing the technology scaling [26]. In 

this paper, our objective is enabling data scientists to iteratively explore and clean big 

data on small computing clusters by applying existing or user-defined algorithms to a 

few ready-to-use random sample data blocks.

On computing clusters, big data is divided into small disjoint distributed data blocks 

in Hadoop Distributed File System (HDFS) [27]. In fact, HDFS blocks are the basic units 

of both storage and processing in cluster computing frameworks (e.g., Apache Hadoop1, 

Apache Spark2). �e MapReduce computing model [28] is adapted to process HDFS 

blocks in parallel and get the result for the entire data set [29–31]. Hadoop-based com-

puting clusters have become the norm for big data management and analysis in different 

application areas [32–36]. To facilitate random sampling on these clusters, the Random 

Sample Partition (RSP) distributed data model was proposed recently [37]. In this model, 

the statistical properties of the data set are preserved in its distributed data blocks by 

making HDFS blocks as ready-to-use random samples (RSP blocks) of the entire data. 

�is can avoid both the cost of record-level sampling (RLS) and the biased results from 

Block-Level Sampling (BLS) of inconsistent HDFS blocks [38–41]. An RSP is generated 

offline, and only once, from an HDFS file using a two-stage data partitioning method 

[42, 43]. To analyze the data set, a block-level sample of RSP blocks is selected and pro-

cessed in parallel using a sequential algorithm to get an approximate result for the entire 

data set. �e RSP approach enables approximate big data analysis on small computing 

clusters especially when the results from a few RSP blocks are equivalent to those from 

the entire data set [3, 44].

Contributions

Given the statistical and computational advantages of the RSP approach, we employ this 

approach to address the problem of big data exploration and cleaning on small comput-

ing clusters. In this paper, we propose RSP-Explore, an RSP-based method to explore, 

validate and clean big data using a few RSP blocks. Given an RSP stored on a comput-

ing cluster, this method enables data scientists to estimate the statistical properties of 

the entire data set while tuning the amount of processed data according to the available 

resources. Block-level samples of RSP blocks are used to tackle three main tasks: statisti-

cal estimation, error detection, and data cleaning. Since RSP blocks are random sam-

ples of the same size, the basic principle in this method is using sample estimates from 

individual RSP blocks as an approximation of the sampling distribution of the sample 

estimate. From this sampling distribution, an approximate result for the entire data is 

obtained with a confidence interval. �is principle is employed to estimate the summary 

statistics of single features and the correlation coefficients between features. Similarly, 

the error detection problem is addressed by estimating the sampling distribution of the 

sample proportion of errors, outliers, missing, and valid values from a sample of RSP 

blocks.

1 http://hadoo p.apach e.org/.
2 https ://spark .apach e.org/.

http://hadoop.apache.org/
https://spark.apache.org/
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With RSP-Explore, a preliminarily understanding of the general statistical properties 

of the data and the potential types of inconsistent values can be obtained earlier and 

without computing the entire data set. �e estimated statistics and proportions guide 

the definition of data cleaning rules. �ese rules are applied in parallel to clean sam-

ples of RSP blocks. From the cleaned RSP blocks, summary statistics of the unknown 

clean data are estimated. �e three operations, i.e., estimation, detection, and cleaning, 

can be repeated either independently or in a data pipeline to improve the results. �e 

experimental results of three real data sets show that estimates from a sample of RSP 

blocks can rapidly converge toward the true values and that cleaning a sample of dirty 

RSP blocks is enough to estimate the statistical properties of the unknown clean data.

�e main contributions of this paper are as follows:

• We propose RSP-Explore, a new method for big data exploration and cleaning on 

computing clusters using the RSP approach.

• We address error detection as an estimation problem by estimating the proportions 

of inconsistent values in quantitative data;

• We propose an algorithm to estimate the statistical properties of the entire unknown 

clean data set by cleaning only a few RSP blocks;

• We introduce a theoretical analysis on using RSP blocks for statistical estimation;

• We empirically demonstrate the performance of RSP-Explore on three real data sets.

�e remainder of this paper is organized as follows. In "Related work" section, we briefly 

review related work. �en, we describe the Random Sample Partition (RSP) approach 

in "Background" section. After that, we propose the RSP-Explore method in "Methods" 

section. We demonstrate the performance of this method on small computing cluster 

in "Results" section and discuss the implications of this method in "Discussion" section. 

Finally, we conclude this paper in "Conclusions" section.

Related work

In this section, we briefly review recent research directions on exploring and cleaning 

big data on computing clusters and show the differences from our method.

Sampling-based approximate big data analysis

Sampling-based approximation has become a common approach for big data analysis 

in cluster computing frameworks. ApproxHadoop [2] uses online multi-stage sampling 

from HDFS blocks to get approximate results. BlinkDB [45] is a distributed approximate 

query processing engine that uses offline stratified sampling on frequently occurring col-

umns and uniform sampling to support ad-hoc queries. IncApprox [46] uses online strat-

ified sampling to produce an incrementally updated approximate result from streaming 

data. �ese frameworks operate directly on the data and compute error bounds without 

considering data errors. SampleClean [6], on the other hand, combines sampling and 

cleaning to improve accuracy of aggregate queries. A random sample of dirty data is cre-

ated first, and then a data cleaning technique is applied to clean the sample. Next, the 

cleaned sample is used to estimate the results of aggregate queries. SampleClean sup-

ports closed-form estimates based on normal approximation. A query is formulated 
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first as calculating the mean value so that the confidence interval of the result can be 

estimated according to the Central Limit �eorem. ActiveClean [9] is an iterative data 

cleaning framework that cleans a small sample of the data to produce a model similar to 

if the full data set were cleaned. It starts with a dirty model, then incrementally cleans a 

new sample and updates the model. ActiveClean supports convex loss models and uses 

the model as guide to identify future data to clean by cleaning those records likely to 

affect the results.

RSP-Explore has several key differences from these works. First, the entire data is 

stored as ready-to-use disjoint random sample data blocks using the RSP distributed 

data model. Second, RSP-Explore targets at offline workloads where data scientists use a 

variety of techniques to infer global statistical properties from large data volumes. �ird, 

RSP-Explore quantifies the uncertainty of the estimated result using the sampling dis-

tribution rather than closed-form approximation. �us, estimators can be used directly 

without manual reformulation. RSP-Explore can also be applied to predictive modeling 

tasks where an ensemble model is incrementally built from samples of clean RSP blocks.

Big data exploration and pro�ling

�ere are a number of works on extending the mainstream cluster computing frame-

works for exploratory data analysis. Optimus3 implements common data exploration 

and cleaning operations on Spark DataFrames. Spark DataFrame Profile4 generates sta-

tistics (e.g., descriptive statistics, quantiles, histogram) from Spark DataFrames. Cumu-

lon [47] is an end-to-end system to optimize the cost of calculating statistics on the 

cloud. Sketch [48] is a system for aggregation on distributed data sets. Data Canopy [49] 

computes and maintains basic statistics (mean, variance, standard deviation, correlation, 

and covariance) from fixed chunks of data. While these frameworks apply operations to 

the entire data set, RSP-Explore applies sequential functions to a few RSP blocks without 

loading the entire data. RSP-Explore can be implemented as an extension to these frame-

works and the functionalities in these frameworks can be applied to explore and clean 

RSP blocks. For instance, a Spark Dataframe can be created from a sample of RSP blocks 

and processed directly with the operations in these frameworks.

Scaling statistical methods to big data

Cluster computing frameworks with a shared-nothing architecture have been adopted 

to scale iterative algorithms to big data [50]. In addition, to enable data scientists to scale 

existing statistical methods to big data on computing clusters, libraries were developed 

in common data science languages such as R and Python. Dask5 extends common inter-

faces in Pyhton like NumPy, Pandas to distributed environments. Ray DataFrames [23] 

is a library for exploratory data analysis by using the same Panda API in Python to run 

jobs on distributed data sets. RHIPE6 applies the Divide-and-Recombine approach [51] 

to reveal deeper insights from distributed data sets by applying R statistical functions in 

3 https ://hiopt imus.com/.
4 https ://githu b.com/julio asoto dv/spark -df-profi ling.
5 https ://dask.pydat a.org/.
6 http://www.delta rho.org.

https://hioptimus.com/
https://github.com/julioasotodv/spark-df-profiling
https://dask.pydata.org/
http://www.deltarho.org
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parallel to individual distributed data blocks. However, the exploration and combination 

of the block-level results becomes a challenge to data scientists due to the large number 

of distributed data blocks in a big data set and the inconsistency of data distributions in 

HDFS blocks. In RSP-Explore, we solve this problem by first representing the data set as 

an RSP where each block is a random sample, and then using block-level sampling to pro-

cess only a few RSP blocks. On the other hand, RSP blocks can be used directly as subsam-

ples in statistical estimation procedures such as the Bag of Little Bootstraps (BLB) [52].

Background

RSP is a new approach that makes the distributed data blocks of a big data set as ready-

to-use random samples for approximate big data analysis [37]. �is approach can be 

applied to different scenarios where the entire big data set can’t be computed e.g., when 

the data volume is bigger than the available memory, or the data is stored in multiple 

data centers or generated in different time windows. In this section, we briefly present 

the RSP distributed data model and show how this model enables big data computing on 

small computing clusters.

RSP distributed data model

Assume that D is a multivariate data set of N records and M features where N is very 

large so D cannot be analyzed on a single machine. With the RSP model, D is divided 

into K small disjoint random sample data blocks in advance on a computing cluster, 

called RSP blocks. Assume F(x) is the sample distribution function (SDF) of a random 

variable x in D . T = {D1 , D2, . . . , DK } is a random sample partition of D , with K RSP 

blocks each has n records, if

where Fk(x) denotes the sample distribution function of x in Dk and E[Fk(x)] denotes its 

expectation. In practice, D is often stored in HDFS. An RSP is generated from an HDFS 

file of D using the two-stage data partitioning algorithm [42, 43]. Each RSP block is cre-

ated by combining approximately equal random slices from all the original HDFS blocks. 

�is operation can be scheduled to run offline on the computing cluster, i.e., before 

starting a data analysis session. T is saved as an HDFS-RSP file with metadata Tmetadata 

storing RSP block information including the size and location. Selecting an RSP block 

from T is equivalent to drawing a random sample directly from D . Consequently, data 

scientists can use RSP blocks directly in sampling-based approximate big data analysis.

Big data computing with RSP blocks

To analyze D with a function f on a computing cluster, only a few RSP blocks from T are 

randomly selected and computed in parallel on their nodes using a sequential imple-

mentation of f. �is enables small computing clusters to handle data bigger than the 

memory size by using a step-wise process known as the asymptotic ensemble learning 

process. �is process depends on Tmetadata and works as follows:

1. A block-level sample with g RSP blocks, S =

{

Dτ1
, Dτ2

, . . . , Dτg

}

 is selected from T 

without replacement. τ1, τ2, . . . , τg are the identifiers of the selected RSP blocks;

E[Fk(x)] = F(x) for each k = 1, 2, . . . ,K ,
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2. f is applied in parallel to each RSP block in S;

3. �e outputs from these blocks are combined to produce an approximate result for D.

To incrementally improve the results, the previous three steps can be repeated where 

a new block-level sample of T is used each time and the outputs from all the processed 

RSP blocks are combined in an approximate result for the entire data. �is step-wise 

process can run until a satisfactory result is obtained or all RSP blocks are used up. �e 

RSP approach was used for predictive modeling tasks such as classification and regres-

sion [44]. An RSP-based ensemble model built from a sample of RSP blocks is equivalent 

to a single model built from the entire data. In this paper, we employ the RSP approach 

for big data exploration and cleaning.

Methods

Building on the statistical and computational advantages of the RSP approach, we pro-

pose to use this approach to address the problem of big data exploration and cleaning on 

small computing clusters. In this section, we first introduce the RSP-Explore method to 

explore the statistical properties of a big data set D and handle data errors using samples 

of RSP blocks. �en, we present a theoretical analysis on using RSP blocks for statistical 

estimation.

RSP-Explore

Given a random sample partition T of a big data set D with K RSP blocks stored as an 

HDFS-RSP file, the RSP-Explore method enables data scientists to quickly explore the 

general statistical properties of D and define rules for data validation and cleaning. As 

shown in Fig. 1, this method uses block-level samples from an HDFS-RSP file to address 

three main tasks: statistical estimation, error detection, and data cleaning.

�e Statistics Estimator is used to compute an estimate of a statistic of D within a con-

fidence interval. �e Error Detector is used for data validation by estimating the propor-

tions of errors, outliers, missing and valid values in D within a confidence interval. In 

case of inconsistent values, a sample of dirty RSP blocks is cleaned with the Data Cleaner 

in order to estimate the statistical properties of the unknown clean data set Dclean.

Sample Selec�on: Block-Level Sampling

HDFS-RSP files

Sta�s�cs 

Es�mator

Error 

Detector

Data 

Cleaner

Results with Error Bounds

Save 

Cleaned 

RSP Blocks

R
S
P
-E
x
p
lo
re

Fig. 1 RSP-Explore. Block-level samples of RSP blocks are used for statistical estimation, error detection and 
data cleaning
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Statistics estimator

Let f be an estimator function to compute an estimate θ̂ of a statistic θ of D . f is used to 

compute a sample estimate from an RSP block. From a block-level sample S , a set {θ̂q}
g
q=1

 

of g sample estimates are computed in-parallel as shown in Fig. 2. �e sample estimate θ̂q 

is a random variable since it depends on a particular RSP block Dτq , i.e., a particular ran-

dom sample. �us, the sample estimates {θ̂q}
g
q=1

 are used as an approximation of the 

sampling distribution of θ̂ . With this sampling distribution, the variability of the sample 

estimate can be measured and an interval estimate is calculated as an approximate result 

for the entire data. We apply this estimation method to univariate (mean, standard devi-

ation, median, MAD, skewness, kurtosis) and bivariate estimators (correlation). For 

these estimators, the mean of the sampling distribution from S is used an approximate 

estimate θ̂S =
1

g

∑g
q=1

θ̂q . �e Statistics Estimator helps data scientists understand the 

global statistical properties of the data (e.g., mean, standard deviation, median, MAD, 

skewness, kurtosis, and correlation) and define validation rules to explore potential qual-

ity issues in the data with the Error Detector.

Error detector

We address the error detection task in quantitative data as an estimation problem. Let 

X = {x1, x2, . . . , xN } be a random variable defined over a domain of values X and repre-

sented as a feature in D . We categorize the values of X in four categories: error, missing, 

outliers, and valid values:

Fig. 2 Statistical estimation. Sample estimates from block-level samples of RSP blocks are computed in 
parallel and used as an approximate sampling distribution
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• Error values: values that don’t belong to the data type of X (e.g., a negative value in a 

power consumption feature);

• Outliers values: any value that is not error and located more than a specific threshold 

away from the center of the data. Since the mean and standard deviation are sensi-

tive to outliers, we use the median as a robust metric of location instead of the mean, 

and the Median Absolute Deviation (MAD) as a robust metric of dispersion instead 

of the standard deviation [16, 53]. �e MAD measures the median distance of all the 

values from the median. �e outliers threshold is then defined as a × MAD away 

from the median where a is often set to 2, 2.5, or 3.

• Missing values are often represented using a special string, e.g., NA;

• Valid values don’t belong to any of the previous categories.

�e proportion of each category is estimated in a similar way to estimating the statistics 

of D . Let h be a predicate function such that h(xi) = 1 wherever X satisfies a given predi-

cate, corresponding to one of the previous categories, and h(xi) = 0 otherwise for 

1 ≤ i ≤ N  . �e estimator function f is defined to calculate the proportion of values that 

satisfy the target predicate. �e proportion of values of X that satisfy the predicate in D 

is p =
1

N

∑N
i=1

(h(xi) = 1) and the proportion of values that satisfy the predicate in an 

RSP block Dτq is p̂q =
1

n

∑n
j=1

(h(xj) = 1) for 1 ≤ q ≤ g . From a block-level sample S , g 

sample proportions are calculated in-parallel and used as an approximation of the sam-

pling distribution of the sample proportion. �en, the proportion of values that satisfy 

the predicate in S is p̂S =
1

g

∑g
q=1

p̂q . �is average value is returned as an approximate 

proportion of the true proportion p with a confidence interval. For each of the four cate-

gories of values, a predicate is defined to get the approximate proportion from a sample 

of RSP blocks. �e Error Detector can alleviate a critical issue when analyzing big data 

by estimating the proportion of inconsistent values without computing the entire data or 

directly running expensive cleaning operations. �e estimated proportions guide the 

definition of rules to clean the data with the Data Cleaner.

Data cleaner

Let C be a function that applies transformation and imputation operations to repair 

inconsistent values. In practice, C can be any data cleaning technique. A cleaning rule 

is defined for each category of the inconsistent values. It determines whether to delete 

or replace the inconsistent values and what the replacing value is, e.g., mean or median. 

�e Data Cleaner enables data scientists to apply C in parallel to each RSP block in S 

and produce a set of cleaned RSP blocks Sclean =

{

D′

τ1
,D′

τ2
, . . . , D′

τg

}

 . �ese cleaned 

RSP blocks can be saved in HDFS and the metadata of their locations are recorded in 

Tmetadata . For each RSP block, the cleaning status and the location of the cleaned block 

are maintained so that these blocks can be used to estimate the statistical properties of 

the unknown clean data set Dclean with the Statistics Estimator.

As RSP blocks of a clean big data set D are random samples of D , cleaned RSP blocks of D 

are potential representative samples of Dclean . In this paper, we argue that cleaning a sample 

of dirty RSP blocks from T is sufficient to estimate the statistical properties of the unknown 

clean data set Dclean . Instead of cleaning the entire data, which is often not necessary for data 

exploration, the Data Cleaner and Statistics Estimator are used in a pipeline to explore the 
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statistical properties of Dclean as shown in Fig. 3. Each RSP block Dq is processed first with C 

to get a clean RSP block D′

τq
 for 1 ≤ q ≤ g . �en, f is applied to get an estimate θ̂ ′

q from D′

τq
 . 

In this case, the Estimator uses the cleaned RSP blocks to get an average estimate with a con-

fidence interval. �is estimate in expectation is equal to the true statistic θ ′ from the 

unknown entire clean data Dclean . Algorithm 1 shows the basic operations to clean block-

level samples of dirty RSP blocks and calculate estimates from the cleaned RSP blocks.

In addition to the parameters of the target function, e.g., an estimator, a detector, 

or a cleaner, extra parameters are required including the number of RSP blocks g in a 

Fig. 3 Cleaning and estimation. Cleaning block-level samples of dirty RSP blocks to estimate statistics of the 
entire unknown clean data
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block-level sample. �is can be set according to the number of available cores in the 

computing cluster to guarantee parallel processing of the selected blocks. In practice, 

any of these operations can be repeated with multiple samples of RSP blocks in a step-

wise process. Furthermore, a data pipeline of these operations can be defined to explore 

and clean the data.

Theoretical analysis

We introduce a theoretical analysis on using RSP blocks for statistical estimation. First, 

we define and prove Lemma 1 which states that any record in D has the same probabil-

ity to be assigned to any RSP block. �en, we prove that RSP estimates (e.g., mean) are 

unbiased and consistent estimates in Corollary 1.

Lemma 1 For any RSP block Dk =

{

x
(k)
1

, x
(k)
2

, . . . , x
(k)
Nk

}

 , k ∈ {1, 2, . . . ,K } belonging to 

the RSP T = {D1,D2, . . . , DK } of big data set D = {x1, x2, . . . , xN } , P{xi ∈ Dk} =
Nk

N
 and 

P
{

x
(k)
j = xi

}

=
1

N  hold for any i ∈ {1, 2, . . . ,N } and j ∈ {1, 2, . . . ,Nk}.

Proof �ere are C
Nk

N
 possible ways of choosing a subset of Nk records from D . When 

xi ∈ Dk , i ∈ {1, 2, . . . ,N } , there are C
Nk−1

N−1
 ways of drawing the remaining Nk − 1 records 

for RSP block Dk . Hence,

Furthermore, the Nk data positions of RSP block Dk have the equal possibility to take xi . 

�us,

can be derived for any j ∈ {1, 2, · · · ,Nk} . �

Corollary 1 For any RSP block Dk =

{

x
(k)
1

, x
(k)
2

, . . . , x
(k)
Nk

}

 , k ∈ {1, 2, . . . ,K } belonging 

to the RSP T = {D1,D2, . . . , DK } of big data set D = {x1, x2, . . . , xN } , the mean 

µ(k)
=

1

Nk

∑Nk
j=1

x
(k)
j  is an unbiased estimator of mean µ =

1

N

∑
N

i=1
xi of big data set D.

(1)P{xi ∈ Dk} =
C
Nk−1

N−1

C
Nk

N

=
Nk

N
.

(2)P
{

x
(k)
j = xi

}

=
1

Nk
P{xi ∈ Dk} =

1

N
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Proof From Lemma  1, we can get P
{

x
(k)
j = xi

}

=
1

N  for any i ∈ {1, 2, . . . ,N } and 

j ∈ {1, 2, . . . ,Nk} . Hence, we can derive:

It indicates that µ(k) is an unbiased estimator of mean µ , i.e., the estimator µ(k) has the 

unbiasedness. �

Based on Corollary 1, we can further derive that µ(k) is a consistent estimator of mean µ , 

i.e., the estimator µ(k) has the consistency. �e variance of mean µ(k) can be expressed as 

Eq. (4). According to Chebyshev’s inequality, we can get

(4)

(3)

E
�

µ(k)
�

= E





1

Nk

Nk
�

j=1

x
(k)
j





=

1

Nk

Nk
�

j=1

E
�

x
(k)
j

�

=

1

Nk

Nk
�

j=1

�

1

N

N
�

i=1

xi

�

=

1

N

1

Nk

Nk
�

j=1

N
�

i=1

xi

=

1

N

N
�

i=1

xi = µ.

(5)P

{
∣

∣

∣
µ(k)

− µ

∣

∣

∣
≥ ε

}

≤
D

[

µ(k)
]

ε2
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holds for any given ε > 0 . Furthermore, the inequality can be transformed to

When the mean and variance of the population exist, the variance σ 2
=

∑
N

i=1
(xi−µ)2

N−1
 of D 

is an unbiased estimator of the population variance. It is reasonable to assume that σ 2 is 

bounded. Hence, we can derive

and

In conclusion, we prove that the mean of an RSP block Dk is an unbiased and consistent 

estimator of the mean of D . As a result, RSP blocks can be used to get an approximate 

sampling distribution of a sample statistic and get an average estimate within a confi-

dence interval.

Results

In this section, we demonstrate the performance of RSP-Explore in univariate (location, 

variability/dispersion, skew, kurtosis) and bivariate exploration (correlation) from both 

clean and dirty data.

Experiment environment and settings

We tested RSP-Explore on a small computing cluster of 5 nodes with Apache Spark 1.6 

and Microsoft R Server 9.1. We used our Spark implementation of the two-stage data 

partitioning algorithm [42] to generate an HDFS-RSP file from each data set. �e char-

acteristics of the three data sets and the RSPs generated for this experiment are listed in 

Table 1. For statistical estimation of summary statistics and correlation coefficients, we 

applied existing sequential R functions to a sample of RSP blocks in parallel. Each sample 

of g RSP blocks was executed as a single Spark job with only one stage of g Spark tasks. 

On the other hand, we applied the parallelized functions from RevoScaleR7 package to 

the entire data to get the true statistics and compare with the results from block-level 

samples of RSP blocks. To quantify the uncertainty of the RSP-based estimates, we used 

percentiles to calculate the confidence interval of an RSP-based estimate. In this paper, 
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Table 1 Datasets

Characteristics of the real data sets and the RSPs generated for them

Name N M K n

HIGGS 11,000,000 28 100 110,000

Power 46,669,266 99 6667 7000

AirOnTime87to12 148,619,655 47 298 498,724

7 https ://docs.micro soft.com/en-us/machi ne-learn ing-serve r/r-refer ence/revos caler /revos caler .

https://docs.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
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we report the results within 90% confidence level, i.e., between the 5th and 95th percen-

tiles of the sampling distribution. We also show error bars from multiple runs of the step-

wise process to show the variance of the results. For error detection and data cleaning, we 

implemented the error detector and data cleaner functions as sequential R functions and 

applied them to a sample of RSP blocks in a similar way to existing R functions. On the 

other hand, we used the rxDataStep transformation in RevoScaleR to apply validation and 

cleaning rules to the entire data and get the true proportions and the entire clean data. 

For this experiment, we configured the cluster to use 96 cores. �us, to avoid the latency 

in processing RSP blocks, the number of RSP blocks g in a block-level sample should not 

largely exceed 96. Since HIGGS data has only 100 RSP blocks, we tested the RSP-Explore 

using block-level samples with only g = 5 RSP blocks to show how the results change 

after each sample. For Power data, we used block-level samples with g = 100 RSP blocks.

Exploring HIGGS data

For this experiment, we generated an RSP from HIGGS8 data with K = 100 RSP blocks 

and n = 110,000 records in each block. We started the experiment by exploring the data 

distribution and summary statistics in some RSP blocks. �ese blocks have distributions 

as shown in Fig. 4 and there is no significant difference between the summary statistics 

values from these blocks. We used the Statistics Estimator and the Error Detector to fur-

ther explore this data. As an example, we consider feature V2 that represents lepton pT 

in HIGGS data. We summarize the results as follows:
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Fig. 4 Exploring the data distribution in HIGGS. Density plots of V2 in 4 RSP blocks from HIGGS data

8 https ://archi ve.ics.uci.edu/ml/datas ets/HIGGS .

https://archive.ics.uci.edu/ml/datasets/HIGGS
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Summary statistics

In Table 2, we compare the true summary statistics (mean, standard deviation, median, 

MAD, skewness, and kurtosis) of feature V2 with the RSP-based estimates from g = 15 

RSP blocks. We can observe that there is no significant difference between the RSP-

based estimates and the true values. �e estimates have small variance and narrow con-

fidence interval. To show how the RSP-based estimates change when adding more RSP 

blocks, we ran the Estimator incrementally on block-level samples with 5 RSP blocks 

until all RSP blocks were used up. We notice that the estimated value converges quickly 

to the true value and the error range becomes narrower with more RSP blocks as shown 

in Fig. 5.
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Fig. 5 Summary statistics of V2 in HIGGS. Incremental estimation of summary statistics of V2 using samples 
of RSP blocks of HIGGS data ( g = 5 ). The dotted line represents the true value of the statistic calculated from 
the entire HIGGS data

Table 2 Summary statistics of V2 in HIGGS data

RSP-based estimates were calculated from a sample of RSP blocks ( g = 15)

Stat True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Mean 0.9914658 0.9916447 ± 0.001691498 0.9892427 0.9921890 0.9941837

StdDev 0.5653777 0.5657651 ± 0.002567618 0.5625647 0.5652471 0.5696894

Median 0.8533714 0.8531884 ± 0.001508743 0.8513674 0.8530054 0.8555858

MAD 0.4485073 0.4483536 ± 0.001575363 0.4464044 0.4482361 0.4509222

Skewness 1.758388 1.758561 ± 0.03039423 1.719768 1.753431 1.810040

Kurtosis 5.57178304 5.551798 ± 0.4035557 5.048026 5.532661 6.335199
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Correlation

Table 3 shows the correlation coefficients between V2 and 6 other features in HIGGS data. 

We also compare the estimated coefficients from g = 15 RSP blocks with the true values. 

Figure 6 shows how the estimated coefficients change with more RSP blocks. Similarly to 

summary statistics, the same observation applies in case of correlation coefficients.

Error detection

We used the Detector to check whether HIGGS data has inconsistent values. For 

instance, Table 4 shows that V2 has no errors and no missing values, but there is a small 

proportion of outliers. In this example, negative values are errors and outliers are within 

3 ∗ MAD of the median. Since HIGGS is not very big and there is only a small proportion 
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Fig. 6 Correlation between V2 and 6 other features in HIGGS. Incremental estimation of Pearson’s correlation 
coefficients between V2 and 6 other features using samples of RSP blocks of HIGGS data ( g = 5 ). The dotted 
line in each plot represents the coefficient computed from the entire HIGGS data

Table 3 Correlation between V2 and 6 other features in HIGGS data

RSP-based coe�cients were calculated from a sample of RSP blocks ( g = 15)

Feature True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

V3 − 0.000153 − 0.000151 ± 0.003051 − 0.003929 − 0.000420 0.002098

V10 − 0.006265 − 0.006065 ± 0.003414 − 0.011673 − 0.006966 − 0.002738

V15 − 0.011190 − 0.011556 ± 0.003186 − 0.015670 − 0.011981 − 0.006128

V20 0.000090 0.000023 ± 0.003806 − 0.003273 0.000171 0.007839

V25 0.272327 0.274107 ± 0.003175 0.266316 0.270652 0.277722

V29 0.141168 0.141790 ± 0.003782 0.135513 0.141922 0.146332
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of outliers, we don’t show the effect of data cleaning in this case. In the following section, 

we demonstrate this point with Power data.

Exploring Power data

Power data was extracted from a smart grid database of an industrial area in Guangdong 

province. �is data contains 46,669,266 records with 98 features: smart meter identifier, 

date, and the remaining 96 features represent power consumption every 15 minutes in 

a day. For this experiment, we created an RSP with K = 6667 RSP blocks and nearly 

n = 7000 records in each RSP block.

We started the experiment by exploring the data distribution and summary statistics 

in some RSP blocks. Figure 7 shows the density plots of V38 in 4 RSP blocks. In these 

plots, we limit the maximum value of V38 to 50, 000 to show the distribution clearly. 

We can see that there is no significant difference between the mean values from differ-

ent RSP blocks. However, the standard deviation values are not consistent. It is so high 

when there are extreme values such as those in blocks 1528 and 2569 in the Figure. To 

Table 4 Proportions of errors, outliers, missing and valid values in V2 in HIGGS data

RSP-based proportions were calculated from a sample of RSP blocks ( g = 15)

Category True value Summary of RSP-based proportions

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Errors 0 0 ± 0 0 0 0

Outliers 0.04084664 0.04082 ± 0.0006663723 0.03977546 0.04074545 0.04160728

Missing values 0 0 ± 0 0 0 0

Valid values 0.95915336 0.95918 ± 0.0006663723 0.9583927 0.9592546 0.9602245
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Fig. 7 Exploring the data distribution in Power data. Density plots of V38 in 4 RSP blocks from Power data
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investigate more about this data, we used block-level samples with g = 100 RSP blocks 

in the estimator, detector and cleaner. In this paper, we show only the results for only 

one feature, V38. We summarize our findings as follows:

Summary statistics

Table 5 compares the RSP-based statistics of V38 from 100 RSP blocks and the true val-

ues from the entire data. While the estimated median and MAD are close to the true 

values and with narrow confidence intervals, other statistics differ significantly from the 

true values and with large confidence intervals. �is is expected especially with the high 

standard deviation of V38 in some RSP blocks due to extreme values. To show how the 

RSP-based estimates from this dirty Power data change when adding more RSP blocks, 

we ran the Estimator incrementally on block-level samples with 100 RSP blocks until 

all RSP blocks were used up. Figure 8 shows the results from 25 runs of this process for 
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Fig. 8 Summary statistics of V38 in power. Incremental estimation of summary statistics of V38 using samples 
of RSP blocks of Power data ( g = 100)

Table 5 Summary statistics of feature V38 in Power data

RSP-based estimates were calculated from a sample of RSP blocks ( g = 100)

Stat True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Mean 5314.49 5256.008 ± 215.3196 4942.404 5254.394 5602.095

StdDev 15127.22 10937.52 ± 4318.59 5990.154 10331.031 19210.659

Median 3100 3103.9 ± 88.62217 2982.475 3099.750 3243.750

MAD 3783.595 3776.738 ± 106.9769 3616.877 3783.966 3954.020

Skewness − 108.5203 20.84063 ± 12.67476 2.474514 21.064943 39.870585

Kurtosis 71059.13 802.1309 ± 660.3176 11.966831 692.604567 1977.642239
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each statistic. �e estimates of the mean, median and MAD converge quickly to the true 

values. In case of the standard deviation, skewness, and kurtosis, the estimate converges 

to a value that differs significantly from the true value.

Correlation

As the features in this data represent power consumption at certain time points in a day, 

we can expect that each feature has higher correlation with nearby features. We used the 

Estimator to explore the correlation coefficients between features. For instance, Table 6 

shows the RSP-based coefficients between V38 and 6 other features. To show how the 

correlation coefficients change with more data, we ran the Estimator incrementally 

to compute the correlation coefficients from block-level samples with 100 RSP blocks 

until all the blocks were used up. �e plots in Fig. 9 shows the results for the correlation 

between V38 and 6 other features. In a similar way to the RSP-based summary statistics, 
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Fig. 9 Correlation between V38 and 6 other features in power. Incremental estimation of Pearson’s 
correlation coefficients between V38 and 6 other features using samples of RSP blocks of Power data 
( g = 100 ). The dotted line in each plot represents the coefficient computed from the entire data

Table 6 Correlation between V38 and 6 other features in Power data

RSP-based coe�cients were calculated from a sample of RSP blocks ( g = 100)

Feature True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

V3 0.8512235 0.7536487 ± 0.1524914 0.5233034 0.7376381 0.9631805

V15 0.8720032 0.8009430 ± 0.1265738 0.6350162 0.7963755 0.9701548

V37 0.96786065 0.97107535 ± 0.02932448 0.93525808 0.97572809 0.99619922

V39 0.95651256 0.96303372 ± 0.02644475 0.92738897 0.96685111 0.99514627

V65 0.8905704 0.8496362 ± 0.0984346 0.6913239 0.8548659 0.9741665

V98 0.8527415 0.7653636 ± 0.1444491 0.5650703 0.7657670 0.9650463
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we notice that the estimated correlation coefficient converge quickly and adding more 

data doesn’t change the value significantly. However, RSP-based coefficients are not so 

close to the values from the entire data. Since Pearson’s correlation coefficient depends 

on the standard deviation, it is sensitive to outliers. 

Error detection

Summary statistics from a block-level sample of RSP blocks revealed that Power data 

has inconsistent values. To investigate more about these inconsistent values, we defined 

three validation rules on each of the power consumption features: (1) negative values 

are considered as errors, (2) outliers are values that are more than 3 ∗ MAD from the 

median, and (3) missing values are represented as NAs. We estimated the average pro-

portions from block-level samples with g = 100 RSP blocks and updated the results 

incrementally. Figure  10 shows that the estimated proportions don’t vary significantly 

with more RSP blocks. In fact, the average proportions from 100 RSP blocks are compa-

rable to those computed from the entire data as shown in Table 7. Similarly to the sum-

mary statistics, incremental proportions with error ranges are shown in Fig. 11.

Fig. 10 Proportions of V38. Average proportions of errors, outliers, missing, and valid values of V38 from 
incremental batches of RSP blocks (from 100 to 1000)

Table 7 Proportions of errors, outliers, missing and valid values in V38

RSP-based proportions were calculated from a sample of RSP blocks ( g = 100)

Category True value Summary of RSP-based proportions

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Errors 0.00000154 0.00001408 ± 0.00001408 0 0 0

Outliers 0.03630323 0.03663272 ± 0.002324408 0.03328592 0.03656265 0.04053885

Missing values 0.53230704 0.5320224 ± 0.005352080 0.52315101 0.53212264 0.54086298

Valid values 0.43138819 0.4313435 ± 0.005839722 0.42173133 0.43105753 0.44055828
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Data cleaning

We applied the same cleaning rules to the three categories: errors, outliers and missing 

values. Since the proportion of these values is high, we replaced them with the median 

value. We used the Data Cleaner to apply these rules to only the first block-level sample 

of g = 100 RSP blocks and recomputed the summary statistics and correlation coeffi-

cients from the cleaned blocks. For comparison, we also applied the same rules to the 

entire Power data and recomputed the true values. Table 8 shows the summary statis-

tics of V38 from the cleaned RSP blocks and the true statistics from the entire clean 

data. Similarly, Table 9 shows the correlation coefficients between V38 and the 6 other 

features in the cleaned data. To show how the estimated values change with more data, 

we ran Algorithm 1 incrementally using block-level samples with g = 100 RSP blocks. 

Figure 12 shows the results from 25 runs of this process for each statistic and Fig. 13 

shows the results for the correlation between V38 and the 6 other features. �e esti-

mated values from clean data have the expected characteristics of RSP-based estimates, 

e.g., converge quickly with small error bounds. �is shows the effect of data cleaning and 

that only a few clean RSP blocks are sufficient to explore the statistical properties of the 

entire unknown clean data.

Exploring airlines data

For this experiment, we generated an RSP from the Airlines performance data, AirOn-

Time87to129, with K = 298 RSP blocks and n = 500, 000 records in each block. �en, 

we used RSP-Explore to explore different features about flights delay such as ArrDelay. 
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Fig. 11 Proportions of V38. Incremental estimation of proportions in V38 using samples of RSP blocks of 
Power data ( g = 100)
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Fig. 12 Summary statistics of V38 in clean Power data. Incremental estimation of summary statistics of V38 
using samples of clean RSP blocks of Power data ( g = 100)

Table 8 Summary statistics of feature V38 in clean Power data

RSP-based estimates were calculated from a sample of clean RSP blocks ( g = 100)

Stat True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Mean 3404.014 3396.572 ± 101.0598 3241.725 3403.829 3559.236

StdDev 2388.191 2382.172 ± 69.43742 2271.915 2378.807 2486.027

Median 3100 3103.9 ± 88.62217 2982.475 3099.750 3243.750

MAD 0 0 ± 0 0 0 0

Skewness 1.996612 1.996031 ± 0.03404484 1.947026 1.997957 2.053139

Kurtosis 5.185274 5.187026 ± 0.2038164 4.842079 5.144150 5.537230

Table 9 Correlation between V38 and 6 other features in clean Power data

RSP-based coe�cients were calculated from a sample of clean RSP blocks ( g = 100)

Feature True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

V3 0.3126873 0.3132926 ± 0.01267681 0.2956115 0.3131225 0.3356508

V15 0.3268368 0.3276999 ± 0.01238780 0.3059839 0.3286929 0.3459587

V37 0.8598520 0.8601381 ± 0.01011005 0.8427635 0.8606978 0.8760539

V39 0.5330211 0.5335060 ± 0.01609916 0.5082045 0.5346581 0.5578231

V65 0.63534 0.6340810 ± 0.01368082 0.6108725 0.6361881 0.6562849

V98 0.4790145 0.4784269 ± 0.01759861 0.4507184 0.4788393 0.5072602
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Figure 14 shows the density plots of the ArrDelay feature in four RSP blocks. We notice 

the similar distributions in these blocks. We used a block-level sample with only g = 10 

RSP blocks to estimate the statistical properties of the entire data. Table 10 compares 

true statistics with RSP-based estimates. Similarly, the true correlation coefficients 

between ArrDelay and 6 other features in the data are compared with the RSP-based 

coefficients in Table 11. We also used the Error Detector to estimate the proportions of 

inconsistent values in ArrDelay. As shown in Table 12, this feature has a small propor-

tion of outliers and missing values. From the previous tables we can see that 10 RSP 

blocks of the AirOnTime87to12 data can be used effectively to get summary statistics 

and proportions with narrow confidence intervals. �ese approximate results help data 

scientists decide on how the data should be cleaned in a similar way to Power data.   

Table 10 Summary statistics of ArrDelay in AirOnTime87to12 data

RSP-based estimates were calculated from a sample of RSP blocks ( g = 10)

Stat True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Mean 6.5666 6.471984 ± 0.1872946 6.229485 6.518680 6.728294

StdDev 31.55641 31.58147 ± 0.5532607 30.73029 31.59074 32.25136

Median 0 0 ± 0 0 0 0

MAD 13.3434 13.3434 ± 0 13.3434 13.3434 13.3434

Skewness 5.763419 5.685329 ± 0.3536372 5.189962 5.765824 6.116367

Kurtosis 90.08612 88.75798 ± 17.53257 68.61477 87.41795 115.98568

Table 11 Correlation between ArrDelay and 6 other features in Airlines data

RSP-based coe�cients were calculated from a sample of RSP blocks ( g = 10)

Feature True value Summary of RSP-based estimates

Mean ± StdDev 5th percentile 50th percentile 95th percentile

DepDelay 0.9257360 0.9266382 ± 0.0098338 0.906661909 0.929922510 0.936090184

WeatherDelay 0.2616046 0.2592562 ± 0.0233771 0.228037031 0.258204030 0.297533928

Distance − 0.0134785 − 0.0151175 ± 0.0123154 − 0.034275887 − 0.016134390 0.006646666

AirTime − 0.0146634 − 0.0170937 ± 0.0124837 − 0.036912348 − 0.019335688 0.004608020

CarrierDelay 0.5357752 0.5348132 ± 0.0297866 0.489324517 0.534856336 0.586338471

NASDelay 0.3217719 0.3181037 ± 0.0243393 0.284709646 0.320763065 0.352731115

Table 12 Proportions of  errors, outliers, missing and  valid values in  ArrDelay 

in AirOnTime87to12 data

RSP-based proportions were calculated from a sample of RSP blocks ( g = 10)

Category True value Summary of RSP-based proportions

Mean ± StdDev 5th percentile 50th percentile 95th percentile

Errors 0 0 ± 0 0 0 0

Outliers 0.07903821 0.07931381 ± 0.00185624 0.07680381 0.07920513 0.08183604

Missing values 0.02047453 0.02039184 ± 0.00111821 0.01903729 0.02016446 0.02201047

Valid values 0.90048725 0.9002944 ± 0.00227722 0.8977497 0.9003487 0.9037174
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Discussion

In the previous experiments, we used three real data sets to demonstrate the statistical 

advantages of the RSP-Explore method. We can see that a few RSP blocks are sufficient 

to explore both clean and dirty data (less than 15% of HIGGS, 1.5% of Power, and 3.5% of 

AirOnTime87to12). In average, the processing time is reduced from minutes to seconds 

for these data sets on our small computing cluster with 5 nodes. Since data scientists 

iteratively apply a variety of techniques to explore a data set, the RSP-Explore method 

can lead to significant implications on the scalability and efficiency of big data explora-

tion tasks and the productivity of data scientists. �is is basically due to the underlying 

RSP data model that facilitates online random sampling from big data in cluster comput-

ing frameworks [37].

In this paper, we demonstrate the performance of RSP-Explore on numerical data. 

However, the same method can be used with categorical data. For instance, a block-level 

sample of RSP blocks can be used to estimate the relative frequencies of the categories 

in a categorical feature. Similarly, the proportion of erroneous categorical values can 

be estimated in the same way as we estimate the proportions of inconsistent values in 

numerical data. Furthermore, RSP-Explore can be extended directly to support logical 

data cleaning tasks such as those discussed in [15, 54]. A block-level sample can be used 

to estimate the proportion of records that don’t satisfy a certain constraint or the pro-

portion of values that are slightly different from the correct value. In this case, the esti-

mated proportions can help data scientists decide on the repairing strategy or whether 

to tolerate small differences in the values. Since RSP-Explore can work on small batches 

of RSP blocks, it can also be employed for interactive data cleaning where data scientists 

correct the violations of integrity constraints in a block-level sample of RSP blocks. �is 

is necessary for human-in-the-loop data analysis [55–58].

In principle, this method can be applied to any multivariate data set where objects are 

represented by one or more features and stored in a tabular format. �is is a common 

form for representing different types of data whether the source data is structured, semi 

structured or unstructured. For instance, a corpus of text data is usually represented in 

a document-term matrix that is similar to a data frame with records representing the 

documents and features representing the terms. �is matrix can be stored as an RSP. 

�en, the RSP-Explore method can be applied, for instance, to estimate the distribution 

of a term frequency in the entire corpus using only a block-level sample of RSP blocks. 

�is can be used to identify potential stop words in the corpus.

As we demonstrated in this paper, RSP-Explore is a good method to quickly under-

stand the global statistical properties in a big data set using existing sequential or user-

define functions. �e basic statistics and proportions are estimated from a block-level 

sample without computing the entire data. �e number of RSP blocks g in a block-level 

sample can be determined according to the available cores in the cluster. Unfortunately, 

these computational and statistical advantages can’t be obtained directly in some cases:

• Currently, RSP-Explore can’t be used to get an approximate histogram. While it is 

possible to get histograms of individual RSP blocks, building an approximate histo-

gram requires criteria for combining local histograms and quantifying the uncer-

tainty of the approximated global histogram. We are currently working on extend-
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ing RSP-Explore to build an approximate equi-width histogram that can be used to 

quickly understand the probability distribution of the entire data;

• RSP-Explore can’t be used directly to detect and repair duplication errors. It needs 

an additional step to check duplications across RSP blocks. We are currently experi-

menting this idea. Furthermore, empirical and theoretical evidences are necessary to 

study the affect of de-duplication on the probability distribution in RSP blocks and 

the similarity between these blocks and the entire unknown clean data.In fact, big 

data cleaning burden would dramatically be alleviated if repairing duplicates in only 

a small block-level sample was enough to get samples of the entire unknown clean 

data.

• RSP-Explore is not designed for streaming data. As we mentioned before, we target 

at offline workloads where data scientists explore big data sets on computing clusters 

with a variety of techniques. For steaming data, a different strategy is required to get 

synopses of the data such as sketching [59].

• If the target is to find statistics or proportions in a certain subspace in the data, we 

may need alternative data partitioning algorithms to create RSP blocks with spe-

cific characteristics (e.g., each block is a random sample of the observations about 

customers in a certain city or branch). �is issue still needs more investigation and 

experiments.

Conclusions

In this paper, we presented the RSP-Explore method for big data exploration and clean-

ing on small computing clusters. �is method addresses three main tasks using the RSP 

approach: statistical estimation, error detection and data cleaning. With this method, 

data scientists can tune the amount of processed data according to the available cores in 

a computing cluster. We demonstrated that a few RSP blocks are enough to explore the 

statistical properties of a big data set including summary statistics and proportions of 

inconsistent values. �e experimental results of three real data sets show that RSP-based 

estimates can rapidly converge toward the true values and that cleaning a sample of RSP 

blocks is enough to estimate the statistical properties of the unknown clean data. Some 

of our current and future works include using the RSP approach for histogram estima-

tion, data visualization, and feature selection. In addition, we are experimenting alterna-

tive data partitioning algorithms to generate RSP blocks on small computing cluster.
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