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Abstract 16 

Background: Our aim is to produce guidance on exploring and mitigating possible bias when genetic 17 

instrumental variables (IVs) associate with traits other than the exposure of interest in Mendelian 18 

randomization (MR) studies.     19 

Methods: We use causal diagrams to illustrate scenarios that could result in IVs being related to 20 

(non-exposure) traits. We recommend that MR studies explore possible IV-non-exposure 21 

associations across a much wider range of traits than is usually the case. Where associations are 22 

found, confounding by population stratification should be assessed through adjusting for relevant 23 

population structure variables. To distinguish vertical from horizontal pleiotropy we suggest using 24 

bidirectional MR between the exposure and non-exposure traits and MR of the effect of the non-25 

exposure traits on the outcome of interest. If vertical pleiotropy is plausible, standard MR methods 26 

should be unbiased. If horizontal pleiotropy is plausible, we recommend using multivariable MR to 27 

control for observed pleiotropic traits and conducting sensitivity analyses which do not require prior 28 

knowledge of specific invalid IVs or pleiotropic paths. 29 

Results: We applied our recommendations to an illustrative example of the effect of maternal 30 

insomnia on offspring birthweight in the UK Biobank. We found little evidence that unexpected IV-31 

non-exposure associations were driven by population stratification. Three out of six observed non-32 

exposure traits plausibly reflected horizontal pleiotropy. Multivariable MR and sensitivity analyses 33 

suggested an inverse association of insomnia with birthweight, but effects were imprecisely 34 

estimated in some of these analyses.         35 

Conclusions: We provide guidance for MR studies where genetic IVs associate with non-exposure 36 

traits. 37 

(word limit: 250; word count: 247)  38 
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Key messages 39 

• Genetic variants are increasingly found to associate with more than one social, behavioural or 40 

biological trait at genome-wide significance, which is a challenge in Mendelian randomization 41 

(MR) studies. 42 

• Four broad scenarios (i.e. population stratification, vertical pleiotropy, horizontal pleiotropy and 43 

reverse causality) could result in an IV-non-exposure trait association. 44 

• Population stratification can be assessed through adjusting for population structure with 45 

individual data, while two-sample MR studies should check whether the original genome-wide 46 

association studies have used robust methods to properly account for it. 47 

• We apply currently available MR methods for discriminating between vertical and horizontal 48 

pleiotropy and mitigating against horizontal pleiotropy to an example exploring the effect of 49 

maternal insomnia on offspring birthweight.  50 

• Our study highlights the pros and cons of relying more on sensitivity analyses without 51 

considering particular pleiotropic paths versus systematically exploring and controlling for 52 

potential pleiotropic paths via known characteristics.  53 
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Introduction 54 

Mendelian randomization (MR) is a special case of instrumental variable (IV) analysis where single 55 

nucleotide polymorphisms (SNPs) randomly allocated at conception are used as the IVs.(1, 2) MR 56 

requires three key assumptions: first, IVs are strongly associated with an exposure of interest 57 

(relevance); second, there are no common causes between IVs and an outcome of interest 58 

(independence); and third, IVs influence the outcome only through the exposure (exclusion 59 

restriction).(1, 2) While the relevance assumption can be tested, the independence and exclusion 60 

restriction assumptions are difficult to verify and only their plausibility can be explored.(3) One 61 

common approach to date is to test for associations between genetic IVs and a range of non-62 

exposure traits in either one- or two-sample setting as a way to assess the specificity of the genetic 63 

IV.(4-7)  64 

With increasing sizes of genome-wide association studies (GWAS), and more extensive coverage of 65 

the genome due to imputation with more comprehensive panels, SNPs are increasingly found to 66 

associate with multiple traits.(8, 9) Therefore, we aim to develop guidance for assessing potential 67 

violations of independence and exclusion restriction assumptions when genetic IVs are associated 68 

with other (non-exposure) traits. This paper is laid out as follows. In section 1, we use directed 69 

acyclic graphs (DAGs) to illustrate four scenarios that could result in an association of a genetic IV 70 

with a non-exposure trait and highlight which scenarios would bias MR estimates. In section 2, we 71 

describe different methods for discriminating between scenarios and methods for mitigating against 72 

potential bias for both one- and two-sample settings. In section 3, we apply this framework to an MR 73 

analysis exploring the potential causal relationship between maternal insomnia and offspring 74 

birthweight in the UK Biobank (UKB). In section 4, we end with a discussion of our 75 

recommendations.   76 
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Scenarios that could explain associations of genetic IVs with multiple traits 77 

There are four broad scenarios consistent with genetic IVs (Z) being associated with multiple traits 78 

(Table 1). Population stratification (PS; DAGs 1.1-1.3 in Table 1), might occurs due to the study 79 

including subgroups of people with different ancestry or who were born or live in different 80 

geographical locations. If the distribution of SNPs and of non-exposure traits (W) differs by these 81 

subgroups, then this PS is a common cause of Z and W and generates an association between 82 

them.(10) As an example of this, evidence shows that place of birth in UKB has been associated with 83 

genetic IVs for education, height and body mass index (BMI), and also with health outcomes.(11) If PS 84 

affects the distribution of Z and the outcome (Y) directly or via W, PS could confound MR estimates 85 

(DAGs 1.1-1.2). This would represent a violation of the independence assumption. If PS confounds 86 

the Z-exposure (X) association, Z could still be used to estimate the unbiased effect of X on Y if PS did 87 

not affect Y independently of X (DAG 1.3). 88 

Pleiotropy refers to the association of a SNP with multiple phenotypes, and has two types: vertical 89 

(also known as spurious or false) and horizontal (also known as genuine or true).(12) In the scenario of 90 

vertical pleiotropy (DAGs 2.1-2.3 in Table 1), Z is a cause of X, which in turn affects Y. Despite 91 

pleiotropic associations of Z with X and W, the effect of Z on Y is fully mediated by X. Therefore, the 92 

exclusion restriction assumption is not violated.(13) In the scenario of horizontal pleiotropy (DAGs 93 

3.1-3.3 in Table 1), Z is a cause of X and W, and both of them affect Y independently. This violates 94 

the exclusion restriction assumption leading to potential bias in MR estimates.(13)  95 

In the scenario of reverse causality (DAG 4.1 in Table 1), Z is really a primary cause of Y, which in 96 

turn affects X. As such, inclusion of Z into IVs for X would give a biased X-Y association due to a 97 

violation of the exclusion restriction assumption.(14) With respect to the focus of this paper, this 98 

would only result in an association of Z with W if Z directly or indirectly influences W (DAG 4.1). We 99 

have included this scenario for completeness. However, exploration of Z-W associations is not a 100 

good way of identifying causal directions between X and Y. Bidirectional MR and Steiger 101 
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directionality test should be more suitable for exploring causal directions between any two traits,(14) 102 

and will be described in recommendation 4 of the next section.   103 
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Recommendations for exploring above scenarios and to obtain unbiased MR estimates 104 

Having described the different scenarios that could result in genetic IVs relating to non-exposure 105 

traits below we provide a list of recommendations for first identifying such non-exposure traits and 106 

then exploring which are likely to bias the main MR results and how that might be mitigated 107 

(summarised in Table 1).  108 

1. Searching more thoroughly for genetic IV-non-exposure trait associations 109 

To date most MR studies have explored associations of genetic IVs with potential confounders of 110 

exposure-outcome associations. By definition exposure-outcome confounders are unlikely to 111 

influence genetic variants (which are fixed at conception) and the association of genetic IVs with 112 

several non-exposure traits are likely to reflect violation of the exclusion restriction via pleiotropy 113 

(i.e. the direction of the arrow will go from genetic variants to the confounders rather than the other 114 

way).  Consequently, selection of non-exposure trait associations should aim to explore violation of 115 

the independence and exclusion restriction assumptions and their specific mechanisms by exploring 116 

associations with any risk factors for the outcome, rather than focus solely potential exposure-117 

outcome cofounders.  118 

Once this is acknowledged there are two broad approaches that could be used to identify non-119 

exposure traits that genetic IVs might influence in either one- or two-sample MR. One is to use 120 

prior/existing knowledge of the key causes of the outcome and then examine whether the genetic 121 

exposure-IV relates to any of these non-exposure causes of the outcome. The second is to undertake 122 

a hypothesis free comprehensive genotype-to-phenotype (also known as Phenome-wide) approach, 123 

in which we use automated systems to explore all possible associations of our genetic IVs.(15, 16) 124 

There are differing pros and cons of these two approaches including different challenges relating to 125 

balance between valid application of the following recommendations 3-5 versus a greater reliance 126 

on sensitivity analyses in recommendation 6. We explore this further in the discussion. 127 
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2. Assessing the impact of population stratification 128 

In one-sample MR with individual participant data, we recommend exploring associations of Z with 129 

as many indicators of PS as possible. These could include place (country, region, town, 130 

longitude/latitude) of birth and residence, study centre, and genetic principal components of 131 

ancestral background. Adjusting the Z-W associations for these sources of PS and exploring whether 132 

this alters the association is also useful for exploring PS. If the association was attenuated after 133 

adjustment, it would suggest that the Z-W association may be driven by PS. In two-sample MR using 134 

summary statistics, the data have typically been generated a priori and thus the investigators are 135 

limited in what they can do to account for PS. However, they can still check whether the original 136 

GWAS has used robust genomic control methods to properly account for PS. Newly developed two-137 

sample MR methods (MR-PRESSO,(17) GSMR,(18) LCV(19) and GIV(20)) may not be able to overcome PS 138 

either if PS is not controlled in the original GWAS, as acknowledged by Koellinger et al.(10)   139 

3. Assessing bias due to horizontal pleiotropy by using MR to explore the W-Y association 140 

After excluding the possibility of bias by population stratification, it is important to investigate 141 

whether unexpected Z-W associations might be explained by horizontal pleiotropy. We recommend 142 

first undertaking MR to explore whether there is evidence for the effect of W on Y. This requires 143 

valid genetic IVs for W, which may not always be available, and sufficient statistical power to 144 

precisely estimate the W-Y association. It is also important to consider the strength of the genetic 145 

IVs for W, as weak instrument bias would tend to bias the estimate towards the observational 146 

association in one-sample MR but to the null in two-sample MR with non-overlapping samples and 147 

increase the standard errors of the estimate.(21) If there are valid and strong genetic IVs for W and 148 

these provide (convincing) evidence that W does not affect Y, then there cannot be violation of the 149 

exclusion restriction criteria via W. If there is evidence for an effect of W on Y, or it is not possible to 150 

determine this, then bidirectional MR of the effect of X-W versus W-X is valuable (next point).  151 
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4. Distinguishing vertical from horizontal pleiotropy by testing causal directions between X and 152 

W 153 

If there is no causal effect between X and W, horizontal pleiotropy (DAG 3.1) would be more 154 

plausible than vertical pleiotropy (DAGs 2.1-2.3). If bidirectional MR suggests that X causes W, 155 

vertical pleiotropy (DAGs 2.1-2.2) may be more plausible than horizontal pleiotropy (DAGs 3.1-3.2), 156 

although we could not fully rule out the possibility that W mediates the effect from Z to Y partly 157 

independently of X (DAG 3.3). However, if bidirectional MR suggests that W causes X, W could be a 158 

confounder of X and Y and horizontal pleiotropy (DAG 3.2) may be more plausible than vertical 159 

pleiotropy (DAGs 2.1-2.2), although we could not fully rule out the possibility that W cannot affect Y 160 

independently of X (DAG 2.3).  161 

Bidirectional MR can be conducted in either one- or two-sample setting,(22, 23) but could be 162 

misleading when there is marked difference in statistical power between X-W versus W-X 163 

associations. For example, if the power for W-X association is low (relative to the power for X-W 164 

association) it may appear that there is no causal effect of W on X even in the presence of such an 165 

effect. Additionally, overlapping SNPs in the GWAS of X and W can make it unclear which SNPs to 166 

select as valid IVs for X and W in bidirectional MR.(24) In two-sample setting, Steiger directionality test 167 

can help to identify (independent) valid IVs for X or W by comparing the variance explained by each 168 

SNP in X to that in W, as it assumes that a valid IV should explain more variance in trait A than in trait 169 

B if trait B is a downstream effect of the trait A.(25) However, Steiger directionality test could be 170 

misleading if measurement errors in X and W are substantially different.(25) For example, insomnia is 171 

measured much less accurately than height or BMI in UKB (see real data example in the next 172 

section). 173 

5. Adjusting for potential horizontal pleiotropic effects via known non-exposure traits 174 

 Where there is evidence (from 3 and 4 above) that there may be bias due to horizontal pleiotropy 175 

(DAGs 3.1-3.2) from specific non-exposure traits (W), multivariable Mendelian randomization 176 
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(MVMR) can be used to obtain unbiased estimates in one- and two-sample settings.(26) MVMR 177 

requires not only IVX (IV for X)-X and IVW-W associations but also IVX-W and IVW-X associations, which 178 

means two-sample MR studies using summary statistics have to access to full results of the original 179 

GWAS. If W mediates both Z-Y and X-Y associations (DAG 3.3), controlling for W in MVMR obtains 180 

the direct effect rather than the total effect of X on Y, while its total effect should be estimated by 181 

using a subset of SNPs only related to X.(26) MVMR can also be used to estimate direct effects of 182 

correlated traits on an outcome as long as the genetic IVs independently predict each trait. 183 

Limitations of MVMR have been discussed by Sanderson et al., e.g. the strengths of IVs may 184 

decrease dramatically after attempting to including many non-exposure traits in the estimation.(26) 185 

6. Exploring and controlling for bias due to horizontal pleiotropy via unknown traits 186 

It is possible that MVMR adjusting for horizontal pleiotropy via known/measured traits is still biased 187 

by unknown/unmeasured traits. Therefore, sensitivity analyses that explore bias due to unbalanced 188 

‘unmeasured’ horizontal pleiotropy will still be required. In one- and two-sample MR, we 189 

recommend initial exploration of this by assessing between SNP heterogeneity.(27) This should be 190 

done even if SNPs are being combined into a single polygenic risk score (PRS). In one-sample MR 191 

heterogeneity is commonly explored by ‘overidentifying’ tests,(28) while in two-sample MR using 192 

summary data the Cochran’s Q statistic is an equivalent test.(27) If the exposure causes the outcome 193 

and IVs are valid, we expect the effect of the IV on the outcome to be proportional to its effect on 194 

the exposure across genetic IVs. Therefore, heterogeneous causal estimates across genetic IVs are 195 

indicative of invalid IVs. Most of the sensitivity analyses that have been developed for addressing 196 

horizontal pleiotropy aim at exploring the presence or being robust to heterogeneous (potentially 197 

invalid) IVs. Table 2 summarises the commonly used methods (i.e. sisVIVE(29) for one-sample MR and 198 

MR-Egger,(30) weighted median,(31) weighted mode,(32) MR-PRESSO,(17) MR-TRYX(33) for two-sample 199 

MR), including their additional assumptions. It is important to recognise that (i) heterogeneity tests 200 
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can only be used where there are multiple SNPs, (ii) some methods are statistically inefficient and 201 

(iii) most methods have been developed for the two-sample MR setting.  202 
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Real data example 203 

We use the effect of maternal insomnia on offspring birthweight as a motivating example, as it has 204 

been suggested that having insomnia and other forms of sleep disturbance may be associated with 205 

lower offspring birthweight though results are inconsistent.(24, 34, 35) We explore this question in UK 206 

Biobank women,(36) using a PRS that combines 80 genome-wide significant SNPs (listed in 207 

Supplementary Data 1) from the largest GWAS of insomnia in women.(37) We tested associations of 208 

the PRS with six observed traits (maternal height, BMI, age at first live birth, education, frequency of 209 

alcohol intake and ever smoking) that are known to (or could plausibly) influence offspring 210 

birthweight, and found that the PRS was associated with all of them (Figure 1). We demonstrate how 211 

to use the above recommendations in both one- and two-sample MR analyses, with full details in 212 

Supplementary Methods. 213 

UKB is a cohort of 503,325 men and women who were on the National Health Service registry, aged 214 

between 40-69 years and living within 25 miles from one of 22 assessment centres.(36) One-sample 215 

MR included genetically unrelated women of European descent who reported frequency of 216 

insomnia, had experienced at least one live birth and reported the birthweight of their first live born 217 

child (N=165,184). Supplementary Table 1 summarises how each variable used here were measured 218 

in UKB and coded in our example. We also randomly split those genetically unrelated women of 219 

European descent into two groups (Supplementary Figure 1) to obtain SNP specific summary 220 

statistics for two-sample MR in this illustrative example. We selected the SNPs for these analyses 221 

from the published GWAS of insomnia(37), height,(38) BMI,(39) age at first live birth(40) and education(41) 222 

in women and from the previous GWAS of frequency of alcohol intake and ever smoking in UKB men 223 

and women.(42) We obtained both SNP-exposure and SNP-outcome results from both of the random 224 

sub-samples and the pooled results from analyses in which sample 1 was used for SNP-exposure and 225 

sample 2 for SNP-outcome with those in which sample 1 was used for SNP-outcome and sample 2 226 

for SNP-exposure (Supplementary Methods). 227 
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Exploring the role of population stratification 228 

Each additional allele in the insomnia PRS was associated with a variation of -0.004 (95% confidence 229 

interval [CI]: -0.007, -0.001) year in age at recruitment, -3.7×10-7 (95% CI: -6.7×10-7, -6.4×10-8) metre 230 

(M) in longitude of birthplace and 2.1×10-7 (95% CI: 5.7×10-8, 3.5×10-7) M in latitude of birthplace. 231 

There was evidence of some variation in the mean PRS across 22 UKB assessment centres 232 

(Supplementary Figure 2; P-value = 9.2×10-8). After adjusting for genetic array, top 40 genetic 233 

principal components, participants’ age, birthplace and assessment centre, associations of the PRS 234 

with height, BMI, education, frequency of alcohol consumption and ever smoking were not 235 

attenuated (Figure 1) suggesting these associations are unlikely to be driven by PS. The association 236 

of the insomnia PRS with age at first live birth was slightly attenuated to the null (Figure 1), 237 

suggesting some of this may be due to confounding by PS. However, we obtained similar estimates 238 

in the MR analyses before and after adjustment for sources of PS (Supplementary Table 2). 239 

Distinguishing vertical from horizontal pleiotropy and accounting for horizontal pleiotropy 240 

We searched for GWAS to identify genetic IVs for each of the six non-exposure traits that were 241 

conducted in samples independent of UKB and had results presented in women only. However, we 242 

were unable to find such GWAS of frequency of alcohol intake or ever smoking. Full details of the 243 

selected SNPs are provided in Supplementary Data 1. We found that height, BMI and frequency of 244 

alcohol consumption were more likely to reflect vertical pleiotropy or not associated with 245 

birthweight (Figure 2), suggesting the associations of the PRS with them were unlikely to introduce 246 

bias. These findings have some consistency with previous MR studies.(18, 43-45) However, age at first 247 

live birth, education and ever smoking were plausible sources of horizontal pleiotropy (Figure 2). 248 

After adjusting for these in MVMR, the effect estimates of insomnia on birthweight attenuated 249 

towards the null compared to univariable MR (Figure 3), though results are imprecise.  250 

In sensitivity analysis in one-sample MR, sisVIVE (full results in Supplementary Data 2) suggested that 251 

the association of insomnia with birthweight was greater than seen with univariable TSLS (-87 [95% 252 
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CI: -182, 7] grams). In the two sample MR results from all sensitivity analyses were directionally 253 

consistent with the main IVW estimate, though for several the CIs were very wide; IVW, MR-PRESSO 254 

and MR-TRYX supported an inverse association of maternal insomnia with offspring birthweight with 255 

CIs that did not include the null (Figure 4). The MR-Egger intercept suggested little evidence of 256 

unbalanced horizontal pleiotropy (p-value = 0.732 for dataset A on B and 0.763 for B on A; full 257 

results in Supplementary Figure 3). Whilst between SNP heterogeneity was less when MR-TRYX was 258 

used (in comparison to the IVW analyses) the point estimates were very similar between it and IVW 259 

(Figure 4 and Supplementary Figure 4).   260 

Identifying more potential sources of violation of MR assumptions using a phenome-wide 261 

approach 262 

In this motivating example we only explored the six traits that we had a priori selected for checking, 263 

based on prior knowledge that these were key risk factors for variation in birthweight. However, 264 

there may be value in exploring a wider range of potential violating paths (recommendation 1). 265 

Therefore, we undertook a comprehensive search for previously identified genome-wide significant 266 

associations of the 80 SNPs in the insomnia PRS using Phenoscanner.(15) This amounted to 478 267 

associations that included 42 SNPs, among which 34 SNPs were associated with at least one trait 268 

apart from sleep (full results in Supplementary Data 3). We did not examine these further but 269 

discuss in the discussion section the pros and cons of different approaches to identifying genetic IVs 270 

associations with non-exposure traits. 271 

Exploring reverse causality 272 

Whilst temporally it is hard to conceive of birthweight influencing maternal insomnia, birthweight is 273 

a proxy for fetal growth, which could influence maternal insomnia symptoms. To explore this 274 

possibility, we would require offspring (fetal) genetic variants that are robustly related to their fetal 275 

growth. Whilst there are no GWAS currently of maternal or fetal contribution to fetal growth (e.g. 276 

assessed by repeat ultrasound scan) there are GWAS of own (i.e. fetal) genetic variants in relation to 277 
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own birthweight.(46) However, we do not have genome-wide data in maternal-offspring pairs in UKB 278 

and so cannot explore this here.   279 
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Discussion 280 

The possibility that genetic IVs for a specific exposure will associate with many other traits is 281 

increasing as GWAS explore a larger number of SNPs in increasing sample sizes. In this paper we 282 

have described different scenarios that could result in such associations and methods for exploring 283 

where these may cause bias. Beyond confounding by PS, a key concern is attempting to differentiate 284 

vertical from horizontal pleiotropy and using methods to explore and reduce bias from horizontal 285 

pleiotropy. We provide a set of recommendations and demonstrate their use in an applied example 286 

exploring the effect of maternal insomnia on birthweight.  287 

This paper brings attention to the pros and cons of hypothesis-driven versus comprehensive 288 

approaches to exploring IV validity. Our motivating example used researchers’ knowledge to decide 289 

which non-exposure traits to explore genetic IVs associations with. Specifically, we chose six 290 

observed traits in UKB that we considered plausible causes of offspring birthweight, and as our 291 

analyses in this example shows they reflect plausible horizontal or vertical pleiotropic paths. 292 

However, we have to rely on sensitivity analyses (see Table 2) to control for horizontal pleiotropy via 293 

unexplored traits. This approach is efficient but cannot identify the nature of any unexplored 294 

violation of instrument validity. Sensitivity analyses will identify whether results are likely to be 295 

biased by unbalanced horizontal pleiotropy but if one wanted to explore specific known horizontal 296 

or vertical (mediating) pleiotropy this approach would potentially miss some key paths. A further 297 

limitation is that researchers’ knowledge is likely to vary between different researcher groups. An 298 

alternative to a priori selecting a defined set of potential pleiotropic traits, is to use a Phenome-wide 299 

search to systematically explore any possible non-exposure traits that associate with our genetic IVs. 300 

This approach has the advantage that it is not limited by researchers’ own knowledge and the 301 

variation in this between research groups. Although automated systems for rapid phenome-wide 302 

associations now make a more extensive and systematic approach possible,(47-49) there are 303 

challenges in applying our recommendations 3-5 to a possible large number of traits.  304 
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Of particular importance, when multiple different potential traits (exposure of interest and non-305 

exposure traits) and the relationship between them is being considered differing measurement error 306 

in each trait may affect the results obtained. In MR and MVMR differing measurement error in 307 

different traits gives the same effect as differing power in each trait and will lead to the effects of 308 

traits measured with more error being less precisely estimated than the effects of those measured 309 

with less error. However, Steiger filtering assumes that each trait is measured with the same error 310 

and can give misleading results for the causal direction between two traits when the true causal 311 

exposure is measured with more error than the true outcome. In our example self-report of 312 

insomnia is likely to be measured with more error than several of the non-exposure traits 313 

considered, in particular maternal height, BMI, age at first birth and education. For these traits 314 

Stieger filtering may misleadingly suggest that the direction of effect is from these traits to insomnia 315 

due to the imprecision in the measurement of insomnia. These issues are relevant to both the use of 316 

prior knowledge to select specific traits to explore as possible pleiotropic paths and to a more 317 

comprehensive and systematic phenome-wide scan approach. However, with the latter there are 318 

many more non-exposure traits where these problems are likely to arise. In our illustrative example 319 

the phenome-wide scan approach identified 478 non-exposure traits associated with one or more of 320 

the 80 insomnia SNPs used in our genetic IV (i.e. 80-fold the six explored on the basis of prior 321 

knowledge). On-the-one hand this suggests we might have missed some key specific pleiotropic 322 

paths, on the other, even with the large sample size used in our example the potential for 323 

uninterpretable imprecise results and possible misleading results is increased with the much larger 324 

number from the phenome-wide scan.  325 

Finally, the automated phenome-wide approach is dependent on the nature and quality of the 326 

studies included in the searching tools (e.g. PhenoScanner(15) and GWAS Catalog(16)) and whilst they 327 

are likely to identify more specific pleiotropic paths than knowledge based approaches, they may 328 

still miss some important paths. Whether researchers decide to focus solely on a limited set of traits 329 

that are known through prior knowledge to influence outcome and could be on a horizontal 330 
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pleiotropic path or undertake a phenome-wide approach will depend on the specific research 331 

question, including whether that includes an interest in understanding the nature of horizontal 332 

pleiotropic paths or mediation (vertical pleiotropy). It will also depend on available data. A 333 

combination of both could be undertaken with some a prior decision to select a fixed number of the 334 

non-exposure traits identified by the searching tool.   335 

Our study provides guidance for further MR studies where genetic IVs were associated with multiple 336 

traits. It may also be relevant to studies using non-genetic IVs (e.g. healthcare practitioner 337 

preference(50) or randomization in a randomized control trials(51)). In addition to the approaches 338 

outlined here to the situation of identifying that genetic IVs are related to multiple non-exposure 339 

traits, we would recommend triangulating MR results with other methods that have different key 340 

sources of bias to estimate causal effects.(52)  If results are consistent across such different methods 341 

that increases confidence in the result, even in the presence of remaining concerns about genetic IV 342 

validity.   343 
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Table 1. Scenarios when an unexpected IV-non-exposure trait association could be observed 361 

Scenarios Population stratification (confounding) Vertical pleiotropy (mediation) Horizontal pleiotropy Reverse causality 

Directed acyclic 

graphs1 

1.1 1.2  

1.3  

2.1 2.2  

2.3  

3.1 3.2  

3.3  

4.1  

Violation of 

assumptions 

Yes (1.1, 1.2)/No (1.3) No Yes Yes 

Methods to explore the likelihood of the scenario 

One-sample MR with 

individual data 

Check Z~PS (e.g. PCs, birthplace, home 

location or study centre), adjust for PS 

in Z-W and compare the adjusted 

estimates with crude estimates 

Univariable MR for W-Y,  

bidirectional MR between X and W and Steiger directionality test 

(two-sample only),  

tests for heterogeneity between Z,  

MR-Egger intercept (two-sample only) 

Bidirectional MR 

between X and 

Y, Steiger 

directionality 

test (two-sample 

only) 

Two-sample MR with 

summary data 

Check genome-wide association 

studies of X and Y 

Methods to produce valid results 

One-sample MR with 

individual data 

Control for PS in two-stage least 

squares 

Two-stage least squares Multivariable MR, sisVIVE Not applicable if 

Y causes X 

Two-sample MR with 

summary data 

Rely on the genome-wide association 

studies of X and Y 

Inverse variance weighted Multivariable MR, MR-Egger, 

weighted median, weighted 

mode, MR-PRESSO, MR-TRYX 

Observed traits in 

real data example2 

Age at first live birth Height, body mass index Age at first live birth, education, 

ever smoking 

Not applicable 

1Z: genetic instrumental variables; X: exposure of interest; Y: outcome of interest; PS: variables representing population stratification; W: non-exposure 362 

traits. For simplicity, the directed acyclic graphs use single nodes even when there may be multiple variables.  363 
2Our MR found little evidence for an effect of frequency of alcohol intake on birthweight, suggesting it would not bias MR estimates regardless of its causal 364 

relationships with insomnia PRS and insomnia. 365 

Abbreviation: MR, Mendelian randomization; PCs, principal components.  366 
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Table 2. Summary of select sensitivity analyses for exploring bias due to horizontal pleiotropy in MR 367 

Name Brief description Assumptions1 Other issues 

For one-sample MR 

sisVIVE(29) It is an extension to two-stage least squares, which 

incorporates LASSO penalization. 

At least 50% of IVs are valid. It works for continuous outcomes only, 

requires a large amount of computer 

memory, and the current implementation 

do not provide 95% CIs.  

For two-sample MR 

MR-Egger(30) It allows a non-zero intercept to test horizontal 

pleiotropy. 

Instrument strength 

independent of direct effect 

It is sensible to outliers and tends to suffer 

from low statistical power.  

Weighted 

median(31) 

It is defined as the median of a weighted empirical 

density function of the Wald ratio estimates. 

At least 50% of weight comes 

from valid IVs. 

Nil 

Weighted 

mode(32) 

It calculates the weighted mode of the Wald ratio 

estimates. It will be unbiased even if the majority of SNPs 

could be invalid but providing the set of SNPs which form 

the largest homogeneous cluster are valid.(27) 

Zero modal pleiotropy 

assumption 

Researchers need to choose a bandwidth to 

obtain the clustering effect, and different 

bandwidths might provide inconsistent 

estimates.(27)  

MR-

PRESSO(17) 

It assesses horizontal pleiotropy based on the 

contribution of each SNP to heterogeneity and provides 

adjusted MR estimates by removing outlier SNPs.  

Instrument strength 

independent of direct effect;   

Outliers (identified via MR-

PRESSO global test) are risen 

due to potential horizontal 

pleiotropy. 

After removing outlier SNPs, the standard 

errors would decrease. Therefore, it would 

be more likely to reject the null.  

MR-TRYX(33) It assesses horizontal pleiotropy based on the 

contribution of each SNP to heterogeneity and attempts 

to adjust for their horizontal pleiotropic effects using 

extra publicly available GWAS from MR-Base. 

Outliers (identified via 

RadialMR(53)) are risen due to 

potential horizontal pleiotropy. 

GWAS from MR-Base may not cover the 

whole genome or conducted in the target 

population (e.g. only female participants). 

1Extra assumptions except for the three key MR assumptions.  368 

Abbreviations: CI, confidence interval; GWAS, genome-wide association studies; IV, instrumental variable; MR, Mendelian randomization; SNP, single 369 

nucleotide polymorphisms.  370 
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Figure 1. Associations of polygenetic risk score (PRS) for insomnia with six non-exposure traits before and after adjustment for population stratification 371 

 372 

Estimates are differences in mean non-exposure traits or log odds ratio (ever smoking) per allele increase in PRS. Supplementary Table 1 summarizes how 373 

education, frequency of alcohol intake and ever smoking are coded in this study.   374 
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Figure 2. Mendelian randomization estimates for (a) non-exposure traits-birthweight (W-Y) effects, (b) non-exposure traits-insomnia (W-X) effects, and 375 

(c) insomnia-non-exposure traits (X-W) effects 376 

   377 
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 378 

“Usually” having insomnia is coded as 1, while “sometimes/rarely/never” having insomnia is coded as 0 (Supplementary Table 1).  379 
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Figure 3. Multivariable Mendelian randomization (MVMR) estimates for the effect of maternal insomnia on offspring birthweight  381 

 382 

Estimates are differences in mean birthweight when comparing reporting usually experiencing insomnia to never, rarely or sometimes experiencing it with 383 

and without adjustment for potential horizontal pleiotropy via maternal age at first birth, education and ever smoking.  384 
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Figure 4. Sensitivity analyses for the effect of maternal insomnia on offspring birthweight using two-sample Mendelian randomization (MR) 385 

  386 
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