
Exploring AOP from an OOP Perspective

Rem W. Collier
School of Computer Science

University College Dublin
Belfield, Dublin 4, Ireland
rem.collier@ucd.ie

Seán Russell
School of Computer Science

University College Dublin
Belfield, Dublin 4, Ireland
sean.russell@ucd.ie

David Lillis
School of Computer Science

University College Dublin
Belfield, Dublin 4, Ireland

david.lillis@ucd.ie

ABSTRACT
Agent-Oriented Programming (AOP) researchers have suc-
cessfully developed a range of agent programming languages
that bridge the gap between theory and practice. Unfortu-
nately, despite the in-community success of these languages,
they have proven less compelling to the wider software engi-
neering community. One of the main problems facing AOP
language developers is the need to bridge the cognitive gap
that exists between the concepts underpinning mainstream
languages and those underpinning AOP. In this paper, we
attempt to build such a bridge through a conceptual map-
ping between Object-Oriented Programming (OOP) and the
AgentSpeak(L) family of AOP languages. This mapping ex-
plores how OOP concepts and the concurrent programming
concept of threads relate to AgentSpeak(L) concepts. We
then use our analysis of this mapping to drive the design of
a new programming language entitled ASTRA.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems, Languages and structures;
D.3.2 [Programming Languages]: Language Classifica-
tions—Multiparadigm languages

General Terms
Languages, Theory

Keywords
Agent-Oriented Programming, AgentSpeak(L), ASTRA

1. INTRODUCTION
The Agent-Oriented Programming (AOP) paradigm is now
almost 25 years old. Since its inception, a number of estab-
lished AOP languages have emerged, with the most promi-
nent being: 2/3APL [8, 9], GOAL [12] and Jason [4]. How-
ever, while these languages have received much critical suc-
cess within the AOP community, they have been less well
received by the wider software engineering community.

AGERE 2015 Pittsburgh, PA, USA

A useful barometer for the view of this wider community has
been the students enrolled on an Agent-Oriented Software
Engineering (AOSE) module that is part of a Masters in
Advanced Software Engineering offered at University Col-
lege Dublin since 2005. Students on this course typically
have 5 or more years of industrial software engineering ex-
perience and are senior software engineers in their respective
companies. During the course, the students are exposed to
an AgentSpeak(L)-based language, which has been one of
AF-AgentSpeak [22], Jason [4], and our most recent agent-
programming language, ASTRA [1].

Each year, the students have provided informal feedback on
the AOP language(s) used and to comment on whether they
would consider using such a language in a live industry ap-
plication. The common response has been “no”, with typical
criticisms being the lack of tool support and the perceived
learning curve required to master an AOP language.

The lack of tool support seems strange given the existence of
mind inspectors [6], advanced debugging techniques [13, 16],
and a range of analytical tools [5, 11]. However, after delving
deeper, it became apparent that the criticisms were directed
more towards the quality of the Integrated Development En-
vironments (IDEs) provided and their limitations in terms
of practical features such as code completion, code naviga-
tion and formatting support. Over the years, it has become
apparent that developers become uneasy when stripped of
their traditional supports and that this engenders a feeling
that the languages are not production quality.

Conversely, the perceived learning curve is less unexpected.
AOP, with its origins in Distributed Artificial Intelligence,
is underpinned by a quite different set of concepts to main-
stream software engineering, where there is a clear evolution
from procedural programming languages to Object-Oriented
Programming (OOP) languages. Individuals attempting to
learn about AOP are confronted with a range of concepts -
beliefs, desires and intentions; speech acts; plans - that bear
little relation to mainstream programming concepts. For
many, this can act as a significant barrier to learning how
to program in an AOP language.

Perhaps the most common explanation of the relationship
between AOP and OOP is the comparison table presented
in [23]. This table presents a very high-level view of AOP
and OOP that treats AOP as a specialisation of OOP. Un-
fortunately, it provides little practical detail. For example,

how does the state of an object relate to the state of an
agent? is there any correlation between how behaviours are
specified in OOP and how they are specified in agents? when
and how will a behaviour be executed?

Answering these questions requires a more detailed compari-
son of AOP and OOP. However, when attempting to create a
deeper comparison, it quickly becomes evident that it is not
possible. The main reason for this is that AOP, unlike OOP,
does not promote or enforce a consistent conceptual model
(i.e. a standard view of state, methods, messages, etc.). In-
stead, different languages can, and are, based around quite
different approaches. For example, AgentSpeak(L) style lan-
guages are essentially event-driven languages. They define
context-sensitive event handlers that map events to partial
plans. Conversely, GOAL is, at its heart, an action selection
language where rules identify the context in which each ac-
tion should be executed. The consequence of this diversity is
that it is more appropriate to compare specific styles of AOP
language with OOP rather than trying to over-generalise.

In this paper, we focus on understanding the relationship
between AgentSpeak(L) and OOP, with the goal of trying
to reduce the perceived cognitive gap. We begin by identify-
ing a mapping between AgentSpeak(L) and OOP concepts
in Section 2, which we reflect on in Section 3. The purpose of
the reflection is to try to understand how to improve the de-
sign of AgentSpeak(L) to better support developers wishing
to learn the language. In response to our analysis, Section
4 introduces a new member of the AgentSpeak(L) family
called ASTRA. Full details of ASTRA are not provided in
this paper. Instead, we focus on only the most pertinent
features.

2. RELATING AGENTSPEAK(L) TO OOP
AgentSpeak(L) can be prosaically described as an event-
driven language where event handlers are fired based on both
the triggering event and some context. Events, which are ei-
ther external (environment-based) or internal (goal-based),
are generated and added to an event queue. Events are then
removed from this queue and matched to a rule which is then
executed. The matching process checks both that the rule
applies to the event and that the rule can be executed based
on a rule context that defines valid program states in which
the rule may be applied.

More commonly, the event handlers are known as plan rules;
the program state is modeled as a set of beliefs, that are
realized as atomic predicate logic formulae; the events are
also modeled as atomic predicate formulae (with some addi-
tional modifiers); and the execution of plan rules is achieved
through creation and manipulation of intentions. Finally,
external events are generated through changes to the agent’s
state (i.e. the adoption or retraction of a belief), and inter-
nal events are generated by declaring goals.

It follows that an AgentSpeak(L) agent consists of an event
queue, a set of beliefs (state), a set of plan rules (event han-
dlers), and a set of intentions that represent the execution
of plan rules. Given that AOP is commonly viewed as a
specialisation of OOP, and that agents are a special type
of object, it is possible to relate AgentSpeak(L) concepts to
OOP concepts from the perspective of an OOP developer.

Beliefs are equivalent to fields As indicated above, be-
liefs form the state of an agent. In OOP, state is
defined in terms of a set of fields that hold values
(or object references). If we consider a field, such as
int value; this could be modeled as a belief value(0).
Here, the value 0 is chosen as it is the default value for
integer fields in many OOP languages. To be fully pre-
cise, beliefs and fields are not the same. Whereas fields
can be modeled using beliefs, beliefs actually encom-
pass more than this, including environment informa-
tion, global variables, etc.

Plan Rules are equivalent to methods A plan rule as-
sociates a plan with a triggering event and a context.
Plans define behaviours and are basically blocks of pro-
cedural code that are executed whenever a matching
event is processed and the rules context is satisfied.
In OOP languages, procedural code is defined within
methods and is executed whenever the method signa-
ture is matched to a message that has been received by
the object. Accordingly, the AgentSpeak(L) equivalent
of a method signature is the triggering event (specifi-
cally the identifier and the number of arguments). The
context has no real equivalent in OOP, however, it can
be viewed as providing a form of method overload-
ing based on state (i.e. when there are multiple rules
matching a given event, the context is used to identify
which of the rules should be executed).

Goals are equivalent to method calls Events are gen-
erated due to adoption or retraction of goals. These
are then matched to rules, which are subsequently ex-
ecuted. Method calls generate messages, which are
matched to methods that are executed. Typically,
goals are declared from within a plan. The result is
that the plan component of the selected rule is pushed
onto the program (intention) stack and executed.

Events are equivalent to messages The events that are
part of AgentSpeak(L) play a similar role to messages
in OOP. Events are used to trigger plan rules in the
same way that, for OOP languages, messages are used
to invoke methods. This can be somewhat confusing
because “message” is also the term used for communi-
cation between agents, however this is not the focus
here. In OOP, the set of messages that can be han-
dled by an object is known as the interface of the
object. This set of messages corresponds to the sig-
natures of the methods that are defined in the objects
implementing class(es). Given our view of events being
equivalent to OOP messages, then in AgentSpeak(L)
the interface of an agent is the set of events that it can
handle.

Intentions are equivalent to threads Intentions repre-
sent the plans that the agent has selected based upon
the matching of events to plan rules. The AgentS-
peak(L) interpreter processes the intentions by exe-
cuting the instructions contained within the plan. In
cases where the instruction is a sub-goal, this results in
an additional plan being added to the intention which
must be executed before the next instruction in the ini-
tial plan can be executed. In most programming lan-
guages, this activity is modelled by the program (call)

stack. Intentions are simply the AgentSpeak(L) equiv-
alent of this. Given that an agent can have multiple
concurrent intentions whose execution is interleaved, it
is natural to view an intention as being the equivalent
of a thread.

The above mappings are intended to relate the concepts of
AgentSpeak(L) to those present in OOP. The objective be-
hind this is to try to reduce the cognitive gap faced by indi-
viduals who know OOP and wish to learn an AOP language.
The benefit of doing this is that someone who is proficient
in OOP can use these mappings as a starting point for their
study of the language.

3. EXPLORING THE IMPLICATIONS
The mapping developed in Section 2 is not only potentially
useful to developers aiming to learn AgentSpeak(L), but it
is also useful from a language developer’s perspective as it
raises questions about the set of features that may be appro-
priate for AgentSpeak(L)-style languages. In this section,
we explore some of the consequences of adopting the above
mapping.

3.1 Beliefs as Fields
Understanding the role of beliefs in AOP languages can be
one of the most challenging concepts to grasp. Certainly, at
a high-level it is clear that beliefs are the state, but many
find it difficult to understand how beliefs relate to the state
of an object. As was discussed above, one simple way of asso-
ciating beliefs with object state is to demonstrate that beliefs
are like fields. Fields are OOP’s mechanism for defining the
state of an object. Fields typically associate a label with a
container for values, for example String name = "Rem"; as-
sociates the field name, of type String with the value “Rem”,
which is itself a String literal. In AgentSpeak(L), it is possi-
ble to do something similar, namely to declare a fact, whose
predicate corresponds to the field name, and which takes
a single argument, the value associated with the field, for
example name("Rem");.

In OOP, there are a couple of operations that can be per-
formed on a field: (1) assigning a new value, for example,
name = "George";; and (2) comparing a value, for exam-
ple name.equals("Rem"). In AgentSpeak(L), performing
these operations can be achieved as follows: (1) to assign
a new value, you must first drop the existing belief and
then adopt a new belief with the new value, for example, -
name("Rem");+name("George");. This process has been op-
timised in Jason to +-name("George"), where name("George")
is adopted and all previous predicates matching name(X) are
removed. This optimisation is very useful in a situation
where a single belief is being used in the same way as a
global variable might be. In order to (2) compare the value,
you can either perform a query of the agents beliefs, for ex-
ample, ?name("Rem") or as part of a plan rule context, for
example <te> : name("Rem") <- It should be noted
here that the assignment operation, which is an atomic op-
eration in OOP and Jason, is not an atomic operation in
AgentSpeak(L).

An interesting observation of the above is that, in transition-
ing from OOP (nominally Java) to AgentSpeak(L) the type

of the field has been lost. Types can be a powerful feature
of a programming language that can be used to statically
verify the correctness of code. Specifically, in OOP, they
can be used to identify situations where the wrong type of
data is assigned to a field, or where the wrong type of data
is passed to a method. Typically, AOP languages have used
dynamically typed variables - this reflects the logical origins
of AOP, where dynamically typed variables are common.
For some developers, who come from a background where
the languages they have used are strongly typed, this can
be another significant hurdle to overcome.

One option for AOP language developers is to introduce a
type system to their language. Within AOP, it is possible
to apply type systems at two levels: the (multi-)agent level,
and at the language level. (Multi-)agent types refer to the
association of types with agent instances, such types can be
used for engendering reuse [10] of agent code or to support
run-time substitution of agent instances [3].

The second use of type systems is to apply types to the terms
of logical formulae. The potential benefits of this are:

• improved readability: the meaning of the belief is
clearer when the types are known.

• static type checking: compile-time checks can be
used to reduce the number of run-time errors.

To take full advantage of static typing, a number of addi-
tional supports are required: correct forms for beliefs and
(potentially) goals could be specified using an implementa-
tion specific mechanism; for example a list of valid predicate
formula signatures. For example, these could be specified in
a manner similar to an actionspec in GOAL which is used
to specify pre- and post-conditions for actions [14].

This requirement can be extended further to encompass en-
vironment interaction. In this case, the use of an environ-
ment interface such as CArtAgO [20] would also require that
types be specified. In simpAL this takes the form of an
artifactmodel which describes the usage interface of all ar-
tifacts implementing that model [18]. This allows static type
checking in any use of an artifact. However, it does not does
not extend to any events that may be generated by the ar-
tifact.

3.2 Plans Rules as Methods
The equivalence of plan rules and methods posits a simple
question: if algorithms are a typical way for defining be-
haviour in OOP and methods are the common mechanism
for implementing algorithms, would it not be natural for
somebody learning AgentSpeak(L) to attempt to implement
some established algorithms using the agent language?

To investigate this in more detail, we decided to implement
a common algorithm using AgentSpeak(L). The choice of al-
gorithm itself is not important, as the question really being
asked here is: can somebody learning an AOP language ap-
ply their existing algorithmic problem solving skills easily in
that language? The result is illustrated in Figure 1. The left
hand piece of code is standard pseudo code for the selection

1 Algorithm SelectionSort(A, n):
2 for j = 1 to n-1 do
3 minIndex = j
4 for k = j+1 to n-1 do
5 if (A[minIndex] < A[k]) then
6 minIndex = k
7 if (minIndex <> j) then
8 temp = A[j]
9 A[j] = A[j+1]

10 A[j+1] = temp
11 return A

1 !do_sort ([7, 5, 12, 15, 3]);
2

3 +! do_sort(L) <-
4 _size(L, S);
5 !outerLoop(L, S, 0);
6 ?sorted(L2);
7 _print(L2).
8

9 +! outerLoop(L, S, X) <-
10 +min_index(X);
11 !innerLoop(L, S, X);
12 ?min_index(Z);
13 -min_index(Z);
14 !update(L, S, X, Z).
15

16 +! update(L, S, X, Z) : X < Z <-
17 _swap(L, X, Z, L2);
18 !outerLoop(L2, S, X+1).
19

20 +! update(L, S, X, Z) <-
21 !outerLoop(L, S, X+1).
22

23 +! outerLoop(L, S, X) <-
24 +sorted(L).
25

26 +! innerLoop(L, S, X) : X < S <-
27 _elementAt(L, X, T);
28 !compare(L, X, T);
29 !innerLoop(L, S, X+1).
30

31 +! innerLoop(L, S, X) <-
32 _skip().
33

34 +! compare(L,X,T):min_index(Y)<-
35 _elementAt(L, Y, S);
36 !compare(L, X, Y, S, T).
37

38 +! compare(L, X, Y, S, T)
39 : S < T <-
40 -min_index(Y);
41 +min_index(X).
42

43 +! compare(L, X, Y, S, T) <-
44 _skip().

Pseudo code AgentSpeak(L) code

Figure 1: Two implementations of Selection Sort algorithm

sort algorithm. The right-hand piece of code is the AgentS-
peak(L) implementation of that algorithm. As can be seen,
the AgentSpeak(L) solution is far more complicated than
the pseudo code - it is over 3 times longer; one method has
been mapped to 9 rules (the first rule in the AgentSpeak(L)
program actually calls the sorting algorithm); and it is not
even all of the code because 5 primitive actions are used
(_size(...), _elementAt(...), _swap(...), _print(...),
and _skip()). In fact, there are a number of clear issues
with the AgentSpeak(L) solution:

1. Rule explosion occurs because in AgentSpeak(L),
loops and selections are implemented using rules. In
fact, 2 rules are typically required for both if state-
ments and loops. In both cases, one rule is required
where the guard is true and one where the guard is
false. Both rules must be provided in all cases, even
if they do nothing (failure to match an internal event
to a rule is equated to failure to achieve a sub-goal as
there are no valid event handlers for the given event).

2. Returning results is an issue in AgentSpeak(L) be-
cause the basic version of the language does not allow

values to be returned from a sub-goal call. Instead, the
value must be stored in a belief (in the global state)
and upon completion of the sub-goal, the value must
be retrieved by querying the global state. Such a con-
voluted approach clearly is not scalable given AgentS-
peak(L) supports multiple concurrent intentions.

3. Hidden code arises because AgentSpeak(L) has such
limited semantics that it is not able to directly per-
form simple operations such as swapping two values.
Instead a number of custom primitive actions are also
needed (these are not included in the code count) to
implement this basic functionality. In the code any
statement that is prefixed by a is a primitive action.

4. Loss of readability due to the number of rules and
the convoluted control flow that results from it un-
derstanding the agent code is far more difficult than
understanding the pseudo code.

Admittedly, many would question the value in implementing
a sorting algorithm using an agent language, but again, the
issue here is not the actual algorithm, but that algorithms

1 !init (1).
2 !init (2).
3

4 +!init(X) <-
5 print(X+"A");
6 print(X+"B");
7 print(X+"C).

Figure 2: AgentSpeak(L) Interleaving Example

cannot be easily implemented in AgentSpeak(L). Given the
amount of time and effort that is put into teaching pro-
grammers to think algorithmically, it seems inefficient to be
promoting languages that do not try to leverage those skills.

3.3 Intentions as Threads
In the mapping, we equate intentions with threads. Agents
are commonly presented as being active objects, with their
own thread of control [15]. The reality is that implementa-
tions of an agent can vary from a single threaded architec-
ture to highly complex multi-threaded architecture. Here,
we do not focus on such low level issues, instead, we explore
AgentSpeak(L) at a higher level.

In AgentSpeak(L), the execution of behaviours is modeled
through intentions. An agent creates a new intention for
every external event that it matches to a plan rule (it also
generates a new intention for each initial goal that is declared
in the program, but this is a special case for goal events).
An intention is basically an execution stack - it contains
each action that must be performed in order to achieve the
intention, with the next action to be performed sitting on
top of the stack. An execution step involves removing the
top item from the stack and executing it. In situations where
an agent has multiple intentions, the accepted view is that
intention execution is interleaved - on each iteration, one
intention is selected and executed.

Consider the sample program in Figure 2. On creation, two
goal events are generated +!init(1) and +!init(2). On the
first iteration of the agent interpreter, the first event is han-
dled, resulting in the adoption of an intention that contains
three print actions. Given that this is the only intention of
the agent, the first step of this intention is also executed on
the first iteration. On the second iteration, the second event
is handled, resulting in a second intention that also contains
three print actions. At this point, there is some uncertainty
as to what happens as it is not clear which intention would be
selected for execution. To remove ambiguity, let us assume
that new intentions should always be selected for execution.
The result is that the first action of the second intention
is now executed. On subsequent iterations, a round robin
execution policy can be enforced, allowing fair use of the
underlying processors. This means that the first intention
will be scheduled on step 3 and the second intention on step
4. This interleaving will continue while the agent has mul-
tiple intentions. The resulting output is “1A 2A 1B 2B 1C
2C”. Note that, even if we had adopted a policy where new
intentions are not executed on the step they are created,
then the output would have been “1A 1B 2A 1C 2B 2C” -
so interleaving still occurs.

From this above example, it is clear that, irrespective of the
actual threading model used, an AgentSpeak(L) agent with
multiple intentions is like a process that has multiple threads
where each intention is akin to a thread.

If this view is adopted as the correct analogy for intentions,
then our languages must be designed with this in mind.
AgentSpeak(L) is not designed with such a view in mind.
As was mentioned above, sub-goals cannot return values.
Instead, the value must be stored in the global state of the
agent and retrieved once the sub-goal has completed. It is
easy to see that such a scenario does not work well if inten-
tions are like threads particularly given their execution can
be interleaved.

This can be easily illustrated by considering an agent with
two intentions, A and B, that both need to sort a (different)
list of numbers using the selection sort code of Figure 1. On
iteration i, intention A stores the sorted list in its global
state. On the next iteration (i+1), intention B stores its
sorted list in the global state. Two iterations later (after
A and B have completed their sub-goals), A then attempts
to retrieve the sorted list from the memory. The agent has
two beliefs - one for each sorted list - based on the given
program, it is ambiguous as to which of the sorted lists will
be returned. The result is that either A or B will have
the incorrect sorted list. Naturally, this problem can be
overcome, but only by further increasing the complexity of
the program.

One approach to handling interleaved execution of intentions
is to introduce support for mutual exclusion into AgentS-
peak(L). This would overcome the issue, but would require
the mutual exclusion to be applied prior to the first invoca-
tion of the !outerLoop(L, S, X) sub-goal causing the sec-
ond intention to be delayed until the first has completed.
The simpler option is to allow sub-goals to return values.

Jason includes support for mutual exclusion through the
atomic keyword. This keyword can be applied to plan rules
and causes the rule to be treated like a synchronized method.
Once an atomic rule is executed, all other atomic rules are
blocked until the active atomic rule has completed. While
this functionality is sufficient to address mutual exclusion,
we are not convinced that it provides the flexibility necessary
for more complex applications. Our concerns are specifically
focused on two issues:

• Lack of support for multiple critical sections. Mutual
exclusion ensures sequential execution of code where
required. This can result from the need to control
access to a resource or simply to ensure that some se-
quence of actions is performed atomically. It is not
unreasonable to assume that some agents will have
more than one critical section. In such cases, enforcing
agent-level mutual exclusion will result in intentions
being blocked even though they are not accessing the
same critical section. In languages like Java, such is-
sues can be alleviated through the use of synchronized
blocks.

• Limited granularity of locking mechanism. By provid-
ing only a rule level of mutual exclusion, developers

1 +event : context
2 <-
3 while(vl(X) & X > 10) { // where vl(X) is a

belief
4 .print("value > 10");
5 -+vl(X+1);
6 }
7

Figure 3: Sketch of While-loop in Jason

are required to implement critical areas as atomic plan
rules. As was discussed in Section 3.2, this can lead to
rule explosion and reduced readability of code.

In our view, a more appropriate level of support for critical
sections is to allow synchronized blocks that have an asso-
ciated token. This token would act like an identifier for a
critical section, and the mutual exclusion mechanism would
only block intentions trying to access a critical area whose
token has been taken by another intention. These intentions
would be blocked until the active intention releases the token
by reaching the end of the synchronized block.

A third issue arising from the adoption of the view of in-
tentions as threads is the use of global state to maintain
local state. This is particularly an issue if extended plan
operators are introduced as is recommended in Section 3.2.

The best way to illustrate this is to explore the example in
Figure 3 which is taken from [2]. In this example, the code
uses global state to represent a loop counter (vt(X) in the
example). This is in line with our discussion in section 3.1,
as is the increment on line 5, which uses the Jason belief
update optimization. The problem with this is that global
state is being used to implement something that would tra-
ditionally be implemented using a local variable. Further-
more, given the above discussion, the code clearly cannot
be executed concurrently as the belief representing the loop
counter is a critical section. This has the implication that,
in Jason every loop is (part of) a critical section. This would
have significant performance consequences if the mutual ex-
clusion mechanism provided does not allow multiple critical
sections to be defined. The natural consequence of the in-
troduction of additional constructs, such as loops, is that
AgentSpeak(L)-style languages require some mechanism to
define local state as well as global state.

3.4 Events as Messages
Perhaps the most contentious part of the mapping is the
association of AOP events and OOP messages. This can
seem contentious because “messages” are a well-defined con-
cept in multi-agent systems that drive speech-act-based in-
teraction between agents, typically using some Agent Com-
munication Language (ACL). Furthermore, it conflicts with
Shoham’s analysis, which argues that message passing in
AOP is equivalent to message passing in OOP. In reality,
there is no conflict. The reason for the seeming inconsis-
tency is that Shoham compares agents and objects from an
external (and high-level) perspective, whereas our compari-
son of AgentSpeak(L) and OOP is more low-level. Further,
the design of AgentSpeak(L) did not consider inter-agent

communication.

Since our analysis associates AOP events with OOP mes-
sages, it is interesting to also compare how these events can
come about. In OOP. an object’s interface is typically de-
scribed as the set of methods that can be invoked when mes-
sages are sent from other, external, objects. These methods
are often described as being “public”. The object itself may
invoke any of these public methods, but also other meth-
ods that have been marked “private” (we will not consider
“protected” methods, as inheritance is not common in AOP
languages, though it does exist [10]).

In AgentSpeak(L), two types of events can be raised: belief
events occur whenever beliefs are adopted or retracted, and
goal events operate in a similar way for goals. The only
entity capable of affecting the goals of an agent is itself.
This means that a clear parallel can be drawn between plan
rules that react to goal events and private methods in OOP.

The situation with belief events is somewhat more complex.
Unlike goal events, beliefs can be created or removed due
to external factors, in addition to the agent’s own opera-
tions. For example, changes in the environment in which an
agent is situated typically result in changes to the agent’s
belief base, resulting in the generation of belief events. In
a similar way, the receipt of ACL messages is frequently
implemented by updates to the agent’s mental state, most
commonly the adoption of beliefs. Because AgentSpeak(L)
does not distinguish between“private”or“public”plan rules,
and treats all belief events equally, it is difficult to draw a
direct parallel between the public interface of an object and
a similar concept for agents.

There are two basic approaches to handling the receipt of
messages in implementations of AgentSpeak(L). The first
approach is the approach adopted in Jason. Here, a subset
of KQML is identified and the chosen speech acts are closely
integrated with the language. For example, receipt of a tell
message results in the adoption a belief based on the con-
tent of the message together with an annotation identifying
the sender of the message. Invoking a behaviour based on
the receipt of a tell message thus requires the creation of a
plan rule whose triggering event matches the belief adoption
event created by the receipt of the message. The sending of
messages is then supported through the provision of an in-
ternal action .send(...). This approach fits the mapping
presented in this paper because the semantics of the receipt
of messages are hidden from the programmer.

An alternative approach is to introduce a new message
event type to model the receipt of a message. This ap-
proach is more loosely coupled as the receipt of a message
does not have a direct impact on the agent. Instead, the
programmer must implement a rule to handle the receipt
of the message. The advantage of this approach is that it is
left to the programmer to determine how the agent responds
to the receipt of a message. For example, if an agent is in-
formed of some new fact, then the programmer can provide
a rule to define whether or not the agent should adopt the
content as a belief. As before, sending of messages can be
achieved through a custom action (or plan operator).

It is an open question as to which of these approaches is
preferable, and a similar discussion could be had on how
to cater for information arising from the agent’s environ-
ment. One attractive element of the latter approach is that
belief events would no longer be directly triggered by exter-
nal elements such as the environment or other agents. The
behaviour resulting from such an external event is realised
through the processing of an event by the agent itself, and
the beliefs it adopts (if any) in response. What is interest-
ing to note from the second model is the idea of increasing
the number of event types supported by the language. The
benefit of adding new event types is that the events can be
specified in a way that all of the relevant data is encoded
in the event. This can result in a solution that is clearer
and easier to follow that trying to reduce every event to an
annotated belief. The cost comes from the fact that the
implemented language must handle more event types.

4. ASTRA: AGENTSPEAK(L) ENHANCED
The mapping presented in this paper is aimed at reducing
the cognitive gap for developers who are familiar with OOP
and who wish to learn an AOP language. In order to evalu-
ate whether such a mapping can help, we have developed a
new implementation of AgentSpeak(L) called ASTRA. AS-
TRA is based upon Jason, but includes a number of features
that are inspired by the mapping presented in this paper.
In line with the rest of this paper, the syntax of ASTRA is
based upon Java syntax, which has been chosen so that the
language will seem more familiar to the user. In this section,
we present only the most pertinent details of ASTRA that
reflect the points made in the paper. For more information
on the language, the reader is directed to [1].

4.1 The ASTRA Type System
ASTRA as a statically typed language that provides a typ-
ical set of primitive types for use. Because ASTRA is built
on Java, and in an effort to improve the cohesion between
the agent layer and the supporting functionality in the Java
layer, the set of primitive types is based upon Java’s type
system. While not exhaustive, all the necessary types are
provided for, including 4 and 8 byte integers (mapped to
Java’s int and long types), 4 and 8 byte floating point
numbers (mapped to float and double types) as well as
representations for character and boolean values (mapped
to char and boolean types).

ASTRA also supports the non-primitive types: character
strings, which map to the String class and a list type which
maps to a custom implementation of the java.util.List

interface. Finally, ASTRA allows the use of generic objects
through the object type. Instances of objects cannot be
directly represented within the language but can be stored
and passed to internal and environment operations.

ASTRA uses modules to represent internal libraries. The
design of these libraries is inspired by the use of annotations
in CArtAgo [20]. Libraries allow four kinds of annotation:
terms, formulae, sensors and actions. Terms represent basic
calculations that can return a value. Formula methods are
constructors that return any logical formula instance in AS-
TRA (these can be simple boolean values or more complex
formulae). Sensors generate beliefs that are added to the
agent’s state. Actions represent internal actions that can be

performed, returning a boolean value indicating if the action
was successfully performed. Figure 4 shows the declaration
of a module containing a single term and action.

All of the components of the modules are typed. This en-
ables the static verification of types for any usage of the
library as well as for any value returned. Terms, actions
and formulae can be used in a manner intuitive to OOP
programmers: Figure 5 shows an example of the use of a
term to determine the largest of two numbers before using
an action to print it.

Modules must first be declared by linking the class to a
name within the agent, this declaration is shown in line 5 of
the example. A consequence of this method of declaration
is that a single agent can create several copies of the same
module, each with a different name and state.

1 package ex;
2

3 import astra.core.Module;
4

5 public class MyModule extends Module {
6

7 @TERM
8 public int max(int a, int b){
9 return Math.max(a, b);

10 }
11

12 @ACTION
13 public boolean printN(int n){
14 System.out.println(n);
15 return true;
16 }
17 }

Figure 4: Java code declaring a module with a term
and action

1 package ex;
2

3

4 agent Bigger {
5 module MyModule m;
6

7

8 initial num(45, 67);
9 initial !init();

10

11

12 rule +!init() {
13 query(num(int X,int Y));
14 int n = m.max(X,Y);
15 m.printN(n);
16 }
17

18 }

Figure 5: ASTRA code declaring and using a mod-
ule

It should be noted that ASTRA is not alone in consider-
ing strong typing to be important in agent programming.
The simpAL agent programming language [19] also supports
typing, and includes the ability to extend strong typing to
environment artifacts and to the agents themselves.

4.2 Extended Plan Syntax
ASTRA includes a number of extensions to the traditional
AgentSpeak(L) plan syntax. These extensions are added to

1 rule +!sort(list L, list R) {
2 R = L;
3 int j = 0;
4 while (j < P.size(R)) {
5 int min = j;
6 int k = j+1;
7 while (k < P.size(R)) {
8 if (P.valueAsInt(R, min) > P.valueAsInt(R, k))
9 min = k;

10 k++;
11 }
12 if (min ~= j) {
13 R = P.swap(R, min , j);
14 }
15 j++;
16 }
17 }

Figure 6: ASTRA rule for Selection Sort

combat the issues noted in Section 3.2. The usefulness of
constructs such as these is emphasised by Jason’s inclusion
of some of these procedural-style constructs (e.g. if state-
ments, loops) in its extended version of AgentSpeak(L). AS-
TRA attempts to provide a more complete mapping between
procedural-style pseudocode, as well as AOP features.

If statement the most basic form of flow control

While loop usual method of repetition in programming

Foreach loop repeats the same actions for every matching
binding of a formula

Try-recover allows for the recovery from failed actions

Local variable declaration declares a variable for use within
a plan rule

Assignment allows the value of a local variable to be changed

Query bind the values of beliefs to variables

Wait pauses execution until condition if true

When performs block of code when condition is true

Send sends message to another agent

Synchronized enables mutual exclusion in critical sections

Figure 6 shows an implementation of selection sort as a sin-
gle rule in ASTRA. While this demonstrates only some el-
ements of the extended plan syntax, when compared to the
Agentspeak(L) implementation given in Figure 1 it is much
easier to understand.

4.3 Mutual Exclusion Support
In Section 3.3, the link between intentions and threads was
established. This introduces potential difficulties in the form
of race conditions since multiple intentions are, interleaved
by their very nature. As such, it is necessary to provide
functionality to offset these difficulties. To facilitate removal
of these high-level race conditions, ASTRA includes support
for synchronized blocks - sections of the agent program that
are labeled as critical sections.

Code contained within a synchronized block can only be
executed by a single intention at a time. Synchronized blocks
are declared using the synchronized keyword but also require
an identifier for the block. This allows multiple blocks to
be declared representing a common critical section. Once
an intention enters a synchronized block, all synchronized
blocks with the same identifier are locked and cannot be
entered until the current intention is completed.

1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7

8 rule +!init() {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13

14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Figure 7: ASTRA code with race conditions

1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7 rule +!init() {
8 synchronized (ct_tok) {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13 }
14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Figure 8: ASTRA code with mutual exclusion

Figure 7 shows an example of ASTRA code with race condi-
tions. This program invokes the !init() goal twice, creating
2 intentions. In this situation, there is no way to know the
output of the program. If both intentions query the belief
at the same time the agent will only output the value of X
at 0 and 1 (initial and incremented once). Figure 8 shows
the same program with mutual exclusion added through the
use of a synchronized block. In this situation, the output is
guaranteed to show the values of X at 0, 1 and 2.

4.4 Extended Event Types
AgentSpeak(L) defines two basic types of event: belief up-
date events, and goal events. This reflects the focus of the
design of AgentSpeak(L) on the internal reasoning mecha-
nism of an agent. Jason extends AgentSpeak(L) in numer-
ous ways, one of which is the integration of support for agent
interaction. The manner in which Jason performs this in-
tegration has been to define a limited set of message types
and define the semantics of how the receipt of these messages

1 agent Test {
2 module Console C;
3 module System S;
4

5 rule +!main(list args) {
6 send(inform , S.name(), count (0));
7 }
8

9 rule @message(inform , string from , count(int X)) :
X < 10 {

10 C.println("X=" + X);
11 send(request , S.name(), count(X+1));
12 }
13

14 rule @message(inform , string from , count(int X)) {
15 C.println("X=" + X);
16 C.println("STOPPED");
17 S.exit();
18 }
19 }

Figure 9: ASTRA agent that talks to itself

affects the state of the agent. For example, an achieve mes-
sage causes a goal to be adopted by the receiving agent, and
a tell message causes a belief to be adopted by the receiv-
ing agent. In order to capture additional information about
the source of the belief / goal, Jason has introduced an an-
notation mechanism. For example, the sender of a tell is
captured as a source(X) annotation that is appended to
the generated belief. The advantage of this approach is that
it allows additional functionality to be added to AgentS-
peak(L) without the need to modify the set of event mod-
els. The disadvantage is that any additional information is
stored as annotations. This, in effect, pushes the complexity
of knowledge representation into the annotation mechanism.

An alternative approach is to introduce additional event
types, allowing each event type to appropriately capture the
information that is relevant to the event. For example, re-
ceipt of a message can be modeled as a separate event type,
known as a message event. An example of this is illustrated
in Figure 9, which illustrates a simple ASTRA agent that
sends a message to itself. It is useful to note that, even
though the agent receives an inform message (the ASTRA
equivalent of a Jason tellmessage), the agent does not need
to adopt a belief. Instead, it is left to the developer to im-
plement code that does this. One arguable disadvantage is
that an agent does not have any guarantees on the effect of
informing another agent of something.

Overall, the use of extended event types can be, concep-
tually, less appealing than the Jason approach as it intro-
duces another event type, but practically, we believe that
this may be a better approach because it more clearly iden-
tifies plan rules that are intended to handle interaction with
other agents. It also maintains a cleaner separation between
beliefs - which come from internal actions or the environ-
ment - and messages. Finally, the approach can be used
to further augment the functionality of the language and to
maintain a clean separation of concerns between the core
functionality and the new extended functionality. Such an
approach has been used to provide integrated support for
environments like CArtAgO [20] and extended conversation
management functionality, such as ACRE [17].

5. CONCLUSIONS
In this paper, we have presented a practical conceptual map-
ping between AgentSpeak(L) and Object-Oriented Program-
ming (OOP). The purpose of this mapping has been to at-
tempt to find a way of reducing the cognitive gap for develop-
ers, experienced in OOP, who wish to learn Agent-Oriented
Programming (AOP). In developing the mapping, we are
not attempting to reduce one paradigm to the other, but
instead aim to provide a stepping stone that will help devel-
opers wishing to learn AOP make their first steps.

In addition to the benefit such a mapping provides for those
wishing to learn AgentSpeak(L), a second benefit is that
it provides language designers with valuable insights into
how their languages might be used in practice. To this end,
Section 3 reflects on the mappings and identifies a number
of possible issues and potential opportunities:

1. the potential of using a type system to improve the
link between the agent and object layers and to reduce
run-time defects through static type checks.

2. the provision of an extended suite of plan operators
including a subset that mirror the typical constructs
offered in procedural languages to support the use of
existing algorithmic problem solving skills when de-
veloping agent behaviours and the curtailing of rule
explosion that was evident in Figure 1.

3. the provision of mutual exclusion support for inten-
tions to facilitate management of critical sections.

4. the use of an extended suite of event types rather than
attempting to force all events to conform to AgentS-
peak(L)’s original model of belief and goal events.

While we believe that we have come to these conclusions
through a novel route, we do not claim to be the first to
reach them. Certainly, Jason includes support for atomic
behaviours and has an extended suite of plan operators. In
terms of the latter, we do believe that our perspective offers
some benefit: while Jason does include support for if state-
ments and for and while loops, we do not believe that it
offers support for local variable declaration or assignment,
both of which are considered a core concept in pseudo code.
Indeed, as was discussed in Section 3.3, lack of such support
can in fact lead to an explosion of critical sections, which
results in a widespread necessity for mutual exclusion.

The principal outcome of our work has been to drive the de-
velopment of ASTRA, an implementation of AgentSpeak(L)
that is targeted towards reducing the cognitive gap. In 2014,
ASTRA was made available to students on the M.Sc. in Ad-
vanced Software Engineering mentioned in the introduction.
Students learned ASTRA over 5 days, during which they
wrote a range of programs. What was interesting to note,
from informal observation, was the size and complexity of
programs written on the first day of the course. Previous
years have seen program sizes that were typically less than
30 lines of code, whereas through the use of ASTRA pro-
gram sizes typically increased dramatically to over 100 lines
of code. The complexity of problems attempted was also
much higher. It was also clear that students found it easier

to understand control flow within their programs, as their
solutions were more procedural in nature at first. This rela-
tively gentle introduction to agent programming meant that
the students were in a better position to appreciate the ben-
efits of the higher-level agent abstraction later in the week.

On the last day, the students were assigned a complex prob-
lem to solve [21, pp. 167–180] and were asked to complete
a questionnaire relating to both the problem and more gen-
erally agents. Details of the results of the relevant parts of
this questionnaire are presented in [7]. We believe that the
feedback positively reflects our decision to include both the
language level type system and the suite of plan operators
into ASTRA.

6. REFERENCES
[1] Astra language website.

http://www.astralanguage.com/. Accessed:
2015-06-21.

[2] Documentation for Jason while-loop implementation.
http://jason.sourceforge.net/api/jason/stdlib/

loop.html. Accessed: 2015-08-13.

[3] Matteo Baldoni, Cristina Baroglio, and Federico
Capuzzimati. Typing multi-agent systems via
commitments. In Fabiano Dalpiaz, Jürgen Dix, and
M. Birna van Riemsdijk, editors, Engineering
Multi-Agent Systems, volume 8758 of Lecture Notes in
Computer Science, pages 388–405. Springer
International Publishing, 2014.

[4] Rafael H. Bordini, Jomi F. Hübner, and Michael
Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason. John Wiley & Sons, 2007.

[5] J. Botia. Debugging huge multi-agent systems: group
and social perspectives. 2005.

[6] Rem W. Collier. Debugging agents in agent factory. In
Programming Multi-Agent Systems, pages 229–248.
Springer Berlin Heidelberg, 2007.

[7] Rem W. Collier, Seán Russell, and David Lillis.
Reflecting on Agent Programming with
AgentSpeak(L). In Procedings of the 18th Conference
on Principles and Practice of Multi-Agent Systems
(PRIMA 2015), 2015.

[8] Mehdi Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent
Systems, 16(3):214–248, 2008.

[9] Mehdi Dastani, M. van Birna Riemsdijk, and
John-Jules Ch. Meyer. Programming multi-agent
systems in 3APL. In Multi-agent programming, pages
39–67. Springer, 2005.

[10] Akshat Dhaon and Rem W. Collier. Multiple
Inheritance in AgentSpeak (L)-Style Programming
Languages. In Proceedings of the 4th International
Workshop on Programming based on Actors Agents &
Decentralized Control, pages 109–120. ACM, 2014.

[11] Dinh Doan Van Bien, David Lillis, and Rem W.
Collier. Space-time diagram generation for profiling
multi agent systems. In Programming Multi-Agent
Systems, pages 170–184. Springer Berlin Heidelberg,
2010.

[12] Koen V. Hindriks. Programming Rational Agents in
GOAL. In Amal El Fallah Seghrouchni, Jürgen Dix,
Mehdi Dastani, and Rafael H Bordini, editors,

Multi-Agent Programming:, pages 119–157. Springer
US, 2009.

[13] Koen V. Hindriks. Debugging is explaining. In Iyad
Rahwan, Wayne Wobcke, Sandip Sen, and Toshiharu
Sugawara, editors, PRIMA 2012: Principles and
Practice of Multi-Agent Systems, volume 7455 of
Lecture Notes in Computer Science, pages 31–45.
Springer Berlin Heidelberg, 2012.

[14] Koen V. Hindriks, Birna Van Riemsdijk, Tristan
Behrens, Rien Korstanje, Nick Kraayenbrink, Wouter
Pasman, and Lennard De Rijk. Unreal goal bots. In
Agents for games and simulations II, pages 1–18.
Springer, 2011.

[15] Nicholas R. Jennings. On agent-based software
engineering. Artificial intelligence, 117(2):277–296,
2000.

[16] Dung N. Lam and K. Suzanne Barber. Debugging
agent behavior in an implemented agent system. In
Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah Seghrouchni, editors, Programming
Multi-Agent Systems, volume 3346 of Lecture Notes in
Computer Science, pages 104–125. Springer Berlin
Heidelberg, 2005.

[17] David Lillis. Internalising Interaction Protocols as
First-Class Programming Elements in Multi Agent
Systems. PhD thesis, University College Dublin, 2012.

[18] Alessandro Ricci and Andrea Santi. Designing a
General-purpose Programming Language Based on
Agent-oriented Abstractions: The simpAL Project. In
Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11
Workshops, pages 159–170, New York, NY, USA,
2011. ACM.

[19] Alessandro Ricci and Andrea Santi. Typing
Multi-agent Programs in simpAL. In Mehdi Dastani,
Jomi F. Hübner, and Brian Logan, editors,
Programming Multi-Agent Systems, volume 7837 of
Lecture Notes in Computer Science, pages 138–157.
Springer Berlin Heidelberg, 2013.

[20] Alessandro Ricci, Mirko Viroli, and Andrea Omicini.
CArtAgO: A Framework for Prototyping
Artifact-Based Environments in MAS. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel,
editors, Environments for Multi-Agent Systems III,
volume 4389 of Lecture Notes in Computer Science,
pages 67–86. Springer Berlin Heidelberg, 2007.

[21] Seán Russell. Real-time monitoring and validation of
waste transportation using intelligent agents and
pattern recognition. PhD thesis, University College
Dublin, 2015.

[22] Seán Russell, Howell R. Jordan, G.M.P. O’Hare, and
Rem W. Collier. Agent Factory: A Framework for
Prototyping Logic-Based AOP Languages. In
Franziska Klügl and Sascha Ossowski, editors,
Multiagent System Technologies, volume 6973 of
Lecture Notes in Computer Science, pages 125–136.
Springer Berlin Heidelberg, 2011.

[23] Yoav Shoham. Agent-oriented programming. Artificial
intelligence, 60(1):51–92, 1993.

