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Abstract

Transient execution is one of the most critical features used

in CPUs to achieve high performance. Recent Spectre at-

tacks demonstrated how this feature can be manipulated

to force applications to reveal sensitive data. The industry

quickly responded with a series of software and hardware

mitigations among which microcode patches are the most

prevalent and trusted. In this paper, we argue that currently

deployed protections still leave room for constructing at-

tacks. We do so by presenting transient trojans, software

modules that conceal their malicious activity within tran-

sient execution mode. They appear completely benign, pass

static and dynamic analysis checks, but reveal sensitive data

when triggered. To construct these trojans, we perform a

detailed analysis of the attack surface currently present in

today’s systems with respect to the recommended mitiga-

tion techniques. We reverse engineer branch predictors in

several recent x86_64 processors which allows us to uncover

previously unknown exploitation techniques. Using these

techniques, we construct three types of transient trojans and

demonstrate their stealthiness and practicality.
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1 Introduction

Increased performance of modern processors largely relies

on various hardware units performing activities ahead of

time. For example, when the processor encounters a branch

instruction, a type of instruction that alters the normal se-

quential execution �ow, the branch prediction unit (BPU)

predicts the address of the following instruction instead of

waiting for the correct address to be computed. In order to

avoid damaging the architectural state, execution based on

predicted data is performed in a special transient (or specula-

tive) mode, which permits roll-backs to previous states. If the

prediction is correct, the execution along the predicted path

continues. Otherwise, the CPU reverts any changes made by

executing incorrect instructions. Recent transient (or specu-

lative) execution attacks, including Meltdown [49] and Spec-

tre [47], demonstrated how such performance optimizations

can bemanipulated to force victim programs to leak sensitive

data by leaving detectable traces in microarchitectural data

structures such as CPU caches. These attacks are capable of

violating the most fundamental principles of memory safety,

including user-kernel isolation. From early 2018, these at-

tacks opened up a new class of microarchitectural threats and

quickly spawned many variations [15, 25, 45, 48, 50, 61, 69].

Numerous mitigation techniques have been proposed to

protect from transient execution attacks. These techniques

range from serializing instructions [4, 39, 46], avoiding dan-

gerous code sequences [5], �ushing hardware data struc-

tures [2, 4], and limiting transient execution [41, 72] to dis-

abling microarchitectural covert channels [14, 19, 26, 44]. We

provide a more detailed description of current protection

schemes in Section 2.2. Hardware manufacturers, including

Intel and AMD, responded to the threat of transient execu-

tion attacks with a series of microcode updates. While being

e�ective in mitigating the main problem, such microcode-

based countermeasures noticeably reduce performance [55].

In this paper, we argue against the widely spread per-

ception that the triggers and e�ects of transient execution
attacks are fully understood, and recommended protections



leave no room for any attack to occur. We do so by construct-

ing transient trojans. These malicious software modules con-

ceal their malign functionality in transient execution mode,

and unlike previously demonstrated attacks [17, 45, 47, 69],

do not require an external attacker controlled process to

activate the hidden functionality. First, we perform a reverse

engineering study of branch predictor mechanisms in re-

cent Intel and AMD processors and discover several new

branch collision triggering techniques. These techniques en-

able portable, self-contained trojans that can be included in

sensitive software (for instance, by a malicious open-source

project contributor). Then, we construct software modules

that encapsulate all attack components (poisoning and vic-

tim branches) inside a single process. Malicious functionality

concealed in transient execution mode can remain unnoticed

in software even after undergoing rigorous security checks

such as symbolic execution [13], taint analysis [20], model

checking [27], various methods to detect traditional software

backdoors [59, 60, 63, 66, 71], and even existing Spectre de-

tection tools [3, 5, 33, 70]. According to recently proposed

transient attack classi�cation by Canella et al. [15], transient

trojans described in this paper present a practical example

of the same address space transient execution attacks. We

argue that transient execution ubiquitously present in nearly

all today’s CPUs is a natural �t for concealing malicious code

since it o�ers an execution mode that is completely invisible

to existing binary and source code analysis techniques.

Paper Contributions In summary, this paper makes the

following contributions:

1. We perform a reverse-engineering study1 of the BPU

to uncover the mechanisms responsible for indirect

branch prediction and ways to manipulate them. This

allows us to construct three types of trojans, each re-

lying on a di�erent BPU anomaly.

2. We present a new branch instruction collision mech-

anism based on early BPU accesses. First, the mech-

anism allows attackers to construct trojans that can

avoid being detected by current techniques based on

code analysis. Second, it permits creations of small and

portable trojans.

3. We propose a technique to disperse transient gadgets,

improving their stealthiness and e�ectiveness.
4. We analyze the static prediction mechanism and con-

clude that it can result in skipped indirect branches,

which we use to bypass existing gadget detection tech-

niques and to construct trojans.

5. We present an analysis of current binaries that demon-

strates a high prevalence of potentially dangerous colli-

sions reaching hundreds of thousands in large binaries.

We argue that such naturally occurring collisions can

1Experiments were performed on Intel Haswell (i7-4800MQ), Skylake (i7-

6700K), Kaby Lake (i7-8550U), and AMD Ryzen (1950X) machines running

recent and fully patched Ubuntu OS with microcode patches installed.

be used to hide malicious trojans as well as construct-

ing trojans from existing code.

6. Finally, we analyze protection techniques and suggest

approaches to remove the threat from uncontrolled

transient execution.

Responsible Disclosure Research �ndings in this paper

have been reported to Intel and AMD.

2 Motivation and Background

2.1 Transient Execution Attacks

Transient execution attacks [8, 15] are based on attacker

being able to poison BPU data structures by either executing

branch instructions inside an attacker process (Spectre vari-

ant 2) or by training BPU structures via supplying speci�c
data (variant 1) [47]. These attacks cause a misprediction by

the BPU followed by transient execution of wrong path of

instructions. While instructions executing in transient mode

cannot modify the architectural state (or write into memory),

they can still leave detectable patterns inside microarchitec-

tural structures such as CPU caches. These patterns are not

rolled-back after misprediction is detected. A sophisticated

attack can be constructed where BPU is poisoned in such a

way that CPU �rst reads sensitive data, then reveals it by

leaving detectable traces in microarchiectural structures.

Not all branch mispredictions allow for transient execu-

tion attacks. A branch must be unresolved for a number of

cycles to allow transient instructions from the wrong ex-

ecution path to access sensitive data and leave traceable

instances by initializing cache accesses. The number of in-

structions executed in this way, before the branch is resolved,

is known as the width of speculative window [33]. Wide

speculative windows are created if the information required

for the branch resolution is stored in RAM. In this case, a

branch can stay unresolved for hundred of cycles [51]. There

are two distinct scenarios that create dangerous speculative

windows. (1) When the data that determines conditional

branch direction (taken or non-taken) is not located in CPU

caches, and the BPU mispredicts its direction. (2) When the

target of an indirect branch is not in CPU cache while BTB

contains an incorrect target due to a collision with another

branch. These two scenarios describe Spectre variants 1 and

2 accordingly [47]. The second type (variant 2) of transient

execution is potentially more dangerous since it allows the

attacker to choose what code will be speculatively executed

by poisoning the BTB. Moreover, in such an attack, the at-

tacker can force transient execution to operate in the return-

oriented-programming [62] fashion, allowing execution of

instructions not present in the original binary [47]. In this

paper, we study this type of transient execution attacks.

2.2 Spectre Countermeasures in Existing Systems

Recently, several countermeasures have been developed to

mitigate transient execution attacks. The majority of the



proposed techniques focus on mitigating Spectre V2, as it is

potentially the most dangerous variation. Although many

promising protections techniques have been recently intro-

duced by academia [31, 33, 41, 44, 70, 72], current systems are

mostly protected by a few techniques developed by hardware

manufacturers and software vendors. Below we summarize

a set of protections that are universally enabled on today’s

systems regardless of OS type. Please note that for simplicity,

we focus only on Intel-based machines.

Retpoline Sequences. Spectre v2 attacks require an indi-

rect jump or call instruction to create a wide transient exe-

cution window. A simple compile-time solution proposed by

Google [67] is to replace all indirect branches with special

instruction sequences known as retpolines. These sequences

emulate indirect branch functionality by pushing branch

targets on stack and then executing a ret instruction. When

predicting target for returns CPU relies on RSB instead of

BTB for which poisoning is signi�cantly more di�cult [38].

Although using retpolines is considered an e�ective coun-
termeasure, recent attacks on the RSB call into question the

security of retpoline sequences [48, 50]. In addition, as stated

by Intel, Skylake and newer processors are allowed to rely

on the BTB for predicting return targets when RSB under-

�owing occurs [38]. This can make even retpoline-compiled

binaries vulnerable.

We performed analysis to �nd out how common retpo-

lines are on a typical machine. Our analysis included all

executables, libraries, and kernel modules on our test ma-

chine running the most recent and fully updated version

of Ubuntu. We found no retpoline compiled common exe-

cutables/libraries. The kernel and a small portion of kernel

modules were found to be compiled with retpolines resulting

in only ≈0.06% of total binaries in the entire system being

protected. This is potentially due to developers viewing ret-

polines as an overkill protection that results in code bloating

and performance degradation [55, 64] since the system is

already protected with the microcode-based protections.

System-wide Microcode-Based Protections.

Intel responded to transient execution attackswithmicrocode

updates introducing three new features: indirect branch re-

stricted speculation (IBRS) which limits speculative execu-

tion in privileged modes, indirect branch prediction barrier

(IBPB), which prevents cross-process BTB poisoning, and sin-

gle thread indirect branch predictors (STIBP), which prevent

BTB poisoning across hyper-threads [39].

2.3 Current Attack Surface and Motivation

It is important to note that microcode-based protections do

not completely eliminate the threat from transient execution.

They are designed to protect from known attack scenarios

while minimizing performance overhead. For instance, while

IBRS by principal is capable to completely disallow specula-

tion of indirect branch targets and thus dangerous transient

Kernel
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Process
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Victim Attacker Kernel
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Figure 1. Transient execution attack surface

execution, due to very high performance overhead it is only

enabled for kernel, kernel modules, and SGX enclaves on

most systems [58]. Similarly, IBPB, together with STIBP, can

disallow BTB poisoning between processes and threads, but

currently is enforced selectively after performing context

switch into a sensitive process [39].

We argue that the currently used protection model still

leaves possibilities for attacks. Figure 1 demonstrates a typi-

cal attack surface of a fully patched system denoting attack

vectors still remaining active. Arrow tail indicates attacker

branch, and arrowhead indicates victim branch locations.

Two vectors are particularly useful for constructing transient

trojans, denoted by 1 and 2 in the �gure. 1 is possible be-

cause neither IBPB or STIBP can protect against scenarios in

which the poisoning branch and the branch being poisoned

are located within the same address space. In Section 3.3.1,

we demonstrate how such collisions can be easily created by

leveraging newly discovered collision patterns. 2 is possible

because IBRS protects only the code running in privileged

modes from being in�uenced by unprivileged code 2. This

permits kernel to poison the BTB and trigger malicious tran-

sient execution inside user process. We explore trojans based

on this phenomenon in Section 3.2.

2.4 Threat Model and Assumptions

We assume that the attacker is a malicious developer who

is capable of delivering software that seems benign before

being activated by a trigger condition. The user (victim) may

run static or dynamic analysis and information �ow control

tools. Moreover, for trojans based on newly discovered colli-

sion patterns (Sections 3.1 and 3), the user can run existing

Spectre gadget detection tools [3, 5, 33, 70]. The malicious

code can be distributed in the form of a precompiled binary,

source code, a shared library, or a commit to an open-source

project.We assume the attacker has general knowledge about

the con�guration of the victim’s machine, such as CPU mi-

croarchitecture generation, versions of shared libraries, and

kernel.

2IBRS implementation may vary between CPU generations and OS policies

enabling or disabling this vector



3 Transient Execution Trojans

In this section, we present transient trojans, programs that

can compromise security while containing no malicious in-

struction sequences in any place reachable by normal exe-

cution �ow. Even though these trojans appear benign, they

output sensitive data when malicious transient execution is

activated. The basic building block for a trojan is a condition

in which transient execution temporarily violates the archi-

tectural state of a program. One of such violations is when

two branch instruction collide in BTB. As a result, the body

of one branch is executed with data in registers from another

branch. This enables a basic memory safety violation, which

can lead to sensitive data leakage.

In this section, we describe reverse engineering of mecha-

nisms used to predict indirect branches. We introduce three

distinct types of trojans, each utilizing a di�erent kind of

BPU anomaly. We show that a malicious developer or an

open-source contributor can compose a self-contained soft-

ware module in which malicious functionality is concealed

in transient execution. Unlike previous works [17, 45, 47, 69],

which require a separate malicious process controlled by the

attacker for BTB poisoning, our self-contained trojans could

combine all attack components, including BTB poisoning, in

one single process.

3.1 Branch Target Prediction Mechanisms

Modern BPUs are capable of predicting both direct and in-

direct branches with high accuracy. The mechanisms for

predicting targets of these two branch types di�er substan-
tially. Figure 2 demonstrates a simpli�ed target prediction

mechanism overview. Since the target of a direct branch (in-

cluding direct calls, jumps, and conditional branches) is �xed,
it is predicted by BPU simply caching previously calculated

target and storing it in a set-associative BTB [54]. As in any

set-associative cache, each lookup is done using index, tag,

and o�set bits. Index bits determine BTB set for the lookup,

while tag and o�set allow selection from multiple entries

in the same set. To predict the target of a direct branch, the

BPU performs a simple lookup based on the branch source

address. The address bits are typically hashed to reduce the

number of bits stored as tag in BTB.

However, this mechanism is not su�cient for e�ectively
predicting indirect branches because a single indirect branch

may jump to di�erent destinations depending upon data the

program is processing. Thus a prediction mechanism must

account for the context in which the branch is executed.

Current BPUs do so by associating indirect branches with

patterns of previously executed branches. This is achieved

using the mechanism called the branch history bu�er (BHB),
a shift register structure that serves the purpose of accu-

mulating the branch context. The context is composed by

hashing addresses bits of every committed branch instruc-

tions with current BHB value [35]. Then compressed BHB

value is used to perform target lookups. Such a predictor

allows storing multiple targets for a single indirect branch

and accurately predicting targets in cases when they depend

on previous code sequences.

To maximize the utilization of the BPU storage resources,

instead of storing targets for direct and indirect branches

in separate structures, both predictors share a single large

BTB as in hybrid predictors [16]. The two predictors di�er
by the type of BTB addressing modes they use: instruction-

pointer based (IP-based) and branch history bu�er based
(BHB-based).

In IP-based addressing, the index, tag, and o�set for a BTB
lookup are calculated solely based on a subset of the branch

instruction virtual address bits. This mode is primarily used

for direct branches.

In BHB-based addressing, the lookup is performed based

not only on branch instruction address but also on the state

of BHB. For instance, compressed BHB value can be used as

the BTB tag, allowing to store multiple targets for a single

indirect branch. This mode is exclusively utilized by indi-

rect branches. However, when BPU is processing an indirect

branch, the two predictors are used concurrently with the

prediction selected based on accuracy monitoring for each

entry stored in BTB. We provide details further in this sec-

tion.

While �nding an entry based on index calculating and

tag matching reminds a normal cache operation, BTB oper-

ates di�erently compared to regular caches. We performed a

reverse engineering study to understand the BTB con�gura-
tion and how branch address bits are used for lookups. We

use direct branches to study the IP-based addressing mode.

In the �rst step, we observe that, on Skylake processors, only

30 least signi�cant bits from the branch source address are

used for lookups, and the bits [47:30] are ignored, con�rming

results of previous studies [24]. Then we determine the asso-

ciativity of the BTB. Assuming bits from the most signi�cant
chunk of the remaining [29:0] are used as tag, we create n

branch instructions with mismatching tags by �ipping these
bits. We keep other address bits identical to make matching

index and o�set. We make each of these branches having a

non-matching target. Then we execute this branch sequence

twice, observing BTB miss events for any of them during the

second time. We use hardware performance counters [1] to

detect BPU events. A BTB miss indicates the BTB does not

have enough ways in a given set to store all n targets result-

ing in eviction of one of the targets. We observed no misses

for n < 9 and a stable miss pattern when n ≥ 9, indicating

that BTB contains 8 ways.

Next, we �nd which address bits are used as index. To do

so, we execute a set of 8 branches that occupies an entire

BTB set. Then, one more branch is executed while �ipping its
address bits in range [29:0]. If the �ipped bit is used as tag, all
8+1 branches will have identical indexes and be assigned to

the same set. In such case, one of the 8 targets will be evicted.
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Figure 2. Branch target prediction mechanism combining

direct and indirect branch prediction logic. Functions f 1 − 3

are bit compression functions; f 4 is bit matching function.

Mechanisms used for trojan construction are highlighted red

However, if the �ipped bit is used as index, the branch with

the �ipped bit will go into a di�erent set, and no evictions

will appear. Then we check if any of the 8 branches were

evicted from BTB. This way, we identify that bits [13:5] are

used as index providing 29 total sets resulting in 4 096 total

BTB entries. This suggests bits [29:14] used as tag. Previous

research [35, 47] determined that tag bits are folded together

using a simple XOR operation: tag= ai ⊕ ai−8 |i ∈ [29, 22],

where a is the branch instruction address. We observed that

the exact addressing scheme and bit folding function varies

on di�erent microarchitectures. For instance, Haswell pro-

cessors appear to use tag= ai ⊕ ai−9 |i ∈ [30, 22] folding

function.

Finally, the remaining bits [4:0] are used as the o�set.
The exact role of the o�set in the context of BTB is un-

clear. However, the presence of o�set is indicated by multiple

sources [10, 36, 43]. In general case, the o�set can be viewed

as a second tag requiring a full match to produce a BTB hit.

However, as we discover in Section 3.3.1, the matching is

done using a more complex function, which can produce ad-

ditional collisions resulting in potentially malicious transient

execution.

3.1.1 Addressing Modes for Indirect Branch

Prediction

Predicting indirect branches based on the context in which

they are executed is a logical strategy. Consider a switch-case

expression in C. It is typically implemented by calculating

the resulting target and jumping to this target via an indi-

rect jump instruction. The code pattern executed prior to

the switch is likely to a�ect which target will be taken. For

this scenario, the BHB-based prediction mechanism is accu-

rate. However, many switch-case expressions also have the

default case, a single target for multiple di�erent (unrecog-
nized) contexts. In this case, the BHB-based mechanism will

not be optimal. Instead, the simple IP-based approach will

correctly predict the same target regardless of the context.

Pattern 1 Pattern 2

Pattern A R1 R2 R3 A A R1 B R2 A R3 B R4
Observation M M H H H M M M H H H H H

Miss rate 0.99 0.99 0.0 0.0 0.05 0.99 0.99 0.99 0.02 0.14 0.0 0.04 0.0

Table 1. Misprediction rate observed in two di�erent pat-
terns composed by varying the BHB context. H represents

hit, and M represents misprediction

We hypothesize that BPU uses both mechanisms concur-

rently.

To verify our reasoning, we designed an experiment in

which the same indirect branch is executed in multiple dif-

ferent contexts. The contexts are created by varying taken-

not-taken patterns of preceding 50 conditional branches.

Our experiment included the following contexts: A → a,

B → b and R1..k → r , where {A,B,R1..k } are branch con-

texts and {a,b, r } are target addresses for each corresponding

context. Contexts A and B have their own targets, while k

contexts share a common target r . Executing an indirect

branch in di�erent contexts while observing its mispredic-

tion rate via hardware performance counters allows us to

detect when each addressing scheme is used. For instance, a

pattern ABABAB has mispredicted branches for the �rst two
times and correct predictions (hits) for the following ones.

This is because the branch predictor quickly learns the de-

pendency between context A and target a and between B

and b.

Table 1 presents experimental data collected from running

two demonstrative patterns 1 000 times and averaging the

results. The �rst pattern shows how after the branch is exe-

cuted for the �rst time, the predictor learns its target to be a.

Because of that, it mispredicts the target when we execute

it in context R1 → r . However, any consequent execution

in random context Rn → r is correctly predicted to go to r .

It also shows how the branch is correctly predicted when

we execute it in static context A → a second time. These

observations show that the branch predictor is capable of pre-

dicting the same branch instruction using two independent

modes.

The second pattern demonstrates how two addressing

modes work in parallel; i.e., the predictor simultaneously

checks whether a branch is available using either of the

schemes. If it �nds amatching tag using any of the schemes, it

proceeds with the stored target. In Figure 2, we demonstrated

BPU design that can produce such behavior.

These observations allow us to identify two distinct types

of indirect branch collisions. Type 1 collisions are when both

the BHB state and the reduced branch source address are

matched, and the BPU uses BHB-based addressing. Type 2

collisions are when only the branch addresses are matched

while mismatching the state of BHB, and the BPU uses IP-

based addressing.



3.1.2 Selecting Branch Type for BTB Poisoning

Previous attacks based on BTB poisoning [17, 45, 47, 69]

used type 1 collisions. In these works, a victim branch was

poisoned from a di�erent process by executing an indirect

branch on matching virtual addresses while mirroring the

BHB state via repeating behavior of preceding branches.

Such setup is less suitable for constructing real-world tran-

sient trojans since they must be self-contained; the branch

performing poisoning and the branch being poisoned must

be located within the same address space. From now on, we

refer to the former as writer branch or WB, and the latter

as reader branch or RB. To construct a trojan based on

type 1 collisions, an RB and a WB must be placed at the ad-

dresses producing collisions, and have identical BHB states

when executing. This is a challenging task due to mapping

function f 2 and BHB update function f 3 (from Figure 2)

unknown or partially reverse-engineered [35, 47]. Even if

these functions are fully reverse-engineered, BHB training

would require highly irregular code sequences that can be

easily detected.

Intuitively, using type 2 collisions is a better option. How-

ever, collisions of this type require that both an RB and WB

are executed in a new BHB branch context each time. This

can be done by running sequences of random taken/not-

taken conditional branches before executing WB and RB.

This is problematic because unique BHB states will eventu-

ally start to repeat, forcing the BPU to switch to the BHB-

based mode of addressing. In addition, such code would be

highly irregular.

A desired mechanism for constructing trojans must 1)

produce reliable collisions when RBs and WBs are located

in the same address space; and 2) be easy to mask as benign

code. We propose to use direct branches as WBs since 1)

they are always handled by the simple IP-based addressing

mode making BTB writes more deterministic; and 2) they are

common in regular applications with approximately every

4-7th instruction being a direct branch making them easy to

mask as normal code.

3.1.3 Finding Branch Collisions

We hypothesize that the mechanism used to predict direct

branches is exactly the same as the IP-based addressing mode

for indirect branches. If this hypothesis is true, constructing

a trojan becomes straightforward. If we match the address

bits used for the tag, index, and o�set in a direct WB and an

indirect RB, the WB will poison the RB. This will result in

speculatively executing code pointed by WB’s target when

the CPU processes the RB.

To verify this hypothesis, we design an experiment de-

picted in Figure 3, which allows to reliably identify addresses

that result in branch collisions. In this experiment, a di-

rect jump instruction located at address addrWB jumping to

addrT1 acts as a WB. An indirect jump is located at addrRB

addrWB  jmp T1

addrT1  nop

        ... ...

        mov T2, %rbx

addrRB  jmp *%rbx   

addrT2  ret

addrT3  mov dat, %rax

regular execution

PMC(MISPREDICTION) =      1         0    
latency(dat) =   ~45   ~230  

  collision?

  yes      no

transient execution

addrT3[47:32]= addrWB[47:32]

addrT3[31:0] = addrT1[31:0]

Figure 3. Collision detection experiment setup

jumping to addrT2 acts as an RB. Then we place a transient

gadget at address addrT3. This gadget accesses a variable

dat, loading it into CPU’s data cache. If the two branches

collide, then mispredicted RB results in transient execution

going to addrT3, activating the gadget which loads the vari-

able dat into the cache. We detect RB mispredictions us-

ing hardware performance counters while measuring the

latency to access dat tells us if the gadget was activated. By

moving these branches and gadget instructions in virtual

address space and observing collisions, we can e�ectively
scan address space to �nd addresses that create collisions

and analyze corresponding target calculation mechanisms.

Using this setup, we make several important observations.

Observation 1: Direct branches can serve as WBs, and

indirect branches can serve as RBs creating ideal grounds

for trojan construction. Moreover, indirect RBs do not need

to be executed in a new context every time, as explained in

Section 3.1.1.

Observation 2: Reduced data stored in BTB (tag and target

bits) allows to create collisions within a single process and

redirect execution to malicious address. For instance, BTB

stores only 32-bit target [47], and to compose the 48-bit pre-

diction target, the CPU simply concatenates branch source

address bits [47:32] with the 32-bit target from BTB. This

enables attackers to use relative addressing.

Observation 3: We tested di�erent types of branch instruc-

tions and concluded that any direct branch can serve as a

WB, including calls and conditional jumps.

Observation 4: Our initial tests demonstrated a 50% rate

of successful poisoning. However, this rate can be improved

if direct a WB is executed multiple times, indicating the

possibility of a tournament mechanism [32] selecting the

most accurate predictor.

3.1.4 Predictor selector mechanism

To investigate the nature of observation 4, we conduct the

following experiment. We place an indirect branch (i) and

a direct branch (d) at colliding addresses and make them

having mismatching targets. Since d always uses the simple
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Figure 4. Misprediction patterns demonstrating the com-

petition between the two addressing modes and an FSM

matching this behavior

IP-based addressing mode, the BTB will contain an incor-

rect target when predicting i using this mode. By preceding

i with a �xed sequence of conditional branches, we guar-

antee identical BHB states. As a result, BHB-based mode

will always produce a correct prediction. If a tournament

mechanism is present, we expect the predictor selector mech-

anism being a�ected by executing both of the branches. In

particular, when we execute d, it will be correctly predicted

using the IP-based mode. This will increase the con�dence
of this mode. In contrast, when i is executed, a misprediction

from the IP-based mode and a hit from the BHB-based mode

will decrease the former and increase the latter predictor’s

con�dence.
Observing i’s correct/incorrect prediction patterns allows

to detect which predictor is currently in use. A mispredicted

observation indicates the IP-based mode usage, while cor-

rectly predicted branch tells BHB-based mode is in use. By

executing sequences composed from these two branches and

observing i’s prediction accuracies, we can detect when each

predictor wins the tournament. We execute patterns created

by invoking i and d in a random order while collecting the

misprediction patterns. Figure 4 demonstrates our observa-

tions from several characteristic repeated patterns. Please

note that demonstrated prediction patterns are from a sin-

gle execution of i (denoted by capital I) in multiple rounds.

By manually inspecting these patterns, we noticed that the

observed behavior resembles a �nite state machine (FSM)

implemented using a 2-bit counter as the system appears

switching between 4 stable states. It is possible to manipulate

such a mechanism. For instance, executing i multiple times

in a row increases the accuracy of the BHB-based predictor

and makes it more likely to be used for future branches.

In the e�ort to �nd the con�guration of the FSM responsi-

ble for such behavior, we performed the following analysis.

First, utilizing the brute-force approach, we generated all pos-

sible FSM con�gurations based on a 2-bit counter. The states

of the FSM determine which predictor addressingmode (IP or

BHB based) is used. This resulted in 863 040 possible con�g-
urations. After removing con�gurations containing in�nite
loops and other abnormalities, we reduced this number to

49 104. Next, we simulated these FSMs and ran previously

collected patterns through them while observing which pre-

dictor is utilized each time. During this stage, we only keep

the FSM con�gurations that match the real system behavior,

resulted in only 6 possible unique FSM con�gurations. We

present one such potential FSM in Figure 4. Please note, while

this FSM con�guration is capable of modeling the real sys-

tem behavior with high accuracy, the actual mechanism used

in the CPU may be di�erent. Knowing the inner workings
of the predictor selector, an attacker can perform manipula-

tions forcing the CPU to use the IP-based prediction mode

to enable simple collisions by triggering repeated execution

of the colliding direct branch instruction.

3.2 Distant Collision Trojans

Now we introduce the �rst and most basic type of a tran-

sient trojan and demonstrate its inner workings. This type

of trojan is based on exploiting the BTB addressing scheme

where only partial address information is stored. This allows

two distinct branches (WB and RB) to collide in a way that

when RB is mispredicted, the transient execution goes to the

target of WB violating the architectural state. For example,

as we described earlier, the tag stored in BTB is folded using

a simple XOR operation. Suppose there is a direct branch at

address 0x400077 and an indirect branch at 0x4077 in the

same process. These branches will collide in BTB when the

IP-based addressing mode is used. The attacker can prepare

a binary containing branches at colliding addresses. When

the binary is deployed on the victim machine, the collision

is activated by calling normal API functions in a speci�c
order. In short, this type of transient trojans operates in the

following way. First, using a program API, the WB will be

activated to write the poisoning entry into the BTB. After

that, the attacker trigger conditions for the RB to initialize

transient execution, e.g., issuing an API call to access a large

array forcing the RB’s target to be removed from CPU cache.

Then, the RB is executed, and BPU uses the poisoned BTB

entry to begin transient execution of a gadget that accesses

secret data and reveals secret values using microarchitec-

tural covert channels [9, 18, 23, 29, 30, 37, 42, 52]. We assume

the attacker being able to use return-oriented analysis tech-

niques [12, 34, 53] to �nd or create code sequences (gadgets)

that, when executed in transient mode, result in a desired

malicious activity. Generally, gadgets can leak data by ei-

ther 1) leaving traces in shared resources such as CPU data

caches [47] or 2) by a�ecting the timing of certain operations

in a controlled way. As demonstrated by Schwarz et al., such

delays can be detected over a network [61]. In addition, this

type of trojans can be constructed by placing RB and WB

in di�erent memory segments within a single application

context. For instance, WB can be placed (or existing branch

can be utilized) in a library or kernel code segments, while

RB being located in trojan’s .text segment.

Please note, although we construct this type of the trojan

utilizing a known branch collision mechanism, we believe

that our approach is substantially di�erent. In existing works,
a lower privilege entity, such as an untrusted process poisons



a branch in a higher privilege entity such as an OS kernel or

an SGX enclave [17, 45, 47, 69]. Such attacks are currently

mitigated via IBRS, which protects higher privileged enti-

ties (kernel and enclaves) from lower privileged entities. We

utilize poisoning vectors that are typically not hindered. In

current systems, collisions still occur in many ways as we

summarized in Figure 1. The two types of poisoning we will

use for constructing trojans are 1) when higher privileged en-

tity poisons a lower privileged entity and 2) when poisoning

happens within the same privilege level.

3.2.1 Trojan example utilizing a system call

Assume a malicious developer whose goal is to construct a

program that handles secret data and, when triggered, leaks

this data. A typical manual inspection or static/dynamic anal-

ysis would look for any reference to the sensitive data to

make sure they do not reveal it via a covert channel [22]. To

show how a practical trojan can be constructed containing

no such references, we provide a simple demonstration in

which poisoning is triggered by executing a benign existing

system call. Performing system calls is a normal activity for

any application and unlikely to cause concerns. During a

system call, control is temporarily transferred to the operat-

ing system. As a result, branches residing in kernel memory

trigger writes into the BTB. When the system call is com-

pleted, the execution transfers back to the trojan without

removing BTB entries placed during the kernel execution. If

any of these BTB entries have matching index, hashed tag,

and offset bits with an indirect branch in trojan’s code,

the BPU will treat it as a hit. The predicted address will

be composed by concatenating the kernel branch’s 32 least

signi�cant target bits with the remaining 16 bits from the

trojan branch’s source address. If such an address contains

executable memory, transient execution will take place until

CPU detects misprediction and rolls back to the previous

state. This will result in violated architectural state. We uti-

lize this phenomenon to construct a trojan that solely relies

on normal code executed during a system call to redirect

transient execution to a place containing a malicious gadget

within trojan’s code segment.

During the trojan preparation stage, the developer per-

forms an analysis of the environment in which the future

trojan will run and �nds a direct branch suitable for poison-

ing. Typically, this branch needs to be in the �nal stage of
a short system call routine. For our proof-of-concept proto-

type, we choose a branch inside the open() system call. Then

the developer introduces a code construction that results in

an indirect branch at the colliding address while sensitive

data is possible to reference (for instance, the pointer to that

data is in one of the registers). This indirect branch transfers

regular execution to a benign code containing no leakage

instructions. As a result, static analysis will not raise any

�ags. Modern-day compilers o�er a wide range of code con-
structions that are compiled into code with indirect branches

              benign function A:

                syscall               //sys_open

0x...8028daf9:  jmpq  *%rbx   //part of switch()

    true_dest:  <benign_code>

user Kernel

              do_sys_open:

0xf.f8129daf9:  ja  0xf.f8129db15

              transient gadget:

0x...8129db15:  <read_secret>

②①

③
④

Ⓧ execution (& transient exec.)

Figure 5. Transient trojan based on open() system call

such as virtual functions, function pointers, and computed

gotos. In addition, a trojan developer can use function align-

ment and memory mapped code region techniques to easily

achieve desired instruction placement.

The next stage of the trojan preparation is �nding a suit-
able transient execution gadget. The gadget must �rst access
the sensitive data and second leak its value via covert chan-

nels.

A high level schematic description of the trojan activity

is depicted in Figure 5. For each iteration of the attack, the

attacker interacts with the trojan via API calls. Each call

activates the malicious function inside the trojan, which in

turn performs a system call causing BTB poisoning. After

the function returns from the system call, it executes an in-

direct jump, resulting in transient execution of the gadget.

After this, the attacker probes the system to obtain microar-

chitectural traces and recovers leaked data. To evaluate the

accuracy of this type of trojan, we collect data from 1 000

rounds of trojan execution. In each round, the gadget is trig-

gered 1 000 times. Then, we count the number of times the

gadget is successfully activated. The average success rate for

this experiment is 12.79%. Such a rate is within an acceptable

range for most microarchitectural attacks. To compare this

result to a clean environment, we composed a prototype in

which a WB and an RB are both located inside user process

memory segments. The average accuracy rate for this con-

�guration is 94.52%. Such a signi�cant improvement is likely

due to the normal side e�ects of system call execution inside

the kernel and a mode switch. For instance, system call activ-

ity is more likely to evict gadget code from the instruction

cache stopping the transient execution attack. Please note

that similar trojans can also be constructed by using library

functions instead of kernel code. Since library code is placed

inside the process address space, IBRS will not prevent the

poisoning.

Please note that ASLR and KASLR can make these attacks

challenging. However, programs may be compiled without

ASLR support and distributed in binary form. Even if KASLR

is enabled, its entropy is very small, making attacks still

possible by placing RBs at all potential collision addresses.

To eliminate the dependency on hardcoded code addresses,

we develop two types of portable trojans that work regardless

of code placement.



3.3 Portable Trojans

3.3.1 Early Front-end Branch Collisions

Timely branch predictions are very important for the per-

formance of CPU front-end. BPU is responsible for identi-

fying branch instructions early and adjusting fetching to

guarantee delivery of instructions from the correct execu-

tion path to minimize the number of costly roll-backs. Any

slowdown in generating a prediction results in a front-end

delay, which propagates into other stages of the pipeline.

However, to perform a lookup, BPU needs to know the ad-

dress of instruction’s last byte. This is because, typically,

BPUs address branches using their least signi�cant byte. On
a CISC processor with variable instruction length, such in-

formation is not immediately available. A special front-end

component, called predecoder, is responsible for detecting

instruction boundaries inside a prefetched instruction cache

line. We hypothesize that modern-day aggressive front-end

designs may avoid waiting for predecode to complete and

activate transient execution based only on partial informa-

tion about potential branch instruction address. This can

result in an early front-end branch collisions where closely lo-

cated branches collide due to uncertainty in the boundaries

of branch instructions. If this is true, then collisions may

appear between branches with mismatching least signi�cant
address bits. Several Intel patents [10, 36, 43] refer to these

bits as o�set while not explaining their exact purpose.
To test the aforementioned hypothesis, we adapted the

experiment depicted in Figure 3 with the following changes.

First, we position bothWB and RBwithin the same 64 byte in-

struction cache line. This guarantees matching tag and index

bits. Next, we make the direct WB jump to a gadget that now

leaks a value stored in register %rax. Before executing it, we

always load a non-secret value in that register. The indirect

RB, as previously, jumps to a benign code. However, prior to

that, it loads a secret value into the register %rax. If the RB

is poisoned by WB, the transient execution shall transfer to

WB’s body but with secret data loaded in the register. Finally,

we execute the WB and RB in a loop and observe e�ects. If
poisoning happens, we detect the secret value leaked via the

cache covert channel. An adapted version of this experiment

is demonstrated in Figure 8.

We use this setup to scan all possible positions of WB and

RB and detect when poisoning happens. As a result, we were

able to �nd stable collision patterns on all tested Intel pro-

cessors. These patterns indicate a partial o�set bits matching

mechanism. In particular, on Skylake and Kaby Lake proces-

sors: WB and RB collide either if all o�set bits are matched or

if bit 5 in WB address is 1 and 0 in RB address. Thus when

generating a prediction for the indirect RB, the BPU mistak-

ingly uses the target of another branch instruction located

in one of the subsequent memory locations. On Haswell, a

similar pattern exists, however, with bit 4 triggering these
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Figure 6. Branch collision patterns within the same cache

line on Haswell and Skylake CPUs

collisions instead of 5. These patterns are demonstrated in

Figure 6.

This intriguing pattern variation between CPU genera-

tions sheds some light on the likely root that causes this

collision mechanism. To investigate it, we carefully com-

pared microarchitectural front-end optimizations involved

in early instruction processing in Haswell and Skylake pro-

cessors [6]. Our reasoning is that the mechanism responsible

for the behavior must be located in the pipeline before the

instruction predecoder and size of instruction blocks it pro-

cesses is double in Skylake compared to Haswell.

By carefully examining related front-end components [6],

we concluded that the decoded streaming bu�er (DSB) [7, 57]
is a potential root cause. In Intel processors, DSB (also re-

ferred as µop cache) helps to avoid decode/predecode delay

by storing ready to execute microcode operations (µops).

The most performance bene�t comes from situations where

instruction decoding is delayed, for instance, due to an in-

struction cache miss or decoders being busy. It also reduces

power consumption by suppressing overall decoder activ-

ity [65]. Branch prediction while executing µops stored in

DSB is equally important for performance as it can trigger

µops dispatched directly from the DSB to instruction decode

queue, which naturally bypasses all the pre-decoding and

decoding stages [56]. However, branch prediction in this

stage is challenging due to the speci�cs of addressing in DSB

where the virtual address of only the �rst instruction inside

a tracking window block (32 bytes on Skylake) is stored [40].

Since a single macro instruction can be decoded into a dif-

ferent number of µops; entries in DSB are not aligned with

regular instructions in virtual memory. Therefore, the DSB

does not have su�cient information on the boundaries of a

branch µop. To perform a precise BTB lookup, the DSB logic

would have to compute macro-op address from the virtual

address of the �rst µop in the DSB block and the o�set. That
would signi�cantly increase the mechanism’s complexity.

Alternatively, DSB can request predictions without specify-

ing the instruction location within its window. We argue

that our experimental data suggests the existence of such

mechanisms. Our attack example demonstrates how this pre-

mature BPU lookup can result in incorrect predictions and

malicious transient execution. It is worth mentioning that

the size of the DSB tracking window enlarged from 32 Bytes
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Figure 7. Demonstration of the two collisions types

in Haswell to 64 Bytes in Skylake and Kaby Lake. This may

explain the bit-4 and bit-5 observations on these CPUs.

Please note, that this collision mechanism initially appears

less stable and is sensitive to surrounding code and branch

activity of the program. The average attack success rate in

a series of experiments was 4.86%. This is due to this type

of collision relying on tight race conditions and contentions

inside the front-end components. We tackle this problem by

developing an automated collision optimization technique

based on an evolutionary algorithm approach in Section 4.

Please note that the collision mechanism described above

also works when combined with other collisions types. For

example, if two branches have tag and index bits matched

while mismatching higher (ignored) bits ([47:30]), and fol-

lowing the bit-5 collision pattern, the collision will also occur.

Figure 7 demonstrates this principle. Presented are results

from a Kaby Lake experiment in which we placed an RB at

address 0x300110 and then scanned for potential addresses

where collisions can occur (0x100300100 – 0x100300140)

whilst monitoring access time to the variable that is only

accessed from transient execution. Low access latency indi-

cates a collision happening. One such collision is between

addresses 0x300110 and 0x100300110. This is due to the

full index, tag, and offset match. As seen from the graph,

there are additional bit-5 collisions occurring when the WB

crosses the 32-byte boundary, and o�set collisions start tak-
ing place. For simplicity, we will refer to all such collisions as

bit-5 collisions regardless of microarchitecture and whether

or not they are combined with other collision patterns.

3.3.2 Constructing a Portable Trojan

Trojans based on the early front-end branch collisions can

achieve great covertness and portability. This is mainly due

to two reasons. First, they do not rely on placing branch

instructions far away from each other, contributing to their

small size. Second, they do not rely on �xed addresses (aside

from o�sets within the cache line). This permits them to

function when ASLR is enabled. In this type of trojans, all

attack components (WB, RB, and the transient gadget) are

encapsulated in a small chunk of code that �ts into one or few

cache lines. As a result, a malicious developer can prepare a

portable block of normal C/C++ code that when compiled

will act as a trojan. Such trojan will function as expected

even if compiler reorders the functions inside binary or the

executable is run with ASLR. This opens new vectors for

spreading transient trojans. Instead of standalone applica-

tions, they can be distributed as shared libraries, patches, or

via multi-party software development projects. The require-

ment for code to be aligned within a 64-byte block is possible

to ful�ll using various code optimization techniques such as

function attributes [28] available in most compilers.

We demonstrate the functionality of the bit-5 collision

by creating a simple trojan consisting of two functions, f1

and f2. The high-level overview is presented in Figure 8. We

assume f1 is a function that has access to sensitive data. For

instance, this can happen when f1 is a secret key manipula-

tion function, and the key is loaded in one of the architectural

registers in function’s prologue (for example %rax). In ad-

dition, f1 contains an indirect branch instruction. This can

happen because of a switch() statement or a call to a virtual

method. The code in f1 does not contain any instructions

capable of leaking secret data via covert channels. It assumed

that this function will be inspected for that matter. Another

function f2 is a not-sensitive function that is located directly

below f1 in virtual memory, permitting the bit-5 poisoning.

Since f2 does not contain any memory accesses to sensitive

data, the presence of a transient gadget in its body does not

violate security properties and will not be �agged as dan-

gerous code during analysis. However, due to the branch

collision, f2’s function body will be executed (in transient

mode) in the context of f1. By context here we understand

the data accessible by each function. This enables a unique

transient execution attack. Due to colliding branches, the ar-

chitectural state is violated in such a way that results in the

body of one function to execute with the context (data) of an-

other function. For demonstration, we utilize a gadget similar

to the gadgets used in prior work [17, 45, 47, 69]. The gadget

reads the secret byte and then reveals its value by initiating

a memory access using the address dependent on that value.

To evaluate the e�ectiveness of this type of trojans, we per-
formed an experiment with the code illustrated in Figure 8.

We �rst execute function f2, which moves the non-secret

value 256 into the register %rax. Then it executes the WB,

which transfers execution to the gadget that outputs the

value stored in the register via leaving a trace in cache. Next,

we execute function f1, which places the secret value 42

into the same register. Only f1 has access to that value. The

function then activates the RB, resulting in transient execu-

tion jumping to the body of f2, which contains the gadget

leaking the value stored in register %rax. Please note, when

the gadget instruction is executed in transient mode, the

register contains the secret value. After both functions are

executed, we probe the cache covert channel by checking

all possible byte values transmitted by the gadget (from 0 to



other space
WB region [0x60:0x7f]RB region [0x40:0x5f]

Ⓧ execution (& transient exec.)

       f1():  mov secret, %rax

              mov benign_code, %rbx

0x...401257:  jmp *%rbx

benign_code:  nop; ret            

       f2():  mov non_secret, %rax

0x...401277:  jmp gadget            

     gadget:  mov (%rax), %rcx

              load arr[%rcx * 256]

⑤

②

④
①

③

Figure 8. Portable transient trojan example

255). If no cache hits are observed, we record no byte transfer.

If a transferred value is detected other than 42, we detect

an error. Otherwise, we register a correctly transmitted bit.

In a real-world trojan, capturing leaked bits is typically per-

formed in another process, or it may a�ect the timing of

an externally observable event. However, for simplicity, we

place all components into a single process. In addition, to

insure RB’s misprediction, we �ush the correct target from

cache on every iteration. We con�gured our PoC to leak 10

kilobytes of data and ran it 10 times. The average number of

iterations required to transfer 1 byte was 43.69, and the av-

erage error rate was 0.0450%. The large number of iterations

indicate that bit-5 poisoning does not happen frequently. In

Section 4, we present an automated approach to optimizing

such trojans allowing to improve their throughput signi�-
cantly.

3.3.3 Dispersing Gadgets to Avoid Detection

Transient execution attacks rely on gadgets to leak sensitive

data. Recently, several works proposed detecting these gad-

gets [3, 5, 17, 33, 70]. They are largely based on performing

static binary analysis. To bypass such detection, we devel-

oped a technique based on the newly discovered collision

pattern. Static analysis tools rely on detecting code sequences

that result in the following actions: 1) memory location is

read, and 2) another memory access is performed with an

address dependent on the value of the �rst operation. These
solutions use abstract interpretation of binary code to �nd
data dependencies and match activities with known mali-

cious patterns. They are e�ective in detecting gadgets even

if the attacker tries to obfuscate them by using di�erent vari-
ables and registers. However, abstract code interpretation

does not account for side e�ects of transient control �ow
transition due to a bit-5 collision. We can utilize this anom-

aly to violate the architectural state and disperse a transient

gadget into two parts, each of which is not identi�ed as a

malicious instruction sequence. Figure 9 shows a gadget con-

sisting of 4 operations. Following the described approach,

we add an indirect jump instruction and refactor the code in

such a way that the �rst two operations are executed before

the poisoned jump and the last two after. From the archi-

tectural state point of view, the second part of the gadget

will never be executed. However, due to the poisoning, the

jmp *%rbx

 . . .

mov secret, %rax

mul $256

add arr, %rax

mov (%rax), %rcx

DETECTED

disperse

mov secret, %rax

mul $256

jmp *%rbx

 . . .

add arr, %rax

mov (%rax), %rcx

Figure 9. Dispersing a transient gadget to avoid gadget de-

tection tools. Solid arrows indicate transient execution �ow

transient execution will result in full gadget execution. After

this transformation, the code will produce exactly the same

transient execution e�ect. Since we are the �rst to report the
bit-5 collision; we believe that this technique is capable of

defeating solutions based on gadget detection.

To evaluate the e�ectiveness of this technique, we com-

pared the number of iterations required to leak 10KB using

the bit-5 based trojan with and without dispersing the gad-

get. To do that, we moved two of the gadget’s instructions

before the RB. The average number of iterations required

to transfer 1 byte from 10 runs was 20.41, and the average

error rate was 0.0147%. These results indicate that dispersed

gadgets are roughly two times more e�cient. This is due to

reducing the number of gadget instructions that execute in

transient mode by moving them before the indirect jump.

Therefore such a technique can be used not only to avoid

detection but also to improve the gadget performance.

3.4 Skipping Branch Trojans

3.4.1 Skipping indirect branches

In addition to collisions between di�erent branches, CPUs
we tested based on AMD Ryzen and Intel Haswell architec-

tures have another indirect branch-related anomaly that can

be used to construct trojans. In particular, when a prediction

is not available in BTB, the CPU simply skips the indirect

unconditional branch instruction and proceeds to the fol-

lowing instructions. In addition to constructing trojans, this

mechanism can also be utilized to confuse static or dynamic

analysis tools. Consider a program in which a certain func-

tion is invoked using an indirect call instruction. Assume

its target is set during the program initialization and never

changes. A detection tool will be able to �nd this correlation
and mark the program safe. However, due to indirect call

skipping, a temporal architecture state violation will take

place. Intel documentation con�rms that indirect branches

may be predicted non-taken [6].

3.4.2 Skipping based transient execution attack

The indirect branch skipping mechanism can be utilized to

construct trojans with unique properties as they do not rely

on known elements of previous Spectre-related attacks. In

particular, they do not require conditional branches as in

Spectre v1 or branch collisions as in Spectre v2 to violate

architectural state.



typedef int (*fptr)(void);

int get_sec(){return 42;}

int get_nonsec(){return 0;}

int vuln(){

     int sec, nonsec, tmp;

     fptr f1,f2;

     f1 = get_sec;

     f2 = get_nonsec;

     sec = f1();

     nonsec = f2(); //skipping

     tmp = arr[nonsec * 256];}

callq  *-0x30(%rbp) 

mov    %eax,-0x20(%rbp)

callq  *-0x78(%rbp) //skipping

mov    %eax,-0x24(%rbp)

mov    -0x24(%rbp),%eax

shl    $0x8,%eax

movslq %eax,%rcx

mov    0x612050(,%rcx,4),%eax

mov    %eax,-0x7c(%rbp)

①
②

Figure 10. Transient trojan based on branch skipping

To demonstrate the practicality of this approach, we de-

signed a simple trojan application based on this mechanism

and complied it using llvm. Figure 10 demonstrates its code

with the disassembly of the key elements. Two functions

are called via function pointers, and such calls are compiled

to indirect call instructions. Function pointer f1 is used to

call the function that returns a secret value, which is then

loaded into variable sec. The function pointed by f2 loads a

non-secret value into nonsec. After these two function calls,

a gadget code sequence reveals the value of nonsec. Since

its value is not secret, it is not considered a violation. Accord-

ing to System V ABI, functions are required to return the

values using %eax (or %rax) register. After the return, caller

function stores %eax’s value as a local variable on stack.

In the example code, the violation of architectural state

happens when function call f1 is not skipped while f2 is

skipped. This results in code 1 loading the secret value into

register %eax, followed by saving it in sec and then immedi-

ately transmitting execution to code 2 , which stores %eax’s

value in nonsec. As a result, both variables temporarily hold

exactly the same secret value. Then the gadget successfully

reveals the value of the secret data via the cache. Please note

that to enable the condition when one function is skipped

while another is not, pointers f1 and f2 must be located in

di�erent cache lines. This can be done by adding or removing

local variables in the parent function. For this experiment,

we �ush f2 from cache. In a real-world attack, this can be

done by �nding an eviction set [68].

To evaluate this trojan’s accuracy, we executed it on an

AMD Ryzen machine leaking 1KB and ran it 10 times. The

average number of vulnerable function activations required

to leak 1 byte of data was 888.07 with average error rate of

1.74%. Such a relatively low success rate can be explained by

the attack relying on an infrequent event when one function

is correctly predicted while another is mispredicted. The

success rate can be further improved by manipulating with

BPU prediction mechanism.

4 Improving Trojan Activation Rate

E�ectiveness of transient trojans can be measured by their

successful activation rate, which is the percentage of cases

when data is leaked compared to total activation attempts.

In our initial trojan implementation, the rate appears rather

small, for instance, 12.79% and 4.86% for kernel and DSB

based trojans, respectively. We noticed that trojans are sen-

sitive to their surrounding code, which can either increase

or decrease the success rate. This e�ect is especially notice-

able for portable trojans since they are based on tight race

conditions within the CPU front-end. Surrounding code, the

code that is executed right before or immediately after the

trojan’s critical parts can cause various e�ects (both posi-

tive and negative). For instance, it can �ush out bu�ers such
as DSB, load store bu�er, instruction cache and introduce

contention in decoders, functional units, and ports.

Manually tuning trojans for thesemicroarchitecture events

is a di�cult and meticulous task. First of all, many of the

front-end components are not completely reverse engineered.

Secondly, �ne-tuning one property may a�ect other proper-
ties in a non-trivial way resulting in success rate degrada-

tion. Instead of reverse engineering and manual �ne-tuning,
we propose a method based on genetic programming that

enables automatic trojan optimization based on injecting

lightweight code artifacts. These artifacts serve no purpose

other than creating various microarchitecture conditions and

do not a�ect program’s architectural state. Our method is

shown to be e�ective, improving our initial portable trojan

implementation from 4.86% to 98.35% resulting in the leakage

rate of 13.5 kilobytes per second.

In the �rst stage of our genetic algorithm approach, we

transfer a trojan into a mutation template. This template

includes all elements of the original program with additional

anchors, places in source code where random activities will

be added in the future. The anchors are placed in locations

that are likely to interfere with key elements of the trojan,

for instance, adjacent to WB and RB. We discovered that

trojan accuracy could be a�ected by adding blocks of nop in-
structions, which a�ect the code alignment and empty loops

that load CPU resources handling branches. For our initial

experiment, we used the portable trojan from Section 3.3.2.

We placed a total of 15 anchors: 9 nop anchors and 6 loop an-

chors. The nop anchors inject 0–150 nop instructions while

each loop anchor injects a loop with 0–8000 iterations. This

results in 1043 possible combinations making the brute-force

approach not feasible.

Instead, we perform the optimization by starting from 100

initial candidate solutions. We do so by randomly selecting

values for each anchor. Then we use a simple genetic algo-

rithm to �nd an optimal con�guration. We set our initial

�tness threshold (trojan success rate) at 20%. In each round,

we apply an objective �tness function to each candidate, re-

moving all candidates that have an attack rate lower than

the �tness threshold. Then we sort the remaining by �tness
score. A generator function performing crossover and muta-

tion is applied to a subset of the remaining candidates with

the highest �tness scores to create a new variation popula-

tion of 100 candidates. During this phase, we apply a simple

heuristic to avoid crossover between very similar candidates



0 250 500 750 1000 1250 1500 1750 2000

Number of Configurations Tested

0.0

0.2

0.4

0.6

0.8

1.0

T
ro

ja
n
 A

tt
a
c
k
 R

a
te

Randomized Brute Force

Genetic Algorithm

Figure 11.Genetic and randomization optimizer comparison

ensuring that we continue to have population diversity in

each round. This also reduces the risk that our algorithm

converges to a suboptimal solution.We also guarantee 20% of

each population to be entirely random to increase population

diversity.

We compare the genetic programming approach to a sim-

ple random-based optimization. Here instead of performing

mutation, we keep generating random candidates and se-

lect the best performing candidate in each round. Both ap-

proaches tested 2 000 trojans in 20 groups, 15 times, and their

best 5 runs are demonstrated in Figure 11. The result shows

the maximum trojan attack rate only incrementing when a

more optimized trojan is found. The genetic algorithm con-

verges to a trojan con�gurations that produce 90%+ attack

rates, �nding trojans with high attack rates quicker and 30%

higher than the randomization-based approach. That high-

lights the bene�ts of using genetic algorithms for optimizing

attacks based on microarchitectural e�ects.

5 Detecting Collisions in Existing Binaries

Branch instruction collisions can occur naturally in regular

executables. A typical binary on average contains one direct

branch instruction per 4–7 instructions making collisions

between indirect and direct branches a common event. An

advanced attacker may construct a trojan utilizing these col-

lisions. In this section, we evaluate such naturally occurring

collisions in existing binaries and reason about their use

in attacks. For our analysis, we use Skylake architecture as

a reference. We group all collisions in two types: portable

and non-portable. The portable collisions are based on bit-5

mechanism, and their functionality is not tied to hard-coded

addresses. Thus they function even in the presence of ASLR,

unlike the non-portable collisions, which are based on the dis-

tant collision mechanism from Section 3.2. Each executable

is analyzed in its normal running context to detect collisions

between branches in executable and its libraries.

We developed a light-weight binary analysis tool to �nd
locations where WBs and RBs produce portable and non-

portable collisions. First, each binary is disassembled, then

Figure 12. Analysis of branch collisions in existing binaries

we perform a search for all direct and indirect branch instruc-

tions. All potential WB and RB instructions are then passed

to a BTB mapping function, which is based on Skylake BTB

reverse engineering to �nd their index, tag, and o�set bits.
Our tool then identi�es WB-RB pairs that collide according

to two types of collisions.

Figure 12 demonstrates the results gathered from process-

ing 16,015 binaries native to Ubuntu 18.04, including user

applications, libraries, and kernel modules. The X-axis shows

total indirect branches in executable, while the Y-axis all

possible collisions, including collisions between library and

code segments. Please note that since distant same address

space collisions are sensitive to ASLR, there will be di�erent
sets of collisions appearing each time the program is rerun.

Although at �rst this may appear as a negative e�ect, an
advanced attacker can use this phenomenon to further hide

a malicious trojan by making it activated only under certain

ASLR bits. This makes the analysis of all potential collisions

and their e�ects infeasible. To give a high-level overview

of the number of such collisions, we perform the analysis

with ASLR deactivated. At the same time, the DSB collisions

are not sensitive to ASLR. As seen from the result, existing

binaries contain large numbers of naturally occurring col-

lisions of both types. The collisions tend to linearly grow

with the total count of indirect branches present in a given

binary. For example, Google Chrome executable contains a

total of 170k indirect branches resulting in 136k portable and

over 300 million non-portable collisions. Such a high number

makes hiding malicious branches a relatively easy task as the

analysis of all potential transient execution e�ects becomes

very di�cult.

As we discussed in Section 3.4.1, indirect branch instruc-

tions can violate architectural state even when no collisions

are present. Thus, every single indirect call and jump instruc-

tion (X-axis in Figure 12) has the potential of doing so. As a

result, we believe any indirect branch should be treated as a

potential security threat unless CPU design can ensure that

transient execution can never leak sensitive data.



6 Countermeasures

Since indirect branch instructions are required for our at-

tacks to function, retpoline sequences can be used as e�ec-
tive mitigation. However, retpolines must be added during

compilation and cannot be applied to precompiled binaries.

Because retpolines lead to code bloating and performance

overhead [11], current binaries seldom use this technique.

Distant same address space branch collisions can be pre-

vented if future BTB designs store full addresses (e.g., tag

and target) instead of their reduced or compressed versions.

However, such a design would signi�cantly increase the BTB
size and, therefore, costs of hardware.

Mitigating bit-5 collisions in hardware appears a more

challenging task since it would require a front-end redesign.

For instance, a naïve solution is to delay BPU predictions

until instruction boundaries are determined. However, that

would lead to introducing delays when processing branch

intensive µop sequences from DSB. Alternatively, a software-

based solution can be developed to su�ciently space direct

and indirect branches with binary editing at runtime or by

manipulating compiler code generation primitives to pre-

vent placing direct and indirect branches in the same 64-byte

block. However, that would lead to signi�cant code bloating.
In addition, our collision detection tool can be used to �nd
potentially dangerous branches and inject in-place mitiga-

tions such as lfence instructions. Future microarchitecture

designs are urged to adopt better mechanisms that do not

permit branch instruction anomalies, for instance, by adding

a type �eld in the BTB to prevent direct and indirect branch

collisions and avoiding indirect branch skipping. A recent

work by Yu et al. [73] proposed a light-weight hardware

solution based on preventing unsafe data accesses being

forwarded to transient execution.

7 Related Work

To the best of our knowledge, this paper is a �rst work ana-

lyzing the security e�ects of branch collisions within same

address spaces. In addition, we introduced a new type of

malicious software that utilizes transient execution in the

form of self-contained transient trojans represent.

Wampler et al. successfully created a malware program

with a transient execution payload [69]. However, malicious

software modules presented in their work require a separate

activation process. Moreover, a correctly con�gured IBPB

would force BTB �ushing on context switched, making poi-

soning across di�erent processes impossible. All types of

our trojans work with current microcode-based protections

enabled.

Kiriansky and Waldspurger developed Spectre 1.1, where

transient bu�er over�ows can be used to jump transient

execution into arbitrary code. This Spectre bu�er over�ow
attack can be used to redirect execution to instructions after

a serialized instruction (Spectre V1 mitigation) [45]. Canella

et al. performed an analysis of 12 Spectre variants, includ-

ing the possibility of multiple same address space Spectre

attacks [15]. However, this work did reason on how these

vectors can be utilized to construct practical exploits.

Recent works have been published regarding the detec-

tion and mitigation of Spectre attacks. SPECTECTOR by

Guarnieri et al. detects transient information �ows [33], and
the principles behind this work can be applicable to the de-

tection of transient trojans. However, without a completely

accurate collision model, this and similar tools may overlook

dangerous transient execution �ows presented in this pa-

per. Our work makes a contribution by expanding upon the

existing collision model. Finally, Depoix et al. developed a

method of detecting Spectre attacks by identifying Spectre

attacks using machine learning [21].

8 Conclusions

In this paper, we presented a new type of practical attack

based on transient execution. We demonstrated transient

trojans — malicious software modules that utilize BPU anom-

alies happening inside software entities. In addition, we

reverse-engineered the BPU addressing scheme, which al-

lowed us to detect new exploration mechanisms. Utilizing

them, we were able to create trojans that have several proper-

ties desirable for attackers such as being portable, working in

the presence of anymicrocode-based protectionmechanisms,

and the ability to stay undetected by current detection tools.

We believe our work improves the current understanding

of attacks based on transient execution by bridging the gap

between exploitable hardware primitives and constructing

realistic attacks.
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