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ABSTRACT 
AI-based design tools are proliferating in professional software to 
assist engineering and industrial designers in complex manufac-
turing and design tasks. These tools take on more agentic roles than 
traditional computer-aided design tools and are often portrayed 
as “co-creators.” Yet, working efectively with such systems requires 
diferent skills than working with complex CAD tools alone. To date, 
we know little about how engineering designers learn to work with 
AI-based design tools. In this study, we observed trained designers 
as they learned to work with two AI-based tools on a realistic design 
task. We fnd that designers face many challenges in learning to 
efectively co-create with current systems, including challenges in 
understanding and adjusting AI outputs and in communicating their 
design goals. Based on our fndings, we highlight several design 
opportunities to better support designer-AI co-creation. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
• Applied computing → Computer-aided design. 
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1 INTRODUCTION 
Modern manufacturing processes allow designers to produce com-
plex parts optimizing strength-to-weight or leveraging new materi-
als such as shape-changing plastics, yet their creation often surpasses 
the designers’ cognitive capabilities. Recently, computer-aided de-
sign (CAD) tools have begun incorporating AI-based features to gen-
erate part designs based on a designer’s myriad optimization goals 
[54]. For example, Japanese electric vehicle manufacturer WHILL 
used Autodesk Fusion 360 Generative Design to optimize material 
economy, strength, and sustainability for an electric wheelchair 
component [27]. AI tools are also helping designers generate parts 
using emerging manufacturing processes such as shape-changing 
smart material structures [80]. In both examples, working with AI 
allows designers to create designs that would be extremely tedious 
or infeasible without AI support. 

These generative AI tools take more agency and autonomy in 
parts of the human-AI design process and are often referred to 
as “co-creators” [18]. However, efective and practical co-creation 
presents a signifcant learning curve for designers, as they are 
required to work and think collaboratively with AI agents that 
operate diferently than human collaborators or complex CAD tools. 

Studies have shown that efectively working with professional 
feature-rich non-AI design software already requires substantial and 
continual learning as such software becomes more capable [38, 49]. 
Consequently, instead of simplifying the software’s interfaces, an 
active feld within HCI studies how the learning of such complex soft-
ware systems can be better supported through interactive interfaces 
[24, 44, 51]. However, working with AI "co-creators" is diferent from 
working with conventional CAD tools. Designers do not directly 
manipulate 3D geometry but rather formulate design goals for the 
AI system to build from. Yet, little is known about how to support 
designers in learning to work with AI tools that take on this more 
active and collaborative role. 

In this study, we ask how designers can be better supported in 
learning to co-create with AI design tools. We guide our investiga-
tions by a recent wave of HCI literature that looks to inform the 
design of human-AI collaboration based on the mechanisms that 
make human-human collaborations efective—such as grounding 
in communication or shared mental models [5, 6, 10, 31, 40, 77, 85]. 
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Furthermore, we seek inspiration from team learning [79] which 
models what actions help people learn to collaborate efectively with 
each other. 

To gain insights on improving human-AI design collaboration, 
we study how engineering and industrial designers without prior 
AI co-creation experience learn to work with AI CAD tools in the 
context of advanced manufacturing design tasks. We chose this 
domain because of its increasing design task complexity, for which 
designers often require AI assistance. Through our studies, we aim 
to generate insights to inform future support interfaces of AI design 
tools. In particular, we investigate the following research questions: 
RQ1a What challenges do designers face when learning to co-create 

with computational AI tools? 
RQ1b How do designers overcome these challenges? 

To answer these questions, we conducted a series of think-aloud 
studies observing how trained engineering and architectural design-
ers (tried to) learn to co-create with two diferent computational 
AI tools on complex manufacturing design tasks (Study 1). Based 
on analyses of their interactions with the systems and retrospective 
interviews, we found that they generally valued the AI’s assistance 
but faced challenges in learning to efectively co-create with the 
tools and interpret the design outputs. Those who were able to 
produce feasible and satisfying designs learned to co-create with 
the tool by systematically testing the boundaries of its capabilities 
early on, by self-explaining AI behaviors they observed, and by 
sketching and refecting on design issues. 

After learning about these challenges, we then explored how 
designers could be supported to better co-create by asking: 
RQ2 What are efective strategies to support designers in learning to 

co-create with computational AI tools? 

To answer this question, we took inspiration from prior work 
on human-human collaboration [9, 53, 68]. We conducted a human-
human collaboration study to see how human guides would assist 
new users of AI tools in learning to co-create and how the new 
users learned with human assistance (Study 2). The observed efec-
tive support strategies included providing step-by-step instructions, 
prompting design refection, and suggesting alternative strategies 
and goals for the design task. We also observed that the human 
guides relied heavily on multi-modal communication (e.g., screen 
annotations and mouse gesturing) to communicate more efectively 
with designers. 

Lastly, to inform design opportunities for new support tools we 
asked: 
RQ3 What are designers’ needs and expectations for human-AI co-

creation? 

Synthesizing the results from both studies, we learned that many 
participants felt unable to communicate their design goals with the 
AI and wished for more conversational interactions and contextual 
awareness from the tool. We discuss potential support implications 
and future work from these needs and expectations. 

In short, this study makes three main contributions: 
(1) providing a set of observed challenges that engineering and 

architectural designers face when learning to collaborate 
with AI on complex co-creation tasks in the context of 
advanced manufacturing design; 

(2) advancing our understanding of designers’ needs and 
expectations for human-AI co-creative tools; 

(3) highlighting design opportunities to better support designers 
in learning to co-create. 

2 RELATED WORK 

2.1 AI-based design tools for manufacturing 
AI-based design support tools use various computational methods 
for generating 2D and 3D design options based on constraints and 
objectives set by designers [1, 72]. In 3D architectural, industrial, 
and mechanical design, new generative design tools have helped 
designers create consumer goods [43], building layouts [60], and 
lightweight automotive and airplane components [59, 61]. In the 
context of emerging advanced materials, AI design tools assist 
designers in creating structures out of shape-changing or elasticity-
changing materials [29, 80]. Such AI tools use multiple techniques 
to generate designs from a set of goals and requirements, including 
constraint-based solvers [73], style transfer [2, 28], simulation and 
optimization [80], and genetic algorithms [59]. Such techniques 
are becoming commercially available in 3D CAD design tools such 
as Siemens NX, Solidworks, and Autodesk Fusion360 [3, 17, 69]. 
Many of these tools operate as black boxes where designers frst 
set objectives and then review generated designs. However, this 
interaction can make it hard for designers to quickly develop a 
mental model of how the tool works, limiting their creative use. 

Recent research has developed generative design interfaces for 
interactively exploring multiple design options [39, 52, 83] or more 
iterative engagement between the designer and the tool through 
real-time design generation and assessment [14, 19, 37]. However, 
few empirical studies exist that evaluate how engineers and 
designers learn to work with AI design tools on realistic tasks. Some 
existing work has measured the performance impact of AI agents on 
human engineering teams [84] while other work has investigated 
what role professional makers expect for involving AI in digital fab-
rication workfows [81]. This study provides empirical observations 
on how engineering, industrial and architectural designers learn 
to work and co-create with computational AI-based design tools. 

2.2 Learning complex software 
Prior HCI research has looked to evaluate and improve the 
learnability of complex software systems. Past studies explore how 
people of diferent ages learn a feature-rich notetaking tool [49], how 
professional engineers learn 3D design software [38], or how casual 
designers learn professional motion graphics software [33]. Often, 
people learn by searching web forums or asking knowledgeable 
colleagues for help [38]. Research on interfaces to support people 
in learning complex software has proposed dynamic feedforward 
tool tips [44], guided tutorial systems [24], and widgets that support 
self-directed trial and error learning [51]. 

While prior work has explored lenses such as self-directed 
learning for working with complex software [13], it remains an 
open question of how best to support self-directed learning for 
co-creation with AI systems that take an active role in the design 
process. For example, prior studies in Human-AI collaboration show 
that the black box nature of AI systems introduces new challenges 
where users grapple with non-transparent and non-intuitive 
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system behavior, hindering coordination and communication when 
completing “collaborative” tasks [10]. To address these issues, 
various strategies like explainable AI or intelligibility are aimed at 
helping users refne their mental models of AI systems [55, 70]. 

However, even as AI models become more intuitive for users, we 
expect that there will always remain a need for learning to work 
efectively with AI systems to, for example, develop shared mental 
models [35, 40]. Consequently, as we discuss in the next section, sup-
porting humans in learning to efectively co-create with AI requires 
bringing in additional theoretical lenses. 

2.3 Human-human collaboration 
as a lens for studying co-creative systems 

To design efective human–AI collaboration, researchers have sug-
gested drawing lessons from studying what makes human–human 
collaboration efective [5, 6, 10, 31, 40, 77, 78, 85]. While it remains 
an open question to what extent scafolds for human-AI collabo-
ration should mirror the designs of supports for human–human 
collaboration [77, 85], human-AI interaction researchers suggest 
that theories and fndings from psychology, education, and the 
learning sciences are currently underutilized. For instance, Koch 
and Oulasvirta [40] note that group cognition—the study of how 
agents relate to other agents’ decisions, abilities, beliefs, common 
goals, and understandings—provides powerful concepts for work 
on human–AI collaboration, yet is rarely referenced within this 
literature. Group cognition comprises phenomena such as grounding 
in communication [16] (creating mutual sense through verbal and 
non-verbal communication) and theory of mind [22] (the ability of 
agents to be aware of their own and the other’s beliefs, intentions, 
knowledge, or perspectives). Similarly, Kaur et al. [35] argue that 
like human-human collaboration, efective collaborations between 
humans and AI may require shared mental models between people 
and the AI to enable mechanisms such as adaptive coordination of 
actions among team members [16, 56]. These may include shared 
representations of the task to be accomplished, of each other’s 
abilities and limitations, or of each other’s goals and strategies 
[20, 25, 66, 74]. A line of work addressing these opportunities has 
begun to explore how humans might be supported in developing and 
maintaining more accurate mental models of an AI collaborator’s 
capabilities and limitations [5, 6, 41]. However, compared to 
concepts of human-human collaboration, honing only users’ mental 
models is not sufcient enough for efective collaboration, which 
requires shared mental models between the user and system [35]. 

To date, little work has explored how best to support humans 
in learning to collaborate with AI on authentic tasks, such as design 
tasks, despite growing recognition of the need for such supports 
[10, 45, 50, 85]. Design tasks represent compelling challenges for 
human–AI collaboration, given that design problems are often 
ill-defned and require teams to navigate and negotiate both the 
problem and solution space [21] through an iterative process of 
generating ideas, building prototypes, and testing [32]. 

In this study, we investigate human-AI collaboration for 
emerging manufacturing design tasks—an area where successful 
task performance sometimes requires human–AI collaboration, yet 
where efective collaboration may be challenging to achieve without 
strong supports [45, 85]. 

2.4 Team learning 
While phenomena such as grounding in communication, theory of 
mind and shared mental models provide useful concepts to explain 
which cognitive and social phenomena enable collaboration among 
a group of agents [35, 40], these theories do not explain how groups 
of individual agents learn to efectively collaborate. To address this 
gap, team learning emerged to study what actions and conditions 
contribute to how human groups learn to efectively collaborate 
together [79]. For example, team learning studies suggest that the 
development of efective shared mental models is supported through 
an active process of negotiation between team members, involving 
“constructive” forms of confict, argumentation, and resolution 
[30, 34, 74]. However, to date, team learning has been under-utilized 
as a lens for studying human-AI co-creation. In this work, we 
draw upon concepts from team learning, such as active processes 
of communication, joint information processing, and coordination of 
actions [53], to study what actions and support strategies can help 
designers learn to co-create with AI-based design tools. 

3 STUDY 1: THINK-ALOUD DESIGN SESSIONS 
We conducted a series of think-aloud studies [75] with trained 
designers new to working with AI, where they worked with an AI 
design tool to complete a realistic advanced manufacturing design 
challenge. Think-aloud studies have people verbalize their thoughts 
while performing a task so that researchers can understand their 
cognitive processes (e.g., forming mental models [15], learning 
[82]). In our study, we use the think-aloud method to see how AI 
novices, who encounter a real learning challenge and are less biased 
than experts, learn to co-create with the AI tools. Participants frst 
completed a 30-minute moderated think-aloud session where a 
member of the research team observed them working and listened 
to what they said they were thinking and doing while working. 
Half of the participants had a mechanical engineering background 
and designed a light and strong mounting bracket for a ship 
engine while considering the optimal manufacturing method and 
material combination using Autodesk’s Fusion360 Generative 
Design (based on topology optimization that generates multiple 
options) [52]. The other half of the participants with a background 
in architecture or industrial design designed a bike bottle holder 
made with shape-changing materials—a complex design task that is 
challenging to complete without computational support. Designers 
working on the bottle holder task worked with SimuLearn [80], a 
machine learning-based research tool built on top of Rhino3d that 
helps designers create structures from shape-changing materials. 

After completing the design task, participants submitted their 
designs and joined a semi-structured interview to refect on their 
experience of working with the design tools. Across the study, we 
collect the following data: 

• Video and audio recordings and machine-generated 
transcripts of the open-ended think-aloud design sessions 

• Audio recordings and machine-generated transcripts of the 
post-task interviews 

• 3D designs created during the think-aloud sessions 
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Table 1: Overview of study 1 participants. P-F11* and P-S11* are the same participant who had experience in using both Fusion360 
and SimuLearn. Explanation for gaps in participant IDs: Some participants had dropped out after the frst design session, or 
participants were assigned to Study 2 (see Section 6). 

ID Group 
Age 
Years Gender Domain Occupation 

CAD Exp. 
Years 

Indus. Exp. 
Years 

P-F01 Fusion360 27 M Civil & Environ. Engin. Student / MA >5 2 – 5 
P-F02 Fusion360 27 M Mechanical Engineering Student / PhD >5 2 – 5 
P-F03 Fusion360 25 M Mechanical Engineering Student / PhD >5 2 – 5 
P-F04 Fusion360 26 M Mechanical Engineering Student / MA >5 1 – 2 
P-F05 Fusion360 19 M Architecture, Mathematics Student / BA 2 – 4 0 
P-F11* Fusion360 64 M Mechanical Engineering Contractor >10 >30 
P-F12 Fusion360 59 M Mechanical Engineering Designer >10 >30 
P-S01 SimuLearn 21 F Architecture Student / BA 2 – 4 0 
P-S03 SimuLearn 23 F Computational Design Student / MA 2 – 4 0 
P-S04 SimuLearn 21 M Architecture Student / BA >5 1 – 2 
P-S06 SimuLearn 23 F Architecture Student / MA >5 <1 
P-S07 SimuLearn 23 M Architecture Student / MA >5 0 
P-S10 SimuLearn 33 F Industrial Design Researcher >5 6 – 10 
P-S11* SimuLearn 64 M Mechanical Engineering Contractor >10 >30 

3.1 Participants 
We recruited 14 designers (4 female / 10 male, aged 19 to 64 (M = 32.5, 
SD = 16.6)) with backgrounds in Architecture, Industrial Design, or 
Mechanical Engineering (Table 1). Most participants were recruited 
from our institution’s student body, but we also recruited three 
professional designers via an online forum for designers who 
work with Fusion360 [64]. Participants had a minimum of two 
years of experience using CAD (Fusion360 or Rhino 3D) but no 
experience working with the studied AI design tools, determined 
via a screening questionnaire. Participants included mostly 
undergraduate and Ph.D. students and three engineers with > 30 
years of industry experience (Table 1). We recruited participants 
familiar with either Fusion360 or Rhino3d so that they could focus 
on learning to work with the AI co-creation features rather than 
on learning the CAD tool’s user interface. Before the study, all 
participants signed a consent form approved by our institution’s 
IRB (STUDY2021_00000202). Participants were paid 20 USD per hour. 

3.2 Study context: AI-based design tools and tasks 
To gather generalizable insights into designers’ challenges, needs, 
and expectations around designer-AI co-creation, we observed how 
designers tried to learn to co-create with two diferent computational 
AI tools for digital manufacturing tasks. Participants were given 
a non-trivial, realistic design task to work on during the study. 
We selected a mechanical engineering design task concerning 
multi-dimensional optimization and an industrial design task 
exploring the use case of shape-changing materials. Both tasks are 
too complex to accomplish without AI and also have functional 
AI tools already developed. We collaborated with engineers and 
advanced manufacturing experts to identify and pilot the tasks to 
ensure they were adequately complex but not overwhelming for 
our target population. The tasks required participants to generate 
design solutions within a few hours over multiple sessions. 

3.2.1 Mechanical design support tool. Mechanical design-
ers worked with the "Generative Design" feature of Autodesk 
Fusion360[3], which helps designers to create lightweight and strong 
parts through topology optimization and genetic algorithms. In this 
task (Figure 1A-D), the designer is asked to design a material-efcient 
and structurally-sound engine mounting bracket by considering 
the optimal manufacturing and material combination from a 
large pool of possibilities. While designing mounting brackets is 
common for mechanical engineers, optimizing designs for diferent 
manufacturing methods and materials is difcult without simulation 
and AI support. Traditionally, engineers would frst build a part 
and then gradually remove or add material based on structural 
analysis to derive a weight-optimized part. Exploring diferent 
manufacturing options would be necessary for every material and 
manufacturing constellation—which is time-consuming and tedious. 
In contrast, Generative Design can automatically generate many 
diferent design options based on specifed high-level requirements, 
which the designer can explore and choose from. 

Participants were provided a starter fle containing the geometric 
constraints and needed to specify the mechanical design criteria (e.g., 
loads, bolt connection clearance, boundary condition). Participants 
then ran the solver and evaluated the AI-generated solutions to 
identify three viable designs for submission (Figure 1E). If none of 
the outcomes were deemed satisfactory, the user might choose to 
iterate the design by adjusting the input criteria. 

3.2.2 Industrial design support tool. Industrial and architec-
tural designers worked with SimuLearn [80], a research system 
built on Rhino3D that uses ML-driven simulation and optimization 
to enable designers to rapidly create objects out of shape-changing 
materials. This manufacturing process creates 3D-printed fat grids 
out of PLA plastic that can transform into a volumetric shape 
when heated. The transformation and the resulting shape can be 
controlled by tuning the grid geometry and the portion of the active 
transformation element (i.e., actuator ratio) within the beams. This 
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Figure 1: The Fusion 360 design task and workfow. The task involves (A) designing an engine bracket that connects the engine 
to a damper. (B) A starter fle containing connection holes and bounding dimensions is provided to the users to initiate the 
design in (C) Fusions 360. The user is prompted to create (D) a viable design while minimizing weight. (E) The workfow involves 
fve steps, and based on the AI system’s solutions, the user may iterate the design by adjusting the design constraints and criteria 
to produce new solutions. (Image A: © Rolls-Royce Solutions America Inc.) 

technique is envisioned to reduce production waste and shipping 
costs (e.g., fat packaging, reduced support material). 

While new materials are being developed to manufacture shape-
changing structures, designing shape-changing components poses 
unique challenges that designers are ill-equipped to handle. Unlike 
2D and 3D design, designing with shape-changing materials involves 
a non-intuitive mismatch between the fnal target (3D shapes) and the 
design input (often 2D). Efectively designing for shape-changing ma-
terials requires an understanding of (often complex) spatiotemporal, 
self-assembling material behaviors that may push against the limits 
of what humans can mentally simulate. At the low level, designing 
such materials requires modifying volumes voxel-by-voxel, which is 
infeasible for complex structures if done manually. AI-driven tools 
allow designers to create complex artifacts that would otherwise be 
impossible to create by hand. SimuLearn aids the design process by 
providing real-time simulation and optimization to iterate designs 
toward the desired morphing behavior. 

In this task (Figure 2A-E), participants design a bike bottle holder 
using morphing grids. A starter fle containing the bottle and bike 
frame geometry was provided to contextualize the design. This 
task was more open-ended than the mechanical engineering task 
since each designer may assemble the morphed grids in diferent 
ways to create the holder. To use the tool (Figure 2F), the designer 
models the grid geometry and assigns bending actuator ratios. 
Next, participants simulate the design, observe the predicted 
transformation, and iterate the design by changing the grid model 
and actuator assignment. Alternatively, participants may opt to use 
functions to optimize the grids toward a targeted transformed shape. 
The optimization process can be either autonomous or interactive 
(i.e., the tool suggests edits for the user to choose from). To efectively 

work with the tool, users need to learn to work with the diferent 
levels of AI assistance to produce a satisfactory design iteratively. 

3.3 Choosing design tools 
We specifcally study these systems for two reasons. First, while 
both tools support advanced manufacturing tasks, they represent 
computational systems with distinct purposes and interaction 
paradigms. Fusion360’s Generative Design module assists engineer-
ing designers with the generally familiar task of creating light and 
structural solid parts. The AI system helps designers to navigate 
a large design space and explore opportunities while adhering to 
specifed requirements and constraints. SimuLearn, on the other 
hand, supports designers in working with an emerging material and 
manufacturing process unfamiliar to most designers. SimuLearn’s 
AI tool provides rapid simulations of the shape-changing material 
and ofers diferent levels of design assistance—from manual, over 
interactive, to autonomous optimization/iteration. 

Second, each tool represents a diferent interaction style and syn-
chronicity. In Fusion360, users follow a structured sequence of steps 
to set up the parameters and acquire solutions. It may take a few 
hours to generate new solutions, and the designer may export the 
generated models at any time or iterate the design by adjusting the 
parameters and rerunning the solver. By contrast, SimuLearn’s solver 
runs two to three magnitudes faster (5-180 seconds), and users inter-
act with the system without a predefned workfow. Participants may 
also freely switch between the three levels of AI support at any point. 
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Figure 2: The SimuLearn design task. (A) The user is prompted to design a bike bottle holder using the provided (B) starter fle 
and (C) the SimuLearn tool to create (D) morphing grid structures. (E) The transformed grid should assemble into the holder 
and ft around the bottle and bike frame. (F) The SimuLearn tool provides three types of design workfows. After initializing a 
morphing grid design, the user can choose between AI-assisted optimization functions or rapid simulations to iterate the design. 

4 STUDY DESIGN 

4.1 Study procedure 
The study was structured into four phases (see Figure 3): 

1) On-Boarding: Before the frst session, participants received 
instructions by email on how to access the design tools running 
on a dedicated remote machine. They also watched a 25-minute 

Figure 3: Overview of Study 1 think-aloud design sessions 
procedure. Participants were frst introduced to the design 
tool and task, then worked while thinking aloud across 
multiple sessions. They completed an interview after turning 
in their design. 

video tutorial demonstrating the tools’ core functionalities with a 
step-by-step example. 

2) Intro Design Session: At the beginning of the frst session, a 
research team member introduced the participants to the study, de-
sign brief, task, and starter fle. Sessions were conducted over video 
conference (Zoom) with audio and video recording. Participants then 
worked while sharing their screens and thinking aloud. Participants 
were allowed to use all available support resources, such as internal 
help fles, external video tutorials, or user forums. The researcher qui-
etly observed the participants setting the parameters of the compu-
tational design system and took notes. Due to the complex and open-
ended nature of the tasks, the research team interrupted the task after 
30 minutes and asked participants to continue working on their own 
as a compensated "homework assignment" without any time limit. 

3) Homework Sessions: Following the initial session, partic-
ipants continued working independently for as long as needed to 
iterate and produce the fnal design submission. Participants used the 
same remote machine and joined a personalized video conference 
meeting with automatic recording to document their work while 
thinking aloud. We also deployed a simple web application to prompt 
the users to verbalize their thoughts. The application analyzed 
the speech input from the microphone and reminded the user to 
"keep talking" after twenty seconds of silence. Once the designer 
felt satisfed with the result, they submitted the 3D fles to our team. 

4) Post-Task Interview: Within two days of submitting their 
result, participants completed a one-hour semi-structured interview 
with a research team member. Participants were asked to refect 
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on their experience working with the AI tool. The interviews were 
conducted remotely over video conferencing. The interviewer 
took notes, and the interview audio and video were recorded. The 
interview protocol contained 36 questions clustered into three 
topics: collaboration with the tool, design process, and learning process 
(see the Appendix for interview protocol). The topics and questions 
clustered under collaboration with the tool were inspired by measures 
from team learning literature on assessing collaboration quality and 
efectiveness of human teams [9, 34, 53, 74]. These include perceived 
team roles and coordination, communication between user and tool, 
confict resolution, timing, and (shared) mental models. 

4.2 Analysis 
To gain insight into research questions RQ1a What challenges do 
designers face when learning to co-create with computational AI tools? 
and RQ1b How do designers overcome these challenges? we (1) eval-
uated the design outcomes and analyzed more than 40 hours of 
think-aloud videos and 17 hours of interview recordings using (2) 
video interaction analysis of think-aloud videos, and (3) refexive 
thematic analysis of think-aloud sessions (videos, transcripts) and 
interview transcripts. 

4.2.1 Evaluation of design outcomes. We evaluated the 
efectiveness of Designer-AI collaboration by measuring the time 
required to complete the task and designer satisfaction with their 
results as rated on a three-point Likert scale (satisfed, neutral, 
unsatisfed) during the post-task interview. We also measured 
product feasibility for the mechanical engineering task by checking 
the designed engine brackets against the requirements in the design 
brief. The structural soundness was validated using fnite element 
analysis (FEA), and the used material was checked by measuring 
part volume. We also checked the models for shape requirements 
(i.e., clear bolt holes, body within the bounding box). Since the bottle 
holder was a more free-form and aesthetic design task, we only 
checked if the user submitted their design and primarily relied on 
their self-reported satisfaction with the outcome. 

4.2.2 Video interaction analysis. We used video interaction 
analysis [7] of the think-aloud recordings to understand partic-
ipants’ learning process while working with the AI features. To 
understand how well participants learned over time to use the 
AI features efectively, we tracked their interactions with the AI 
features relevant to the design task and documented whether the 
actions would produce satisfactory outcomes. For Fusion360, we 
tracked how participants specifed structural loads, mechanical 
constraints, and the obstacle geometry feature to control the 
bracket’s bolt clearance and overall size. For SimuLearn, we tracked 
how participants used diferent AI-assisted features (hybrid and 
automated optimization) throughout the think-aloud sessions. 

4.2.3 Reflexive thematic analysis. To understand participant’s 
challenges, needs, and expectations when learning to co-create with 
the AI system, we performed a refexive thematic analysis [8] of 
the interview data (transcripts) and the think-aloud sessions (video, 
transcripts). We followed an iterative inductive coding process and 
generated themes through afnity diagramming. We used ATLAS.ti 
to analyze transcripts, audio, and video. 

In the initial coding, the think-aloud and interview transcript data 
were equally distributed among two researchers who generated pre-
liminary codes utilizing both a semantic (what people said) and latent 
(our interpretations of the data) coding strategy. Next, the research 
team collectively identifed initial codes and themes. We generated 
themes in a bottom-up manner. However, we looked at the data with a 
mindset of collaboration between the designer and the tool—inspired 
by previous studies on human-human collaboration, co-creation, and 
team learning [9, 53]. We also tried our best to identify and separate 
usability issues from the codes and themes to avoid confoundment. 

The two researchers then coded the think-aloud recordings 
to document where designers specifed system parameters or 
evaluated design outcomes. These moments allowed us to fnd many 
of the problems that designers faced. We also coded non-verbal 
expressions like mouse gesturing or screen annotations that showed 
how designers attempted to communicate. 

Finally, we created summary videos highlighting specifc situ-
ations related to co-creation with the tool (e.g., designers confused 
by AI-generated outcomes). The video clips were annotated with 
a time code, participant ID, and a contextual description of the 
situation to share and discuss with the entire research team (for an 
example, please see the video fgure in the supplementary material). 
The research team collectively analyzed the think-aloud summary 
videos in a half-day session and discussed the themes. We completed 
the qualitative analysis by iteratively reviewing and revising codes 
and themes until we identifed a stable network of coherent and rich 
themes. 

Table 2: Evaluation of design outcomes for the engine 
bracket design task (left) and bottle holder design task 
(right). The designer’s satisfaction with the outcome is 
rated with green=satisfed, yellow=neutral, red=unsatisfed. 
For the engine bracket task, meeting structural and shape 
requirement checks are rated as X=fail, check mark=pass. 

ID
Durat. 
Min.

Des. 
Satisf.

P-S01 97

P-S03 190

P-S04 225

P-S06 166

P-S07 63

P-S10 189

P-S11 151

Bottle Holder Task

ID
Durat. 
Min.

Num. 
Iter.

Des. 
Satisf.

Struct.  
Req.

Shape  
Req.

P-F01 61 3 X
P-F02 85 2 X X
P-F03 54 2 X X
P-F04 105 9 X X
P-F05 140 6

P-F11 122 6 X X
P-F12 160 5 X X

Engine Bracket Task 

5 RESULTS 
Overall, participants expressed seeing potential value in the AI sys-
tems to support their design process—especially that the tools would 
enable them (at least in theory) to create and explore more complex 
designs in a shorter time than without AI. However, most faced 
unresolvable challenges in learning to efectively co-create with 
the tools. In the following subsections, we provide a brief overview 
of participants’ performance on the design tasks and then explore 

https://ATLAS.ti
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Figure 4: Overview of engine bracket designs created by 
participants. P-F05 met both the shape and structural 
requirements. P-F01 only met the shape requirements (the 
bracket has holes for bolts with sufcient clearance and 
respects the specifed dimensions but is structurally too 
weak). All other brackets missed both requirements and were 
either too heavy, weak, larger than the specifed dimensions, 
or had not enough bolt clearance. For simplicity, we only 
show one design option per participant. Please see the 
Appendix for all submitted design options. 

Figure 5: Overview of bottle holder designs created by 
participants. Participants came up with diferent designs 
using the shape-changing grid material in various ways. 
Participant P-S01 was not able to control the shape as 
intended and improvised by stacking grids together. While 
some designs (P-S06, P-S07) would not be able to hold a bottle, 
some designers (P-S04, P-S10) utilized the shape-changing 
grid structure to create promising bottle holder designs. 
Participant P-S11 stopped working on the task out of 
frustration and did not submit a design. 

what challenges they faced in co-creating with them (RQ1a). We 
then highlight what some successful learning strategies looked like 
(RQ1b). 

5.1 Design Tasks Outcome Summary 
In the engine bracket task, all participants were familiar with de-
signing similar mechanical components by considering forces and 

constraints. Generally, such a task is a standard exercise in engineer-
ing education, and our task was comparable to the example provided 
by Autodesk in the introduction video that the participants watched. 
Participants required between 54 and 160 minutes (M=104, SD=39.7) 
to complete the task (see Table 2 left). No participant mentioned in 
the post-interview that the task itself was too difcult for them. Yet, 
only participant P-F05 was able to produce a self-satisfactory design 
that met both shape and structural requirements (see Figure 4 and 
Appendix for additional designs). P-F02 was also satisfed with their 
design but opted to manually refne the generated geometry that 
did not meet the requirements (i.e., using excessive materials and 
blocked bolt holes). We were surprised to fnd that few engineering 
participants produced satisfying results, even though they were fa-
miliar with the type of design task. Designers struggled to perform 
this otherwise familiar design task when they attempted to do so 
with AI assistance. 

For our industrial or architectural designers, designing a bot-
tle holder in 3D was not perceived as difcult. However, working 
with shape-changing material structures was new and everyone ex-
pressed in the post-interview that working with the shape-changing 
material was "unintuitive" and "challenging." Participants worked 
on the task between 63 and 255 minutes in total (M=154, SD=56.6). 
All but one participant submitted a bottle holder design (Figure 5). 
This participant stopped working on the project after 151 minutes 
because he felt he could not control the material well, even with the 
AI. In the end, almost all designers were either dissatisfed with their 
fnal design or had a neutral opinion (see Table 2). 

Table 3 shows that only a few designers understood how to set rel-
evant parameters for the design task to produce satisfying results on 
the frst attempt in both tasks. In Fusion360, most designers learned 
over time to successfully specify the structural constraints and obsta-
cle geometry for bolt clearances. However, many designers failed to 
correctly specify structural loads and the boundary box. As a result, 
some submitted designs were too heavy, weak, or larger than the spec-
ifed dimensions. In particular, one designer (P-F02) decided to manu-
ally refne the design after the frst iteration because they felt more in 
control this way. For SimuLearn, all participants quickly learned how 
to control the grid shape using manual adjustments and rapid sim-
ulations (Table 3 right). However, many avoided using the other two 
AI-assisted features after an unsuccessful frst attempt and continued 
to work manually (see Section 5.2.2 for further explanation). 

5.2 Challenges designers faced when learning 
to co-create with AI (RQ1a) 

We clustered challenges designers faced when learning to co-create 
into three themes: Understanding and fxing AI outputs, working 
“collaboratively” with the tools, and communicating their design goals 
to the AI. 

5.2.1 Challenges in understanding and adjusting AI outputs. 
Designers were often confused about the generated results and had 
difculty understanding the cause and remedy of “weird” outcomes. 
This often occurred when generated solutions contained minor 
aesthetic faws such as surface bumps, holes, or slightly twisted 
geometry. Designers wondered about the AI’s underlying design 
rationale and were unable to determine whether such design 
features were intended or caused by algorithmic glitches. 
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Table 3: Schematic overview of each participant’s learning process of design task-relevant features of the AI system. Left: Engine 
Bracket Task. Right: Bottle Holder Task. Correct use of input parameters or AI tools is shown with check marks. Increasing 
numbers of check marks from the frst iteration to the last iteration suggest participants learning to work with the AI system. 

Feature not used

X Feature incorrectly used

Feature correctly used

First Iteration Last Iteration

P-F01 X X X X X

P-F02 X X Task completed without AI assistance

P-F03 X X X X X X X

P-F04 X X X

P-F05 X X X X

P-F11 X X

P-F12 X X X

Str
uctu

ral
 C

onstr
ain

ts

Str
uctu

ral
 Load

s

Obst
acl

e G
eo

metr
y

    
Bolt 

Clea
ra

nce

Obst
acl

e G
eo

metr
y 

    
Boundar

y Box

Str
uctu

ral
 C

onstr
ain

ts

Str
uctu

ral
 Load

s

Obst
acl

e G
eo

metr
y

    
Bolt 

Clea
ra

nce

Obst
acl

e G
eo

metr
y 

    
Boundar

y Box
om

etr
y 

y Box

First Feature Usage Last Feature Usage

P-S01 X X

P-S03

P-S04

P-S06 X X X

P-S07 X X

P-S10 X

P-S11

ID ID Auto O
ptim

ize
r 

Man
ual

Actu
ato

r S
etu

p 

Hybrid
 O

ptim
ize

r

Auto O
ptim

ize
r 

Man
ual

Actu
ato

r S
etu

p 

Hybrid
 O

ptim
ize

r

Engine Bracket Task Bottle Holder Task 

Furthermore, designers were unsure how to correct the generated 
designs (e.g., identifying the parameters that led to the problem). 
Some designers were hesitant to manually refne the generated 
geometry because they felt uncomfortable changing the optimized 
structure: 

"...I also realized that if I was making any change in the 
mesh maybe I was changing the stress that that area 
will have. So I didn’t feel very comfortable changing 
stuf because I knew that was optimized for my loads 
and my material." P-F04 

Designers were also unable to make sense of apparent structural 
issues in the generated designs, like when the generated parts were 
unreasonably thin or thick, provided little clearance, or produced 
confusing grid transformations. As verbalized by this designer 
while evaluating a generated engine bracket: 

“it just doesn’t make sense that, like this region here, 
which is obviously pretty thick... well I guess it’s not. I 
just don’t think that it can hold up the weight. It says 
the factor of safety is fve. That just seems ridiculous to 
me.” P-F01 Think-aloud 

At other moments, designers were uncertain whether the AI or the 
user was responsible for fxing the problem. In some cases, designers 
accepted imperfect results and attributed the faws to the system. On 
one occasion, a designer verbalized their concerns when evaluating 
a generated engine bracket with insufcient bolt hole clearance: 

"It’s a goofy-looking bracket. I would never design it like 
that, but this thing thinks it can do it like that [. . . ] It 
just seems [that there needs] to be bolt heads and stuf, 
so I just don’t see that bolt ftting in this area. But this 
is what it gave me, so I don’t have a problem with that.” 
P-F13 Think-aloud 

5.2.2 Challenges in working “collaboratively”. Designers 
frequently expressed challenges in sharing control with AI-based 
design tools, noting that it often felt like these tools were dominating 
the design process. In those situations, designers either gave up 
and accepted unsatisfying results, improvised ’hacky’ strategies 
to work around the AI or abandoned the AI assistance altogether 
and proceeded to work manually. For instance, one designer using 
SimuLearn expressed frustration about having insufcient control 
over the design process and decided to accept imperfect results: 

"I feel like the collaborative process [...] it seemed a 
little difcult to control. I felt that SimuLearn had more 
control over it than I did." P-S01 Interview 

Similarly, another participant pointed out the lack of participation 
opportunities and conversation throughout the design process: 

"I would say no, that it’s not co-creative. The whole 
program creates the thing but based on my limits. [...] 
I don’t feel like I interact in that creation of the shape. 
I just worked at the beginning and then I let the program 
do the rest. I missed that once there is one option, I cannot 
change anything, I cannot interact with the solutions 
that the program is giving me." P-F04 Interview 

In other cases, designers developed their own ’hacky’ 
workarounds to attain feasible results. In Fusion360, this happened 
when designers tried to use simple boxes as obstacle geometries to 
limit the material growth within the specifed perimeter. However, 
the algorithm often found ways to “squeeze” in additional, unwanted 
material through the gaps between obstacle geometries. A Fusion360 
user expressed they felt like tricking the system when they were 
unsuccessful at blocking material generation: 

“I think the software did kind of dominate the design 
process a little bit in that I was making things to satisfy 
the software instead of it kind of adapting to my needs 
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[...] I think for something that’s like supposed to be so 
smart and easy to use I wish it gave me more options 
instead of [me] trying to fnd these like little tricks. So 
I don’t want to use little tricks. I don’t want to use a 
hidden kind of ‘I’ll trick the software into thinking that 
it’s correct.’" P-F05 Interview 

Finally, designers often avoided AI assistance when they could 
not learn to co-create with it efectively. This issue was particularly 
frequent when designers used SimuLearn, given that this tool 
explicitly allows designers to switch between diferent levels of AI 
assistance. When comparing which SimuLearn features designers 
used to complete the tasks, all designers learned over time to 
manually adjust, simulate, and iterate the design (see Table 3 right). 
However, only two designers (S04, S10) were able to work with the 
AI-assistance features (i.e., auto and hybrid optimizer) on the frst try. 
All others expressed that they could not make sense of the AI output, 
even when they used the feature correctly. These participants 
subsequently avoided using the AI features and continued to work 
manually with rapid simulation. 

5.2.3 Challenges in communicating design goals to the 
AI. Designers often had difculty communicating design goals 
to the AI system. For example, designers were unsure about the 
use and implication of certain parameters. Furthermore, many 
designers recognized their knowledge gaps of parameters that 
defned manufacturing processes or materials. E.g., a designer was 
unfamiliar with the specifcity of a manufacturing method and kept 
using default parameter values: 

"I’ll have to see if they have fve-axis milling... minimum 
tool diameter 10 millimeters... uh I don’t know, I’m not 
really a tooling guy... tool shoulder length... [laughs] 
minimum tool diameter... all right I guess I don’t know... 
I just hit okay on that." P-F12 Think-aloud 

Designers often relied on the AI system’s default settings or made 
assumptions about their efect when they were unsure about the pa-
rameters’ meanings. Instead of seeking clarifcation from helpful re-
sources, they often tried to determine a parameter’s efect on the fnal 
result independently. However, it was oftentimes hard or impossible 
to notice and trace back parameter infuences from the fnal results. 

In the think-aloud sessions, we also observed several occasions 
where designers had diferent interpretations of the parameters. For 
example, in the Fusion360 task, half of the users made mistakes when 
converting the loads into the correct unit expected by the system. 
Similarly, when applying loads to multiple targets (i.e., bolt holes), the 
system applied the same load to each of the targets instead of equally 
distributing the load across the targets, which the designers had 
anticipated 1. This mismatch led to higher load assignments and un-
necessarily strong and bulky bracket designs. Interestingly, most de-
signers verbalized their uncertainty about the load distribution when 
specifying parameters, as exemplifed by this think-aloud comment: 

“All the loads... I remember being a little wonky... so... 
I said three... let’s see...what would be the case here? 
I don’t know if all of these three forces are the same... 
that’s the issue. I don’t know if this is applying to each 

1This is a known issue in Fusion360 that many users have discussed in the user forum. 
See [4]. 

one in particular... like if it’s 12,000 here, here, and here... 
or if it’s split evenly? I hope it’s being split evenly... that’s 
what I’m assuming.” P-F03 Think-aloud 

Although participants were aware that the system might interpret 
the load assignments diferently, only a few were actually able to 
fgure out and correct the mistake. 

5.3 Learning strategies among successful 
designers (RQ1b) 

Here we present fndings related to how designers overcame the pre-
viously reported learning challenges (RQ1b). We observed that all 
designers (after watching the introduction tutorial video) tried to 
learn to work with the tools through an iterative trial-and-error 
process. We also observed that participants sporadically consulted 
diferent support resources, including software tooltips and help 
fles, and external resources like video tutorials, online user forums, 
and in some cases asking colleagues for help. Designers sought help 
from these support resources primarily after encountering interface 
or usability issues, which they often resolved. However, despite the 
available support resources, most designers struggled to learn to 
co-create with the tools efectively. Nonetheless, some designers 
employed successful strategies that helped them in learning to work 
better with the AI systems: 

5.3.1 Systematically exploring AI’s limitations and capabili-
ties. We observed that, early on in their interactions, two designers 
(P-F11, P-S10) deliberately and systematically experimented with the 
AI tools to develop a better intuition of the AI’s behavior, capabilities, 
and limitations. These designers conducted tests to understand 
what efects diferent parameter values would have on the fnal 
result and documented the value-result correspondence to create 
a mental model. For example, PS-10 realized that their initial design 
sketches were not feasible with SimuLearn and the shape-changing 
materials, thus decided to systematically test diferent extreme grid 
shapes to hone their mental model of the AI’s behavior: 

"Even though I tried sketching some stuf, I think it just 
didn’t work. So I thought it’s better if I just go into the 
tool and see if I will be able to do this. I tried stuf like 
folding one corner upwards and one corner downwards 
or stuf like that. I took lots of screenshots and those 
really helped me to understand like ’if I do this, then it’s 
gonna behave like that’ so I think initially it was a lot 
of trying to form a mental model and like what’s the 
capability of this tool." P-S10 Interview 

5.3.2 Sketching, explaining and reflecting on design issues . 
Another strategy that helped designers overcome fawed outcomes 
was to actively abstract and explain the problem. In the think-aloud 
sessions, we observed when facing similar fundamental challenges 
like over-constraining the engine bracket (such that the loads had 
no efect), some designers were able to understand and overcome 
the issue by sketching out the bracket’s free-body diagram and 
explaining the acting forces and constraints to themselves. We 
observed similar strategies in SimuLearn, where participants under-
stood the signifcant infuence of gravity during the transformation 
process by explaining the process to themselves: 
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Table 4: Overview of Study 2: Learning with a Peer Guide participants. Six additional participants (3xFusion360, 3xSimuLearn) 
were paired with peer guides who had worked successfully with the AI design tools in Study 1. 

ID Group 
Age 
Years Gender Domain Occupation 

CAD Exp. 
Years 

Ind. Exp. 
Years 

Guided by 
Participant 

P-F07 Fusion360 27 M Mechanical Engineering Student / PhD >5 1 – 2 P-F05 
P-F08 Fusion360 27 M Mechanical Engineering Student / PhD >5 1 – 2 P-F05 
P-F13 Fusion360 19 M Mechanical Engineering Student / BA 2 – 4 0 P-F11 
P-S05 SimuLearn 26 F Architecture Student / MA >5 2 – 5 P-S04 
P-S08 SimuLearn 20 F Architecture Student / BA 2 – 4 0 P-S04 
P-S09 SimuLearn 23 F Architecture Student / BA 2 – 4 2 – 5 P-S04 

"Whoa, I was not expecting that at all... uh... is that just 
because of gravity? And there’s something crazy going 
on here... there’s a lot of gravity... oh is it because I made 
the thing so big? Yikes, that is not at all what I expected." 
P-S11 Think-aloud 

6 STUDY 2: LEARNING WITH A PEER 
GUIDE (RQ2) 

To gain insights into how designers can be better supported in learn-
ing to co-create with computational AI tools (RQ2), we conducted 
additional think-aloud sessions where designers were paired with ex-
perienced peers to support them during the task (i.e., guided sessions). 
The guide had prior experience using the AI tools and provided sup-
port as needed to help participants to more efectively co-create 
with AI-driven features. Motivated by human-human collaboration, 
we aimed to derive insights into when and how to efectively sup-
port users in learning to co-create with AI by observing the support 
strategies, pedagogical moves, and communication patterns of the 
human guide. 

6.1 Method 
We recruited six additional participants (Table 4) following the 
same criteria as described in Section 3.1. The guides were recruited 
from the pool of participants who had completed Study 1 and 
demonstrated a thorough understanding of the domain, tool, and 
task (P-F05, P-F11, P-S04). We asked these guides to support the 
designers in learning to co-create with the tool. No script was 
provided to the guides because we intended to fnd possible support 
strategies from their natural interactions. 

All guided sessions followed the same procedure as that of the 
unguided sessions, except that the homework sessions were limited 
to 50 minutes and the guides were present to help the designers. The 
designers and the guides communicated with each other through 
audio, screen sharing, and screen annotations. A researcher quietly 
observed and took notes. After the design session, we conducted 
separate 15-minute semi-structured interviews with the guide and 
designer. All sessions and interviews were recorded (video and 
audio) and automatically transcribed. 

We conducted a refexive thematic analysis to identify situations 
and themes on how peer guides supported designers to overcome 
challenges in learning to work with AI tools. We specifcally 
focused on aspects of collaboration and knowledge transfer such 
as communication, joint information processing, and coordination 

of actions [53]. We coded the video, think-aloud transcripts, and 
interview transcripts then generated themes with a focus on 
communication and learning by analyzing the guide’s actions 
and support strategies that helped designers overcome challenges 
previously observed in Study 1. 

6.2 Results – Guided Sessions 
The guides supported the designer in using the tools, understanding 
the AI’s behaviors, capabilities, and limitations, and sometimes 
suggesting and discussing alternative design goals or strategies. 
Guides primarily reacted to designers’ verbalization and actions 
when they asked for help, expressed uncertainty, or when guides 
observed common mistakes. To get an impression of conversational 
dynamics, please see the video fgure in the supplementary material. 
We portray fve of the most common peer support strategies that 
helped designers to learn better to co-create with AI systems: 

6.2.1 Guide providing step-by-step walk-through in-
structions. Guides often provided designers with step-by-step 
instructions for setting specifc parameters. Such instructions 
were provided in response to designers’ actions, such as showing 
confusion or struggle, but sometimes designers also specifcally 
requested such assistance. 

6.2.2 Guide reacting to designers’ expressions of uncer-
tainty . We observed that guides were especially sensitive to 
moments when designers signaled uncertainty or when designers 
verbalized knowledge gaps with hedging expressions such as "I don’t 
know", "maybe", or "I assume." In these situations, the guides often 
intervened and ofered support or suggested alternative design 
strategies. Here, the guide suggested creating an obstacle geometry 
in Fusion360 to prevent material build-up at the bottom of the part 
in response to the designer who was wondering how to keep the 
part within the specifed dimensions. 

DESIGNER: "...but because the bolt is not here, I don’t 
know where it would be..." 
GUIDE: "I mean maybe on the bottom face, right? That’s 
what’s resting on the body of the ship efectively." 
DESIGNER: Yeah, let’s go ahead and choose that bottom 
face." 
(Designer P-F13, Guide P-F11) 

6.2.3 Guide prompting designer reflection on generated 
designs. We often observed situations where the guides prompted 
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feedback from designers each time SimuLearn’s simulation or 
Fusion360’s solver had fnished. In those moments, peer guides 
often asked the designer “Is that what you envisioned?” or “Is that 
what you wanted?” or even “Yeah, there you go! Is that how you want 
it to bend?”. These prompts triggered designers to refect on the 
generated designs, which helped the guides better understand how 
to provide support. 

6.2.4 Guide suggesting alternative means and goals. Beyond 
supporting tool operation and technical troubleshooting, the guides 
frequently suggested alternative means and goals to the designer, 
as in this dialogue: 

DESIGNER: "It’s going for the green part, but it’s not 
able to fgure out like a perfect way to get there without 
like touching this obstacle geometry." 
GUIDE: "Right, well I mean just make your obstacle 
geometry really long, say, all the way back past the 
connection to the ship, and then you’re saying ’no 
material is allowed to go here’ and that would make sure 
that you can always get a bolt in. See what I’m saying?" 
DESIGNER: "Yeah, I do" 
(Designer P-F13, Guide P-F11) 

Here the guide suggested an alternative way to achieve the de-
signer’s goal by enlarging the existing obstacle geometry. This strat-
egy helped designers to better communicate design goals to the AI 
system and develop an intuition for harnessing the AI’s capabilities. 

6.2.5 Guide and designer making use of screen annotations 
and mouse gesturing to discuss design strategy. An essential 
part of building understanding between the designer and the peer 
guide was through nonverbal communication, such as screen 
annotations, sketches, or mouse gestures. Guides frequently used 
the screen annotation feature built into Zoom to highlight elements 
they spoke about by circling or drawing arrows. We also observed 
that all designers naturally used the mouse cursor to emphasize 
design features through circling or pointing gestures when 
explaining something to the guide. Both behaviors are illustrated in 
this situation where the guide and the designer discussed a strategy 
to achieve a specifc bottle holder shape: 

GUIDE: "So in this case, maybe I suggest that you move 
these two points in particular more towards the center." 
[Guide draws arrows from points towards the 
center of the grid] 
DESIGNER: "And this one seems to have dropped 
downwards. Even this point here... The beam seems to 
be going downward." 
[Designer points with mouse at different 
beams] 
GUIDE: "oh this beam right here?" [Guide draws an 
arrow pointing at beam] 
DESIGNER: "Yeah." 
(Designer: P-S08, Guide: P-S04) 

Many designers and guides also annotated generated designs 
and sketched to clarify or illustrate their ideas. In summary, 
diferent forms of nonverbal communication helped designers and 
peer guides develop better shared mental models of the task and 
collectively overcome design issues. 

7 DESIGNERS’ NEEDS AND EXPECTATIONS 
FOR CO-CREATING WITH AI-BASED DESIGN 
TOOLS (RQ3) 

Based on our observations and interviews from both the unguided 
and guided sessions, we highlight four themes that capture the 
needs and expectations that designers expressed around co-creating 
with AI-based design tools (RQ3). 

7.1 Designers expect the AI system to have 
more contextual awareness about the design 
problem at hand 

In both systems, participants missed the kind of contextual 
awareness that a human collaborator might have about a design 
task, such as a part’s function or how the part interfaces with other 
elements in the environment. Such a lack of contextual awareness 
was one of the main reasons people thought working with the tool 
was not collaborative. This lack of context also meant that the tool 
could not support the designers more proactively like a human 
partner, as described by this participant: 

"Certainly it would have saved me some time if at the 
beginning the software would have said ’oh I see that 
these are your connection points. Can you actually get a 
bolt in there?’ [. . . ] Things like that would have felt really 
much more collaborative and helpful." P-F11 Interview 

Others expected the tool to ofer more intelligent manufacturing 
and material suggestions or help them anticipate real-world design 
issues, as this participant expressed: 

"I would like to see a design tool that would show me 
simulations of the water bottle in action, like ’oh is there 
enough friction’ or ’will it actually stay in place while 
a cyclist is on the bike’ and then provide suggestions of 
how to alleviate those problems." P-S04 Interview 

7.2 Designers desire a more conversational 
form of interaction with the tool 

Most participants complained about the lack of reciprocal interac-
tion between them and the tool. Participants compared designing 
with the AI systems to "programming" or "working with a skilled 
teammate who is not listening to you." Participants wished for a more 
conversational interaction with the tools, as desired by this designer: 

“More like a tool that I can have a conversation with 
while I’m always sure that everything that I’m making 
is fulflling the expectation of the piece and the loads 
and materials and everything.” P-F04 Interview 

7.3 Designers require support in thinking 
through design problems 

Across all guided sessions, designers appreciated that the peer guide 
helped them learn to operate the tool but also to think through 
design problems—a feature they would eventually also expect from 
a co-creative AI tool. As summarized by this designer who refects 
on working with their peer guide: 

"I think working together with the peer guide was 
actually really helpful because he had a lot of insight. 
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I felt like a couple of things that I didn’t really think 
about just from a fundamental engineering standpoint 
of how the thing can actually be made. I think that was 
really benefcial." P-F13 Interview 

7.4 Designers expect an AI tool to provide 
project-relevant work examples 

Designers frequently suggested that a co-creative tool should 
suggest similar task- and project-related examples created by 
other users. Such examples could help designers learn the system’s 
capabilities and provide creative inspiration, as suggested by this 
SimuLearn user: 

"Let’s say I’m modeling some form and in real-time, the 
tool is searching some sort of database to show me some 
possibilities that other people have previously done, just 
by the similarity of the shape, and then I’m like ‘yeah this 
shape can go there and go there.’ So that’s actually a cre-
ative input that can help—a bit more like you’re designing 
with someone. It doesn’t necessarily have to generate, it 
can pull up from other people and tell you ’here is how 
some other designers work with this.’” P-S10 Interview 

8 DISCUSSION 
Co-creative AI design tools have the potential to amplify the 
abilities of engineering and industrial designers. However, we found 
that designers face major challenges in (learning to) efectively 
co-create through understanding and adjusting system outputs, 
communicating design goals, and working "collaboratively" with 
the AI. Designers who overcame challenges did so by systematically 
exploring AI’s limitations and capabilities, and by explaining and 
refecting on their design issues. The observed support strategies of 
peer guides comprised step-by-step walk-through instructions, re-
acting to designers’ expressions of uncertainty, prompting designer 
refection on generated designs, suggesting alternative means and 
goals, and making use of screen annotations and mouse gestures to 
discuss design strategies. Overall, designers expected the AI system 
to have more contextual awareness about the design problem at 
hand, desired a more conversational form of interaction with the 
tool, asked for more support in thinking through design problems, 
and expected project-relevant work examples from the tool. 

We discuss our fndings in the context of prior research studying 
how users learn to work with complex software tools and relate our 
fndings to concepts and empirical fndings from research on human 
collaboration. We highlight design opportunities (Table 5) to better 
support designer-AI co-creation by scafolding designers in actively 
exploring the boundaries of AI capabilities and limitations, prompt-
ing designers to actively refect on design problems and observed AI 
behaviors, enhancing AI systems’ contextual awareness of designers’ 
tasks and objectives, and supporting more conversational forms 
of multi-modal communication between designers and AI systems. 

8.1 New learning challenges for 
human–AI co-creation 

Based on our fndings, we believe that the challenges designers faced 
when learning to co-create with the tools go beyond learning the 

tools’ interfaces. Firstly, all participants were experienced designers 
familiar with the CAD software’s interface and had watched a step-
by-step instructional video demonstrating the operation of the AI 
features. Furthermore, designers used diferent support resources, 
including tooltips, help fles, video tutorials, online user forums, and 
asking colleagues for help to overcome interface issues they faced. 
However, even with the help of these resources, most designers could 
not produce feasible and satisfying outcomes with AI assistance. 
While this result may have been due, in part, to the limitations of the 
AI tools themselves, it is clear that this was not the full story. Indeed, a 
few of our participants were able to overcome challenges and learned 
to co-create efectively with the AI features. Hence we believe that 
the challenges participants faced when working with the AI systems 
(such as communicating design goals or understanding AI outputs) 
were partly new learning challenges due to the tool’s more active role 
in the design process. These learning challenges go beyond learning 
the tool’s interface. For example, a major challenge we identifed 
relates to how designers specify all required parameters upfront 
instead of modeling and testing a part step-by-step. This workfow 
requires designers to think through the design problem in advance, 
which is challenging and diferent from the usual iterative design 
process. Our fndings suggest that these new learning challenges 
require new support strategies for example, by prompting designers’ 
refection in response to expressions of uncertainty or suggesting 
alternative design goals that align with the AI’s capabilities. 

8.2 Toward models of human collaboration 
as lenses for studying and designing 
co-creative systems 

Participants had trouble learning to predict how the AI might be-
have in response to the specifed parameters. They struggled to make 
sense of the AI system’s reasoning and struggled to correct unwanted 
design issues. Prior literature on group cognition suggests that to 
achieve efective collaboration group members should be able to in-
terpret each other’s reasoning and predict roughly how their partner 
might behave in response to their own actions [40]. Similarly, from a 
team learning perspective, our fndings suggest that designers who 
systematically explored the AI’s limitations and capabilities early on 
were better at predicting the tool’s actions in response to their own 
and produced more satisfactory results. This result is in line with stud-
ies on human-AI collaboration in decision-making, suggesting that 
users learn to better predict the machine’s behavior through induc-
tive mechanisms (i.e., via concrete examples and hands-on testing) 
than via general, declarative information about internal processes 
[11]. While explainable AI research focuses primarily on directly 
communicating information about the AI system to the user, recent 
research has suggested that more engaging and longer forms of learn-
ing and deliberate practice might improve human-AI collaboration 
[36]. However, in addition to supporting honing the user’s mental 
model of the AI’s capabilities and limitations, it is equally important 
for the AI system to have an understanding of the user’s capabilities, 
limitations, and task context to enable more efective human-AI 
collaboration. Hence, this would require the AI system to have better 
contextual awareness of the user and the current task at hand. We 
further discuss the resulting design opportunities in section 8.3.3. 
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Table 5: Overview of design opportunities and example applications in relation to group cognition and team learning. 

Support opportunity Example Application

Sca olding inductive learning of AI’s capabilities and limitations

O er guided interactive mini  
experiments for exploring AI 
behavior 

Seen in 5.3.1 and 6.2.2

System o ers designers explorative mini 
experiments to develop intuition of the AI’s 
responses to speci c (extreme) parameter 
constellations.

Re ning mental model of AI’s behavior and 
capabilities through experiential, hands-on 
learning; Learning to predict the tool’s actions in 
response to own actions.

Present similar work 
produced by AI design tool  

Seen in 7.4

System proactively suggests task-related 
project examples of designers creations with  
AI system as learning resource and source of 
inspiration.

Re ning mental model of AI’s capabilities and 
limitations by learning from examples; Aligning 
designer’s expectations with tool’s capabilities; 
Ge ing inspired by co-creative AI’s suggestions.

Prompting designers' planning and re ection

Support designers in 
thinking through design 
problems 

Seen in 6.2.4 and 7.3

System asks designers questions to help 
reframe or further explore problem and 
solution space, like “Have you considered  
other alternatives?”, “Could the bo le holder 
also be placed at a di erent location on the 
bike?” System could also suggest alternative 
strategies and goals to designer.

Helping designers to stay cognitively engaged in 
co-creative design process with AI.

Prompt designers’ feedback 
and re ection 

Seen in 5.3.2 and 6.2.3

Prompting designers’ feedback when 
evaluating generated designs, like “Is this 
design what you envisioned?” Based on the 
feedback, system could o er support guidance 
on how to correct generated designs.

Helping designers to identify their own mental 
state and communicate goal to AI system; 
Information pooling.

Improving co-creative AI tools' contextual awareness of designers' tasks and objectives

Equip AI with increased 
contextual awareness of 
designer, task, and project 

Seen in 7.1

System probes designers to share information 
about their background, skills and project, like 
high level design goals and manufacturing 
considerations.

Fostering shared mental models of task and 
objectives by asking for explicit feedback or 
implicit social inference.

Respond to designers’ 
uncertainties  
and knowledge gaps  

Seen in 6.2.2

Enable designers to communicate 
uncertainties about parameters and own 
knowledge gaps to system by “ agging” 
parameters. System could track 
designers’ “level of certainty.”

Foster shared mental models of each other’s 
knowledge and goals. Increasing the feeling of 
designers’ ownership of the mutual activity with 
AI system. 

Multi-modal interactive communication for human–AI co-creation

Allow a more interactive and 
conversational interaction 
between designer and AI 
system 

Seen in 7.2

Utilizing conversational agentive interfaces  
for designer-AI co-creation

Facilitating grounding in communication through 
turn-taking, acknowledgments, back-channeling, 
error correction; Mutual con rmation of the 
reception and interpretation of objectives.

Enable non-verbal 
communication between 
designer and AI system  

Seen in 6.2.5

Designers provide feedback to AI system  
by sketching design goals or annotating 
generated designs for re nement (like in a 
design critique)

Facilitating grounding in communication by 
selecting a domain and task-appropriate 
communication medium.

Relation to Models of Human-Human Collaboration 

Most designers felt the tools were uncollaborative and had more 
control over the design process than they would have preferred. As a 
consequence, they accepted imperfect results, developed improvised 
workarounds, or avoided AI assistance altogether. Previous studies 
on group cognition and team learning suggest that group members 
feel more ownership of the mutual activity when the group learns 
to coordinate cognitive capabilities among participants—united by 

their interpretations of each other’s mental states [57]. Groups can 
reach this level of collaboration by an active process of communica-
tion, joint information processing, and coordination of actions [53]. 

Our fndings from the guided sessions show that the guides’ active 
communicative support strategies, such as reacting to designers’ un-
certainties and providing step-by-step instructions, helped designers 
learn to work confdently with the AI. Furthermore, when peer 
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guides prompted designers’ feedback and refection on generated 
designs, the designers were required to articulate their intentions ex-
plicitly. As a result, both the guides and designers were able to discuss 
and better coordinate further actions to improve the outcome. 

8.3 Design Opportunities and Future Work 
The following section highlights several design opportunities we 
identifed in our fndings to support designers in learning to co-create 
with computational AI tools. 

8.3.1 Scafolding inductive learning of AI’s capabilities and 
limitations . As discussed, some designers learned the AI system’s 
capabilities and limitations by testing and documenting the efectual 
correspondence between various parameters and the generated 
result (see 5.3.1). In the guided sessions, peer guides also frequently 
provided step-by-step instructions for setting up parameters or 
walked designers through the sequence of steps (see 6.2.2). These in-
ductive learning strategies helped designers to better predict the AI’s 
behavior and understand its capabilities. Previous work on novice-AI 
music co-creation has also found that users systematically tested AI 
limitations to hone their mental model of the system’s behavior [48]. 
Going further, to better support users in this learning activity, future 
co-creative systems may ofer designers a set of hands-on mini-
guided ‘experiments’ to better understand the system’s responses 
to specifc (extreme) parameter inputs [42]. Systems may also ofer 
designers opportunities to view sets of examples of input-output 
pairs to help designers develop useful mental models of an AI tool’s 
generative capabilities and limitations (cf. [58]). A co-creative tool 
may also proactively recommend similar tasks and project-related 
examples created by other human-AI teams (see 7.4) to help designers 
learn the system’s capabilities and provide creative inspiration. 

8.3.2 Prompting designers’ planning and reflection . 
Participants who were more successful at co-creating with the AI 
tools did so by abstracting and explaining their problems—either 
to themselves during think-aloud sessions or to the peer guides 
(see 5.3.2 and 6.2.3). Literature from the learning sciences shows 
that self-explanation positively afects understanding and problem-
solving [76]. In addition, participants from the guided sessions 
appreciated the guides’ prompt for refection on AI behaviors and 
their suggestions for alternative design goals or strategies (see 6.2.4 
and 7.3). Such actions helped designers think through the tasks 
and plan actions with AI tools. Conversely, designers who did not 
refect on the design problems were unable to learn to understand 
the system’s behavior, capabilities, and limitations well enough 
and failed to produce satisfactory outcomes. This observation was 
more prevalent in Fusion360 than in SimuLearn since Fusion360’s 
long simulation time doesn’t support the kind of rapid interactive 
adjustments as SimuLearn did, thus requiring the user to strategize 
their actions in advance. Hence, supporting users in thinking 
through the design problem for specifying parameters ahead would 
be especially benefcial for AI tools with longer processing time. 

One additional explanation for why participants failed to produce 
satisfactory outcomes might be that AI systems can lead designers 
to over-rely on their support, creating an “illusion of success” that 
reduces their efort in solving the design problem [84], something 
we saw when designers accepted results even when they appeared 

unfeasible (see Section 5.2.1). To compensate for this tendency, 
a co-creative system may help designers reframe the problem or 
further explore the solution space by suggesting alternative goals 
or asking generative design questions [23] like “What could other 
alternatives look like?”. Moreover, actively refecting on the design 
process is an essential part of professional design practices [67]. 
Much like the guides, a co-creative system could prompt feedback 
and active refection on observed AI behaviors or generated designs 
by asking deep reasoning questions about the results, such as “Is 
this generated design what you envisioned?” (cf. [12]). Based on the 
feedback, the system may then ofer support and help to coordinate 
further actions. This strategy would be complementary to the 
inductive learning support described in the previous section (8.3.1). 

8.3.3 Improving co-creative AI tools’ contextual awareness 
of designers’ tasks and objectives. Our results show that 
designers felt a lack of the tool’s awareness about the design context 
and therefore missed the kind of proactive support a human partner 
might provide (see 7.1). While building contextual awareness into 
AI systems has long been a tradition in HCI research, it also presents 
many technical challenges. However, in the context of co-creative 
design tools, promising directions are being explored. For example, 
the system could derive its user model through explicit and implicit 
mechanisms to develop a shared mental model of the context by 
asking the user for information about the specifc design task (i.e., 
parsing a written design brief for context and goals [71]) or infer 
design goals from user behaviors [46]. 

From a group cognition and team learning perspective, con-
textual awareness also includes an understanding of the other 
team member’s existing or missing knowledge about the design 
task. Based on our fndings (see 6.2.2), a co-creative tool might 
learn about the designers’ knowledge by responding to verbalized 
knowledge gaps such as “I don’t know” or responding to hedging 
expressions such as “maybe” or “I assume.” This observation is in 
line with research showing student learning is positively afected 
by human tutors’ responses to their expressions of uncertainty [26]. 
Based on this phenomenon, literature has explored how intelligent 
tutoring systems can detect and respond to student hedging [26, 62]. 
A co-creative system may also allow designers to communicate 
uncertainties about parameters and their own knowledge gaps. For 
example, designers may fag an “???” checkbox next to a parameter’s 
input feld to signal uncertainty. The AI system could then track 
designers’ “level of certainty” for each parameter and provide 
reactive help or re-surface those parameters later in the design 
process to identify possible reasons for unexpected outcomes. 

8.3.4 Multi-modal interactive communication for human–AI 
co-creation. Our fndings show that designers felt communicating 
with the AI was like giving instructions without receiving much 
feedback (see 7.2). Results from the guided sessions show that peer 
guides used conversational strategies like confrming the reception 
of each other’s goals or asking for clarifcations when they were un-
sure about the other’s intentions. As conversation is widely seen as a 
vital mode of designing [67] and empirical work suggests that much 
of design work lies within conversations between collaborators and 
stakeholders [47], co-creative systems should consider using more 
back-and-forth conversation as an interaction interface. Further-
more, studies on team learning show that the forming of efective, 
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shared mental models is strengthened through an active process of 
iterative negotiation between team members, involving “construc-
tive” forms of confict, argumentation, and resolution [30, 34, 74]. 
Such a strategy may also prove useful for negotiating design goals. 

Our fndings from the guided sessions also suggest that non-
verbal communication may support design partners in developing 
better shared mental models of design goals (see 6.2.5). Designers 
and guides discussed goals and strategies by pointing at features 
with the mouse cursor or sketching with the screen annotation 
feature, similar to a ’spatial-action language’ described by Schön 
[67] which explains gesturing and drawing along with verbal 
expressions as typical forms of communication in traditional 
design critique sessions. Such non-verbal interaction is still an 
underutilized medium in human-AI co-creation. Allowing designers 
to use sketching, annotation, or gesturing atop generated results 
may help them communicate design goals to an AI system. 

8.4 Human–AI co-creation beyond 
manufacturing 

Although we identify opportunities to support learning to co-create 
with AI systems in the context of manufacturing, many of our fnd-
ings could also apply to other human-AI co-creation domains such 
as image, music, or text generation. Given recent advancements 
in generative image AI models (such as DALL-E [63] or Stable Dif-
fusion [65]) with fast release cycles of new tools and capabilities, 
supporting creative professionals in learning to efectively co-create 
with such tools might become increasingly important. Furthermore, 
many prompt-based AI models like DALL-E expect users to express 
their goals through text prompts, which is an unfamiliar modality 
for most of today’s visual designers. Consequently, our fndings 
suggest that AI tool users across many domains could be supported 
in learning to better co-create with AI systems by scafolding induc-
tive learning of the AI’s capabilities, prompting users’ planning and 
refection, improving the tools’ contextual awareness of tasks and 
objectives, and facilitating multi-modal interactive communication 
between tool and user. Future work might further explore interfaces 
for supporting learning to co-create with computational AI tools in 
other domains beyond manufacturing. 

8.5 Limitations of the study 
We highlight three limitations of this study: frst, our participants 
only represent a subset of engineering, architectural, and industrial 
designers. Although all participants had relevant training in their 
design felds and worked with 3D CAD software, most had minimal 
industry experience. We also included three professionals with 
substantial industry experience to compensate for this imbalance, 
however, even these participants struggled. Further, the self-selected 
participants in our study were presumably interested and open 
to the idea of co-creating with an AI system. Thus, some of our 
fndings may be refective of this openness to co-creative work. 
Second, both AI tools are still early in development, and we noticed 
user experience issues that could beneft from improved UIs. To our 
best extent, we isolated UI issues from more fundamental challenges 
in learning to co-create with AI systems. Although the tools are 
relatively new, we believe our fndings provide value in exploring 
new opportunities for co-creative design systems. Finally, despite 

our efort to make sure the design tasks were realistic, designers 
knew that they were in a research study and that the designs would 
not be manufactured. In a professional context, participants might 
have spent longer learning the tool to produce feasible designs. 

9 CONCLUSION 
In this paper, we presented an empirical study to understand 
how engineering and architectural designers learn to work 
with AI-based manufacturing design tools, documenting their 
challenges in working with an AI and probing their needs and 
expectations for co-creating with AI systems. We identifed several 
support opportunities with an eye toward learning from efective 
human-human teams to improve future designer-AI co-creation. 
Overall, we aim to inspire others to explore untapped support 
opportunities and to work toward future co-creative tools that 
combine the strength of both human and AI systems to achieve 
complex designs that neither could achieve alone. 
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A ADDITIONAL MATERIALS 

Figure 6: Overview of all engine mounting brackets created in the Fusion360 task. Every participant submitted three design 
options. Since the AI system generated the three options based on the same parameter values, each trio either met or missed 
the same criteria. 
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Table 6: Interview protocol with questions of the semi-structured post-task interview. 

Theme Topic Question
Collaboration with 
the tool

General Experience Q3 Could you tell me what it was like to work with the design tool in 
general?

General Expectations Q4 Before starting this project, what role did you expect the design tool 
to take? 
And what role did it actually take during the design process? Did the 
design tool match your expectations?

Roles – Coordination Q5 Do you feel that there was a collaborative interaction between you 
and the design tool? 
Can you give us some specific examples?

Q6 Using your own words, what metaphors or analogies would you use 
to characterize the tool and the collaboration with it?

Q7 Would you say that the process of working with the design tool is co-
creative? Why?

Q8 How was the workflow with the design tool different from your 
workflow of working with a human teammate?

Roles – Expectations Q9 What role do you want the AI to take during your process?
Q10 How would you describe an ideal collaborative design tool for that 

task?
Q11 What would a design tool need to do so that you would perceive it 

as “collaborative” and “co-creative”?
Mental Model Q12 Do you remember situations in which you found the behavior of the 

design tool confusing or irritating?
Shared Mental Models Q13 Do you think the AI feature successfully understands your design 

intent and design practice?
Q14 Do you think the design tool collected enough information to support 

you most effectively? Why?
Shared Mental Model – 
Expectations

Q15 Are there any aspects from your design process where you hope a 
design tool like this could learn more from you to better support 
you?

Communication Q16 How would you characterize the dialogue between you and the 
design tool?

Q17 Can you describe situations in which the communication worked 
well and not so well?

Q18 Do you find the interface helpful in guiding you through the whole 
process while getting started?

Conflict Resolution Q19 Do you remember situations of conflict with the design tool? How did 
you solve the conflict?

Timing / Flow Q20 How did the simulation time influence your design process?
Design Process Satisfaction with design 

outcome
Q21 Are you satisfied with the final design in general? How closely does 

it match the design brief?
Surprise Q22 Do you remember situations in which suggestions from the design 

tool surprised you? 
If so, could you give me an example of that? Do you find the 
surprises productive or not?

Design Negotiation Q23 How did you find that the design tool changed the way you design? 
Did you ever adjust your design goal/strategy according to the tool’s 
capabilities?

Exploration Q24 Did you explore more design options because of the design tool?
Productivity Q25 Do you think you can achieve the same output level (quality and 

quantity) without the help of an AI feature 
given the time constraints? Why?

Trust / reassurance Q26 How much do you trust the results from the design tool?
Q27 Is there any other sort of analysis you were hoping the software 

would do that it didn’t? Why?
Learning Process Learning Process Q28 How would you describe the learning process for using the tool and 

collaborating with it?
Q29 Which situations of the design process did require the most 

guidance?
Q30 How did you learn about the capabilities of the design tool?
Q31 Which aspects of the design tool were challenging to understand or 

learn about?
Learning Resources Q32 Which learning resources did you find most useful? Why?
Learning Expectations Q33 How could the tool better guide an experienced designer who is 

starting to use the tool?
Q34 What would the ideal collaborative learning process look like, in your 

opinion?
General 
Expectations

Q35 What would you want the design tool to do more of?

Q36 What would you want the design tool to do differently?
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