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Abstract: Social media platforms have revolutionized information exchange and socialization in
today’s world. Twitter, as one of the prominent platforms, enables users to connect with others
and express their opinions. This study focuses on analyzing user engagement levels on Twitter
using graph mining and clustering techniques. We measure user engagement based on various
tweet attributes, including retweets, replies, and more. Specifically, we explore the strength of user
connections in Twitter networks by examining the diversity of edges. Our approach incorporates
graph mining models that assign different weights to evaluate the significance of each connection.
Additionally, clustering techniques are employed to group users based on their engagement patterns
and behaviors. Statistical analysis was conducted to assess the similarity between user profiles, as
well as attributes, such as friendship, followings, and interactions within the Twitter social network.
The findings highlight the discovery of closely linked user groups and the identification of distinct
clusters based on engagement levels. This research emphasizes the importance of understanding
both individual and group behaviors in comprehending user engagement dynamics on Twitter.

Keywords: clustering; community analysis; graph mining; hemophilia; social media; Twitter; Twitter
analytics; user engagement

1. Introduction

Social networks have become integral platforms for individuals to establish social rela-
tionships and engage with others who share common interests or activities. These networks
consist of diverse connections, each varying in strength. Analyzing these connections is
crucial for assessing and measuring social connectivity. To gain a comprehensive under-
standing of social networks and their operational mechanisms, exploring the connections
among their members is essential [1].

The growing popularity and accessibility of social networks have led to an exponential
increase in user-generated content and data volume. Analyzing these vast amounts of
data necessitates effective tools, and graph mining has emerged as a valuable technique.
By leveraging graph mining, researchers can explore social network characteristics and
identify interaction patterns among social entities or within social groups [2]. This technique
aims to extract relevant information and gain deeper insights into the dynamics and
intricacies of social networks [3].

Social networks comprising social actors come to life through the establishment of
relationships that develop during everyday interactions in various aspects of individuals’
lives, including cultural activities, such as family gatherings, community celebrations,
engagements, and more. These social networks manifest in numerous examples of regular
interactions, such as seeking assistance, support, or advice from another family, forging new
friendships, or spending leisure time together [4,5]. It is worth noting that relationships
within social networks can exhibit both positive and negative dynamics. While reciprocity
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and integration contribute to positive relationships, alienation and a lack of reciprocity can
lead to negative relationships, where even security becomes a crucial factor to consider.

In recent years, the increasing diversity of social networks and their users has posed a
challenge for scientists. The emergence of new patterns of interaction and user clustering
has led to the exploration of commonalities among individuals within these networks. This
exploration is an essential component of social network analysis, which aims to understand
the complex and dynamic structures of social networks [6].

Identifying clusters within social networks presents an optimization challenge due
to their intricate nature. These networks exhibit a variety of node groups with varying
degrees of connectivity, making it important to discover both highly connected and sparsely
linked clusters. The allocation of a clustering factor in a network is based on the concept
of strength, where nodes are more likely to form clusters based on their connectivity.
The clustering coefficient is a fundamental measure in this context, providing insights into
the network’s architecture and highlighting the presence of interconnected clusters and
communities within social networks [2,7].

Twitter, being one of the most widely used social networking platforms, serves as
a hub for news updates, information sharing, and marketing endeavors, all within the
constraints of a limited character count of 280 [8]. As Twitter continues to evolve, its
functionalities and features undergo dynamic changes. In this paper, we focus on the
following key components and features of the Twitter platform:

• Hashtags are identifiers that begin with the “#” symbol, followed by a word or phrase
without spaces. They serve as a way to categorize and organize tweets around specific
topics. Users can search for posts related to desired topics by using hashtags.

• Mentions are indicated by the “@” symbol and allow users to refer to other users within
a tweet. When a user mentions another user, it notifies and directs the mentioned
user’s attention to the tweet. This can lead to various forms of engagement, including
likes, retweets, and replies, as the mentioned user interacts with the tweet.

• Retweeting enables users to repost someone else’s tweet, often accompanied by their
own comment or endorsement. Retweets serve as a means to share and amplify
content, indicating a strong interaction and endorsement between the users involved.

• Replies: Users can engage with tweets by posting additional comments or making
remarks in reply to a specific tweet. Replies are initiated with the “@” symbol fol-
lowed by the screen name of the user writing the reply. This fosters discussions and
conversations around a particular tweet.

• Follow: The follow feature allows users to choose and “follow” other profiles on the
social network. By following a specific user, their tweets appear on the follower’s
timeline, enabling them to stay updated with the user’s activity and content.

• Friendship represents a social relationship between two users on Twitter. Unlike the one-
way nature of following, a friendship connection indicates a reciprocal relationship.
When a user follows another profile, they appear on the follower’s friends’ list, while
they themselves are listed as followers on the profile they follow.

In this research paper, our primary goal is to classify user relationships in social net-
works based on their strength. We define strength as the degree of closeness between two
users within the network, considering specific attributes captured by Twitter and the level
of interaction [9]. To determine the strength of a relationship, we take into account various
characteristics, such as geographical proximity, a similar number of friends or followers,
comparable posting frequency, and interaction criteria, such as friendship, following, men-
tions, retweets, real-time tracking, and messaging capabilities. These attributes contribute
to calculating a score for each network edge, representing the strength of the connection
between two users. Using a graph mining framework, we categorize users’ relationships
based on these calculated scores, enabling a comprehensive analysis of user relationships
on Twitter [10,11]. By leveraging this approach, we gain insights into the hierarchical struc-
ture of the network, identifying closely connected groups, and understanding the varying
strengths of individual connections. This methodology provides valuable insights into
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the dynamics and patterns of user engagement within the Twitter platform. Additionally,
a key objective of this research is to address the challenge of identifying and characterizing
node groups within social networks. By examining the clustering coefficient and exploring
the strength of connections, we aim to gain a deeper understanding of the structure and
dynamics of the network. This analysis contributes to the broader field of social network
analysis and provides valuable insights into the formation and behavior of clusters and
communities in social networks. By elucidating the objectives and methodologies of our
research in this paragraph, we aim to set the stage for the subsequent sections of the paper,
where we delve into the details of our approach, experimental results, and discussions. This
research seeks to contribute to the growing body of knowledge in social network analysis,
shedding light on the complex nature of user relationships and the formation of clusters
within social networks.

The remainder of the paper is structured as follows: In Section 2, we provide an
overview of related work in the field, discussing prior studies and approaches that have
addressed similar problems concerning user engagement and relationship characteriza-
tion in social networks. Word2Vec and clustering algorithms are discussed in Section 3.
Section 4 presents our proposed method, including the metrics used and details of the
scores assigned to social network edges. Implementation aspects and the dataset utilized
for our experimental study are covered in Section 5. In Section 6, we present the research
results, analyzing and interpreting the findings obtained from applying our method to
Twitter data at different levels of interaction, whereas Section 7 discusses the findings.
Finally, Section 8 summarizes our contributions, highlights key findings, and outlines
potential future research directions.

2. Related Work

The analysis of social relationships and human behavior within social networks has
garnered significant attention from the scientific community. Researchers are driven by
the increasing demand to understand these networks from various perspectives and for
diverse purposes. In this section, we explore some of these perspectives and gather relevant
data that substantiate the implementation of the idea proposed in this study. By building
upon the existing body of knowledge, we aim to contribute to the understanding of user
engagement and relationship characterization within social networks, particularly focusing
on the context of this research.

In the domain of graph analysis, various efficient techniques have been proposed to
tackle the challenges posed by large-scale graphs. Dhillon et al. [12] introduced an effective
and fast graph-clustering technique capable of handling graphs with a substantial number
of nodes and edges. Their approach leverages multilevel methods and employs a refined
algorithm based on a weighted kernel K-means objective function. This methodology en-
ables the clustering of complex graphs efficiently. Furthermore, Ozaki et al. [13] proposed
a novel method for mining subgraphs in graph-structured databases. Their algorithm
focuses on identifying frequent hyperclique patterns, which reveal the dependencies be-
tween graphs within a large-scale database. To ensure efficiency, the study incorporates
efficient pruning methods, leveraging both depth-first and breadth-depth search strategies.
These research contributions highlight the development of effective techniques for graph
analysis, addressing challenges such as scalability and identifying meaningful patterns
within complex graph structures. The methods presented in these studies serve as valuable
references for our research, providing insights into clustering and subgraph mining in the
context of large-scale graphs.

In the realm of bipartite graph clustering, Le et al. [14] introduced a novel method
known as the coring technique. This technique addresses the challenge of partitioning a
large bipartite graph into smaller subgraphs. The key objective is to identify clusters where
the nodes within each cluster exhibit strong connections to one another within the graph
while maintaining weaker connections to nodes outside of the cluster. The coring technique
proposed by the authors enables the computation of clusters that possess a highly dense



Computers 2023, 12, 124 4 of 22

core region, surrounded by regions of relatively lower density. By utilizing this technique,
it becomes possible to extract meaningful clusters from bipartite graphs, providing insights
into the underlying structures and relationships within the graph.

In the field of graph clustering, Kraus et al. [15] introduced a novel mechanism
called the semi-supervised divisive (DIANA) hierarchical graph clustering algorithm. This
algorithm addresses the clustering problem without requiring prior knowledge of the
underlying dataset’s structure. The proposed algorithm employs a procedure where the
weight of an edge is increased if two nodes exhibit similarity, while it is decreased if
they differ. This mechanism allows the algorithm to capture and leverage the similarity
information within the graph. The DIANA algorithm further operates by removing nodes
with small neighborhoods to form initial clusters. Simultaneously, nodes with similar
neighborhood values are grouped together, forming cohesive clusters. This hierarchical
approach enables the algorithm to identify and partition the graph into meaningful clusters
based on the similarities and differences between nodes. The adoption of the DIANA
algorithm in graph clustering introduces a valuable contribution to the field, offering a
semi-supervised mechanism that is capable of solving the clustering problem in the absence
of prior knowledge about the dataset’s structure. This approach effectively leverages
similarity information and neighborhood characteristics to generate clusters with cohesive
node connections.

Understanding the relationships and interactions among users in social networks
is a crucial area of study. The existence or absence of a connection, often referred to as
a gap, between two users serves as a strong indicator of their actual relationship and
interaction [16]. While direct friendships indicate a close connection, exploring the network
of interactions between network members can reveal valuable information about their
connections, even for individuals who are not directly linked as friends. In a related study,
Kim et al. [17] conducted an analysis of social network relationships in real time, providing
a dynamic visualization of the network. This approach allows for the examination of the
evolving nature of relationships and the visualization of interactions within the social
network. Characterizing user relationships often begins with a binary representation,
typically denoted as (0, 1), indicating the presence or absence of a connection between users.
This initial characterization forms the foundation for further analysis and exploration of the
network structure, enabling a deeper understanding of the relationships and interactions
among users.

Regarding user relationships, the extraction of additional information, such as geo-
graphic location, has been explored in studies, as seen in the work by Davis et al. [18]. Given
that many users choose to hide their location information, alternative approaches are em-
ployed to predict this information. This involves leveraging the data of a user’s connections
with others, as well as other implicit data that may provide insights into their geographic
location. The analysis of user relationships and associated location information proves to
be valuable, particularly in the context of correlating web text with specific geographic
locations, as highlighted by Priedhorsky et al. [19]. By understanding the relationships
between users and utilizing available data, it becomes possible to infer location information,
even in cases where it is intentionally concealed. The fusion of user relationship data and
location information holds significant value, as it contributes to advancements in corre-
lating web text with geographic locations. These insights enable a deeper understanding
of the connections between users and their associated geographical context, facilitating a
range of applications, such as geolocation-based services and geographic trend analysis.

In the study conducted by Xiang et al. [20], an unsupervised model is developed to
assess the strength of connections between nodes based on user identity and interaction ac-
tivity. The model focuses on detecting user-profile interactions and inferring the strength of
their connection by evaluating the similarity between the two profiles. Central to this model
is the concept of homophily, a sociological principle wherein individuals with common or
similar characteristics tend to form relationships with one another [21]. By leveraging this
concept, the model incorporates user identity, considering factors such as shared interests,
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demographics, or preferences, to determine the strength of the connection between users.
The findings from a related study highlight the significant role played by pure homophily
in establishing connections within social networks [22]. This further validates the relevance
of considering user identity and similarity in understanding and characterizing connections
within social networks.

The prediction of connections between users in social networks is tackled in [23],
where the authors aim to identify the parameters that contribute to accurate predictions of
future connections. To enhance the accuracy of edge predictions, an algorithm is developed
that incorporates user profiles when constructing a partial graph [24]. Notably, this ap-
proach does not rely on training data but allows users to control the amount of information
accessed from the social network graph, thereby influencing prediction accuracy. These
research efforts shed light on the challenges and opportunities associated with connection
prediction in social networks. By uncovering the influential parameters and incorporat-
ing user profiles, advancements are made in accurately anticipating future connections.
The flexibility provided to users in determining the amount of information accessed allows
for a customizable prediction approach tailored to individual preferences and needs.

3. Preliminaries
3.1. Word2Vec

Word2Vec is a popular algorithm used to generate word embeddings, which are
vector representations of words in a high-dimensional space [25]. The algorithm consists
of training a two-layer neural network to reconstruct words based on their context in a
given text corpus. The process of creating a Word2Vec model involves iteratively updating
word vectors based on the surrounding words in the training data. The model takes a large
collection of texts as input and generates a vector space, where each word is represented
by a unique vector. The dimensions of the vector space are typically in the range of a
few hundred.

During model generation, various parameters can be specified, such as the architecture
of the neural network, the window size that defines the context of a word, and the number
of dimensions for the word vectors. To improve efficiency, the Gensim implementation
of Word2Vec employs negative sampling, which involves sampling negative examples
from a matrix representing the dictionary. This process has a time complexity of approxi-
mately O(N × log(V)), where N is the total size of the text corpus and V is the size of the
vocabulary containing unique words.

Overall, Word2Vec provides a powerful approach for generating word embeddings by
capturing both semantic and syntactic relationships among words. These embeddings can
be used in various natural language processing tasks, such as word similarity, document
classification, and information retrieval.

3.2. Clustering Algorithms

Seven different clustering algorithms have been employed in order to measure the
effectiveness of each one, namely k-means, bisecting k-means, DBSCAN, OPTICS, Gaussian
mixture model (GMM), hierarchical, and spectral clustering.

3.2.1. k-means

The k-means algorithm starts by randomly initializing k-cluster centroids, which
represent the centers of the clusters. The value of k determines the number of clusters
that the algorithm will generate. The algorithm then iteratively performs two steps until
convergence is achieved. In the first step, known as the assignment step, each data point is
assigned to the nearest cluster centroid based on a distance metric, typically the Euclidean
distance. This step aims to find the best cluster for each data point based on proximity.

In the second step, known as the update step, the centroids of the clusters are recal-
culated by taking the mean of all the data points assigned to each cluster [26]. This step
aims to find the new centers of the clusters based on the updated assignments. The assign-
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ment and update steps are repeated until a stopping criterion is met, such as a maximum
number of iterations or when the centroids no longer change significantly. At convergence,
the algorithm has identified k clusters, with each data point belonging to one of the clusters.

The time complexity of the k-means algorithm depends on the number of iterations
(I), the number of clusters (k), the number of data points (N), and the dimensionality of
the data (d). Running a fixed number of iterations of the standard algorithm has a time
complexity of O(I × k × N × d). This complexity arises from the need to calculate the
distances between data points and cluster centroids in each iteration.

3.2.2. Bisecting k-means

The bisecting k-means algorithm is a variant of the k-means algorithm that follows
a hierarchical approach to cluster data. The algorithm starts with a single cluster that
contains all the data points. It then iteratively performs the following steps until the desired
number of clusters (k) is reached:

• Select a cluster to split: The algorithm selects the cluster with the largest sum of
squared errors (SSE) as the candidate for splitting. SSE represents the sum of squared
distances between data points and the centroid of the cluster.

• Split the selected cluster: The selected cluster is split into two child clusters using the
regular k-means algorithm. The k-means algorithm is applied with k = 2 to divide the
data points into two sub-clusters.

• Update the cluster hierarchy: The hierarchy of clusters is updated to include the newly
created child clusters, and the SSE values for all clusters are recalculated.

• Repeat until the desired number of clusters is reached: Steps 1 to 3 are repeated until
the desired number of clusters (k) is obtained. At each iteration, the cluster with the
largest SSE is selected for splitting.

The bisecting k-means algorithm creates a binary tree structure, where each node
represents a cluster. The splitting process continues until the desired number of clusters is
achieved, resulting in a hierarchical clustering solution [27]. The time complexity of the
bisecting k-means algorithm depends on the number of clusters (k), the number of data
points (N), and the dimensionality of the data (d). The complexity is typically higher than
the standard k-means algorithm due to the hierarchical nature of the algorithm and the
need to update the cluster hierarchy at each iteration.

3.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN (density-based spatial clustering of applications with noise) is a density-
based clustering algorithm that groups together data points that are close to each other
in the feature space and separates regions of high density from regions of low density.
The algorithm does not require the number of clusters to be predefined and is capable of
discovering clusters of arbitrary shape [28].

The algorithm operates based on two key parameters:

• Epsilon (ε): It defines the radius within which neighboring points are considered to be
part of the same cluster. Points within this distance are considered “density-reachable”
from each other.

• MinPts: It specifies the minimum number of points required to form a dense region.
Points that have at least MinPts neighbors within the radius of ε are considered “core
points”. These core points play a crucial role in defining clusters.

The DBSCAN algorithm works as follows:

• Randomly select a data point that has not been visited.
• Retrieve all the neighboring points within the radius of ε.
• If the number of neighboring points is less than MinPts, mark the point as noise.
• If the number of neighboring points is greater than or equal to MinPts, create a new

cluster and expand it by adding all the reachable points (density-reachable) from the
current point.
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• Repeat the process for all unvisited points until all points have been processed.

At the end of the algorithm, the resulting clusters consist of dense regions, while points
that are not assigned to any cluster are considered noise. The time complexity of DBSCAN
is generally dependent on the number of data points and the algorithm’s parameters. It
can vary, but in general, it has a complexity of O(N log N), where N is the number of
data points. However, the actual complexity can be influenced by the data distribution,
the chosen indexing structure, and the implementation details.

3.2.4. OPTICS

OPTICS (ordering points to identify the clustering structure) is a density-based clus-
tering algorithm that extends the DBSCAN algorithm by providing a more flexible way to
discover clusters and handle varying densities. It creates an ordering of the data points
that reflects their density-based clustering structure, allowing for the detection of clusters
with different densities and shapes.

The OPTICS algorithm works as follows:

• Select a data point that has not been visited.
• Retrieve its ε-neighborhood, which consists of all the data points within a specified

distance (ε) from the selected point.
• If the number of points in the ε-neighborhood is greater than or equal to the specified

minimum number of points (MinPts), mark the point as a core point, and expand the
cluster by adding all the reachable points (density-reachable) within the ε distance.

• For each core point, calculate its reachability distance, which represents the minimum
distance needed to reach that point from a previously processed core point. This
distance is based on the maximum distance of any point within the ε-neighborhood of
the core point.

• Continue the process for all unvisited points until all points have been processed.
• Construct a reachability plot or dendrogram, which represents the ordering of points

based on their reachability distances [29]. This plot provides a visual representation of
the density-based clustering structure.

The time complexity of OPTICS is generally dependent on the number of data points
and the algorithm’s parameters. It has a complexity of O(N log N), where N is the number
of data points. However, the actual complexity can vary depending on the data distribution,
the chosen indexing structure, and the implementation details.

3.2.5. Gaussian Mixture Model (GMM)

The Gaussian mixture model (GMM) is a probabilistic model that assumes a mixture of
Gaussian distributions to represent the underlying data. It is a powerful tool for modeling
complex data distributions and identifying clusters within the data. In GMM, the data
are assumed to be generated from a mixture of multiple Gaussian distributions, each
characterized by its mean vector (µ) and covariance matrix (Σ). The model aims to estimate
the parameters of these Gaussian components based on the observed data [30].

The estimation of GMM parameters is typically done using the expectation–maximization
(EM) algorithm. The EM algorithm is an iterative optimization algorithm that alternates
between an expectation step (E-step) and a maximization step (M-step). In the E-step, the al-
gorithm computes the posterior probabilities of each data point belonging to each Gaussian
component, based on the current estimates of the component parameters. In the M-step,
the algorithm updates the estimates of the component parameters based on the computed
posterior probabilities. This process iterates until convergence, where the estimates of the
parameters no longer change significantly [31].

The EM algorithm allows GMM to handle situations where the data are generated
from a mixture of different Gaussian distributions, each representing a distinct cluster or
group within the data. By estimating the parameters of these Gaussian components, GMM
can identify and assign data points to their respective clusters.
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3.2.6. Hierarchical Clustering

Hierarchical clustering is an algorithmic approach to clustering that creates a hierarchy
of clusters. It does not require the number of clusters to be specified in advance and is based
on the combination or division of existing groups. There are two main types of hierarchical
clustering: agglomerative (bottom-up) and divisive (top-down) clustering [32].

Agglomerative clustering starts by considering each data point as a separate cluster
and iteratively merges pairs of clusters that are most similar based on a distance or similarity
metric. This process continues until all data points are merged into a single cluster or until
a stopping criterion is met. The result is a dendrogram, which is a binary tree structure that
represents the hierarchical grouping of the data.

Divisive clustering, on the other hand, starts with all data points in a single cluster and
recursively divides the cluster into smaller clusters based on a chosen criterion. This process
continues until each data point is in its own cluster or until a stopping criterion is satisfied.
Similar to agglomerative clustering, divisive clustering also produces a dendrogram.

Hierarchical clustering can be computationally expensive, especially for large datasets,
as the time complexity is typically higher compared to other clustering algorithms. Addi-
tionally, the final clustering solution is dependent on the choice of the distance metric and
linkage criterion, which can impact the quality and interpretability of the results. Overall,
hierarchical clustering is a flexible and widely used approach for exploring the hierarchical
relationships within data and identifying meaningful clusters.

3.2.7. Spectral Clustering

Spectral clustering is a clustering algorithm that aims to group data points based
on their similarity or proximity. It leverages the eigenvalues and eigenvectors of certain
matrices derived from the data to perform the clustering.

The algorithm starts by constructing a similarity graph or affinity matrix, where each
data point is connected to its neighbors based on a chosen similarity measure. Commonly
used similarity measures include Gaussian similarity, nearest neighbors, or graph-based
measures. Next, the algorithm computes the eigenvalues and eigenvectors of the Laplacian
matrix or the normalized Laplacian matrix derived from the affinity matrix. The eigen-
vectors corresponding to the smallest eigenvalues capture the low-frequency components
of the data and are used for clustering. Spectral clustering then performs dimensionality
reduction by selecting a subset of these eigenvectors and mapping the data points to a
lower-dimensional space. This can be done using techniques such as k-means clustering or
Gaussian mixture models on the reduced-dimensional space.

The advantages of spectral clustering include its ability to handle complex and non-
linear data structures, as well as its robustness to noise and outliers. It can effectively
cluster data with irregular shapes and capture the underlying geometric structure of the
data. However, spectral clustering also has some limitations. It can be computationally
expensive for large datasets due to the eigenvalue decomposition step. Additionally, the al-
gorithm requires the specification of the number of clusters, which may not be known in
advance [33].

4. Methodology
4.1. Proposed Method

In this study, the strength of relationships among active social network users is ana-
lyzed by examining data extracted from their profiles. By investigating the connections
between users and the similarity of their profiles, valuable insights are gained regarding
the degree of relationship strength [34,35]. Twitter is utilized as the data source for this
analysis, providing a rich set of features extracted from user profiles. These features serve
as key indicators for studying relationship strength, encompassing various aspects such
as user connections and profile similarity [36]. Notably, the similarity between two user
profiles is regarded as a significant criterion for characterizing a powerful edge.
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By leveraging the wealth of information available in user profiles on Twitter, this
study delves into the examination of relationship strength among social network users.
The analysis draws upon the connections established between users as well as the similarity
of their profiles, shedding light on the dynamics and characteristics of powerful edges
within the social network.

Overall, this paper focuses on addressing the problem of identifying user engagement
levels based on the strength of their connections. The key steps involved in this analysis
can be summarized as follows:

1. Data collection and network representation: The process begins by considering user
profiles and extracting relevant features. These features are then used to create a
graph that represents the social network.

2. Evaluation of user profiles: The next step involves evaluating the contribution of user
profiles to the overall strength of the relationship. Various metrics and criteria are
employed to assess the level of engagement.

3. Categorization of relationships: Based on the evaluated strength, the relationships are
categorized into different levels or groups. This categorization provides insights into
the varying degrees of engagement among users.

4. Presentation of statistical results: The study concludes by presenting statistical results
and analyses related to the categorized relationships. These findings contribute to a
deeper understanding of user engagement and the dynamics within the social network.

In summary, this paper employs a systematic approach that involves data collection,
evaluation of user profiles, categorization of relationships, and statistical analysis to uncover
the degree of user engagement based on the strength of their connections.

To determine the strength of the connections between two members, similarity features
are considered, which encompass several aspects:

1. Common or close locations: The proximity or similarity of the locations associated
with the user profiles is taken into account.

2. Similar scale in the number of friends: The comparison of the number of friends
or connections between two user profiles helps gauge the similarity of their social
network size.

3. Similar frequency of posts: The frequency at which users post on the platform is
examined to identify similarities or patterns in their activity.

4. Interaction criteria: Various interaction metrics are considered, including friendship
and follow relationships, as well as user mentions and retweets. These interactions
indicate the level of engagement and connection between users.

By analyzing these similarity features, a score is derived for each edge, reflecting the
strength of the connection between two members. The score is calculated based on the
contribution of each feature, which may vary in terms of importance or weight. This scoring
mechanism enables the categorization of relationships according to the calculated scores,
providing insights into the varying strengths of connections within the social network.

4.2. Metrics

In the proposed method, two categories of metrics are utilized to calculate the score of
each edge: similarity metrics and interaction metrics.

The similarity metrics focus on the popularity and characteristics of user accounts.
These metrics include the number of followers and friends, which reflect the level of
popularity and connectivity of an account. The number of tweets posted by each user is
also considered, indicating their level of activity on the platform. Additionally, the geo-
graphic location of users is taken into account as a criterion of similarity. Users who are
geographically closer are more likely to have a connection or friendship [19,24].

The interaction metrics capture the engagement and interaction between users. The mu-
tual friendship condition is a crucial metric as it signifies a bidirectional connection, indi-
cating a strong relationship between two users. The “following” feature is also considered,
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as it implies an interest in actively following the activities of another user on the social
network. Mentions and replies in tweets are considered interaction features, indicating
direct engagement and communication between users. Lastly, the exchange of messages,
specifically the authorization from both sides to send and receive private messages, is
included as a metric of interaction.

By incorporating these similarity and interaction metrics, the proposed method com-
prehensively captures various aspects of user engagement and connection on the social
network, ultimately contributing to the calculation of the score for each edge.

4.3. Calculation of Connection Scores

The score of each edge is determined by considering the similarity and interaction
metrics discussed above. The calculation process involves examining the set of collected
edges and evaluating each metric based on specific conditions. The scores for the metrics
are then summed up to obtain a final score for each edge.

The scores range from 0 to 10, where a score of 0 indicates no similarity or interaction
between the profiles, while a score of 10 represents complete similarity and interaction.

However, not all metrics carry equal weight in determining the strength of a con-
nection. Different weights are assigned to each metric to reflect their relative importance.
The assigned weights for the metrics are presented in Table 1.

Table 1. Weights per Metric.

Metric Category Metric Symbol Weight

Similarity
Friends Count u1 1

Location u2 2
Statuses Count u3 1

Interaction

Direct Message u4 1
Following u5 1
Mention u6 1.5

Mutual Friendship u7 3
Reply u8 1.5

These weights reflect the relative importance of each metric in determining the strength
of the user connections. By incorporating these weights into the scoring calculation, the pro-
posed method can effectively capture the contribution of different metrics in evaluating the
strength of relationships in the social network.

The selection of weights for user connection features is a crucial aspect of our analysis.
These weights determine the relative importance of different user interactions, such as
retweets, replies, and mentions. While we have chosen specific weights based on estab-
lished research and prior knowledge, it is important to acknowledge that different weight
configurations can yield varying results and potentially introduce biases. In this paper, we
aim to explore the implications of different weight configurations theoretically, considering
the impact on clustering outcomes and the interpretation of user engagement patterns.

The weights assigned to each metric reflect their relative importance in determining
the strength of user connections. Specifically, features such as friend count and status
count are given a weight of 1, indicating their moderate contribution to the strength of the
connection. The location metric, on the other hand, is assigned a weight of 2, highlighting
the significance of geographical proximity in fostering stronger connections.

The metric of mutual friendship is assigned the highest weight of 3, emphasizing the
importance of bidirectional connections in indicating a strong relationship. This captures
the idea that a mutual friendship indicates a deeper level of connection compared to a
one-sided friendship. Reciprocity in the following is considered a powerful metric and is
assigned a weight of 1. It signifies that both parties have expressed interest in connecting
with each other, indicating a strong connection between them.
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Mentions and replies, with weights of 1.5, indicate a significant level of interaction
between users. This interaction suggests a level of intimacy and engagement that goes
beyond neutral or superficial connections. Lastly, both “following” and direct messages are
assigned a weight of 1, denoting their contribution to the overall strength of the connection,
but to a lesser extent compared to other metrics.

By assigning these weights, the proposed method takes into account the varying
degrees of importance of different metrics in determining the strength of user connections,
allowing for a more accurate assessment of relationship strength in the social network.

In the proposed method, the weights assigned to each metric are represented as
elements of a weight vector, W = [w1, w2, w3, w4, w5, w6, w7, w8]. Similarly, the features of
each edge are collected into a feature vector, V = [v1, v2, v3, v4, v5, v6, v7, v8].

To calculate the total score for an edge connecting user A to user B in a specific Twitter
subgraph, the weight vector W is multiplied element-wise with the feature vector V, and the
resulting values are summed. Mathematically, the score is computed as follows:

Score(A, B) =
8

∑
i=1

wi · vi (1)

After calculating the scores for each pair of edges using Equation (1), the scores need
to be normalized in order to categorize the edges effectively. The normalization process
ensures that the scores are scaled to a range between 0 and 10.

The normalization formula is given by Equation (2), where Norm Score(A, B) repre-
sents the normalized score for the edge connecting node A to node B. The numerator in
the equation represents the subtraction of the minimum score value from each calculated
score, while the denominator represents the range between the maximum and minimum
score values. The resulting value is then multiplied by 10 to scale it to the desired range.

Norm Score(A, B) =
Score(A, B)− min(Score(A, B))

max(Score(A, B)− min(Score(A, B)
· 10 (2)

By applying this normalization equation, the scores of each edge will be transformed
to a standardized range of values between 0 and 10. This normalization step enables
the categorization of the edges based on their normalized scores, providing a clearer
representation of the strength of the connections within the social network.

4.4. Edges Categorization

The edges are categorized based on the strength of their scores obtained from the
previous calculations. Five classes are defined to represent different levels of connection
strength. The categories are determined based on the intervals in which the scores fall.

The edge categorization classes and their corresponding score intervals are as follows:

1. Indifferent [0, 2].
2. Weak (3, 4].
3. Medium (5, 6].
4. Strong (7, 8].
5. Very strong (9, 10].

Higher scores correspond to stronger connections, and the maximum score achievable
is 10. This score indicates maximum similarity and interaction between the connected
profiles, where all metrics contribute optimally. The choice of five classes for categorization
is based on the recommendations of researchers from various scientific disciplines and
ensures a suitable distribution of connections among Twitter users.

5. Implementation

To construct the Twitter subgraph for our study, we adhered to the limitations imposed
by the Twitter API. The data collection process took place within a one-month time interval,
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specifically from 1 June to 30 June 2022. For sampling tweets related to our study, a topic-
based approach was employed. We focused on tweets that contained the keyword #bigdata,
which represents a discussion topic of significant interest in both scientific and business
contexts. This hashtag was chosen because it exhibited sparse but consistent activity
over time.

The dataset construction involved a two-step process. Firstly, we harvested tweets that
matched the specified topic, collecting a total of 13,128 tweets. Secondly, we queried Twitter
to retrieve the followers and friends for each active user identified in the first step. This
process resulted in a dataset consisting of 1354 user accounts from 115 different locations,
with a total of 253,655 followers. By following this methodology, we aimed to create a
representative Twitter subgraph that captures the dynamics and relationships among users
discussing the topic of big data during the specified time period.

The following Figure 1 illustrates a social media graph and specifically the minimum
cohesive graph of the particular users’ network where the nodes without edges were
removed. There were such edgeless nodes as access to the lists of some user profiles was
prohibited. The blue dots represent Twitter profiles and the edges represent the “follow”
connection between two users. As expected, the network appears to have much denser
relationships internally, i.e., in its center, since the starting node constitutes the core of
the network.

Figure 1. Initial Network.

After removing the users without any edges in the dataset, we performed the experi-
ments using a total of 1150 users. This step was taken to ensure that the analysis and results
were based on a meaningful subset of users with established connections within the social
network. By focusing on users with edges, we aimed to capture and analyze the patterns of
engagement and interactions within the network more accurately.
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Table 2 provides the distribution of users based on the number of friends they have
on Twitter. A significant proportion, approximately 22% of users, have between 0 and
100 friends. The largest group, comprising around 35% of users, falls into the range of
101 to 500 friends. Another notable segment, approximately 23% of users, has between
501 and 1000 friends. A smaller portion, around 11% of users, falls into the range of 1001
to 5000 friends. Lastly, approximately 9% of users have a substantial number of friends,
exceeding 5000.

Table 2. Percentage of users based on number of friends.

Number of Friends Percentage of Users

0–100 22

101–500 35

501–1000 23

1001–5000 11

over 5000 9

This distribution provides insights into the connectivity patterns of users in the an-
alyzed Twitter network. It suggests that a significant portion of users have a moderate
number of friends, while a smaller percentage of users have a larger number of friends.

The distribution of users based on the number of followers they have on Twitter can
be summarized in Table 3. Approximately 12% of users have between 0 and 100 followers,
while another 11% have between 101 and 500 followers. A smaller proportion, around 9%
of users, fall into the range of 501 to 1000 followers. The segment of users with a larger
following includes approximately 13% with 1001 to 5000 followers. The majority of users,
comprising approximately 55%, have a substantial number of followers, exceeding 5000.
This distribution highlights the varying influence and reach levels within the analyzed
Twitter network, with a significant percentage of users having a considerable number of
followers while others have a more limited audience.

Table 3. Percentage of users based on number of followers.

Number of Followers Percentage of Users

0–100 12

101–500 11

501–1000 9

1001–5000 13

over 5000 55

The distribution of users based on the number of tweets they have posted on Twitter
is presented in Table 4. The percentages closely resemble the distribution in Table 3.
Approximately 6% of users have posted between 0 and 100 tweets, while around 9% have
posted between 101 and 500 tweets. Similarly, about 10% of users fall into the range of 501
to 1000 tweets, and a larger proportion, approximately 25%, have posted between 1001
and 5000 tweets. The majority, comprising about 50% of users, have posted over 5000
tweets. This distribution reflects the varying levels of activity and engagement among users,
with some being more active and prolific in sharing content on the platform compared
to others.

The analysis of the tables reveals several trends within the dataset. Firstly, there
are a significant number of popular users with a high number of friends and followers.
This indicates that these users have amassed a considerable network and attracted a large
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audience on Twitter. Secondly, the high percentages of users who have posted thousands of
tweets indicate a high level of activity and engagement within the dataset. These users are
actively sharing content and interacting with others on the platform. The combination of a
large number of friends, followers, and a substantial tweet count suggests that the dataset
includes influential and active users who play an important role within the Twitter network.

Table 4. Percentage of users based on number of tweets.

Number of Tweets Percentage of Users

0–100 6

101–500 9

501–1000 10

1001–5000 25

over 5000 50

6. Evaluation
6.1. Analysis of User Relationship Strength

Table 5 provides insights into the contribution of each metric to the overall score of
the edges. The metrics with the highest scores are ‘direct message’ and ‘mutual friendship’,
accounting for 35.5% and 33% of the overall score, respectively. Following closely are the
three similarity metrics—friends count, location, and statuses count—contributing 9.5%,
9%, and 7.5% to the score, respectively. On the other hand, the remaining three interaction
metrics, namely reply, mention, and following, have lower contributions, each accounting
for less than 3% of the overall score.

This analysis provides valuable information about the importance of each metric
in determining the strength of the connections between users. The high contribution of
‘direct message’ and ‘mutual friendship’ suggests that these metrics play a significant role
in establishing strong connections. The similarity metrics also contribute significantly,
indicating that users with similar friend counts, locations, and posting activity are more
likely to have stronger connections. Meanwhile, the lower contributions of Reply, Mention,
and Following metrics suggest that these interactions have less impact on the overall
strength of the connections.

By understanding the percentage contribution of each metric, we can gain insights into
the factors that influence the categorization and strength of the edges in the Twitter subgraph.

Table 5. Percentage contribution of the overall score by edges.

Metric Category Metric Overall Score Contribution

Similarity
Friends Count 9.5

Location 9
Statuses Count 7.5

Interaction

Direct Message 35.5
Following 1
Mention 1.5

Mutual Friendship 33
Reply 3

The categorization of the edges into five classes based on their scores provides an
overview of the distribution of connection strengths in the Twitter subgraph. Table 6
displays the percentages of edges in each class.

The majority of edges fall into the indifferent class, constituting 50.7% of the total. This
suggests that a significant portion of connections in the subgraph exhibit low similarity
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and interaction scores. The weak class represents 29.65% of the edges, indicating slightly
stronger connections compared to the Indifferent class. The medium class comprises 15.35%
of the edges, indicating connections with moderate strength. This class may represent
connections with a balanced level of similarity and interaction. The strong class accounts
for 3.75% of the edges, indicating a higher level of connection strength. The very strong
class has the smallest percentage, with only 0.55% of the edges falling into this category.
This class represents the strongest connections in the subgraph, indicating a high level of
similarity and interaction between users. It is expected for the very strong class to have a
small percentage, as such strong ties are typically formed among a limited number of users.

The categorization of edges into these classes provides valuable insights into the dis-
tribution of connection strengths within the Twitter subgraph, highlighting the prevalence
of weaker and more indifferent connections while also identifying a smaller proportion of
stronger ties.

Table 6. Percentages of edges.

Classes Edges

Very Strong 0.55

Strong 3.75

Medium 15.35

Weak 29.65

Indifferent 50.7

Figure 2 is the same as Figure 1 but with additional color on the edges according
to the above categories. Specifically, very strong and strong edges are illustrated in red,
medium and weak edges are illustrated in yellow, and indifferent edges are illustrated in
gray. The presence of colored areas in contrast to others suggests the formation of smaller
sub-networks or user groups within the larger social network. These sub-networks consist
of strongly connected users who interact with each other in a more detailed and intense
manner. The color-coded edges provide a visual representation of the varying levels of
connection strength between users in the graph, highlighting the presence of distinct groups
or clusters within the overall network structure.

The density value of 0.04 indicates that the graph has a relatively low number of
connections compared to the maximum possible number of connections. A density of 1
would mean that every pair of nodes in the graph is connected by an edge. In this case,
the density of 0.04 suggests that only a small fraction of possible connections is present in
the graph, indicating a sparse network.

The diameter of the graph being 4 means that the longest shortest path between any
two vertices in the graph requires traversing a maximum of 4 vertices. In other words,
it takes at most four steps to go from one node to another, excluding paths that involve
looping. The diameter is a measure of the graph’s overall “reach” or “distance” between
nodes. A smaller diameter indicates that nodes in the graph are relatively closer to each
other in terms of their connectivity.

While direct comparisons to other social networks are not available in this study, it
is important to note that the values of density and diameter can vary significantly across
different types of social networks. Social networks exhibit diverse structures and user
behaviors, influenced by factors such as the platform’s design, user demographics, and the
purpose of the network.
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Figure 2. Final network.

The observation of strong connections (red edges) in Figure 2 reveals an interesting
pattern among users who have a higher overall engagement. It is noteworthy that these
users tend to have fewer friends and belong to smaller groups. This raises the question
of whether users with a larger number of friends exhibit higher overall engagement but
with each individual edge having a lower score. This phenomenon can be attributed to
the concept of social capital, where users with fewer friends often have more focused and
stronger connections, resulting in higher individual edge scores. Conversely, users with a
larger number of friends may have more diverse connections and interactions, leading to
lower individual edge scores but potentially higher overall engagement. It is important to
recognize that these observations are context-dependent and may vary based on the specific
characteristics of the social network and user behavior. Further research and analysis are
necessary to gain a more comprehensive understanding of the relationship between the
number of friends, individual edge scores, and overall engagement in the given network.

Overall, the density and diameter values provide insights into the structure and
connectivity of the graph, indicating the level of interconnections and the maximum
distance between nodes in the network.

6.2. Clustering Algorithms Comparison

In this subsection, the graphical representation of the results regarding the seven
clustering algorithms is presented. Specifically, Figure 3 illustrates the results of k-means,
bisecting k-means, DBSCAN, OPTICS, the Gaussian mixture model, hierarchical clustering,
and spectral clustering.

In the analysis of the clustering algorithms, it was found that DBSCAN and OPTICS al-
gorithms resulted in six and seven clusters, respectively, without requiring a predetermined
number of clusters. However, the OPTICS algorithm encountered difficulty in classifying
a significant amount of data, leading to a category of unspecified data, as shown by the
blue color in Figure 3d. This behavior was expected due to the algorithm’s limitation in
determining clusters for spatial data. It is evident that the OPTICS algorithm would benefit
from improved clustering performance for the given data.



Computers 2023, 12, 124 17 of 22

In the analysis of the expectation–maximization and spectral clustering algorithms,
different techniques were employed to determine the number of components and clusters.
However, for the present work, the number of clusters obtained from the silhouette and
elbow methods for k-means was considered. Regarding the DBSCAN algorithm, Figure 3c
shows that small amounts of data were left in the undefined category. Additionally, a large
cluster was formed, encompassing a significant portion of the data, along with seven
smaller clusters, some of which contained only a single data point. This behavior could
be attributed to the parameter values chosen for ε and minPts, which were set to 5 and
6, respectively.

(a) k-means (b) Bisecting k-means (c) DBSCAN

(d) OPTICS (e) Gaussian Mixture Model (f) Hierarchical Clustering

(g) Spectral Clustering

Figure 3. Clustering Algorithms.

Similarly, the spectral clustering algorithm resulted in a large cluster containing a
significant amount of data, along with seven smaller clusters, each consisting of only one
data point, as depicted in Figure 3g. This discrepancy can be attributed to the chosen
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number of clusters, which was set to 8, similar to the other algorithms, but may not have
been suitable for this specific algorithm. Overall, the analysis reveals that the DBSCAN and
spectral clustering algorithms did not produce satisfactory results, with deviations from
the expected number of clusters and suboptimal clustering patterns.

The k-means and bisecting k-means algorithms are effective in spatial data geometries
as they cluster the data around specific points, such as the centroids of the clusters. This
can be observed in Figure 3a,b. These algorithms are well-suited for situations where the
data points are spatially distributed and can be clearly separated into distinct clusters.
In contrast, the expectation–maximization algorithm, which relies on the Gaussian mixture
model, converges the clusters around the Gaussian surfaces calculated by the model. This
makes it more suitable for flat data geometries where the data points follow a Gaussian
distribution. In such cases, the expectation–maximization algorithm can effectively estimate
the parameters of the Gaussian distributions and cluster the data accordingly.

The choice of algorithm should be based on the nature of the data and the underlying
distribution. k-means and bisecting k-means are preferable for spatial data, while expectation–
maximization is better suited for data with a flat geometry and Gaussian distribution.

Based on the patterns observed in the grouped data, it can be claimed that the k-means,
bisecting k-means, expectation–maximization, and hierarchical clustering algorithms pro-
duced the best results. These algorithms demonstrated satisfactory clustering performance
and effectively captured the underlying patterns in the data. On the other hand, the re-
maining three algorithms (DBSCAN, OPTICS, and spectral clustering) did not perform
as well and did not produce satisfactory results. These algorithms either failed to classify
a significant amount of data into clusters or created clusters with only a few data points,
indicating suboptimal clustering performance.

7. Discussion
7.1. Insights into User Relationship Dynamics

The experimental study has provided valuable insights into the distribution and char-
acteristics of the Twitter subgraph. The analysis of the metrics’ contribution to the edge
scores highlights the importance of various factors in determining the strength of connec-
tions between users. The metrics related to the number of friends, posts, and locations play
a significant role, indicating the importance of these factors in establishing relationships on
social media.

To further explore the significance of location in determining connection strength, it
is worth noting that many users do not disclose their location on their profiles. However,
the location similarity metric may have an even more influential role if more users provided
this information. Additionally, considering that users may have interactions on multiple
social media platforms, the analysis could be extended to incorporate data from other
platforms to capture a more comprehensive view of user interactions.

Another intriguing finding is the identification of smaller strong sub-networks within
the larger network. These sub-networks, represented by the colored edge regions in
Figure 2, indicate the presence of tightly connected user groups. A further investigation of
these sub-networks could provide insights into the dynamics, interactions, and potential
community structures within these groups. By extracting and studying these sub-networks
separately, it would be possible to explore their specific characteristics and analyze their
robustness in more detail.

Table 1 presents the weights assigned to each metric category and its corresponding
metrics for evaluating the strength of user connections. These weights were determined
based on their perceived significance in capturing the strength of user relationships in
the Twitter network. However, in Table 5, we provide an analysis of the overall score
contribution percentage of each metric category and metric based on the experimental
results. It is important to note that the contribution percentages in Table 5 may differ
from the assigned weights in Table 1. This discrepancy arises due to the influence of
the specific dataset and characteristics of the Twitter network used in our experiments.
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The experimental results reveal variations in the relative importance of different metrics,
suggesting that the assigned weights in Table 1 may not fully capture the true impact of
each metric on the overall user connection strength.

7.2. Interpretation of Clustering Results

It is important to note that different algorithms have different strengths and weak-
nesses, and their performance can vary depending on the dataset and the specific problem
at hand. In this case, the mentioned algorithms were compared based on the given dataset
and the desired number of clusters. It is also worth mentioning that no single algorithm
achieved the exact same clustering result as another algorithm. This highlights the fact
that different clustering algorithms may produce different cluster assignments, and the
choice of the algorithm should be based on the specific requirements and characteristics of
the data.

Moreover, it is crucial to acknowledge that the quality of the results could be further
improved with higher-quality data and algorithms that are specifically tailored to the
problem at hand. The efficiency of the algorithms in relation to the specific problem
is also an important consideration. Different clustering algorithms may have different
assumptions, requirements, and limitations. Choosing the most appropriate algorithm that
aligns with the characteristics of the data and the problem can significantly improve the
quality of the clustering results.

Furthermore, preprocessing steps such as data cleaning, feature selection or extraction,
and normalization can also contribute to improving the quality of the data and consequently
enhance the performance of the clustering algorithms.

It is essential to note that clustering is an unsupervised learning task, and the quality
of the results depends on various factors, including the nature of the data, the algorithm
used, and the specific problem requirements. Therefore, careful consideration of these
factors and continuous evaluation and refinement of the clustering approach can lead to
better results.

The credibility of the Twitter data used in this study warrants discussion, as users
on social media platforms can potentially provide false or inaccurate information on their
profiles. While efforts were made to collect data from active and verified users, it is
important to acknowledge that the possibility of misleading or unreliable information
cannot be completely eliminated. Additionally, the limited data collected in this study may
not fully represent the entire Twitter user population. The sample size of users included in
the analysis was determined based on the availability of user edges and met certain criteria.
Therefore, caution should be exercised in generalizing the findings to the entire Twitter
social network. Future research could consider exploring larger and more diverse datasets
to further examine the credibility and representativeness of social network data.

Overall, the results of this study highlight the complexity and diversity of social media
networks and provide a foundation for further research and analysis in understanding user
interactions, community structures, and the dynamics of online social networks.

8. Conclusions and Future Work

In conclusion, this study employed graph mining techniques to analyze user engage-
ment levels and the strength of connections in a social network. By leveraging clustering
algorithms, we gained valuable insights into the formation and behavior of node groups
within the network. The findings highlight the significance of examining both individual
and group behavior, shedding light on the dynamics of social networks. The integration
of real-time and historical data not only provides a comprehensive understanding of user
relationships but also offers the potential to predict future connections. This interdisci-
plinary research, drawing from computer science, psychology, and sociology, contributes
to a deeper understanding of user behavior and its profound impact on the structure and
evolution of social networks.
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It is important to acknowledge that the Twitter data collected in this study represent a
specific study area that encompasses users from diverse backgrounds and geographical
locations. Although a specific study area was not explicitly defined, the data collection
process aimed to include a wide range of users to ensure diversity and capture a variety of
social connections. Therefore, the findings of this study should be interpreted within the
context of the specific study area, recognizing that they may not directly generalize to other
social networks or geographic regions.

To gain a more comprehensive understanding of social network dynamics, future
research could explore the potential variations in user connections across different study
areas. Comparing the findings of this study with similar studies conducted in different re-
gions or on different social platforms can provide valuable insights into the generalizability
of the observed patterns. Additionally, investigating the impacts of cultural differences,
language preferences, and regional dynamics on social connections can further enhance
our understanding of the context-specific nature of social networks.

For future work, it is suggested to explore variations and combinations of the proposed
methods to improve their performance [37,38]. The implementation of parallel computing
techniques and streaming analytics technologies can enable the creation of a near-real-time
user relationship analysis system. This system would be capable of identifying changes in
relationships over time and potentially learn and predict network alterations. Additionally,
integrating algorithms to predict the likelihood of connections between users could further
enhance the capabilities of the system.

Continued research and development in this area can contribute to a deeper under-
standing of user engagement in social networks and facilitate the development of more
advanced and effective analysis and prediction techniques.
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