

Exploring community smells in open-source

Citation for published version (APA):
Tamburri, D. A. A., Palomba, F., & Kazman, R. (2021). Exploring community smells in open-source: an
automated approach. IEEE Transactions on Software Engineering, 47(3), 630-652. [8651329].
https://doi.org/10.1109/TSE.2019.2901490

Document license:
TAVERNE

DOI:
10.1109/TSE.2019.2901490

Document status and date:
Published: 01/03/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Aug. 2022

https://doi.org/10.1109/TSE.2019.2901490
https://doi.org/10.1109/TSE.2019.2901490
https://research.tue.nl/en/publications/5dfd5308-9416-41e4-99c6-1ef89c8b204e

Exploring Community Smells in Open-Source:
An Automated Approach

Damian A. Tamburri ,Member, IEEE, Fabio Palomba ,Member, IEEE,

and Rick Kazman ,Member, IEEE

Abstract—Software engineering is now more than ever a community effort. Its success often weighs on balancing distance, culture,

global engineering practices and more. In this scenario many unforeseen socio-technical events may result into additional project cost

or “social” debt, e.g., sudden, collective employee turnover. With industrial research we discovered community smells, that is, sub-

optimal patterns across the organisational and social structure in a software development community that are precursors of such nasty

socio-technical events. To understand the impact of community smells at large, in this paper we first introduce CODEFACE4SMELLS, an

automated approach able to identify four community smell types that reflect socio-technical issues that have been shown to be

detrimental both the software engineering and organisational research fields. Then, we perform a large-scale empirical study involving

over 100 years worth of releases and communication structures data of 60 open-source communities: we evaluate (i) their diffuseness,

i.e., how much are they distributed in open-source, (ii) how developers perceive them, to understand whether practitioners recognize

their presence and their negative effects in practice, and (iii) how community smells relate to existing socio-technical factors, with the

aim of assessing the inter-relations between them. The key findings of our study highlight that community smells are highly diffused in

open-source and are perceived by developers as relevant problems for the evolution of software communities. Moreover, a number of

state-of-the-art socio-technical indicators (e.g., socio-technical congruence) can be used to monitor how healthy a community is and

possibly avoid the emergence of social debt.

Index Terms—Software organisational structures, software community smells, human aspects in software engineering, social software

engineering, empirical software engineering;

Ç

1 INTRODUCTION

SOFTWARE is increasingly being engineered by large
globally-distributed communities with highly complex

social networks of software development. Knowing more
about the quality of these communities and their social net-
works as well as the factors that affect their quality is critical
to software success [1], [2], [3]. Several notations have been
used in the software engineering literature to elicit and study
these social networks, e.g., Developer Social Networks
(DSNs) for bug prediction or error-pronenness [4], [5]. More-
over, several quality factors have been proposed over the
years to highlight the importance of social aspects in software
engineering.Nevertheless, both research and practice discuss
software development communities and their characteristics
rather vaguely; none has yet precisely quantified and evalu-
ated the cost of the potential flaws in community structures
and their (mis-)alignment to software structures [6]. Fewer
still have identified and quantified a meaningful set of

software community characteristics and associated these
with project thresholds for achieving good quality [7], [8].

Our objective is in line with the emerging DevOps trend
of speeding up software lifecycles from a technical and
organisational perspective; we aim to offer means to contin-
uously analyse a live organisational structure and make it
more “healthy” by finding, tracking, and possibly removing
negative or detrimental community behaviour across the
software community. We begin by formalising, operational-
ising, and evaluating the effects of software development
community “smells” [9], that is, patterns of sub-optimal
organisational and socio-technical characteristics that may
lead to tangible problems in development communities
[10]. In fact, much like code smells in source code [11], [12],
community smells are not “show-stoppers” for software
code or system builds, rather, they reflect circumstances
that, on the long run, manifest in additional project cost—a
phenomenon called social debt [13]. It is our intention to fur-
ther our understanding also in the conditions wherefore
community smells are actually detrimental or whether
some of them can be accepted as de-facto organisational
procedures, especially in an open-source context.

To conduct our analysis, we adopt a state of the art socio-
technical analysis tool called CODEFACE [14] and use this to
evaluate community smells in action. We focus on four com-
munity smells previously seen in organisations, social net-
works, and software engineering research [9], [15], [16], [17],
namely: (1) the Organisational Silo effect—reflecting isolated

� D.A. Tamburri is with the EindhovenUniversity of Technology, Eindhoven,
The Netherlands. E-mail: d.a.tamburri@tue.nl.

� F. Palomba is with the University of Zurich, Zurich 8006, Switzerland.
E-mail: palomba@ifi.uzh.ch.

� R. Kazman is with the University of Hawaii & SEI/CMU, Honolulu,
Hawaii 96822 USA. E-mail: kazman@hawaii.edu.

Manuscript received 16 Feb. 2018; revised 14 Feb. 2019; accepted 15 Feb.
2019. Date of publication 25 Feb. 2019; date of current version 15 Mar. 2021.
(Corresponding author: Fabio Palomba.)
Recommended for acceptance by E. Mendes.
Digital Object Identifier no. 10.1109/TSE.2019.2901490

630 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
mailto:
mailto:
mailto:

sub-communities; (2) the Black Cloud effect—reflecting exces-
sive recurrent communication; (3) the Lone Wolf effect—
reflecting isolated individuals acting as knowledge brokers;
(4) the Bottleneck effect—an instance of the “unique boundary
spanner” phenomenon [18] in software engineering.

Stemming from the above community smells, we study:
(a) their diffuseness, i.e., howmany instances of such commu-
nity smells are present in open-source; (b) their perception by
developer communities; (c) their relation to socio-technical
factors from the state of the art, e.g., socio-technical congru-
ence [7], [8]. While the first two objects of study serve as start-
ing point for our analysis, the last point, serves the purpose of
identifying which factors from the state of the art relate to
community smells (if any) and can therefore be used asmoni-
tored quantities thatmediate smells’ occurrence.

In terms of diffuseness, we found an average of 25 commu-
nity smells per community, per release. The only exception is
with the Black Cloud effect, which is less present and tends to
appear more frequently in communities composed of more
than 50 participants. Moreover, in terms of smells perception,
our survey in “smelly communities” shows that the negative
effects connected to smells are indeed perceived by the
respective community members. This is also confirmed by an
additional study where we directly interviewed 35 develop-
ers of 11 communities, asking them about their perceptions of
the harmfulness of community smells. Finally, we found that
several socio-technical factors, such as socio-technical con-
gruence, are correlated with a lower number of community
smells. For example, we confirmed that socio-technical con-
gruence does reflect a lower number of smells and hence a
higher quality of organisational structures and consequent
lower social debt. Conversely, other factors such as distance
do not correlatedwith the emergence of any smell.

Our study led us to three conclusions: (a) further investi-
gating the causes and effects connected to community
smells is paramount for efficient running of distributed
organisations, particularly those interested in high release
velocity; (b) known factors from the state of the art offer a
good starting point to instrument the study of community
smells; (c) automated means for smell detection and evalua-
tion need to be created and empirically evaluated.

In summary, in the scope of this manuscript we provide
4 novel contributions:

1) The operationalisation and quantitative detection
mechanisms for 4 community smells from previous
research;

2) The implementation of said mechanisms as an exten-
sion of the previously available CODEFACE tool. This
extension is also open-source and was made avail-
able as the CODEFACE4SMELLS tool under the same
license;

3) An extensive empirical evaluation of the presence,
perception, consequences, and naturalness of com-
munity smells as a phenomenon occurring in 60
open-source communities.

The impact of the above contributions and conclusions on
both industry and academia aremanifold. First, academics can
use our results, and the tools we devised to obtain them, to
further study community smells and their associated effects.
Second, practitioners could use said tools and conclusions

to “refactor” their own communities in linewithmore efficient
organisations. Third, open-source practitioners can use the
results we provide for better community management and
steering.

Paper Structure. Section 2 introduces the basic terminol-
ogy needed to comprehend our work. Section 3 provides
background and definitions. Section 4 outlines our study of
community smells, while Section 5 offers an overview of
study results and their discussion. Section 5.4 analyses the
trade-offs of using community smells to assess how healthy
a community is. In Section 6 we discuss possible threats to
validity and verifiability. Section 7 discusses related work.
Finally, Section 8 concludes the paper.

2 THEORETICAL FRAMEWORK

Our study aims at detecting and understanding the role of
community smells in the scope of software development commu-
nities as reflected in their organisational structure. These con-
cepts are defined as follows.

According to Pugh [19] an organisational structure is a
complex multi-layered network of relations across people
and artefacts outlining how certain activities are directed in
order to achieve the goals of an organization. For the sake of
operationalisation, organisational structures are formally-
defined graphs, or sociograms [20], featuring (1) organisa-
tional nodes (people, artefacts, etc.) (2) social relations
(across people and with collective intent [21]) as well as
technical relations (across people and artefacts and relating
to a specific craft [22]).

A software development community is a specific type of the
afore-mentioned organisational social network upon which
certain properties hold constantly (e.g., informal communica-
tion across a project’s electronic channels) [10]. From a socio-
metrical and social-networks analysis perspective, two struc-
tures need to be distinguished: (a)macrostructure, often simply
called ‘structure’, corresponding to the overall organization of
the community, its properties, definitions, norms [23]; (b)
microstructure, corresponding to the micro-interactions bet-
ween a subset of nodes part of themacrostructure.

From a research perspective, we seek to study the micro
andmacro organisational structure of software development com-
munitieswith the purpose of identifying, possibly predicting,
averting, andmitigating any recurring anti-patterns.

More specifically, just like any community structure, the
aforementioned software development communities can
develop sub-optimal conditions [24], [25] which we previ-
ously introduced as community smells [9] on analogy with
code smells. The analogy signifies that, on one hand, com-
munity smells do identify sub-optimal circumstances (e.g.,
the lack of communication across different modules of a
software system) but, on the other hand, these conditions
do not necessarily destroy the organisational behaviour
across the community. Rather, they prove detrimental and
cause additional project costs, such as recurrent delays in
communication, imperfect knowledge sharing, etc. Finally,
with the term project, we identify the goal or shared practice
that the community maintains as its central endeavour. For
example, the Apache Spark community holds the delivery
of the Apache Spark product as its key project.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 631

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

It should benoted that community smells reflect sub-optimal
recurrentmicrostructures that can be detected over time across a
complexmacrostructure such that, following Coleman et al. [23],
software practitioners can influence and fine-tune the macroso-
cial behavior across their software community by uncovering
and mitigating the microfoundations of such behavior. It is for
this reason that eachmicrostructural behavior reflecting known
organisational anti-patterns (e.g., Organisational Silo effects, see
Section 3) needs explicit addressing.

From the above theoretical foundations, it follows that, to
positively influence and mitigate the macrostructural behav-
iors amounting to sub-optimal organisational circumstances
(e.g., bad communication practices across the organisation or
lack of vision of its members) a more fine-grained and micro-
structural lens of analysis is required. On one hand, previous
research has attempted to formulate holistic indicators for the
former macrostructural behaviors (e.g., [7]) but, on the other
hand, never before investigated the microstructural circum-
stances which together amount to those macro-phenomena.
Ours is the first such attempt and harnesses the notion
of community smells as instances of transversal micro-/
macro-structural phenomena that (1) indicate the emergence
of nasty macrostructural circumstances (2) have structural
features that can be detected using graph theory and social-
network analysis and (3) are the most known to occur (e.g.,
consider the works of Alter [26] or Levina et al. [27]) and have
an established body of knowledge all across organisational
and social-networks literature, with empirically-established
negative consequences [28], [29].

3 COMMUNITY SMELLS AND THEIR DETECTION

Community smells represent sub-optimal organisational
and socio-technical characteristics within a software com-
munity that might lead to additional costs due to commu-
nication problems, rage-quitting (i.e., cases where a
community member leaves the project before its end
because of socio-technical issues with other community
members), and so on [10]. In the context of this work,
we considered four of the community smells defined by
Tamburri et al. [6], namely:

1) Organisational Silo Effect: siloed areas of the devel-
oper community that do not communicate, except
through one or two of their respective members;

2) Black Cloud Effect: information overload due to lack
of structured communications or cooperation
governance;

3) Lone Wolf Effect: unsanctioned or defiant contributors
who carry out their work with little consideration of
their peers, their decisions and communication;

4) Bottleneck or “Radio-silence” Effect: an instance of the
“unique boundary spanner” [18] problem from
social-networks analysis: one member interposes
herself into every formal interaction across two or
more sub-communities with little or no flexibility to
introduce other parallel channels.

In the following sections, we describe (1) the reasons
behind the selection of these community smells, especially in
relation to the theoretical framework presented in Section 2
and (2) howwe operationalised their detection.

3.1 A Theoretical Tale of the Selected Community
Smells

The rationale behind the selection of Organisational Silo, Black
Cloud, Lone Wolf, and Bottleneck as community smells on
which to focus in this paper is twofold. First, they reflect sub-
optimal macro and microstructures of the organisational
structure that, according to previous industrial experiences
[30], are commonly observable in practice. Second, all the
community smells considered have been shown to have a
negative impact in practice, as they may not only lead to the
emergence of social debt [6], but also to poor source code qual-
ity [31]. As such, our study targets those smells whose impact
is higher. In the following, we further describe the relation of
these smells to the theoretical framework as well as provide
an overview of their impacts in practice.

3.1.1 Relation with the Theoretical Framework

The selected community smells are related to recurrent
communication and collaboration hindrances that occur
together (in the context of Organisational Siloes and Lone
Wolf effects) or across a larger and communication graph
(as with Black Clouds and Bottlenecks). Altogether, the smells
link macrostructural phenomena (e.g., lack of vision, lack of
or nasty communication) with microstructural patterns.
From a theoretical perspective, community smells are pat-
terns of organisational, social, and technical circumstances
that span both the macro- and microstructures in the organi-
sational structure. For example, an Organisational Silo con-
nects an organisational dyad (i.e., a pair of coordinated
developers) [32] working over a single file in part of the
project coordination microstructure to a hindrance of com-
munication, even of multiple scales (e.g., in the Lone Wolf
effect); the link between the communication and coordina-
tion microstructures may be used to diagnose higher-order
macrostructural phenomena in a targeted community. Simi-
larly, a microstructural pattern (e.g., a clique inside a larger
graph) can be linked to a higher-order phenomenon in the
macrostructure; such is the case of the Black Cloud and Bot-
tleneck effects where separated communication cliques occur
over time and manifest themselves into higher-order, recur-
ring, and nasty circumstances (e.g., overall production
delays, lower quality, code churn [31]).

Overall, although the definition of such smells may
seem similar, it is important to consider that they have dif-
ferent granularities and, as such, arise in a different ways
and involve different socio-technical situations. As an
example, the Black Cloud appears as a consequence of dis-
agreeing repeated communications among community
members that have the effect of obfuscating information,
while the Bottleneck represents one single member that
interposes herself into every formal interaction across two
or more sub-communities with little or no flexibility to
introduce alternative channels. Thus, while the former
smell originates in the behavior of more community mem-
bers and has the possible effect of obfuscating a wide
amount of information, the second one refers to a single
contributor that does not provide information on her own
work. Thus, these phenomena represent different organisa-
tional/social situations that require specific attention and
formulations which match their exact manifestations, emer-
gence, and characteristics. Another example, as Leistner

632 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

[33] pointed out, refers to the Organisational Silo, which is a
smell that exists across several layers of the organisational
structure, spanning both its macro- and micro-structure,
namely the “local” (a communication/collaboration clique
of the larger organizational network) and “global” graphs
(i.e., the entire organizational network). Such a smell needs
uncovering and explicit bridging [34] at all levels, but the
organizational dynamic needs identification first. As a final
note, it is worth mentioning that the selected community
smells are those whose detection can be enabled using
the data currently openly available in most open-source
communities, i.e., communication and collaboration data
extractable from issue trackers, mailing lists, and similar.

3.1.2 Impact of Community Smells

To intuitively grasp the notion of community smells and
their impact in practice, one should consider that all com-
munity smells are effects—Lone Wolf effect, Organisational
Silo effect, etc.—meaning that they produce a visible mani-
festation which is not bad per se, but, in the long run, may
eventually manifest into a negative consequence. For exam-
ple, consider the real-life industrial software organizational
structure reported previously [6], [9] depicted in Fig. 1. The
scenario features a software project (called Integra from now
on) undergoing integration with two other software prod-
ucts, called RED and GREEN, respectively.

Nodes in the graph are people in the development net-
work under study, while edges represent frequent recorded
interactions between network members. The community of
developers under analysis involves two geographically dis-
tributed production sites A (headquarters) and B (remote
site) providing development as well as customer support and
operations. A and B sites are both responsible for the imple-
mentation of incoming user requests (e.g., new requirements,
revised requirements, bug-reports, etc.) but B also handles
maintenance of both products being integrated.

A big organisational difference between sites A and B is
that responsibilities in the remote site B are limited to what is
decided by product managers in Site A. Product managers
and architects in site A are responsible for management,
software architecture, requirement elicitation and critical

decision-making. In addition,while RED is awell-established
product, active for well over 10 years, and managed follow-
ing an established waterfall model, the GREEN product (and
people) are relatively new and have adopted agile methods.
The RED/GREEN integration team resides mainly in site A
and acts as an intermediary between Sites A and B. The
RED/GREEN team is meant to integrate decisions and their
implementations on both products into one coherent whole,
sometimes borrowing expertise from either RED or GREEN.
Essentially, the scope of people working on RED is to main-
tain critical and un-replicable operations for the product
while aiding its integration with GREEN. Conversely, the
scope of people working on GREEN is to adapt some of its
interfaces to interact with RED, while developing new func-
tionality. Finally, the scope of people working on the RED/
GREEN integration is to integrate RED and GREEN interfa-
ces using middleware, wrappers, and similar integration
technology.

According to our analysis, this scenario reflects the pres-
ence of at least 3 of the smells we focus on in this study. Spe-
cifically, practitioners at Site A (together with people at Sites
A+B) constitute an organizational silo which is also blended
within a Black Cloud effect, since they communicate with Site
B only via a specific, restricted number of professionals (Dev
2, in this case). Similarly, Dev. 1 constitutes a Lone Wolf, who
is focused on improving the microservices under her care,
regardless of the integration efforts currently undergoing.
From a practical point of view, all the considered community
smells have been shown to have a negative impact for the
evolution of software projects. This is, however, not only
related to the emergence of social debt [6], which represents a
natural consequence of having community smells. Indeed, in
our previous work [31], we demonstrated that (i) software
communities affected by these four community smells are
more prone to the introduction of technical debt and (ii) dif-
ferent community smells lead to the emergence of different
code smells in source code. On the basis of these results, we
can claim that the definition of automatic mechanisms for the
identification of those smells can provide important benefits
for practitioners with respect to both management of the
community andmonitoring of the evolution of source code.

Fig. 1. The organisational scenario under investigation of the Integra project.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 633

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

3.2 Operationalizing Community Smells

Starting from the developer networks built by CODEFACE, we
detect instances of smells according to the formalisation
below. For all of them, a premise is needed:

Premise. Let Gm ¼ ðVm; EmÞ be the communication
graph of a project and Gc ¼ ðVc; EcÞ its the collaboration
graph.

More precisely, for communication we mean the relation
by which two or more developers communicate with each
other through any channel: for example, a communication
link between two developers is established in case they
reply to the same discussion within a mailing list or they
comment on the same issue in the issue tracker. As for col-
laboration, we mean the relation for which two or more
developers have worked on the same source code elements.
This is established by considering the change history of a
project, looking for cases where two or more developers
have modified the same code entities.

3.2.1 Organisational Silo Effect

The Silo effect reflects independent sub-communities—
parts of a larger software development community—and
these sub-communities often duplicate effort and waste
resources due to their isolation [9], [35]. With the occurrence
of Silo effects, social debt manifests as decaying communi-
cation across sub-communities and consequent negative
effects on developers’ situational awareness [36] as well as
degradation of projects’ socio-technical congruence [6], [31].
Also, according to recent findings [9], the Silo effect may
lead to tunnel-vision, since participants may focus their
cooperation and communication solely on other members
of their narrow sub-community rather than on the broader
community. Finally, community members belonging to an
Organisational Silo may exhibit egotistical behaviour leading
to unsanctioned architectural decisions [17] as well as defi-
ance of the decisions of others [9].

Based on this definition, we define the set of Organiza-
tional Silo pairs S as follows:

fðv1; v2Þjv1; v2 2 Vc; ðv1; v2Þ 62 E�
mg;

where E�
m is the transitive closure of Em. With transitive clo-

sure we indicate the transitive closure of a graph. More

specifically, given a directed graph, the operation finds out
if a vertex j is reachable from another vertex i for all vertex
pairs (i, j) in the given graph. With reachable we mean that
there is a path from vertex i to j. The reach-ability matrix is
called transitive closure of a graph. For the sake of precision,
we capture the Silo Effect at the finest grain possible, i.e.,
that of collaboration dyads: pairs of co-committing develop-
ers. An example is shown in Fig. 3. Here the Silo effect is
reflected on developer “1”, who does not communicate
with developer “2” even though “1” is collaborating with
“2”. Conversely, developer “2” is communicating with (at
least) one other developer, “3”, who belongs to a sub-com-
munity other than “1”. Considering the example proposed
in Fig. 2, an operationalisation of the identification pattern
for the Silo effect has two steps. In the first step, the identifi-
cation mechanism compares the collaboration network (bot-
tom half of Fig. 2) with its communication counterpart (top
half of Fig. 2). Then it verifies that the developer identified
by the letter A is present in the collaboration network, i.e., A
commits to files co-committed by others, but is not present
in the communication DSN reflecting those files.

3.2.2 Lone Wolf Effect

The Lone Wolf community smell reflects circumstances in
which communication may indeed be present but insuffi-
ciently addressing project needs [9], [35]. The result is devel-
oper free-riding and unsanctioned architectural decisions
that cause nasty ripple effects such as code duplication and
churn [36]. Thus, we define the set of Lone Wolf pairs L as
the set of collaborators that do not directly or indirectly
communicate with each others. More formally:

fðv1; v2Þjv1; v2 2 Vc; ðv1; v2Þ 2 Ec; ðv1; v2Þ 62 E�
mg:By

definition L � S:

The identification pattern for the Lone Wolf smell is based
on the detection of development collaborations between
two community members that have intermittent communi-
cation counterparts or feature communication by means of
an external “intruder”, i.e., not involved in the collabora-
tion. A simple example is given in Fig. 4. In this example
two developers, “1” and “2”, are collaborating on some
code, but they are not connected by any communication
link other than developer “3”, who is not co-committing on
a shared file. In this case, either developer “1” or developer
“2” (or both) can develop a Lone Wolf community smell.

This smell reflects the presence of possible side effects
generated by the Organisational Silo such as communication
decay or negative influence on developer awareness and

Fig. 3. Organisational Silo Effect Community Smell identification pattern.

Fig. 2. High-level representation of the Developer Social Network (DSN)
structure we used for community smell detection.

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

heavy socio-technical congruence degradation. Our conjec-
ture is that the occurrence of the Organisational Silo effect is
not negative per se. But when that occurrence is com-
pounded by the occurrence of Lone Wolves, extra attention
must be paid to avoid negative consequences such as delays
and unmanageable social debt. The Lone Wolf smell reflects
dyads of co-committing (collaborating) software developers
who exhibit uncooperative behaviour and mistrust by not
appropriately communicating.

3.2.3 Black-Cloud Effect

The Black Cloud Effect leads to negative social interactions
within a software development community featuring: (a)
community members’ inability to cover knowledge and
experience gaps between two different software products
developed within the same software community [9]; (b)
lack of periodic and official opportunities to share and
exchange knowledge between all community members [9],
[35]. Whenever these two circumstances occur together,
they can generate a “black-cloud” of misinformation (e.g.,
confusing, delayed, or unnecessary communication that
generates communication overload) within the community.
The main consequence of the Black Cloud effect is to obfus-
cate project vision, compromising progress [9], [35]. The
occurrence of this community smell can be generated or
worsened by several socio-technical triggers:

� absence of ad-hoc protocols for knowledge sharing;
� lack of boundary spanners;
� presence of inefficient communication filtering

protocols.
Moreover, the Black Cloud Effect smell is associated with

several other side effects such as: lowering of trust between
developers, information obfuscation, as well as inception of
the Organisational Silo Effect, due to the rise of egoistic
behaviour. The identification pattern for the Black Cloud
Effect smell reflects sub-communities that in subsequent
release windows do not communicate, with the exception of
two community members (i.e., boundary spanners in social-
network jargon [37]), one belonging to each sub-community.
The detection of the Black Cloud instances starts with the
identification of vertex clusters as already implemented in
CODEFACE. More specifically, let P ¼ fp1; . . . ; pkg be a mutu-
ally exclusive and completely exhaustive partition of Vm

induced by the clustering algorithm. From the partition,
Black Cloud is the set of pairs of developers C that connect
otherwise isolated sub-communities, more formally:

fðv1; v2Þjv1; v2 2 Vm; ðv1; v2Þ 2 Em; 8i; jðððv1 2 pi ^ v2 2
pjÞ) i 6¼ jÞ ^ 8vx; vyððvx 2 pi ^ vy 2 pj ^ ðvx; vyÞ 2

EmÞ) vx ¼ v1 ^ vy ¼ v2ÞÞg

The smell manifests if the above condition holds for at
least two consecutive organisational time-windows (fixed to
3-month intervals, in the case of CODEFACE4SMELLS). An
example is presented in Fig. 5. Here the occurrence of Black
Clouds reflects two developers, “3” and “4”, who are the
lone boundary spanners across two different sub-communi-
ties and over time—at least two subsequent analysis win-
dows (3 months, in our case).

Detecting black clouds requires eliciting the communica-
tion network and applying known community detection
algorithms [38] to identify sub-community structures and
boundary spanners across them. For example see Fig. 2
where two sub-communities (previously specified) can be
detected by considering the density of communication links.

3.2.4 Bottleneck Effect

The Bottleneck community smell is characterised by the occur-
rence of the following sub-optimal characteristics within a
software development community: (a) proposed changes
within every software development phase require an extraor-
dinary quantity of time to be implemented [6], [9]; (b) time
waste [9], [35]; (c) hidden or counterintuitive information
(and broker) locations [9]; (d) highly formal or complex
organisational structure [9]; (e) highly regularized procedures
[9], [35].

The fundamental side-effect generated by this commu-
nity smell is a massive delay that characterises key organisa-
tional processes within the community such as decision-
making, due to personnel unavailability or communication
overload. The identification pattern of this smell is based on
the detection of unique knowledge and information brokers
in different sub-communities.

In our attempt to define an automatic identification pattern
for this community smell we focused on the analysis of proj-
ect communication networks. We considered the six key fac-
tors around Bottleneck as reflecting the presence, within a
project organisational structure, of a unique boundary span-
ner across several different sub-communities (i.e., more than
2). The social-network analysis concept of unique boundary
spanner [37] has, in fact, a remarkable similarity to Bottleneck.
A unique boundary spanner interposes him/herself into
every formal interaction across two ormore sub-communities

Fig. 4. Lone Wolf Community Smell identification pattern.

Fig. 5. Black-cloud Effect Community Smell, an identification pattern.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 635

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

and if the organisational structure of the project is complex
and characterised by highly formal procedures, it will not be
possible to incept parallel information channels between
other members of the sub-communities. From a formal per-
spective, we define the set of Bottlenecks as:

fvjv 2 Vm; 9iðv 2 pi ^ 8vxðvx 2 pi) v ¼ vxÞÞg [fvjv 2
Vm; 9vx; i; jðv 2 pi ^ vx 2 pj ^ ðv; vxÞ 2 Em ^ 8vy; vzððvy 2

pi ^ vz 2 pj ^ ðvy; vzÞ 2 EmÞ) vy ¼ vÞg

To further elaborate on the definition of this community
smell, let consider the example proposed in Fig. 6. As
shown, detecting Bottleneck requires the identification of
community members who are the only members of their
sub-community that communicate with (at least) two other
sub-communities. Therefore, assuming a communication
link was present between developer “A” and “B”, then
developer “B” is the pivot of Bottleneck.

3.3 CodeFace4Smells Extension

From the perspective of the CODEFACE tool, a community is
operationalised as a densely connected set of nodes within
the community group (i.e., the members that make up a
development community) which is sparsely connected to
all other nodes in the network. To identify and properly
characterise the community structure, the CODEFACE tool
enacts two community detection strategies, defined as fol-
lows, paraphrasing from Joblin et al. [14]:

1) Function—To recover a community structure, CODE-

FACE uses a heuristic for identifying when two devel-
opers are engaged in a coordinated effort using a fine-
grained heuristic based on code structure, where
developers are considered to be coordinated when
they actually contribute code to a common function
block. Furthermore, CODEFACE uses the commits’ time-
stamp for identifying the appropriate directions of the
edges in the recovered community structure.

2) Committer-Author—In this method, the tool uses tags
to identify relationships between all people that con-
tributed to a common commit, including authors,
reviewers, and testers. For example, sign-off tags are
self-reported acknowledgments of participation on a
commit, therefore the tag-based networks undoubt-
edly capture real-world collaboration [14].

3) Community-Verification—to verify the recovered com-
munity structure, CODEFACE uses a random null-
model to compute the probability of observing the
identified community in an equivalent class of null-
model graphs that lack a community structure. The

tool generates the null-model using a standard
approach called the configuration model for random
graphs, where nodes are joined uniformly at random
under the constraint that the degree distribution is
identical to the observed graph [39].

To the above heuristics, we add a systematic implementa-
tion of the operationalisation provided in the previous sec-
tion, to allow for automated detection of community smells at
the same time as CODEFACE operates community structure
recovery. The output of the tool is represented by a CSV file
containing the community smell instances identified over a
social structure representation known as a Developer Social
Network (DSN), a notation previously used for bug predic-
tion and error-proneness [4], [5]. It is important to note that
the detection tool has been previously evaluated [40]: in that
context, we formally proved that it is able to correctly identify
all the community smell instances affecting software commu-
nities using a formal interpretation of the DSN abstraction
and the formalisations reported in this section. Thus, we
claim that CODEFACE4SMELLS is an accurate tool on which to
base the current study. Furthermore, the implementation and
operationalisations currently available within CODEFACE4S-
MELLS inherit and extend the state of the art in social and
organisational networks analysis. For example, we re-use
and extend the concept of Simmelian ties [41] from Borgatti
et al. andKrackhardt et al. [42] anduse it to represent an orga-
nizational silo wherefore the ties in question (that is, triads of
reciprocal and strong inter-personal relations in a social net-
work of practitioners) among sub-groups across a develop-
ment community constitute a stable set. Furthermore, we
build upon the concept of similarity by Hinds et al. [43] to
identify practitioners with overlapping extraction and iden-
tify Lone Wolves. Finally, we build upon solid foundations for
the use of social networks data with regression modelling as
shown byKrackhardt [44].

4 STUDY DESIGN

The goal of our study was to evaluate three aspects related to
community smells: (i) their diffuseness in open source com-
munities, (ii) the awareness of developers with respect to the
symptoms indicating the presence of community smells, and
(iii) the actual impact of community smells on open source
communities. The purpose of the study was to improve the
diagnosability of software community health. Specifically,
we aim to answer the following research questions:

� RQ1. How does the distribution of community smells in
open-source software communities vary over time?

� RQ2. Do developers actually perceive the presence of
smells in their community?

� RQ3. How do community smells relate to existing socio-
technical factors?

For the first research question, we studied the extent to
which open-source communities suffer community smells
and how the numbers of these smells vary over time. This is
important to know so that we can give guidelines to architects
and project managers regarding how to interpret trends and
establish thresholds for “healthy” values. RQ2 is aimed at
understanding whether developers are conscious of the pres-
ence of such smells in their communities. If they are not then

Fig. 6. Bottleneck Community Smell.

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

it is even more important to detect such smells automatically.
Finally, RQ3 had the goal of assessing the relationship
between community smells and other known socio-technical
factors studied in the past. Smells are symptoms. For this
research to affect the practice of software development we
need to understand the root causes of smells so that we can
provide advice on what project characteristics (measured by
factors such as socio-technical congruence) to adjust.

4.1 Context of the Study

The context of the study consisted of 60 active open-source
software communities using GITHUB

1 as a tool for managing
software versions. The selection of these systems was driven
by two factors. On the one hand, to properly observe the
phenomenon of community smells, we focused on commu-
nities having at least X contributors and Y commits per-
formed in their history. On the other hand, we aimed at
studying communities that are currently active, since this
allows us to mitigate threats due to outdated phenomena.
Thus, starting from the list of open source projects available
on GITHUB, we randomly selected 60 systems having enough
commits and contributors, verifying that at least ten com-
mits were performed during the last month on each reposi-
tory (our threshold for activeness). The complete list of
communities studied, their repositories, and mailing list are
reported in our online appendix [45].

Projects were selected according to the following criteria:
(a) codebase size - 20 medium-sized (200-500 KLOC), 20
large (500-850 KLOC) and 20 very large (> 850 KLOC); (b)
main programming language - Java, C#, C, Python, YAML
and other languages are included in our sample; (c) commu-
nity size - our size distribution is evenly split among three
ranges: medium (< 50 members), large (50> 150 members)
and very-large (> 150 members); (d) age - our age distribu-
tion is evenly split among three ranges: young projects
(< 24 months), established projects (24> 32 months), and
mature projects (> 32 months).

4.2 RQ1. The Distribution of Community Smells

To answer RQ1, we ran CODEFACE4SMELLS over the set of soft-
ware communities. It is important to note that the

communication graph used to detect community smells
was built considering the three months before the date where
the analyzed project versions were released; this choice was
guided by previous research [40] that showed how this time
window allows us to correctly analyze the current organisa-
tional aspects of a software community, excluding outdated
information.

Once we gathered the information about community
smells, we verified their distribution in each time period for
the subject projects. Furthermore, we verified whether there
exists a correlation between system characteristics (#contrib-
utors, #commits, and KLOC) and the number of observed
community smells. To properly verify this correlation, we
repeated the analysis for each time period considered (e.g.,
we computed the correlation between the presence of com-
munity smells in a time period Ti!j and contributors pres-
ent in the same period). To measure the relations, we
exploited the Spearman rank correlation index [46] which
measures the strength and direction of association between
two ranked variables, and ranges between -1 and 1. A value
of 1 represents a perfect positive linear relationship, -1 rep-
resents a perfect negative linear relationship, and values in
between indicate the degree of linear dependence between
the considered distributions. To interpret the results, we fol-
lowed the guidelines provided by Cohen [47]: it is assumed
that there is no correlation when 0 � r < 0.1, small correla-
tion when 0.1 � r < 0.3, medium correlation when 0.3
� r < 0.5, and strong correlation when 0.5 � r � 1. Similar
intervals also apply for negative correlations.

4.3 RQ2. The Perception oF Community Smells

To answer RQ2, we designed a survey involving the devel-
opers of the projects considered in the context of RQ1.

Recruitment. We adopted an opt-in strategy [48] when
asking developers to participate in our study. We extracted
from GITHUB the e-mail addresses of all the developers who
have committed at least 10 changes during the year before
the release dates taken into account: in this way, we focused
only on developers having adequate experience with the
projects and communities considered [49]. Then we sent
them a first e-mail asking whether they would like to partic-
ipate in our survey. In other words, we recruited only volun-
teers to avoid privacy issues or other developer concerns.2

To mitigate the side effects of this generalisation, developers
participation was stimulated offering by a prize of four
Amazon gift cards with a total value of $100. The four prizes
were awarded to four randomly chosen participants a few
weeks after the survey ended.

As a result, we obtained a positive reply from 172 of the
5,169 developers approached (�3.32 percent), who were later
contacted with the actual survey. Table 1 reports the distribu-
tion of the participants across the investigated communities.
We obtained answers from developers of 11 different projects
in the dataset: thus, our survey covered 18 percent of all con-
sidered communities. We are aware that the opinions col-
lected on this sample might be not necessarily generalizable,
however we argue that our analysis still provides confirma-
tionwith respect to the perception of community smells pres-
ent in the community around the participants.

TABLE 1
Number of Participants to Survey and Semi-Structured

Interviews, Respectively

Community # survey part. # interviews part.

LibreOffice 12 4
Firefox 33 6
FFmpeg 14 2
VLC 14 3
Tomcat 9 5
Scala 18 1
Qt 22 3
Salt 13 5
Vagrant 21 2
Eclipse 5 3
Python 11 2

Data is reported per community.

1. http://github.com/ 2. http://tinyurl.com/yd2usw5p

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 637

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Survey Dissemination. The questionnaire was created and
distributed to participants using GOOGLE FORMS.3 We opened
it two times with the aim of collecting as many replies as
possible: the survey was first available from February 15 to
March 5, 2016; then, it was open from May 7 to July 26,
2018.4 The link to the questionnaire and a short introduction
were sent to every recruited developer via e-mail. We esti-
mated a completion time of 25 minutes.

Survey Design. The complete list of questions in our survey
is presented in Table 2. It contained three parts. First, we gath-
ered information about occupation, reference community,
and role of the developers involved (Q1-Q6). Second, we
asked participants to rate the validity of 8 statements using a
5 point Likert scale [50] ranging between “Strongly Disagree”
to “Strongly Agree” (Q7-Q14). Such statements reported typi-
cal situations in which community smells occur. By collecting
developers’ answers to these questions we could match their
perception of community smells with the community smells
actually detected in their communities. It is important to
point out that each statement referred to only one type of
community smell. For instance, the statement “There are

different subgroups that rarely communicate with each other”
(Q13) was aimed at understanding whether developers actu-
ally recognise the presence of an “Organisational Silo Effect” in
their community. In Table 2 we map each statement with the
community smell we were interested in. It is important to
note that, to avoid any possible bias in the responses, we took
two precautions. First, we never mentioned the terms social
debt or community smells in the questionnaire. Second, we
collected participants’ opinions on the typical situations lead-
ing to the emergence of community smells rather that directly
ask them to rate how healthy was their own community. This
was a conscious design decision taken on the basis of well-
established findings in psychology research: as pointed out
by Fisher [51], people might be reluctant to express negative
or controversial opinions on topics they are too much
involved in, and for this reason indirect questioning [52] should
be preferred to increase the validity of the collected observa-
tions. In our context, this means that the surveyed developers
might have been reluctant to reveal the presence of problems
in the community they belong to, leading to provide invalid
answers and bias our results. For this reason, we proceeded
with the selected research approach.

Data Analysis. Once we collected the developers’ ques-
tionnaires, we answered RQ2 by means of statistical analy-
ses. We computed the percentage of times developers

TABLE 2
Questionnaire Filled in by the Study Participants

Question Answer

Developer’s background

1. Country of Birth Open answer
2. Year of Birth Open answer

3. Current Occupation Student
Part-time Employee
Full-time Employee
Unemployed
Retired

4. Community for which you contribute the most Open answer

5. Role within the community where you contribute the most Developer
Maintainer
Software Engineer
Translator
Graphic
Other
Paid by a company

6. Do you contribute to this project as an individual or because your
company is involved in it?

Partially paid by a company
Voluntary Developer

Community Smell Perception

7. [BC]Delay of communications can stall some community activities. strongly disagree jdisagree juncertain j agree j strongly agree
8. [BC]Lack of periodic opportunities to share and exchange knowledge
between all community members is a threat to the success of the project.

strongly disagree jdisagree juncertain j agree j strongly agree

9. [LW]Community members having intermittent communications are a
threat for the implementation of the project.

strongly disagree jdisagree juncertain j agree j strongly agree

9. [LW]Community members working on the same code and
communicating by means of a third person cannot properly proceed the
collaboration.

strongly disagree jdisagree juncertain j agree j strongly agree

11. [RS]High degree of formality is detrimental for project
communications.

strongly disagree jdisagree juncertain j agree j strongly agree

12. [RS] There are highly regular procedures for communicating changes. strongly disagree jdisagree juncertain j agree j strongly agree
13. [OS] There are different subgroups that rarely communicate with each
other.

strongly disagree jdisagree juncertain j agree j strongly agree

14. [OS] Different subgroups are sometimes antagonists. strongly disagree jdisagree juncertain j agree j strongly agree

[LW] indicates statements related to Lone Wolf; [RS] to Bottleneck; [BC] to Black Cloud; [OS] to Organisational Silo.

3. https://www.google.us/intl/en/forms/about/
4. In the second round, we (re-)invited only those developers who

had not already participated in the questionnaire in the first round.

638 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

https://www.google.us/intl/en/forms/about/

perceived a community smell. We considered a smell as per-
ceived in case a developer marked a statement indicating the
symptoms of a smell with an “Agree” or a “Strongly Agree”.

Confirmatory Semi-Structured Interviews. While a survey
provides useful insights to understand the developers’ per-
ception of community smells, it might not be sufficient to
provide definitive conclusions, as developers did not
directly comment on such smells. For this reason, we per-
formed a post-survey additional confirmatory study aimed
at corroborating the findings of the survey study. We
invited the participants who performed the survey to con-
duct a further semi-structured interview, to discuss with us
the results obtained on their perceptions of community
smells. We were able to perform 35 semi-structured inter-
views with developers coming from all 11 communities.
Table 1 reports the number of interviewees per community.
The interviews were conducted via Skype, and required
�30 minutes per interview. We started the discussion
by summarising the results obtained from the surveys—
reporting both the overall findings and those related to the
project the developer was involved to—and presenting the
definitions of the community smells analysed in the study.
This step was needed to provide developers with a com-
plete overview of our research and to prepare them for the
discussion. Afterwards, for each community smell, we
focused on the three main questions:

1) Did you happen to observe a [community smell] in your
organisation?

2) How frequent is [community smell] in your organisation?
3) Do you think that [community smell] can be harmful for

any socio-technical aspect of your organisation? If so,
which ones?

All interviews were recorded and transcribed for analy-
sis. Then, two of the authors of this paper manually went
through the developers’ answers to extract relevant infor-
mation and observations that confirmed/rejected the find-
ings obtained from the surveys. In a first step, the two
authors independently analyzed the developers’ discussion
and came up with a summary for each of the considered
community smells. In a second step, they opened a discus-
sion on the basis of their summaries with the aim of reach-
ing an agreement on the insights given by the participants.
Such a two-step process was needed to avoid subjective
interpretations of the developers’ answers.

4.4 RQ3. The Relationship between Community
Smells and Existing Socio-Technical Factors

In the context of this research question, we focused on iden-
tifying which socio-technical development aspects are
related to or responsible for the presence of community
smells. Such an analysis has a vital importance since it can
reveal what are the factors that can be used as monitored
quantities that mediate the occurrence of community smells.
It is important to note that since social debt is considered a
ubiquitous phenomenon within the software development
lifecycle [9], it is not possible to clearly identify specific
socio-technical aspects or phases responsible for increases
or decreases of social debt. Thus, our analysis aims to shed
light on the phenomenon as a whole: specifically, we
defined a Socio-technical Quality Framework [40] that includes

40 socio-technical quality factors, which were extracted by
analysing the existing literature.

Specifically, we conducted a systematic literature review
(SLR) that investigated previous work concerning social fac-
tors for software engineering (e.g., [13], [53], [54], [55]), iden-
tifying the metrics proposed in related work [40]. The
quality factors that emerged from our study are recapped in
Table 3. To better scope the work of the present study, we
selected a subset of the afore-mentioned 40 factors (see
Table 3) by first isolating three independent lists of factors
identified by the authors of this paper, who took the role of
inspectors and extracted a set of initial metrics each. Subse-
quently, the inspectors refined the three sets with the goal
of finding a single set containing all the social metrics: this
has been done by merging the factors identified by all the
inspectors and discussing whether to include or not the ini-
tial metrics discovered by one or two of them. To measure
the level of agreement among the inspectors we computed
the Krippendorff’s alpha Kra [56]. Agreement measured
0.87, considerably higher than the 0.80 standard reference
score [57] for Kra. A complete report of the papers analysed
as well as of the coding activities performed is available in
our on-line appendix [45].

5 STUDY RESULTS

In this section we describe and analyse the results achieved
when answering our research questions.

5.1 The Distribution of Community Smells

Fig. 7 depicts the box plots reporting the distribution of the
community smells analysed over the 60 projects in our
dataset. For sake of readability, we removed outliers from
the plots; furthermore, the plots report the overall distribu-
tions, i.e., the ones resulting by considering all the commu-
nity smells arising over the different 3-month periods. To
have a fine-grained view of the distribution of community
smells over time, Table 4 reports minimum, mean, maxi-
mum, and standard deviation observed in each of the con-
sidered 3-month periods. Finally, Table 5 reports instead
the number of projects in which we found at least one
instance of such smells. To more clearly understand their
distribution, in the table we divided the subject communi-
ties into three categories—small, medium, and large—based
on the number of contributors.

As shown in Fig. 7, three community smells—Organisa-
tional Silo, Lone Wolf, and Bottleneck—appear consistently:
the median number for Bottleneck is 13, for Lone Wolf is 12
and for Organisational Silo is 9. Surprisingly, the median
number of Black Cloud instances is 1. This result seems to
contradict what has been previously observed in industrial
communities [6], where practitioners frequently pointed out
the existence of this smell. From a practical perspective,
the absence of such a smell highlights that open-source
communities do not lack structured communication or
governance, despite their contributors being largely part-
time volunteers who are often involved in other projects. In
other words, FLOSS developers try to organise communica-
tions in a structured manner so that they can avoid informa-
tion overload. At the same time, the high numbers of the
other community smells tell us a different story: although

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 639

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

communications among developers are structured, there are
often members who try to interpose themselves into every
formal interaction across sub-communities (creating a Bot-
tleneck) or that perform their tasks independently from com-
munity decisions (thus being a Lone Wolf). Furthermore,
our findings highlight that, in several cases, there exist sub-
communities that essentially do not communicate, each cre-
ating Organisational Silos. When considering the distribution
over time (Table 4), we could provide similar observations.
Indeed, Organisational Silo, Lone Wolf, and Bottleneck are the
smells that appear more frequently in each time window,
while the mean of Black Cloud instances is close to 0 and has
a standard deviation of 0.65. Interestingly, there seems to be
a pretty high standard deviation for all the three most dif-
fused community smells (e.g., Organisational Silo has a stan-
dard deviation of 19): this indicates that there are time
windows in which the number of community smells tend to
decrease significantly with respect to other periods. Further

analyses aimed at understanding the root causes behind
this phenomenon as well as how community smell instan-
ces evolve over time are part of our future research agenda.

Looking at Table 5 we observe that the three most fre-
quent community smells are present in almost all of the
projects analysed. All the communities experienced at least
one Bottleneck during their evolution, while 59 of them had
at least one Organisational Silo and Lone Wolf. When correlat-
ing the number of community smells with project character-
istics (Table 6), we observed a weak correlation between the
number of contributors within the community and Organi-
sational Silo, Lone Wolf, and Bottleneck. This confirms that the
amount of instances of these smells is not solely dependent
on the size of the community.

As for the Black Cloud smell, the discussion is different.
Only eight projects with fewer than 50 contributors suffered
this smell while the number of smelly communities slightly
increases as the number of contributors increases: this may

TABLE 3
Socio-Technical Quality Factors Investigated in Total, Reported from Literature [53]

Category Metric Description

Developer Social Network metrics

devs Number of developers present in the global Developers Social Network
ml.only.devs Number of developers present only in the communication Developers Social Network
code.only.devs Number of developers present only in the collaboration Developers Social Network
ml.code.devs Number of developers present both in the collaboration and in the communication DSNs
perc.ml.only.devs Percentage of developers present only in the communication Developers Social Network
perc.code.only.devs Percentage of developers present only in the collaboration Developers Social Network
perc.ml.code.devs Percentage of developers present both in the collaboration and in the communication

DSNs
sponsored.devs Number of sponsored developers (95% of their commits are done in working hours)
ratio.sponsored Ratio of sponsored developers with respect to developers present in the collaboration

DSN

Socio-Technical Metrics

st.congruence Estimation of socio-technical congruence
communicability Estimation of information communicability (decisions diffusion)
num.tz Number of timezones involved in the software development
ratio.smelly.devs Ratio of developers involved in at least one Community Smell

Core community members metrics

core.global.devs Number of core developers of the global Developers Social Network
core.mail.devs Number of core developers of the communication Developers Social Network
core.code.devs Number of core developers of the collaboration Developers Social Network
sponsored.core.devs Number of core sponsored developers
ratio.sponsored.core Ratio of core sponsored developers with respect to core developers of the collaboration

DSN
global.truck Ratio of non-core developers of the global Developers Social Network
mail.truck Ratio of non-core developers of the communication Developers Social Network
code.truck Ratio of non-core developers of the collaboration Developers Social Network
mail.only.core.devs Number of core developers present only in the communication DSN
code.only.core.devs Number of core developers present only in the collaboration DSN
ml.code.core.devs Number of core developers present both in the communication and in the collaboration

DSNs
ratio.mail.only.core Ratio of core developers present only in the communication DSN
ratio.code.only.core Ratio of core developers present only in the collaboration DSN
ratio.ml.code.core Ratio of core developers present both in the communication and in the collaboration

DSNs

Turnover

global.turnover Global developers turnover with respect to the previous temporal window
code.turnover Collaboration developers turnover with respect to the previous temporal window
core.global.turnover Core global developers turnover with respect to the previous temporal window
core.mail.turnover Core communication developers turnover with respect to the previous temporal window
core.code.turnover Core collaboration developers turnover with respect to the previous temporal window
ratio.smelly.quitters Ratio of developers previously involved in any Community Smell that left the

community

Social Network Analysis metrics

closeness.centr SNA degree metric of the global DSN computed using closeness
betweenness.centr SNA degree metric of the global DSN computed using betweenness
degree.centr SNA degree metric of the global DSN computed using degree
global.mod SNAmodularity metric of the global DSN
mail.mod SNAmodularity metric of the communication Developers Social Network
code.mod SNAmodularity metric of the collaboration Developers Social Network
density SNA density metric of the global Developers Social Network

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

suggest that the number of Black Cloud instances is somehow
dependent on the size of the community. The Spearman’s
value between Black Cloud and number of contributors seems
to confirm that this smell is dependent on the size of the com-
munity, however further verificationwould be needed.

At the same time, we discovered that the simplistic techni-
cal aspects we controlled for, e.g., the number of commits or
the total number of lines of code in a project, do not strongly
influence the diffuseness of community smells. This result
does not mean that we can exclude a relation between social
and technical aspects in general. Our data suggests that a
more structured research approach—digging deeper in
potential confounding factors—is in order.

Summary for RQ1. In general, community smells are
highly diffused in open source communities. Among the
studied ones, Organisational Silo, Lone Wolf, and Bottle-
neck are found regularly, while the presence of Black
Cloud instances may depend on the number of contribu-
tors within a community. We have not found a simple
correlations between such smells and “technical” project
characteristics.

5.2 The Perception of Community Smells

As explained in Section 4.3, we obtained 172 survey
responses from 11 open source projects. Before discussing
the perceptions of community smells, we report on the

demographic and FLOSS-related data provided by our
study participants.

5.2.1 Demographics

Fig. 8 illustrates age, occupation, and role of the survey par-
ticipants, along with the information on the number of
developers falling into each of the reported categories. In
the first place, we can observe that the participants were
almost uniformly distributed across the different age
ranges. The majority of them were between 26 and 35 years
old (49), while developers younger than 25 years old and
between 36 and 50 years old were 42 and 41, respectively.
Finally, 40 participants were over 50 years old.

Looking at the working status of the respondents, we
observe that 104 of them have a full-time job, while a minor-
ity had a part-time job (45). 22 participants identified them-
selves as a student and 1 was neither employed nor a
student. This indicates that our data was collected primarily
from people constantly working in open-source projects.

The respondents were mainly developers (89). This was
expected, given the modalities through which we retrieved
developer information. However, an important fraction of
the respondents specified their status as software engineer
(67), while a few stated that they were maintainers or trans-
lators (5 and 2, respectively). Finally, 9 were not able to
identify themselves in any of these categories.

Finally, we asked respondents to specify if their contribu-
tion to the project is on voluntary or if their involvement
within the project community is sponsored by a commercial
company. We found that 144 of them participate in FLOSS
development without any monetary interest; considering the
11 reference communities independently, the number of
sponsored developers varied from a minimum of 3 (Tomcat)
to a maximum of 27 (Firefox). The percentage of respondents
whose involvement was completely supported by a company
was 17. Furthermore, 11 participants said that they were paid
only partially by a commercial company. All in all, we con-
clude that the vast majority of our respondents work in open-
source development as a full-time job. This made our

Fig. 7. Distribution of community smells on the 60 projects considered in
our study.

TABLE 4
Statistics of the Number of Community Smells Occurring in

Each of the Considered 3-Months Time Windows

Community smell Min. Mean Max. St. Dev.

Black Cloud 0 0.18 7 0.65
Organisational Silo 0 13.65 91 19
Lone Wolf 0 25.62 151 36.17
Bottleneck 0 21.52 96 23.59

TABLE 5
Number of Projects/Communities Affected

by Community Smells

Community
Dimension

Black
Cloud

Organisational
Silo

Lone
Wolf

Bottleneck

< 50 8 19 19 20
50� 150 11 20 20 20
> 150 12 20 20 20
Overall 31 59 59 60

TABLE 6
Correlations between Project Characteristics and Community

Smells

Contributors # Commits KLOC

Black Cloud 0.77* 0.23 0.11
Organisational Silo 0.48* 0.32 0.39*
Lone Wolf 0.47 0.36* 0.32
Bottleneck 0.42 0.44* 0.26

Statistically significant correlations (r� value < 0:05) are marked with ‘*’.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 641

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

population appropriate for the aspects that we wanted to
investigate, i.e., community smells in open-source projects.

Besides the questions posed to participants, we also took
into account the role of experience. Indeed, it is likely that
this factor impacts the way developers perceive community
smells. To account for this aspect, we mined the repositories
of their 11 projects with the aim of computing twowell-estab-
lished metrics [58] capturing the experience of the contribu-
tors who participated in the survey: (i) commit tenure, which
measures developer experience as the number of months
since the developer’s first event on any Github repository;
(ii) project tenure, which measures developer experience on
the project of interest as the number of months since their
first event on the project repository. Once we extracted those
metrics for all survey participants we correlated them—
using the Pearson correlation coefficient—with the Likert
scale values assigned by the participants to each of the sur-
vey statements; wemapped nominal values to numeric ones,
e.g., “Strongly Disagree” was assigned to 1 while “Strongly
Agree” to 5. As a result, we could examine the relationship
between commit tenure and the answers provided in the sur-
vey. Indeed, the correlations between this experience metric
and the values assigned to all the statements are higher than
0.6, meaning that there is a strong correlation between the

two distributions. At the same time, we did not find any
strong correlations when considering the project tenure met-
ric. In other words, the overall level of experience in open
source projects, but not the experience on a specific project,
strongly correlates with the perception of community smells.

5.2.2 Community Smells Perception

Table 7 reports the results obtained when analysing the
developers’ opinions on the symptoms behind community
smells. For each statement, we report the number of develop-
ers who rated its validity from “Strongly Disagree” to
“Strongly Agree”. Our survey of open-source practitioners
strongly confirmed their perception of the nasty effects asso-
ciated with community smells: the vast majority of develop-
ers reported all the situations behind such smells as serious
threats to the health of the community and the quality of the
communication among developers. This was also confirmed
by the participants of the confirmatory semi-structured inter-
views: all of them reported to have observed at least one com-
munity smell in their organisation and, at the same time, that
the frequency of appearance is generally high and that they
may cause socio-technical problems. It is important to note
that we did not notice discrepant answers, meaning that all
the interviewees agreed on the harmfulness of community

Fig. 8. Demographical information of the survey participants.

TABLE 7
Results of the Questionnaire

Question strongly disagree jdisagree juncertain j agree j strongly agree

Community Smell Perception

7. [BC]Delay of communications can stall some community
activities.

5 j 8 j 14 j 44 j 101

8. [BC]Lack of periodic opportunities to share and exchange
knowledge between all community members is a threat to the
success of the project.

5 j 5 j 117 j 32 j 13

9. [LW] Community members having intermittent communications
are a threat for the implementation of the project.

6 j 17 j 25 j 36 j 88

10. [LW]Community members working on the same code and
communicating by means of a third person cannot properly proceed
the collaboration.

0 j 0 j 5 j 22 j 145

11. [RS]High degree of formality is detrimental for project
communications.

4 j 8 j 11 j 46 j 103

12. [RS] There are highly regular procedures for communicating
changes.

0 j 94 j 55 j 21 j 2

13. [OS] There are different subgroups that rarely communicate with
each other.

0 j 2 j 4 j 100 j 66

14. [OS] Different subgroups are sometimes antagonists. 14 j 11 j 10 j 66 j 71

Number of answers for each level on the Likert scale are reported: [LW] indicates statements related to Lone Wolf, [RS] to Bottleneck, [BC] to Black Cloud, [OS] to
Organisational Silo.

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

smells. Thus, the first key result of RQ2 is represented by the
fact that developers perceive community smells as actually
pervasive and harmful for the health of software communi-
ties. In the following subsections, we describe the results ana-
lyzing each community smell independently.

Black Cloud. The presence of this smell strongly impacts
the way developers communicate with each other and share
knowledge about the status of the project. As a conse-
quence, communication delays might cause problems such
as a complete stall of the community. 101 and 44 respond-
ents rated statement 7 as “Strongly Agree” and “Agree”,
respectively, thus confirming that effective communication
among community members is a must to carry out the proj-
ect. Interestingly, our respondents did not confirm that hav-
ing periodic meetings with all community members is an
important aspect to improve project activities. 117 partici-
pants were “Uncertain” with respect to statement 8. To fur-
ther investigate the answers related to the presence of a
Black Cloud smell we discussed these findings during semi-
structured interviews. All 35 interviewees reported that
Black Cloud instances occurred in their communities, even
though their frequency depend on the size and maturity of
the community. Moreover, they also reported that constant
knowledge sharing is vital for the survival of the commu-
nity. However, it is not relevant for them to have meetings
with all community members: they just need to effectively
communicate with other developers involved in the devel-
opment of shared portions of code. For instance, one Tomcat
developer reported:

“It happened to us in the past, and in general is pretty frequent to
see people that do not want to discuss what they do or simply delay
in communicating what they have implemented. Code review can
somehow mitigate the problem, but still, programmers sometimes
do not properly or timely communicate, causing other people to lose
time understanding source code implemented by others.”

Thus, we conclude that the Black Cloud effect can cause
the introduction of social debt in form of additional work
spent to re-construct the knowledge around the activities
done by people involved in the smell. At the same time, the
semi-structured interviews explained the results achieved
in RQ1with respect to the low diffusion of this smell: devel-
opers can mitigate communication delays by “forcing”
members to take part in code reviews, which are one of the
main means of knowledge sharing [59].

Lone Wolf. The emergence of this smell is caused by inter-
mittent or indirect communications between members who
are supposed to collaborate on the development of a piece
of code. The majority of the participants agreed or strongly
agreed with both statements (9 and 10) related to Lone Wolf.
This result indicates that developers perceive the smell as
harmful for the success of a project. This was also confirmed
when interviewing developers: all of them reported that the
presence of a Lone Wolf is frequent is practice and can lead
to serious problems for the entire community. For example,
a developer from Qt said:

“This is terribly frequent. The main problem here is that, if
these people leave, we are stuck. If another guy needs to work on
the same code, we are stuck. Much more attention should be given
to control this kind of problem, as it can cause losing entire weeks
of productivity to only understand what a former member has
done or having information from other people.”

Thus we can claim that the Lone Wolf smell is perceived
by developers as an important source leading to social debt.

Bottleneck. Our survey participants confirmed that a high
degree of formality in the community can be detrimental for
communications (149 participants rated this statement as
“Agree” or “Strongly Agree”). However, at the same time
they did not believe that regular procedures to communi-
cate and propose changes represent a threat to the success
of the project. In other words, while they did not support
having an extremely formal community, they agreed that
constant communications help in understanding and shar-
ing project knowledge. This became even clearer during the
semi-structured interviews: while all participants recog-
nized the frequent presence of this community smell within
their communities, they also highlighted that dealing with it
can be hard because of the compromise between formality
and informality of the development structure. For instance,
a participant from VLC declared:

“Project development should be always lean and easy to per-
form. Developers need freedom and complex organisations make
the job hard. However, communicating constantly with other
developers is important to correctly carrying out the activities.”

With respect to this smell, we claim that extremely formal
organisations—typical in cases where the Bottleneck smell
appears—should be avoided. Thus, we confirm that develop-
ers perceive the symptoms behind this smell as a source of
social debt; moreover, an efficient way to deal with Bottleneck
instances seems to be that of having constant (informal) com-
munications about the changes to be performed.

Organisational Silo. The last two statements of Table 7
referred to this smell, and reported situations where there are
parallel sub-communities within the same organisation. Our
participants widely recognised this as an important problem,
since these sub-communities might rarely communicate with
each other and, even more importantly, they might become
antagonist. This would lead to serious consequences in terms
of social debt and additional project costs. This was also
reported by all the interviewees. All the 35 interviewees
explain that this smell is frequent and can cause serious issues
to the community. An interesting comment is reported below,
and refers to a participant fromEclipse:

“Unfortunately, in open source this problem is extremely fre-
quent because of the distributed nature of such projects. This is
beyond doubts a problem, as having sub-communities naturally
lead to missing communications that can potentially cause serious
technical problems.”

We therefore confirm that the presence of Organisational
Silo is perceived by developers as a negative pattern in the
structure of a software community.

Summary for RQ2.We can conclude that developers per-
ceive the presence of all community smells considered in
the study, identifying them as important sources for the
emergence of social debt. Sometimes, as in the case of Black
Cloud, developers learn to cope with these smells in an
orderly and governed fashion, reflecting an organised and
coherent whole. Further study of the emergence of com-
munity smells and any connected (causal) socio-technical
factors may foster the discovery of best-fit governance pat-
terns for open- and closed-source projects.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 643

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

5.3 Relations Among Community Smells and State
of the Art Quality Factors

This section reports on our findings in correlating the
occurrence of community smells across our dataset with
socio-technical quality factors and theories from the state
of the art. More than verifying theories, we aimed at
finding empirical thresholds that indicate stability of
smells, that is, levels at which the number of smells no
longer increases. We now discuss the quality factors and
the stability thresholds associated with each. Specifically,
following guidelines from the research literature [60] the
thresholds were elicited as the level above which the fre-
quency of datapoints for a certain correlation became
less than 20 percent; that is, the cutpoint where fre-
quency of datapoints becomes more and more statisti-
cally irrelevant.

5.3.1 Community Smells versus Sponsored Developers

The research literature suggests that a higher number of
paid developers (sponsored by commercial companies or
self-employed) is correlated to a higher attractiveness and
health of an Open-Source community [61]. Our results
(shown in Fig. 9), however, indicates that a higher number
of sponsored developers is associated with a linear
increase of the number of occurrences of Organisational Silo
Effect and Lone Wolf community smells in 25 percent of
our dataset. It is worth noting that, in the context of RQ1,
we also reported a weak correlation between the number
of contributors and the presence of all smells, with the
exception of the Black Cloud effect. This result does not
contradict the findings of RQ3; rather, it highlights the
dependence between the role of sponsored versus non-spon-
sored developers and the levels of different smells.

Community Smells Stability Threshold. We observe a
threshold of 10 trimestral sponsored developers above
which the number of detected Community Smells grows
super-linearly above median values.

Moreover, the role of sponsored developers in the gener-
ation of additional Community Smells has different effects
depending on the size of the software project:

� In projects with fewer than 50 trimestral community
members, socio-technical quality factors related to
the identification of sponsored developers were not
correlated at all to the generation of additional Com-
munity Smells;

� In projects with more than 50 but fewer than 150 tri-
mestral community members, the occurrences of
Organisational Silo Effect and Lone Wolf community
smells was not only positively correlated to the num-
ber of sponsored developers in a community, but
also to the number of sponsored developers who
were core developers. Furthermore, a higher ratio of
sponsored core developers was associated with an
increase in the occurrences of the Organisational Silo
Effect. This finding highlights that in software com-
munities with 50-150 trimestral members, core spon-
sored developers tend to isolate themselves and not
participate in project communication channels.

5.3.2 Community Smells versus Temporal and

Geographic Dispersion

The research literature suggests that temporal and geo-
graphic dispersion generates socio-technical issues across
software development communities affecting product out-
comes and qualities [62]. Therefore, it was expected that the
number of time-zones involved in a software development
community—a proxy for geographic and temporal disper-
sion—would be positively correlated with an increase in
Community Smells. But this correlation was detected in just
5 percent of analysed projects. A possible explanation is that,
nowadays, distributed development is common in software
development and only implies delays in communications
among developers. Moreover, FLOSS is founded on the con-
cept of distributed software development and so coordina-
tion mechanisms are built. These mechanisms, we postulate,
help to mitigate the development of Community Smells due
to temporal and geographic dispersion.

5.3.3 Community Smells versus Socio-Technical

Congruence

Cataldo et al. [63] remark that higher socio-technical congru-
ence is correlated to higher software development perfor-
mance and thus, considering the concept of socio-technical
congruence as an indicator of the alignment between an
organisational structure and its technical requirements, it was
reasonable to suppose that a higher level of socio-technical
congruence would be associated with fewer occurrences of
community smells. Our results support this hypothesis since,
in over 50 percent of analysed projects, an increase in socio-
technical congruence strongly correlates to a decrease of two
smells—Organisational Silo and Lone Wolf. Also, considering
the scatter plot in Fig. 10 and the regression therein, it was
possible to identify a quality threshold of 0.5 for socio-technical
congruence. Over this threshold the number of detected com-
munity smellswere overmedian values.

Fig. 9. Community Smells versus Sponsored Developers.

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

5.3.4 Community Smells versus Community Structure

A number of community structure factors were also
investigated as possible predictors for community smells.
For example, the number of core community members
correlates to additional occurrences of Organisational Silo
(27 percent of analysed projects), Lone Wolf (28 percent
of analysed projects) and Bottleneck (30 percent of ana-
lysed projects) smells. Specifically, our data shows that
an increment in the number of core developers belonging
to the collaboration DSN was associated with higher
numbers of Organisational Silo in 80 percent of analysed
projects and of Lone Wolf in 93 percent of analysed proj-
ects. It is important to highlight that this positive correla-
tion was found both with respect to the number of
developers who were considered core members in just
the collaboration DSN, and with respect to the number
of developers who were considered core members of the
collaboration and the communication DSNs. Therefore,
an increment of any type of core developer in the collab-
oration DSN was correlated to an increment of the num-
ber of occurrences of Organisational Silo and Lone Wolf.
The incidence of core developers in the generation of
additional Community Smells is confirmed by the rela-
tion between a higher ratio of peripheral developers and
a decrease of the number of occurrences ofOrganisational
Silo and Lone Wolf, in 42 percent and in 52 percent of
analysed projects respectively. Furthermore, since a
higher truck number [64] is strongly related to the den-
sity of the collaboration DSN, it follows that the truck-
number itself relates strongly to the emergence of more
Organisational Silo and Lone Wolf smells.

Additionally, in 27 percent of analysed projects, an
increase in the number of core community members
belonging to the communication DSN correlates to a higher
number of occurrences of the Bottleneck smell. In projects
with more than 150 trimestral community members, the
correlation between the number of core community mem-
bers belonging to the global or communication DSNs and
the number of occurrences of Bottleneck is found to be

irrelevant. A possible explanation can be that within big
communities the influence of core community members
tends to decrease; core community members tend to lose
their role of unique knowledge and information brokers in
larger development communities [65]. This explanation is
also motivated by further analyses which revealed that in
43 percent of projects, a higher truck number related to the
communication DSN, thus a higher ratio of peripheral
community members was correlated to an increment of the
number of occurrences of Bottleneck. Therefore, the Bottle-
neck smell is generated by both core and peripheral com-
munity members belonging to the communication DSN
but additional occurrences of Bottleneck generated by core
members tend to be irrelevant in big communities. Consid-
ering the scatter plots represented in Fig. 11 and the linear
regressions therein, it was possible to identify the follow-
ing quality thresholds for which the amount of detected
Community Smells were above the average values:

Community Quality Thresholds.

� 25 trimestral core community members in the global
DSN. The quality threshold with respect to Lone
Wolf and Bottlenecksmells was a bit higher (30 in
both cases), but since the threshold with respect
to Organisational Silowas 25, it was selected as the
global threshold for the number of core commu-
nity members within the global DSN;

� 9 trimestral core developers in the collaboration DSN;
� 30 trimestral core community members in the commu-

nication DSN;
� 0.8 for the truck number of the collaboration DSN;
� 0.55 for the truck number of the communication DSN.

5.3.5 Community Smells versus Number of Quitters

Within small communities, the quitting of members previ-
ously involved in Community Smells generates additional
smells. In projects with fewer than 50 trimestral community
members a positive correlation was found between the
number of members who left the community and who were
implicated in at least one Community Smell in the previous
3 months, and the number of occurrences of Organisational
Silo and Lone Wolf smells.

Even if the centrality of the global Developer Social Net-
work was not associated with an increase or decrease of the
number of occurrences of community smells at a global
level, several strong correlations were found considering
different categories of FLOSS development communities:

� in projects with fewer than 50 trimestral community
members, the increase of closeness centrality was
associated with additional occurrences of the Organi-
sational Silo smell;

� in projects with more than 150 trimestral community
members, the increase of betweenness centrality was
associated with additional occurrences of Black Cloud
smell;

Table 8 shows an overview of all the relevant correlations
found between quality factors from the state of the art (see
Table 3) and Community Smells; positive correlations are
identified by the “+” sign while the negative ones with a “-”.

Fig. 10. Community Smells versus Socio-Technical Congruence.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 645

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

5.3.6 Community Smells versus Turnover

Cataldo et al. [66] show that if a software developer commu-
nity is stable, then its socio-technical congruence increases
linearly over time. Thus, it was reasonable to hypothesise
that a lower turnover is associated with a lower number of
Community Smells. Our results reveal that this is not true
in general. Rather, in the case of Lone Wolf effects, a higher
turnover of core developers belonging to the collaboration
DSN correlates strongly to a decrease of the number of
occurrences of the Smell. In projects with fewer than 50 tri-
mestral community members this correlation becomes irrel-
evant; none of the turnover metrics were found to have a
correlation with any community smell in such projects.
Conversely, in projects with more than 150 trimestral com-
munity members the turnover of core developers negatively
correlates with the emergence of additional Organisational
Silo smells and the turnover of global core community mem-
bers was found to be negatively correlated with both Organ-
isational Silo and Lone Wolf community smells. In summary,
even if it was evident that turnover of core developers does
in fact influence the presence of community smells, it was
not possible to identify a quality threshold.

5.3.7 Discussion: Relations with State of the Art

Factors

In our investigation of factors from the state of the art, we
noticed several thresholds playing a role in community

smell emergence. However, we noticed that the only factor
which strongly correlates with all smells reported across
our dataset was the number of community members. It is
not surprising that community smells increase as the num-
ber of community members increases but, perhaps more
importantly, the number of occurrences of all community
smells grows quadratically until the threshold of 200 commu-
nity members is reached. After this threshold the occur-
rences tend to stabilise (see Fig. 12).

In combination with the above number of 200 developers
recall that several factors fluctuated around a threshold of
50 members. This also means that major fluctuations of
community smells fluctuate in the range 50< 150 < 200, a
range very close to Dunbar’s Number [67], [68], [69] of 150.
This number theoretically dictates the number of people in
a community required to reach organisational saturation
and stability. Further investigation of this and similar
organisational theories from SNA may reveal even more
stability thresholds and characteristics to be used for
improved governance, participation, engagement, and sus-
tainability of open-source communities at large.

Summary for RQ3. We conclude that several factors
from the state of the art relate strongly to community
smells. Not surprisingly, factors that are health indica-
tors for community structure (e.g., socio-technical con-
gruence) are correlated with smells: the better the
congruence the fewer smells we find. Conversely, we
report several relations with theories and conjectures
from organisations and social-networks research which
are still unproven and are not investigated in the scope
of existing software engineering research.

5.4 Refactoring Software Communities: Smells and
Factors Trade-Offs

Our data indicates that community smells and socio-technical
factors may jointly be used to refactor software communities

Fig. 11. Community Smells versus Community Structure Social Network
Features.

TABLE 8
Summary of Quality Factors Correlated to Community Smells

Quality factor (ID) Organisational Silo Effect Bottleneck Lone Wolf

devs + + +
ml.only.devs +
code.only.devs + +
ml.code.devs +
perc.ml.only.devs - -
perc.code.only.devs + +
sponsored.devs + +
st.congruence - -
communicability - -
ratio.smelly.devs + + +
core.global.devs + + +
core.mail.devs +
core.code.devs + +
mail.truck +
code.truck - -
mail.only.core.devs +
code.only.core.devs + +
ml.code.core.devs + +
ratio.mail.only.core - -
ratio.code.only.core + +
core.code.turnover -
mail.mod -

The Black Cloud smell is missing and largely absent across our dataset.

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

for improved organizational quality. In that respect, however,
several observations can bemade.

First, there are underlying forces in action which are yet to
be discovered and elaborated fully and that relate to the coun-
terbalance between factors and their mediating role with
respect to community smells. For example, plots in Fig. 11
outline the interactions between several smells and a specific
quality factor but the cross-relations between factors and their
counterbalancing effect needs to be weighted against the sin-
gle factor’s role as a mediator for more or less community
smells of a specific type. In the specific case highlighted by
Fig. 11 the bottom-left plot points out to the clear relation
between radio-silence effects and the truck factor; in that spe-
cific instance, however, there exist several outliers wherefore
a high truck factor corresponds to few smells and the opposite
conditions are true as well. The aforementioned conditions
reflect a trade-off that needs to be evaluated when fine-tuning
with community structures, e.g., with specific communication
protocols. For example, reducing the truck factor by increas-
ing the modularization of the community positively influen-
ces the ratio of radio silence effects, but, at the same time, the
action weighs negatively on Organisational Siloes which are
connected to overlymodularised community structures.

Similarly, organisational structures are fluidly evolving
networks [70] where sub-optimal effects often occur in stages
following a fuzzy logic at best [40]. Consider for example the
plot in Fig. 10: the plot distinctively identifies at least three
stages of considerable socio-technical congruence value den-
sity, namely, STC = 0, STC’ 0,30 and STC > 0,50; given these
three stages, practitioners and community leaders would
need to experiment with each along with different communi-
cation and/or collaboration protocols in an effort to strike a
balance between their own desired/optimal values of STC
with respect to other desired parameter levels. For example,
focusing on Fig. 10, the stage inwhich STC = 0 offers evidence
of considerable variance between the numbers of Organisa-
tional Siloes, which itself reflects the existence of other possible
mediators to be acted upon.

In summary, these aforementioned observations clearly
indicate the need for further quantitative and qualitative
empirical experimentation on the route to figuring out
appropriate community refactoring mechanisms and pat-
terns. Said patterns are likely to consist of interactions
among smells and sets of socio-technical factors. This work
acts a first keystone towards this exploration.

5.5 Observations and Impact

The findings captured in the previous sections have several
impacts in the state of research and practice in software
engineering.

First, the thresholds we identified could be used as stabil-
ity metrics to be combined with data and inputs from sites
such as OPENHUB and BITERGIA, to evaluate the participation
or adoption of specific open-source products. For example,
community activity and stability around a specific software
component may need to be evaluated in order to reduce the
risks connected to adopting that component in the first
place. Our results can offer a lens of analysis and a series of
thresholds to evaluate whether the quality of a certain com-
munity is sufficient enough for adoption. At the same time,
community smells and their detection can be used as a
means to mitigate the connected risks—for example, practi-
tioners can re-modularise their products to work around
smelly components and communities.

Furthermore, from a research perspective, academicians
can further the study and understanding over the relations
of more complex patterns of software engineering organisa-
tional structures with respect to more complex patterns of
software (e.g., architectural or design patterns, etc.) as well
as known code quality issues and metrics in the scope of
software maintenance and evolution activities.

In addition, from a closed-source perspective, the tool we
provide can offer a valuable basis to enact continuous com-
munity improvement in the scope of DevOps pipelines
wherefore the quality of the organisation is as much impor-
tant as the quality of the product underneath.

6 VERIFIABILITY AND THREATS TO VALIDITY

6.1 Verifiability

As pointed out throughout this article, we encourage repli-
cation of this study to more deeply study community smells
and to characterise the forces around social debt. To support
this goal, first we have created a complete report [71] with
the full details of the study design, from the literature analy-
sis that drove its inception to the entire span of the evalua-
tion (partially) reported in this article. Second, we prepared
a detailed explanation of the set-up and execution for the
data-mining and analysis tools used throughout our work.5

Fig. 12. Scatter plots for global DSN community members and three community smells. The threshold around 200 members is evident.

5. https://github.com/smnmgn/codeface

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 647

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

https://github.com/smnmgn/codeface

Finally, we prepared an online appendix [45] reporting fine-
grained details on the analyses conducted. We hope this
material can support both replication of this study and the
further study of community smells from other perspectives.

6.2 Threats to Validity

In the following, we discuss the threats that might have
affected our findings, and how we have mitigated these
threats.

Construct Validity. Threats to construct validity are related
to the relationships between theory and observation. Gener-
ally, this threat is constituted by imprecision in performed
measurements. The part of the study related to community
smell identification is affected by construct validity since the
metrics of our quality model may have been implemented in
our tool in a “biased” way. For example, the operationalisa-
tion that we exploit stems from previous work of Joblin et al.,
who refined and operationalised the concept of verified com-
munity [14]. Community structures are detected through a
series of methodological triangulations (code function level,
commit level and communication level approaches) vali-
dated based on comparisons with null-models, hence the
term ‘verified’. This notwithstanding, the operationalisation
they provide could still suffer from the consequence of
unknown organisational circumstances. Furthermore, the
operationalisation we adopt looks for instances of smells fol-
lowing the definitions in the strictest sense. That is, for exam-
ple, in the case of the Black Cloud and Lone Wolf effects, no
communication needs to be observed but look for this effect
over a period of two consecutive time-windows (i.e., 6
months). This is because the smell has a meaningful observ-
able effect when manifests over such a time window; at the
same time, the smell may persist even if after such a timewin-
dow there is in fact communication which is intermittent or
by the interposition of an external “intruder”.

Likewise, the survey was phrased to identify such instan-
ces, since they were less common and more difficult to iden-
tify based on our quantitative empirical data. These
approaches are themselves empirically-derived and may be
compromising the validity of our theoretical constructs.
Also, part of our study is based on survey results, so con-
struct validity may be compromised by developer percep-
tions. To mitigate possible biases, we first inquired
participants indirectly, as recommended by Fisher [51]: this
was due to the fact that participants of survey studies might
be reluctant to express negative or controversial opinions
on topics they are too much involved in. Then, we perform
confirmatory semi-structured interviews to ask developers
direct experiences with community smells. Besides employ-
ing such established research techniques, we were not able
to mitigate these threats further. Therefore the study
remains potentially affected.

Internal Validity. Threats to internal validity are related to
factors that could have influenced our results but which
were not accounted for. Concerning community smell iden-
tification, one factor that might have impacted on our ability
to correctly detect smells concerned how the communica-
tion network was built. Specifically, we relied on mailing
lists to mine the communications among developers, but
there might be additional channels where community mem-
bers communicate with each other. While this is a limitation

of our approach, it is worth discussing this point further by
clarifying three important points:

� 95 percent of the open-source communities investi-
gated in this work (and, in fact, the vast majority of
existing communities) explicitly state in the contribu-
tion guidelines that mailing lists represent the main
channel to give and get updates about the status of
the project. For instance, the first requirement to get
involved in the Apache Mahout project6 is to join the
’user’, ’development’, and ’commit’ lists, to
help others, join discussions of changes, and be
informed of new commits, respectively. Moreover,
the project explicitly states that “discussions at Apache
happen on the mailing list”. In other words, mailing
lists represent the main communication channel in
open-source projects: we believe that this aspect sup-
ports our choice of methodology to identify commu-
nity smells.

� Despite the prominent role of mailing lists, we can-
not exclude that some communications are con-
ducted by developers using other channels (e.g.,
Skype). However, the mining of such channels
would (i) not be practical, e.g., there is no way to
access the Skype data of a developer, and (ii) more
importantly, have important privacy implications.

� We included confirmatory survey questions as part
of the questionnaire used to infer our original quality
model. Survey results [71] strongly support that proj-
ect mailing lists were indeed the key communication
channel used across the community for almost 87
percent of survey respondents.

For these reasons, we believe that mailing lists represent
a sufficiently accurate information source to study commu-
nication and collaboration among developers. As further
proof, it is worth mentioning that the CODEFACE approach
was empirically validated by the original authors [72]: one
of their main findings was that the verified community
structure detected by CODEFACE was in line with the devel-
oper networks built using the manual certificate-of-origin
reporting systems that documented code changes. Thus, the
methodology appears suitable to properly capture real-
world collaborations.

In the context of RQ2 we evaluated developer perception
of community smells by conducting a questionnaire involv-
ing 172 contributors coming from 11 of the 60 projects con-
sidered. While this sample might not reflect the perceptions
of developers in other communities, we argue that our anal-
ysis provides important insights on the perceived impact of
community smells. Furthermore, the additional confirma-
tory analysis made by means of semi-structured interviews
allows us to be more confident about the reported findings.
Notwithstanding, additional experiments and replications
of our work would be desirable. A factor that might have
influenced the respondents’ perception of community
smells could be their level of experience in open-source
projects. To control for this aspect we computed two well-
established metrics—commit- and project-tenure [58]—by
mining Github repositories, and we computed statistical

6. https://mahout.apache.org/developers/how-to-contribute

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

https://mahout.apache.org/developers/how-to-contribute

tests to verify the correlation between developers’ experi-
ence and perception of community smells. However, fur-
ther analyses of how experience impacts community smells
should be carried out in future studies.

Furthermore, we must acknowledge that the exploration
of our study subject (namely community structure patterns)
is subject to many biases from the members of the commu-
nities. On one hand, it was our research design decision to
confirm the validity of the tool in detecting community
smells, reflecting actual sub-optimal conditions, thus avoid-
ing, in the scope of RQ2, explicit questions phrased to
directly assess the smells themselves. This decision was
made explicitly to avoid any bias connected to our confir-
matory evaluation connotation [73], [74]. On the other hand,
this still constitutes a threat to validity—we were not able to
directly and consistently confirm all questions with their
single nasty effects, which would require an additional con-
firmatory study (which is currently being planned).

In the context of RQ3, when looking at the relationship
between the community smells and socio-technical metrics
we did not normalise the number of smells but relied on the
absolute values. This might have potentially affected our
interpretations: to understand whether and how much the
results would have been affected, we re-run our analyses
while normalising the number of community smells based
on the number of community members: in other words, we
considered the relation between the density of community
smells and the other socio-technical factors considered. As a
result, the findings achieved do not change when compared
to those reported in Section 5.3. This indicates that, indepen-
dently from the normalisation, the relations between com-
munity smells and socio-technical factors highlighted hold.
A complete report of these additional analyses is available
in our online appendix [45].

External Validity. Threats to external validity are related
to the generalisation of obtained results. Our tool support
CODEFACE4SMELLS currently considers only four indicators of
social debt but there are doubtless many community smells
yet to uncover. Also, in our evaluation, our analysis was
made over a total of 60 FLOSS projects, strengthening the
generality of our findings. However, these results might be
influenced by the temporal window we selected for our
analysis (3 months) as well as myriad other factors that we
could not control for.

7 RELATED WORK

This section describes the related work that is the founda-
tion for our contributions, ranging from research on Con-
way’s Law [75] to efforts that capture and empirically
evaluate the impact of organisational structure quality to
code and general product quality. We also review research
on the dimensions that affect community quality in a global
software engineering context.

Since the original inception of Conway’s Law, positing the
relationship between the structure of a system and the struc-
ture of the organisation that designed it, several studies have
tried to understand more about this intriguing relation. For
example, the works by Cataldo et al. and Herbsleb et al.
around socio-technical congruence [7], [8], [76] study software
development as a social-technical activity, in which the

technical and the social components need to be aligned to suc-
ceed. These and similar works introduce valuable socio-tech-
nical factors to be addressed and tracked for software
communities to succeed. The fundamental component, Herb-
sleb [77], Damian [78] and others say, is to achieve an effective
coordination among teams, whose organisational structure is
a key dimension that should be considered asmuch as project
plans, processes and coordinationmechanisms [76].

These insights are also reinforced by evidence regarding
the opposite influence—for example, in 2010 Colfer and
Baldwin [79] complemented Conway’s law verifying the
validity of their “mirroring hypothesis”, which assumed
that the organisational patterns of a development commu-
nity (e.g., team co-membership and geographic distribution,
communication links) mirror the technical dependency pat-
terns of the software under development. With respect to
these works, the results outlined in this paper take a non-
trivial further step. Building upon the state of the art, our
intent was to gather metrics to evaluate the health status of
software engineering communities, formulating the thresh-
olds needed to automatically detect and “diagnose” com-
munity problems we observed in industry that lead to
social debt [13]. Although mainly validated in open-source
projects our model and appraisal approach and tools can be
used effectively on any DSN [4], given that the foundations
of the theory behind the model (i.e., social debt and commu-
nity smells) were elaborated solely on large-scale distrib-
uted industrial case-studies [9], [17].

Moreover, there is much research related to our inten-
sions, e.g., in terms of providing effective ways to study the
success (and failure) factors of global software engineering.
For example, In 2002 Herbsleb and Mockus carried out an
initial social-network analysis featuring mailing lists, code
repositories and issue tracking systems of two important
FLOSS projects and analysed developer participation and
community metrics [80], [81]. Herbsleb and Mockus con-
cluded that higher levels of organisational modularity indi-
cate a lower coordination need and that a “communication-
only” approach in a distributed software development envi-
ronment, such as a FLOSS ecosystem, does not scale because
communication channels will be overwhelmed as the size
and the complexity of the project and community will grow
[81]. Similar results were also confirmed by Bird et al. a
number of years later both in open- [82] and closed-source
[83] projects. Also, Nagappan et al. [1] analysed the relation
between organisational structure and software quality.
They proposed eight measures to quantify organisational
complexity from the code viewpoint and empirically evalu-
ated their efficacy to identify failure-prone binaries in a
commercial project. The failure-proneness prediction model
based on the organisational metrics outperformed tradi-
tional technical metrics (e.g., code churn, code complexity,
LOC). Even more recently, the work of Lavallee et al. [84]
analysed the relationships between several organisational
factors and their impact on developers’ working conditions
and performance. Lavallee et al. identified several socio-
technical organisational issues (i.e., community smells [9])
that compromise software quality and its success, e.g., the
truck number across the community structure.

In the same way, we argue that a key number of organisa-
tional and socio-technical dynamics, inherited from social-

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 649

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

network research [10], need to be studied and tracked to
ensure the performance and organisational health for soft-
ware development communities. In this paper we present a
tool to aid in this endeavour, constructed from prior theories
and from the social debt and community smells we observed
through industry case-study research. Our tool was evalu-
ated on over 60 open-source projects and did indeed reveal
key insights on communities health. To the best of our knowl-
edge the tool we propose is the first of its kind: its key benefit
is that of offering confirmed community quality dimensions
and thresholds for diagnosing potentially expensive organi-
sational and socio-technical community smells that may be
introducing friction inDevOps lifecycles.

8 CONCLUSIONS

8.1 Contributions

This paper introduces, elaborates, and evaluates the diffuse-
ness, developer perception, and impact of community
smells—detrimental socio-technical circumstances that
increase social debt [9], [17]—across large, distributed open-
source communities. We contribute to the state of the art by
quantitatively illustrating the occurrences of community
smells across over 100 years worth of historical commit and
communication data for 60 open-source projects. Also, we
confirm the value of our contributions showing, via a sur-
vey, the impacts that open-source developers perceive
regarding smells in their own communities. Finally, we con-
tribute to the state of the art using known and previously
studied socio-technical quality factors to discover several
quality thresholds that strongly correlate with community
smell stability over time.

We have made all of our tools and data available for
other researchers to use, and for replication purposes.

8.2 Conclusion

We conclude that community smells are indeed a force to be
reckoned with. But, just as important, we have discovered
several thresholds over measurable socio-technical quality
factors that aid in the prediction and mitigation of commu-
nity smells along with any connected nasty effects.

8.3 Future Work

In the future work we plan to strengthen the usability and
evaluation of our tool, experimenting further with its dimen-
sions based on additional evaluation. Also, we plan to evalu-
ate the tool from a technical perspective, i.e., answering the
research question “what factors from the model reflect better
technical quality?”. In addition, we plan to merge our tool
support with the main CODEFACE distribution, aiding its soft-
ware community improvement potential.

Furthermore, in recognising the limitations of the current
implementation of CODEFACE4SMELLS tool, we plan to further
provide additional operationalisations that cover the
remaining community smells which were not further
explored in the scope of this study. For example, stemming
from the remaining community smells identified in previ-
ous work [9], we aim at further investigating what other
community smells can be operationalised using open-data
available from software repositories other than GitHub, as
well as the feasibility of using non-conventional techniques

(e.g., Neuro-linguistic programming, natural language
processing, sentiment analysis, etc.) to operationalise the
remaining community smells from the state of the art.
Finally, the patterns and community smells we analyse
were operationalised in an rather ’assertive’ fashion, mean-
ing that the patterns themselves have no weights associated
to them (e.g., if a Lone Wolf is a more experienced developer
or whether a Bottleneck effect separates very large communi-
ties)—disregarding these aspects constitutes a required sim-
plification for the nature of this study but should be
addressed with future work.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Simone Magnoni to the
definition and refinement of the contents of this study and to
Prof. Dr. Elisabetta Di Nitto for the feedback she gave during
the inception of this study. Dr. Palomba gratefully acknowl-
edges the support of the SNSF Project named “Data-driven
Contemporary Code Review” (No. PP00P2_170529).

REFERENCES

[1] N. Nagappan, B. Murphy, and V. Basili, “The influence of organi-
zational structure on software quality: An empirical case study,”
in Proc. Int. Conf. Softw. Eng., May 2008, pp. 521–530. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368160

[2] M. Saeki, “Communication, collaboration, and cooperation in soft-
ware development-how should we support group work in soft-
ware development?” in Proc. Asia Pacific Softw. Eng. Conf., 1995,
pp. 12–21. [Online]. Available: http://dblp.uni-trier.de/db/conf/
apsec/apsec1995.html#Saeki95

[3] Y. Dittrich, J. Norbjerg, P. Tell, and L. Bendix, “Researching coop-
eration and communication in continuous software engineering,”
in Proc. IEEE/ACM 11th Int. Workshop Cooperative Human Aspects
Softw. Eng., 2018, pp. 87–90. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icse/chase2018.html#DittrichNTB18

[4] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer social
networks predict failures?” in Proc. 16th ACM SIGSOFT Int. Symp.
Foundations Softw. Eng., 2008, pp. 2–12.

[5] C. Bird, N. Nagappan, H. C. Gall, B. Murphy, and P. T. Devanbu,
“Putting it all together: Using socio-technical networks to predict
failures,” in Proc. 20th Int. Symp. Softwa. Rel. Eng., 2009, pp. 109–119.
[Online]. Available: http://dblp.uni-trier.de/db/conf/issre/
issre2009.html#BirdNGMD09

[6] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social
debt in software engineering: insights from industry,” J. Internet
Serv. Appl., vol. 6, no. 1, pp. 10:1–10:17, 2015.

[7] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and
work dependencies on software development productivity,” in
Proc. 2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas., 2008,
pp. 2–11. [Online]. Available: http://dblp.uni-trier.de/db/conf/
esem/esem2008.html#CataldoHC08

[8] J. D. Herbsleb, M. Cataldo, D. Damian, P. T. Devanbu,
S. M. Easterbrook, and A. Mockus, “Socio-technical congru-
ence (stc 2008),” in Proc. Int. Conf. Softw. Eng. Companion, 2008,
pp. 1027–1028, 978–1-60558-079-1. [Online]. Available: http://
dblp.uni-trier.de/db/conf/icse/icsec2008.
html#HerbslebCDDEM08

[9] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social
debt in software engineering: Insights from industry,” J. Internet
Serv. Appl., vol. 6, no. 1, pp. 10:1–10:17, 2015. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jisa/jisa6.
html#TamburriKLV15

[10] D. A. Tamburri, P. Lago, and H. V. Vliet, “Organizational social
structures for software engineering,” ACM Comput. Surv., vol. 46,
no. 1, pp. 3:1–3:35, Jul. 2013. [Online]. Available: http://doi.acm.
org/10.1145/2522968.2522971

[11] M. Fowler, Refactoring: Improving Des. Existing Code. Boston, MA,
USA: Addison-Wesley, 1999.

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/1368088.1368160
http://dblp.uni-trier.de/db/conf/apsec/apsec1995.html#Saeki95
http://dblp.uni-trier.de/db/conf/apsec/apsec1995.html#Saeki95
http://dblp.uni-trier.de/db/conf/icse/chase2018.html#DittrichNTB18
http://dblp.uni-trier.de/db/conf/icse/chase2018.html#DittrichNTB18
http://dblp.uni-trier.de/db/conf/issre/issre2009.html#BirdNGMD09
http://dblp.uni-trier.de/db/conf/issre/issre2009.html#BirdNGMD09
http://dblp.uni-trier.de/db/conf/esem/esem2008.html#CataldoHC08
http://dblp.uni-trier.de/db/conf/esem/esem2008.html#CataldoHC08
http://dblp.uni-trier.de/db/conf/icse/icsec2008.html#HerbslebCDDEM08
http://dblp.uni-trier.de/db/conf/icse/icsec2008.html#HerbslebCDDEM08
http://dblp.uni-trier.de/db/conf/icse/icsec2008.html#HerbslebCDDEM08
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://doi.acm.org/10.1145/2522968.2522971
http://doi.acm.org/10.1145/2522968.2522971

[12] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainabil-
ity of code smells: A large scale empirical investigation,” Empirical
Softw. Eng., vol. 23, no. 3, pp. 1188–1221, 2018.

[13] D. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is
social debt in software engineering?” in Proc. 6th Int. Workshop
Cooperative Human Aspects Softw. Eng., May 2013, pp. 93–96.

[14] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, “From
developer networks to verified communities: A fine-grained
approach,” in Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 563–573.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icse/
icse2015-1.html#JoblinMASR15

[15] E. Allman, “Managing technical debt,” Commun. ACM, vol. 55, no.
5, pp. 50–55, 2012. [Online]. Available: http://dblp.uni-trier.de/
db/journals/cacm/cacm55.html#Allman12

[16] C. B. Seaman, R. L. Nord, P. Kruchten, and I. Ozkaya, “Technical
debt: Beyond definition to understanding report on the sixth inter-
national workshop on managing technical debt,” ACM SIGSOFT
Softw. Eng. Notes, vol. 40, no. 2, pp. 32–34, 2015. [Online]. Avail-
able: http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.
html#SeamanNKO15

[17] D. A. Tamburri and E. D. Nitto, “When software architecture
leads to social debt,” in Proc. 12th Working IEEE/IFIP Conf. Softw.
Archit., 2015, pp. 61–64. [Online]. Available: http://dblp.uni-trier.
de/db/conf/wicsa/wicsa2015.html#TamburriN15

[18] S. Wasserman and K. Faust, Social Network Analysis. Methods and
Applications. Cambridge, U.K.: Cambridge Univ. Press, 1994.

[19] D. Pugh and M. Weber, Eds., Org. theory, 2nd ed.. Harmonds-
worth, Middlesex: Penguin Books, 1984. [Online]. Available:
http://gso.gbv.de/DB=2.1/CMD?
ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn
+022044973&sourceid=fbw_bibsonomy

[20] A. Rapoport, “Contribution to the theory of random and biased
nets,” Bulletin Math. Biol., vol. 19, pp. 257–277, 1957. [Online].
Available: http://dx.doi.org/10.1007/BF02478417

[21] R. K. Merton, Social Theory and Social Structure. New York, NY,
USA: The Free Press, 1968.

[22] M. Prilla, “Supporting collaborative reflection at work: A socio-
technical analysis,” AIS Trans. Human-Comput. Interaction, vol. 7,
pp. 1–17, 2015.

[23] J. S. Coleman, Microfoundations and Macrosocial Behavior. Berkley,
CA, USA: Univ. California Press, 1987, pp. 153–176.

[24] M. M. Burnett and B. A. Myers, “Future of end-user software engi-
neering: beyond the silos,” in Proc. Future Softw. Eng., 2014,
pp. 201–211. [Online]. Available: http://dblp.uni-trier.de/db/
conf/icse/fose2014.html#BurnettM14

[25] M.-A. D. Storey, L. Singer, B. Cleary, F. M. F. Filho, and
A. Zagalsky, “The (r) evolution of social media in software engi-
neering,” in Proc. Future Softw. Eng., 2014, pp. 100–116. [Online].
Available: http://dblp.uni-trier.de/db/conf/icse/fose2014.
html#StoreySCFZ14

[26] S. Alter, “Sidestepping the it artifact, scrapping the is silo, and lay-
ing claim to ”systems in organizations”,” Commun. Assoc. Inf.
Syst., vol. 12, 2003, Art. no. 30. [Online]. Available: http://dblp.
uni-trier.de/db/journals/cais/cais12.html#Alter03b

[27] N. Levina and E. Vaast, “The emergence of boundary spanning
competence in practice: Implications for implementation and use
of information systems,” MIS Quart., vol. 29, no. 2, pp. 335–363,
2005. [Online]. Available: http://dblp.uni-trier.de/db/journals/
misq/misq29.html#LevinaV05

[28] D. Gotterbarn, “Professional trust and privacy: the dangers of silo
thinking,” Inroads, vol. 3, no. 2, pp. 4–5, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/inroads/inroads3.
html#Gotterbarn12

[29] W. van Osch, C. Steinfield, and Y. Zhao, “Spanning the boundary:
Measuring the realized and lifecycle impact of distinct boundary
spanning activities on project success and completion,” in Proc.
50th Hawaii Int. Conf. Syst. Sci., 2017. [Online]. Available: http://
dblp.uni-trier.de/db/conf/hicss/hicss2017.html#OschSZ17

[30] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role
in community shepherding,” IEEE Softw., vol. 33, no. 6, pp. 70–79,
Nov.-Dec. 2016.

[31] F. Palomba, D.A.A. Tamburri, F. A. Fontana, R.Oliveto,A. Zaidman,
and A. Serebrenik, “Beyond technical aspects: How do community
smells influence the intensity of code smells?” IEEE Trans. Softw.
Eng., 2018, doi: 10.1109/TSE.2018.2883603.

[32] K. Stein, “Moving from dyad to triad: A triangular interdependent
perspective on brand relationships,” Ph.D. dissertation, Univ.
Mainz, Mainz, Germany, 2013.

[33] F. Leistner, Connecting Organizational Silos: Taking Knowledge Flow
Management to the Next Level with Social Media. Hoboken, NJ, USA:
Wiley, 2012.

[34] O. Serrat, “Bridging organizational silos,” in Knowledge Solutions.
Berlin, Germany: Springer, 2017, pp. 711–716.

[35] D. A. Tamburri, P. Lago, and H. van Vliet, “Uncovering latent
social communities in software development,” IEEE Softw.,
vol. 30, no. 1, pp. 29–36, Jan./Feb. 2013. [Online]. Available:
http://dblp.uni-trier.de/db/journals/software/software30.
html#TamburriLV13

[36] Q. Huang, H. Liu, and X. Zhong, “The impact of transactive mem-
ory systems on team performance,” IT People, vol. 26, no. 2,
pp. 191–212, 2013. [Online]. Available: http://dblp.uni-trier.de/
db/journals/itp/itp26.html#HuangLZ13

[37] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, 1st ed.. Cambridge, U.K.: CambridgeUniv. Press, 1994.

[38] M. Newman, “Fast algorithm for detecting community structure
in networks,” Phys. Rev. E, vol. 69, Sep. 2003, Art. no. 066133.
[Online]. Available: http://arxiv.org/abs/cond-mat/0309508

[39] C. Gkantsidis, M. Mihail, and E. W. Zegura, “The markov chain
simulation method for generating connected power law random
graphs,” in Proc. 5th Workshop Algorithm Eng. Experiments, 2003,
pp. 16–25. [Online]. Available: http://dblp.uni-trier.de/db/conf/
alenex/alenex2003.html#GkantsidisMMZ03

[40] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman,
“Discovering community types in open-source: A systematic
approach and its evaluation,” Empirical Softw. Eng., pp. 1–49,
Jul. 2017.

[41] S. P. Borgatti, K. M. Carley, and D. Krackhardt, “On the robust-
ness of centrality measures under conditions of imperfect data,”
Social Netw., vol. 28, no. 2, pp. 124–136, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/
S0378873305000353

[42] D. Krackhardt and M. Kilduff, “Structure, culture and simme-
lian ties in entrepreneurial firms,” Social Netw., vol. 24, no. 3,
pp. 279–290, 2002. [Online]. Available: http://dblp.uni-trier.de/
db/journals/socnet/socnet24.html#KrackhardtK02

[43] P. J. Hinds, K. M. Carley, D. Krackhardt, and D. Wholey,
“Choosing work group members: Balancing similarity, compe-
tence, and familiarity,” Organizational Behavior Human Decision
Processes, vol. 81, no. 2, pp. 226–251, 2000.

[44] D. Krackhardt, “Predicting with networks: Nonparametric multi-
ple regression analysis of dyadic data,” Social Netw., vol. 10, no. 4,
pp. 359–381, 1988.

[45] D. Tamburri, F. Palomba, and R. Kazman, “Exploring community
smells in open-source: An automated approach,” 2018. [Online].
Available: https://www.mediafire.com/folder/d429grc6jah32/

[46] Student, “An experimental determination of the probable error of
dr spearman’s correlation coefficients,” Biometrika, vol. 13,
pp. 263–282, 1921.

[47] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd
ed. Mahwah, NJ, USA: Lawrence Earlbaum Associates, 1988.

[48] K. J. Hunt, N. Shlomo, and J. Addington-Hall, “Participant recruit-
ment in sensitive surveys: a comparative trial of ?opt in?versus ?
opt out?approaches,” BMC Medical Res. Methodology,
vol. 13, no. 1, 2013, Art. no. 3.

[49] W. Sugar, Studies of ID Practices: A Review and Synthesis of Research
on ID Current Practices. Berlin, Germany: Springer, 2014.

[50] R. Likert, “A technique for the measurement of attitudes,” Archives
of Psychology, NewYork:, NY, USA: The Science Press, 1932.

[51] R. J. Fisher, “Social desirability bias and the validity of indirect
questioning,” J. Consumer Res., vol. 20, no. 2, pp. 303–315, 1993.

[52] K. Kelley, B. Clark, V. Brown, and J. Sitzia, “Good practice in the
conduct and reporting of survey research,” Int. J. Qual. Health
Care, vol. 15, no. 3, pp. 261–266, 2003.

[53] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel
approach for estimating truck factors,” in Proc. IEEE 24th Int.
Conf. Program Comprehension, 2016, pp. 1–10.

[54] D. A. Tamburri and E. D. Nitto, “When software architecture
leads to social debt,” in Proc. 12th Work. IEEE/IFIP Conf. Softw.
Archit., 2015, pp. 61–64.

[55] H. Sharp and H. Robinson, “Some social factors of software engi-
neering: the maverick, community and technical practices,” ACM
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–6, 2005.

TAMBURRI ET AL.: EXPLORING COMMUNITY SMELLS IN OPEN-SOURCE: AN AUTOMATED APPROACH 651

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

http://dblp.uni-trier.de/db/conf/icse/icse2015-1.html#JoblinMASR15
http://dblp.uni-trier.de/db/conf/icse/icse2015-1.html#JoblinMASR15
http://dblp.uni-trier.de/db/journals/cacm/cacm55.html#Allman12
http://dblp.uni-trier.de/db/journals/cacm/cacm55.html#Allman12
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#SeamanNKO15
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#SeamanNKO15
http://dblp.uni-trier.de/db/conf/wicsa/wicsa2015.html#TamburriN15
http://dblp.uni-trier.de/db/conf/wicsa/wicsa2015.html#TamburriN15
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022044973&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022044973&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022044973&sourceid=fbw_bibsonomy
http://dx.doi.org/10.1007/BF02478417
http://dblp.uni-trier.de/db/conf/icse/fose2014.html#BurnettM14
http://dblp.uni-trier.de/db/conf/icse/fose2014.html#BurnettM14
http://dblp.uni-trier.de/db/conf/icse/fose2014.html#StoreySCFZ14
http://dblp.uni-trier.de/db/conf/icse/fose2014.html#StoreySCFZ14
http://dblp.uni-trier.de/db/journals/cais/cais12.html#Alter03b
http://dblp.uni-trier.de/db/journals/cais/cais12.html#Alter03b
http://dblp.uni-trier.de/db/journals/misq/misq29.html#LevinaV05
http://dblp.uni-trier.de/db/journals/misq/misq29.html#LevinaV05
http://dblp.uni-trier.de/db/journals/inroads/inroads3.html#Gotterbarn12
http://dblp.uni-trier.de/db/journals/inroads/inroads3.html#Gotterbarn12
http://dblp.uni-trier.de/db/conf/hicss/hicss2017.html#OschSZ17
http://dblp.uni-trier.de/db/conf/hicss/hicss2017.html#OschSZ17
http://dx.doi.org/10.1109/TSE.2018.2883603
http://dblp.uni-trier.de/db/journals/software/software30.html#TamburriLV13
http://dblp.uni-trier.de/db/journals/software/software30.html#TamburriLV13
http://dblp.uni-trier.de/db/journals/itp/itp26.html#HuangLZ13
http://dblp.uni-trier.de/db/journals/itp/itp26.html#HuangLZ13
http://arxiv.org/abs/cond-mat/0309508
http://dblp.uni-trier.de/db/conf/alenex/alenex2003.html#GkantsidisMMZ03
http://dblp.uni-trier.de/db/conf/alenex/alenex2003.html#GkantsidisMMZ03
http://www.sciencedirect.com/science/article/pii/S0378873305000353
http://www.sciencedirect.com/science/article/pii/S0378873305000353
http://dblp.uni-trier.de/db/journals/socnet/socnet24.html#KrackhardtK02
http://dblp.uni-trier.de/db/journals/socnet/socnet24.html#KrackhardtK02
https://www.mediafire.com/folder/d429grc6jah32/

[56] K. Krippendorff, Content Analysis: An Introduction to Its Methodol-
ogy, 2nd ed. Thousand Oaks, CA, USA: Sage Publications, 2004.

[57] J.-Y. Antoine, J. Villaneau, and A. Lefeuvre, “Weighted
krippendorff’s alpha is a more reliable metrics for multi-coders
ordinal annotations: Experimental studies on emotion, opinion
and coreference annotation,” in Proc. 14th Conf. Eur. Chapter Assoc.
Comput. Linguistics, 2014, pp. 550–559. [Online]. Available: http://
dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14

[58] B. Vasilescu, D. Posnett, B. Ray,M. G. van denBrand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in github
teams,” in Proc. 33rd Annu. ACMConf. Human Factors Comput. Syst.,
2015, pp. 3789–3798.

[59] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proc. Int. Conf. Softw. Eng., 2013,
pp. 712–721.

[60] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Prac-
tical Approach, 2nd ed. London, UK: Int. Thomson Computer
Press, 1997.

[61] D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt, “Paid versus
volunteer work in open source,” in Proc. 47th Hawaii Int. Conf.
Syst. Sci., 2014, pp. 3286–3295.

[62] J. Cho, “Globalization and global software development,” Issues
Inf. Syst., vol. 8, no. 2, pp. 287–290, 2007.

[63] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and
work dependencies on software development productivity,” in
Proc. 2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Measurement,
2008, pp. 2–11.

[64] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s truck
factor low?: Theoretical and empirical considerations about the
truck factor threshold,” in Proc. 2nd Int. Workshop Emerging Trends
Softw. Metrics, 2011, pp. 12–18. [Online]. Available: http://dblp.
uni-trier.de/db/conf/icse/wetsom2011.html#TorchianoRM11

[65] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and Valetto,
“Evaluating the effects of architectural documentation: A case
study of a large scale open source project,” IEEE Trans. Softw.
Eng., vol. 42, no. 3, pp. 220–260, Mar. 2016.

[66] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the
design of collaboration and awareness tools,” in Proc. 20th Anniver-
sary Conf. Comput. Supported CooperativeWork, 2006, pp. 353–362.

[67] P. M. Carron, K. Kaski, and R. Dunbar, “Calling dunbar’s
numbers,” Social Netw., vol. 47, pp. 151–155, 2016. [Online]. Avail-
able: http://dblp.uni-trier.de/db/journals/socnet/socnet47.
html#CarronKD16

[68] B. Goncalves, N. Perra, and A. Vespignani, “Modeling users’
activity on twitter networks: Validation of dunbar’s number,”
PLoS One, vol. 6, no. 8, 2011, Art. no. e22656.

[69] J. Zhao, J. Wu, G. Liu, D. Tao, K. Xu, and C. Chen, “Being rational
or aggressive? a revisit to dunbar’s number in online social
networks,”Neurocomputing, vol. 142, pp. 343–353, 2014.

[70] K. M. Carley, “On the evolution of social and organizational
networks,” Special Issue Res. Sociology Organizations Netw. Around
Organizations, vol. 16, pp. 3–30, 1999.

[71] S. Magnoni, D. A. Tamburri, and E. D. Nitto, “A socio-technical
quality model for software engineering organisational structures:
An empirical study,” Copyright - Politecnico di Milano Master Thesis
Series, 2016. [Online]. Available: https://goo.gl/Y9R4KY

[72] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, “From
developer networks to verified communities: A fine-grained
approach,” in Proc. Int. Conf. Softw. Eng., 2015, pp. 563–573.

[73] L. E. C. da Rocha, A. E. Thorson, R. Lambiotte, and F. Liljeros,
“Respondent-driven sampling bias induced by clustering and
community structure in social networks,” CoRR, vol. abs/
1503.05826, 2015. [Online]. Available: http://dblp.uni-trier.de/
db/journals/corr/corr1503.html#RochaTLL15

[74] Y. Mao, S. Bolouki, and E. Akyol, “Spread of information with
confirmation bias in cyber-social networks,” CoRR, vol. abs/
1803.06377, 2018. [Online]. Available: http://dblp.uni-trier.de/
db/journals/corr/corr1803.html#abs-1803-06377

[75] M. Conway, “How do committees invent?” Datamation J., vol. 4,
pp. 28–31, Apr. 1968.

[76] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
empirical study of global software development: distance and
speed,” in Proc. 23rd Int. Conf. Softw. Eng., 2001, pp. 81–90. [Online].
Available: http://portal.acm.org/citation.cfm?id=381481&dl=
GUIDE&coll=GUIDE&CFID=17819395&CFTOKEN=30991748#

[77] J. Herbsleb and R. Grinter, “Architectures, coordination, and dis-
tance: Conway’s law and beyond,” IEEE Softw., vol. 16, no. 5,
pp. 63–70, Sep./Oct. 1999.

[78] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical con-
gruence have an effect on software build success? a study of coor-
dination in a software project,” IEEE Trans. Softw. Eng., vol. 37,
no. 3, pp. 307–324, May-Jun. 2011.

[79] L. Colfer and C. Y. Baldwin, “The mirroring hypothesis: Theory,
evidence and exceptions,” Working Paper, Feb. 2010. [Online].
Available: http://hbswk.hbs.edu/item/6361.html

[80] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Trans. Softw. Eng., vol. 29, no. 6, pp. 481–94, Jun. 2003.

[81] J. D. Herbsleb and A. Mockus, “Formulation and preliminary test
of an empirical theory of coordination in software engineering,”
in Proc. Eur. Softw. Eng. Conf., 2003, pp. 138–137. [Online]. Avail-
able: http://dblp.uni-trier.de/db/conf/sigsoft/fse2003.
html#HerbslebM03

[82] C. Bird and N. Nagappan, “Who? where? what? examining dis-
tributed development in two large open source projects,” in Proc.
9th IEEE Working Conf. Mining Softw. Repositories, 2012, pp. 237–
246. [Online]. Available: http://dblp.uni-trier.de/db/conf/msr/
msr2012.html#BirdN12

[83] C. Bird, N. Nagappan, P. T. Devanbu, H. C. Gall, and B. Murphy,
“Does distributed development affect software quality? an empir-
ical case study of windows vista,” in Proc. 31st Int. Conf. Softw.
Eng., 2009, pp. 518–528. [Online]. Available: http://dblp.uni-trier.
de/db/conf/icse/icse2009.html#BirdNDGM09

[84] M. Lavallee and P. N. Robillard, “Why good developers write bad
code: An observational case study of the impacts of organizational
factors on software quality,” in Proc. 37th Int. Conf. Softw. Eng.,
2015, pp. 677–687. [Online]. Available: http://dblp.uni-trier.de/
db/conf/icse/icse2015–1.html#LavalleeR15a

Damian A. Tamburri is an assistant professor
with the Jheronimus Academy of Data Science
(JADS) and the Technical University of Eindhoven
(TU/e). His research interests include social soft-
ware engineering, advanced software architec-
tures, design, and analysis tools as well as
advanced software-engineeringmethods and anal-
ysis tools. He is on the IEEE Software editorial
board and is secretary of the International Federa-
tion for Information Processing Working Group on
Service-Oriented Computing. Contact him at dam-

ianandrew.tamburri@polimi.it or dtamburri@acm.org. He is a member of
the IEEE.

Fabio Palomba received the European PhD
degree in computer science from the University of
Salerno, Italy, in 2017. He is a senior research
associate with the University of Zurich, Switzerland.
His research interests include software mainte-
nance and evolution, empirical software engineer-
ing, change and defect prediction, green mining
and mining software repositories. He serves and
has served as a program committee member of
international conferences such as MSR, ICPC,
ICSME, and others. He is member of the IEEE and

ACM. Contact him at palomba@ifi.uzh.ch

Rick Kazman received the PhD degree in com-
puter science from Carnegie Mellon University.
He is a professor of information technology man-
agement with the University of Hawaii and a prin-
cipal researcher at Carnegie Mellon University
Software Engineering Institute. His research
interests include software architecture design
and analysis tools, software visualization, and
software engineering economics. Contact him
at kazman@hawaii.edu. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 31,2021 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14
http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14
http://dblp.uni-trier.de/db/conf/icse/wetsom2011.html#TorchianoRM11
http://dblp.uni-trier.de/db/conf/icse/wetsom2011.html#TorchianoRM11
http://dblp.uni-trier.de/db/journals/socnet/socnet47.html#CarronKD16
http://dblp.uni-trier.de/db/journals/socnet/socnet47.html#CarronKD16
https://goo.gl/Y9R4KY
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#RochaTLL15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#RochaTLL15
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-06377
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-06377
http://portal.acm.org/citation.cfm?id=381481&dl=GUIDE&coll=GUIDE&CFID=17819395&CFTOKEN=30991748#
http://portal.acm.org/citation.cfm?id=381481&dl=GUIDE&coll=GUIDE&CFID=17819395&CFTOKEN=30991748#
http://hbswk.hbs.edu/item/6361.html
http://dblp.uni-trier.de/db/conf/sigsoft/fse2003.html#HerbslebM03
http://dblp.uni-trier.de/db/conf/sigsoft/fse2003.html#HerbslebM03
http://dblp.uni-trier.de/db/conf/msr/msr2012.html#BirdN12
http://dblp.uni-trier.de/db/conf/msr/msr2012.html#BirdN12
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#BirdNDGM09
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#BirdNDGM09
http://dblp.uni-trier.de/db/conf/icse/icse2015--1.html#LavalleeR15a
http://dblp.uni-trier.de/db/conf/icse/icse2015--1.html#LavalleeR15a

