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Abstract

Background: Community structure is ubiquitous in biological networks. There has been an increased interest in

unraveling the community structure of biological systems as it may provide important insights into a system’s

functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate

community detection algorithm to identify the community structure in an empirical network can be difficult,

however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even

when community structure is identified in an empirical system, disentangling the effect of community structure from

other network properties such as clustering coefficient and assortativity can be a challenge.

Results: Here, we develop a generative model to produce undirected, simple, connected graphs with a specified

degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally,

we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark

existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to

serve as random controls when investigating the impact of complex network features beyond the byproduct of

degree and modularity in empirical biological networks.

Conclusion: Our model allows for the systematic study of the presence of community structure and its impact on

network function and dynamics. This process is a crucial step in unraveling the functional consequences of the

structural properties of biological systems and uncovering the mechanisms that drive these systems.
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Background
Network analysis and modeling is a rapidly growing area

which is moving forward our understanding of biologi-

cal processes. Networks are mathematical representations

of the interactions among the components of a system.

Nodes in a biological network usually represent biologi-

cal units of interest such as genes, proteins, individuals,

or species. Edges indicate interaction between nodes such

as regulatory interaction, gene flow, social interactions,

or infectious contacts [1]. A basic model for biological

networks assumes random mixing between nodes of the

network. The network patterns in real biological popu-

lations, however, are typically more heterogeneous than
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assumed by these simple models [2]. For instance, bio-

logical networks often exhibit properties such as degree

heterogeneity, assortative mixing, non-trivial clustering

coefficients, and community structure (see review by

Proulx et al. [1]). Of particular interest is community

structure, which reflects the presence of large groups of

nodes that are typically highly connected internally but

only loosely connected to other groups [3,4]. This pattern

of large and relatively dense subgraphs is called assorta-

tive community structure. In empirical networks, these

groups, also called modules or communities, often corre-

spond well with experimentally-known functional clusters

within the overall system. Thus, community detection, by

examining the patterns of interactions among the parts

of a biological system, can help identify functional groups

automatically, without prior knowledge of the system’s

processes.

Although community structure is believed to be a cen-

tral organizational pattern in biological networks such as
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metabolic [5], protein [6,7], genetic [8], food-web [9,10]

and pollination networks [11], a detailed understanding

of its relationship with other network topological prop-

erties is still limited. In fact, the task of clearly identi-

fying the true community structure within an empirical

network is complicated by a multiplicity of community

detection algorithms, multiple and conflicting definitions

of communities, inconsistent outcomes from different

approaches, and a relatively small number of networks for

which ground truth is known. Although node attributes

in empirical networks (e.g., habitat type in foodwebs)

are sometimes used to evaluate the accuracy of commu-

nity detection methods [12], these results are generally

of ambiguous value as the failure to recover communities

that correlates with some node attribute may simply indi-

cate that the true features driving the network’s structure

are unobserved, not that the identified communities are

incorrect.

A more straightforward method of exploring the struc-

tural and functional role of a network property is to

generate graphs which are random with respect to other

properties except the one of interest. For example, net-

work properties such as degree distribution, assortativ-

ity and clustering coefficient have been studied using

the configuration model [13], and models for gener-

ating random graphs with tunable structural features

[2,14,15]. These graphs serve to identify the network

measures that assume their empirical values in a par-

ticular network due to the particular network property

of interest. In this work, we propose a model for gen-

erating simple, connected random networks that have

a specified degree distribution and level of community

structure.

Random graphs with tunable strength of community

structure can have several purposes such as: (1) serv-

ing as benchmarks to test the performance of community

detection algorithms; (2) serving as null models for empir-

ical networks to investigate the combined effect of the

observed degrees and the latent community structure on

the network properties; (3) serving as proxy networks for

modeling network dynamics in the absence of empirical

network data; and (4) allowing for the systematic study

of the impact of community structure on the dynam-

ics that may flow on a network. Among these, the use

of random graphs with tunable strength of community

structure to serve as benchmarks has received the most

attention and several such models have been proposed

[16-21]. A few studies have also looked at the role of com-

munity structure in the flow of disease through contact

networks [22-25]. However, the use of modular random

graphs, which can be defined as random graphs that have

a higher strength of community structure than what is

expected at random, is still relatively unexplored in other

applications.

Previous work

In 2002, Girvan and Newman proposed a simple toy

model for generating random networks with a specific

configuration and strength of community structure [3].

This model assumes a fixed number of modules each

of equal size and where each node in each module

has the same degree. In this way, each module is an

Erdős-Rényi random graph. To produce modular struc-

ture, different but fixed probabilities are used to pro-

duce edges within or between modules. Although this

toy model has been widely used to evaluate the accuracy

of community detection algorithms, it has limited rele-

vance to real-world networks, which are generally both

larger and much more heterogeneous. Lancichinetti et al.

[16] introduced a generalization of the Girvan-Newman

model that better incorporates some of these features,

e.g., by including heterogeneity in both degree and com-

munity size. However, this model assumes that degrees

are always distributed in a particular way (like a power

law [26]), which is also unrealistic. (A similar model by

Bagrow [17] generates modular networks with power law

degree distribution and constant community size.)

Yan et al. [23] used a preferential attachment model

to grow scale-free networks comprised of communities

of nodes whose degrees follow a power-law distribution.

And, models for special graph types such as hierarchical

networks [18], bipartite networks [21], and networks with

overlapping modules [20] have also been proposed. These

models also make strong assumptions about the degree or

community size distributions, which may not be realistic

for comparison with real biological networks. A recently

proposed model [19] does generate networks with a broad

range of degree distributions, modularity and community

sizes, but its parameters have an unclear relationship with

desired properties (such as degree distribution and mod-

ularity), making it difficult to use in practice. Thus, while

these models may be sufficient for comparative evaluation

of community detection algorithms, they are of limited

value for understanding their performance and output

when applied to real-world networks.

An alternative approach comes from probabilistic mod-

els, of which there are two popular classes. Exponential

random graph models (ERGMs) have a long history of use

in social network analysis, and can generate an ensemble

of networks that contain certain frequencies of local graph

features, including heterogeneous degrees, triangles, and

4-cycles [27]. However, many classes of ERGMs exhibit

pathological behavior when parameterized with triangles

or higher-order structures [28], which severely limits their

utility. Stochastic block models (SBMs) are more promis-

ing, but require a large number of parameters to be chosen

before a graph can be generated. In this approach, the

probability of each link depends only on the community

labels of its endpoints. Thus, to generate a network, we
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must specify the number of communities K, their sizes

(in the form of a labeling of the vertices), and the
(K
2

)

(in

the undirected case) group-pair probabilities. The result

is a random graph with specified community sizes, where

each community is an Erdős-Rényi random graph with

a specified internal density, and each pair of communi-

ties is a random bipartite graph with specified density.

The degree distributions of these networks is a mixture of

Poisson distributions, which can be unrealistic. A recent

generalization of the SBMdue to Karrer andNewman [29]

allows the specification of the degree sequence, which

circumvents this limitation but introduces another set of

parameters to be chosen. Although the stochastic block

models can in principle be used to generate synthetic net-

works, they are more commonly used within an inferren-

tial framework in which community structure is recovered

by estimating the various parameters directly from a net-

work. As a result, the practical use of the SBM as a null

model, either for general benchmarking of community

detection algorithms or for understanding the structure

of biological networks, remains largely unexplored, and

we lack clear answers as to how best to sample appropri-

ately from its large parameter space in these contexts. The

SBM also does not provide a simple measure of the level

of modularity in a network’s large-scale structure, which

makes its structure more difficult to interpret. The SBM is

a promising model for many tasks, and adapting it to the

questions we study here remains an interesting avenue for

future work.

Our approach

Here, we develop and implement a simple simulation

model for generating modular random graphs using only

a small number of intuitive and interpretable parame-

ters. Our model can generate graphs over a broad range

of distributions of network degree and community size.

The generated graphs can range from very small (< 102)

to large (> 105) network sizes and can be composed of a

variable number of communities. In Methods below, we

introduce our algorithm for generating modular random

graphs. In Results, we consider the performance of our

algorithm and structural features of our generated graphs

to show that properties such as degree assortativity, clus-

tering, and path length remain unchanged for increasing

modularity. We next demonstrate the applicability of the

generated modular graphs to test the accuracy of extant

community detection algorithms. The accuracy of com-

munity detection algorithms depends on several network

properties such as the network mean degree and strength

of community structure, which is evident in our anal-

ysis. Finally, using a few empirical biological networks,

we demonstrate that our model can be used to generate

corresponding null modular graphs under two different

models of randomization. We conclude the paper with

some thoughts about other applications and present some

future directions.

Methods
We present a model that generates undirected, simple,

connected graphs with prescribed degree sequences and a

specified level of community structure, while maintaining

a graph structure that is otherwise as random (uncorre-

lated) as possible. Below, we introduce some notation and

a metric for measuring community structure, followed by

a description of our model and the steps of the algorithm

used to generate graphs with this specified structure.

Measure of community structure

We begin with a graph G = (V ,E) that is comprised of a

set of vertices or nodes V (G) = {v1, . . . , vn} and a set of

edges E(G) = {e1, . . . , em}.G is undirected and simple (i.e.

a maximum of one edge is allowed between a pair of dis-

tinct nodes, and no “self” edges are allowed). The number

of nodes and edges in G is |V (G)| = n and |E(G)| = m,

respectively. The neighborhood of a node vi is the set of

nodes vi is connected to, N(vi) = {vj | (vi, vj) ∈ E, vi �=

vj, 1 ≤ j ≤ n}. The degree of a node vi, or the size of

the neighborhood connected to vi, is denoted as d(vi) =

|N(vi)|. A degree sequence, D, specifies the set of all node

degrees as tuples, such that D = {(vi, d(vi)} and follows a

probability distribution called the degree distribution with

mean d.

Each community or module Ck is defined as a subset

of G that contains both nodes, V (Ck) and edges E(Ck),

where both the endpoints of each edge in E(Ck) are con-

tained in V (Ck). K is the number of modules in G and k

∈ [1,K]. Each node vi of G has a within-degree, dw(vi) =

|N(vi)∩V (Ck)|, which is the number of within-edges con-

necting vi to other nodes of the same module Ck ; and a

between-degree, db(vi) = |N(vi) − V (Ck)|, i.e. the num-

ber of between-edges connecting vi to nodes in different

modules (here, the minus operator represents set differ-

ence). The strength of the community structure defined by

a partition, {Ck}, can be measured as modularity, Q, and

is defined as

Q =

K
∑

k=1

(

ekk − a2k
)

(1)

where ekk =
|E(Ck)|
|E(G)|

denotes the proportion of all edges

that are within module Ck , and ak =
[

∑

vi∈Ck
d(vi)

]

/2

|E(G)| represents the fraction of all edges that touch nodes

in community Ck . When Q = 0, the density of within-

community edges is equivalent to what is expected when

edges are distributed at random, conditioned on the given

degree sequence. Values approaching Q = 1, which is

the maximum possible value of Q, indicate networks with
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strong community structure. Typically, values for empir-

ical network modularity fall in the range from about 0.3

to 0.7 [30]. However, in theory Good et al. [31] show

that maximum Q values depend on the network size and

number of modules.

In order to generate a graph with a specified strength

of community structure, Q, equation (1) represents our

first constraint, which we rewrite below in terms of the

expected value of Q, (full derivation in Additional file 1):

E[Q]=

K
∑

k=1

⎡

⎣

dw.sk

m
−

(

d.sk

m

)2
⎤

⎦ (2)

where dw and d are the average within-degree and average

degree, respectively, and sk = |V (Ck)| is the module size

for module k. Thus, equation (2) allows us to specify dw in

terms ofQ, d,m and sk , assuming that themodule-specific

average degree and average within-degree are equal to d

and dw, respectively. When sk = s for all k, E[Q] reduces

to dw
d

− 1
K .

We note that as the average within-degree (dw)

approaches the average degree (d), the graph, G becomes

increasingly modular. Hence, the maximum modularity

for G with K modules can be estimated as:

Qmax ≃ sup(Q) = 1 −
1

K
(3)

Algorithm

We present a model and an algorithm that generates undi-

rected, unweighted, simple and connected modular ran-

dom graphs. The model is specified by a network size (n),

degree distribution (pd), an expected modularity (E[Q]),

the number of modules (K), and the module size distri-

bution (P(s)), with mean s. (We note a degree sequence,

d(vi), may be specified instead of a degree distribution,

pd). The algorithm proceeds in four steps:

1. Assign the n network nodes to K modules based on

the size distribution P(s).

2. Assign degrees, d(vi), to each node vi based on pd
and d. We next assign within-degrees, dw(vi), to each

node vi by assuming that the within-degrees follow

the same distribution as pd with mean dw, which is

estimated based on equation (2) above (Figure 1a).

3. Connect between-edges based on a modified

Havel-Hakimi model and randomize them

(Figure 1b).

4. Connect within-edges based on the Havel-Hakimi

model and randomize them (Figure 1c and 1d).

The generated graph then has a degree distribution that

follows pd with mean d, K modules with sizes distributed

as P(s), and a modularity Q ≈ E[Q]. We set an arbitrary

tolerance of ǫ = 0.01, such that the achieved modularity

is Q = E[Q]± ǫ. The graph is also as random as pos-

sible given the constraints of the degree and community

structure, contains no self loops (edges connecting a node

to itself ), multi-edges (multiple edges between a pair of

nodes), isolate nodes (nodes with no edges), or discon-

nected components. Below, we elaborate on each of the

steps of this algorithm.

Assigning nodes tomodules

We sample module sizes, sk , for each of the K modules

from the specified module size distribution, P(s) so that
∑

sk = n. The n nodes are then arbitrarily (without loss of

generality) assigned to each module to satisfy the sampled

module size sequence.

Assigning degrees

Based on the degree distribution specified, a degree

sequence is sampled from the distribution to generate a

degree, d(vi), for each node vi (unless a degree sequence is

already specified in the input). To ensure that the degree

sequence attains the expected mean of the distribution

(within a specified threshold) and is realizable, we verify

the Handshake Theorem (the requirement that the sum of

the degrees be even) and the Erdős-Gallai criterion (which

requires that for each subset of the k highest degree nodes,

the degrees of these nodes can be “absorbed” within the

subset and the remaining degrees) [32], and that no node

is assigned a degree of zero.

Unless a within-degree sequence is specified, we assume

that the within-degree distribution follows the class of

the degree distribution specified, pd, with mean dw based

on equation (2) (i.e. a generated network with a Poisson

degree distribution of mean d also has a Poisson within-

degree distribution with mean dw). This assumption is

considered reasonable as it holds true for several of the

empirical networks we analyze (shown in Figure S1 in

Additional file 1). However, ourmodel can be extended for

arbitrary within-degree distributions (or sequences) (see

Table S1 in Additional file 1), although the space of feasi-

ble within-degree distributions given a degree distribution

is restricted. Next, we sample a within-degree sequence,

dw(vi), from this within-degree distribution. Using rejec-

tion sampling, we ensure that the within-degree sequence

attains the expected overall mean, dw within a tolerance

ǫdw = ǫd (with details in the Additional file 1), and

satisfies the following conditions:

• Condition 1: d(vi) ≥ dw(vi) for all vi. To ensure this,

we sort the degree sequence and within-degree

sequence, independently. If d(vi) < dw(vi) for any vi
in the ordered lists, the condition is not satisfied. In

Figure S2 of Additional file 1, we discuss the rejection

rates for the rejection sampling of both the degree

and within-degree sequence.
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Figure 1 Schematic representation of the steps of our algorithm. (a) The algorithm assigns a within-degree and between-degree to each node,

which are represented here as half-within-edges and half-between-edges respectively. (b) The half-between-edges are then connected using a

modified version of the Havel-Hakimi algorithm, and to remove degree correlations, the between-edges are randomized. (c) Finally, the

half-within-edges are connected using the standard Havel-Hakimi algorithm for each module and (d) the within-edges are randomized to remove

degree correlations.

• Condition 2: a realizable within-degree sequence for

each module, Ck , as defined by the Handshake

Theorem and the Erdos-Gallai criterion.

In addition, to ensure that each module approximately

achieves the overall mean within-degree, dw, we specify

the following constraint: max[{dw(vi)}vi∈G]≤ min[sk]. If

the sampled module sizes do not satisfy this criteria, the

module sizes are re-sampled or an error is generated.

The between-degree sequence is generated by specify-

ing db(vi) = d(vi) − dw(vi) for each node vi. To test if the

between-degree sequence is realizable, we impose a crite-

rion developed by Chungphaisan [33] (reviewed by Ivanyi

[34]) for realizable degree sequences in multigraphs. To

do so, we imagine a coarse graph, H , where the modules

of G are the nodes of H (i.e. V (H) = {C1,C2, . . .CK }),

and the between-edges that connect modules of G are

the edges of H . We note that H is a multigraph, because

G allows multiple between-edges of G to connect each

pair of modules. In this case, the degree sequence of H is

D =
{

(Ck , d(Ck))|d(Ck) =
∑

vj∈Ck
db(vj), k = 1 . . .K

}

.

The Chungphaisan criterion then specifies that the

multigraph degree sequence {d(Ck)} on H is realizable if

the following conditions are satisfied:

• Condition 1: the Handshake theorem is satisfied for

{d(Ck)}:
∑K

k=1 d(Ck) =
∑K

k=1

∑

vj∈Ck
db(vj) is even

• Condition

2:
∑j

k=1 d(Ck) − bj(j − 1) ≤
∑K

k=j+1min[jb, d(Ck)]

for (j = 1, . . . ,K − 1).

Here, b is defined as the maximum number of edges

allowed between a pair of nodes in H ; in our case, b =

max[{db(vi)}], the maximum between-degree of any node

vi ∈ G.

We also generate graphs with Q = 0 by assuming

the network is composed of a single module with no

between-edges. Thus, dw(vi) = d(vi) and db(vi) = 0 for all

vi ∈ G.

Connecting edges

Based on the within-degree sequence and between-degree

sequence specified above, edges are connected in two



Sah et al. BMC Bioinformatics 2014, 15:220 Page 6 of 14

http://www.biomedcentral.com/1471-2105/15/220

steps (Figure 1). Nodes that belong to different modules

are connected based on their between-degree to form

between-edges (Figure 1b) and nodes that belong to the

same module are connected according to their within-

degree to form within-edges (Figure 1c and 1d).

We connect between-edges using a modified ver-

sion of the Havel-Hakimi algorithm. The Havel-Hakimi

algorithm [35,36] constructs graphs by sorting nodes

according to their degree and successively connecting

nodes of highest degree with each other. After each step

of connecting the highest degree node, the degree list

is resorted and the process continues until all the edges

on the graph are connected. Here, we modify this to

construct between-edges by sorting nodes by highest

between-degree, in order of highest total between-degree

for the module to which they belong, and successively

connecting the node at the top of the list randomly with

other nodes. Connections are only made between nodes

if they are not previously connected, belong to differ-

ent modules, and do not both have within-degree of zero

(to avoid disconnected components). After each step the

between-degree list is resorted, and the process continues

until all between-edges are connected. After all between-

edges have been connected, the connections are random-

ized using a well-known method of rewiring through

double-edge swaps [37]. Specifically, two randomly cho-

sen between-edges (u, v) and (x, y) are removed, and

replaced by two new edges (u, x) and (v, y), as long as u

and x, and v and y belong to different modules, respec-

tively. The swaps are constrained to avoid the formation

of self loops and multi-edges. This process is repeated a

large number of times to randomize edges.

We then connect within-edges using the standard

Havel-Hakimi algorithm, applied to each module inde-

pendently. Specifically, within-edges of a module are con-

nected by sorting nodes of the module according to their

within-degree and successively connecting nodes of high-

est within-degree with each other. Connections are only

made between nodes if they are not previously connected,

and do not both have a between-degree of zero (to avoid

disconnected components). After each step the within-

degree list is resorted and the process continues until

all the within-edges of the module are connected. The

connections are then randomized by rewiring through

double-edge swaps [37].We do not specify that eachmod-

ule be connected (only that the full graph is connected).

However, if this is required, Taylor’s algorithm can be used

to rewire pairs of edges until themodule is connected [38].

Specifically, the algorithm selects two random edges (u, v)

and (x, y) that belong to two different disconnected com-

ponents of the module. As long as (u, x) and (v, y) are not

existing edges, the (u, v) and (x, y) edges are removed and

(u, x) and (v, y) are added. Taylor’s theorem proves that

following such operation any disconnected module can be

converted to a connected module with the same degree

sequence.

Results and discussion
Using our simulation algorithm, we were able to generate

modular random graphs of variable network size, num-

ber of communities, degree distribution, and community

size distribution. In Figure 2, we show sample networks

of varying levels of modularity, Q = 0.1, 0.3, 0.6. We

note that a network with three modules can approach

a maximum modularity value of 2/3 (from equation 3),

and thus Q = 0.6 is a relatively high modularity for this

particular network type. In the sections that follow, we

consider the algorithm performance, as well as structural

Figure 2Modular random graphs with n = 150,m = 375,K = 3, P(s = 50) = 1 and pk is power law with modularity values of: a)Q=0.1;

b) Q= 0.3; and c) Q= 0.6. As the modularity increases, the ratio of the total number of edges within modules to the number of edges in the

network increases (i.e. dw increases), while the remaining parameter values (degree distribution, network mean degree, number of modules) are

held constant.



Sah et al. BMC Bioinformatics 2014, 15:220 Page 7 of 14

http://www.biomedcentral.com/1471-2105/15/220

properties of the generated graphs. We then highlight

two applications of our model: 1) to generate benchmark

graphs for validation of community detection algorithms

and 2) to generate null graphs for the analysis of empir-

ical networks. Community detection algorithms assist in

identifying community structure in empirical networks.

Our model is able to generate modular networks de novo

to test these algorithms. Once community structure has

been identified in an empirical network with a commu-

nity detection algorithm, the number of communities and

the modularity level (Q) (and, if desired, the community

size distribution and within-degree sequence) can be used

as input to our model to generate graphs that can act as

random controls to test hypotheses about the empirical

system.

Performance & properties of generated graphs

Performance

Our model generates graphs that closely match the

expected modularity and degree distribution. The devi-

ation of the observed modularity is less than 0.01 from

the expected value, given the specified partition. The

modular random graphs with Poisson degree distribu-

tion generated by our model are similar to the ones

described by Girvan and Newman [3] with linking (pin)

and cross-linking probability (pout) equal to
dw
s−1and

d−dw
s(K−1)

respectively. However, our model overcomes several limi-

tations of the model proposed by Girvan and Newman [3]

and others [16,17] by considering heterogeneity in total

degree, within-module degree distribution, and module

sizes. Unlike many of the existing models [18-21], our

model can generate modular random graphs with arbi-

trary degree distributions, including those obtained from

empirical networks. Though we discuss modular random

graphs with positive Q values, our model can also gener-

ate disassortative modular random graphs (see Figure S3

in Additional file 1). In this case, nodes tend to connect

to nodes in other modules and thus the density of edge

connections within a module is less than what is expected

at random. Additionally, we also compare our model to

graphs generated based on a degree-corrected stochastic

block model (SBM). The details of the parameterization

of the SBM and the results are shown in Figure S4 in

Additional file 1).

Structural properties

There are several other topological properties (besides

degree distribution and community structure) that can

influence network function and dynamics. The most sig-

nificant of these properties are degree assortativity (the

correlation between a node’s degree and its neighbor’s

degrees), clustering coefficient (the propensity of a node’s

neighborhood to also have edges among them) and aver-

age path length (the typical number of edges between

pairs of nodes in the graph). We have developed this

model to generate graphs with specified degree distribu-

tion and modularity, while minimizing structural byprod-

ucts. Thus, it is important to confirm that we have reached

this goal with the generative model above.

To evaluate the status of other structural properties due

to the generative model, we specify graphs of n = 2000

following Poisson (λke−λ/k!), geometric (p(1−p)k−1), and

power-law
(

k−α

ζ(α)

)

degree distributions with d = 10. We

chose these particular types of degree distributions as

they have widely studied in the context of biological net-

works [39-41]. Each network has K = 10 modules and

a module size distribution P(s = 200) = 1. We gener-

ate modular random graphs with these specifications and

modularity values that range from Q = 0 to Q = 0.8, in

steps of 0.1. For each level of modularity, we generated 50

such modular random graphs and calculated the degree

assortativity (r), clustering coefficient (C), and average

path length (L) for each network, which is illustrated in

Figure 3. In networks with random community structure

(Q = 0), that is random graphs with specified degree

distributions (such as those that would be generated by

the configuration model [13]), the value of r,C, and L

are what are expected at random. In Figure 3, we show

Figure 3 Values of (a) Assortativity, r, (b) clustering coefficient, C, and (c) path length, L in modular random graphs do not vary

significantly with increasing modularity (Q). Each graph has n = 2000 nodes, a mean degree d = 10 and K = 10 modules with P(s = 200) = 1.

The data points represent the average value of 50 random graphs. Standard deviations are plotted as error bars.
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that for increasing values of modularity, degree assortativ-

ity, clustering coefficient, and average path length remain

relatively constant for all three network types (i.e. Poisson,

geometric and power-law). At the highest levels of mod-

ularity, edge connections are constrained, particularly for

the heavy-tailed geometric and power-law degree distri-

butions, leading to an increase in clustering coefficient.

Correlations between high clustering coefficient and high

modularity have also been observed before [2]. The aver-

age path length for all network types also increases at the

highest levels of modularity, likely reflecting the lack of

many paths between modules, requiring additional steps

to reach nodes in different modules. Thus, our model is

able to increase levels of modularity in random graphs

without altering other topological properties significantly.

Biological networks show remarkable variation in net-

work size, connectivity and community size distribution,

with some of them having particularly small network

size, high degree, and small module sizes (e.g. food-web

networks). We therefore tested the performance of our

generated networks under deviations in the network spec-

ifications of size, mean degree and module size distribu-

tion (results presented in Additional file 1: Figure S5, S6

and S7). We find that the structural properties of our gen-

erated modular random graphs remain constant, except

for two constraining conditions: a) high average degree

(d̄ >10) and b) low average module size (s̄ <50). At these

parameter extremes, the modular random graphs become

degree disassortative and have increased clustering coef-

ficient. A similar observation of network degree disassor-

tativity has beenmade in hierarchically modular networks

[42]. In these two scenarios, the highest value of within-

degree (dw(vi)) that a node can attain is constrained by

the community size, which reduces the number of possible

high within-degree nodes. As a consequence high within-

degree nodes must connect to low within-degree nodes

more than expected, resulting in a degree disassortative

network. In these two cases, modules also become more

dense and thus create more triangles resulting in a grad-

ual increase in clustering. Path length, on the other hand,

is not affected by these conditions and shows a consistent

dependence on network size and mean degree, which is

well known [43,44].

Application: benchmark graphs for community-detection

algorithms

Detecting communities in empirical networks has been

an area of intensive research in the past decade [45]

since Girvan and Newman’s seminal paper on commu-

nity detection [3]. Extant techniques such as modularity

maximization, hierarchical clustering, the clique-based

method, the spin glass method etc. aim at achieving high

levels of accuracy in detecting the correct partition (for

a detailed review see [45]), but have their own set of

strengths and weaknesses. Choosing the best algorithm

can be a difficult task especially as algorithms often

use distinct definitions of communities and perform well

within that description. Thus, it is exceedingly important

to test community-detection algorithms against a suitable

benchmark. We propose our modular random graphs as

benchmark graphs for the validation of existing and new

algorithms of community detection.

To illustrate this use, we test the performance of six

popular community detection algorithms: the Louvain

method [46], fast modularity method [47], the spin-glass

based method [48], the infoMAPmethod [49], label prop-

agation [50] and the random-walk based method [51]

using our modular random graphs as benchmarks. Specif-

ically, we generate a modular random graph for each

level of modularity and used these community detection

algorithms to detect their community structure. We also

test the performance of the algorithms on random graphs

of specified degree distribution, with no modularity

(i.e.Q= 0). Figure 4 summarizes the performance of these

algorithms, as measured by the estimated Q, for modular

random graphs with three different degree distributions

(Poisson, geometric and power-law). We also investigated

the robustness of these algorithms on replicate modular

random graphs at each modularity level, with the results

presented in (Additional file 1: Figures S8, S9 and S10).

The Louvain, fast modularity algorithm, random-walk

and infoMAP algorithm overestimate the modularity for

networks with weak community structure, and underesti-

mate themodularity for networks ofmoderate community

structure across all three network types (Figure 4). Spin-

glass and label-propagation consistently underestimate

the modularity of both weak and moderate community

structure. All the algorithms are fairly accurate at the

highest strengths of community structure across the var-

ious network types. The accuracy at a particular level of

modularity and degree-distribution, however, varies for

different algorithms. For instance, the performance of

spin-glass algorithm is better for Poisson modular ran-

dom graphs at modularity values of 0.5-0.6, whereas the

Louvain and label-propagation algorithm out-perform on

geometric random modular graphs at these modularity

values.

In addition to comparing the estimated values of modu-

larity to the known values in the modular random graphs,

we can compare the similarity in the partitions detected

by the algorithms to the true partitions. For this compari-

son, we use the Jaccard similarity (J), which measures the

similarity between two partitions based on the propor-

tion of the union of the partitions that is made up by the

intersection of the partitions [52]; as well as the Variation

of Information (VI), which measures the distance between

two partitions based on the amount of information lost

when going from one partition to another [53]. These
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Figure 4 Performance of the Louvain method [46], fast modularity method [47], the spin-glass basedmethod [48], the infoMAPmethod

[49], label propagation [50] and the random-walk basedmethod [51] in networks with mean degree 10. Fill circles, open circles and

triangles represent networks with Poisson, geometric and power-law degree distributions, respectively. Each data point represents the average over

ten modular random graphs. Error bars represent standard deviations. The solid line is the reference line where estimated modularity is equal to the

input modularity.

results are presented in the (Additional file 1: Figure S11).

As reflected in the results above, we find that partitioning

is inaccurate when the true community structure is weak

but improves as the Qtrue value increases. These obser-

vations have also been noted before by Lacichinetti and

Fortunato [54].

Application: null analysis of empirical networks

It is crucial to have random controls in the study of biolog-

ical systems. Our algorithm can be used to generate null

models and applied to the detection of structure in empir-

ical biological networks. These null networks can be used

to test hypotheses regarding the role of modularity and

other topological features of the empirical networks. To

do so, one would first determine the number of communi-

ties andmodularity level (Q) of the sampled network using

an appropriate community detection algorithm (the pre-

vious section describes the use of randommodular graphs

to validate existing algorithms of community detection).

Our algorithm can then be used to generate an ensemble

of networks that match the empirical degree structure and

community structure, and then compare the structural,

functional, or dynamical properties of the empirical net-

work to those of the generated modular random graphs.

Because our model generates graphs without any struc-

tural byproducts (as illustrated in a previous section), this

is an appropriate model for generation of null models.

We note that our algorithm does not necessarily require

knowledge of the complete empirical network, but rather

only estimates of the degree structure and community

structure. The literature on algorithms for inference of

network structure from a sample is growing, and currently

includes work on inference of missing nodes, edges and

even community structure [55-57].

We demonstrate this application using four classes of

biological networks, namely: a) a food-web, representing

the trophic interactions at Little Rock Lake in Wisconsin

with a network size of 183 and average degree = 26.8 [58];

b) a protein-protein interaction network in Saccharomyces

cerevisiae (a yeast) of size = 4713 and average degree =

6.3 [59]; c) a metabolic interaction network of Caenorhab-

ditis elegans of size = 453 and average degree 9.0 [60]; and

d) a network of social interactions in a community of dol-

phins living off Doubtful Sound, New Zealand of size= 62

and average degree = 5.1 [61]. Visualizations of the dol-

phin social interaction network and the food-web trophic

interaction network and its modular random counterpart

are shown in Figure 5.

For each of these four empirical networks, we gener-

ate modular random graphs (Figure 6, light gray bars)

with three parameters estimated from the empirical net-

works: (a) the degree sequence, pk(b) the modularity, Q

and (c) the average community size, s. We note that as

our goal is to construct null models, we assume that
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Figure 5 Visualization of empirical and random graphs of social interaction of dolphins and food-web trophic interactions at the Little

Rock Lake in Wisconsin. Figure (a) is the empirical network of Dolphin social network, (b) its modular random graph, and (c) its random graph

counterpart with matched degree distribution (Q = 0). Figure (d) is the empirical network for the food-web trophic interaction at Little Rock Lake in

Wisconsin, (e) is its modular random graph and (f) its random graph counterpart with matched degree distribution. Modular random graphs have

generated to match the overall degree distribution, network mean degree, the level of modularity and the number of modules of the empirical

graphs. Random graphs with matched degree distribution are based on the configuration model.

communities are of equal size, i.e. P(s) = 1, and that

the within-degree distribution matches the degree distri-

bution fitted from the specified degree sequence (with

estimated mean, dw). (A second class of null models can

be constructed with P(s) and the within-degree sequences

estimated from the empirical networks, and we do this in

Table S2 of Additional file 1). Specifically, we generate 25

such random graphs and measure structural properties of

the generated graphs including clustering coefficient (C),

average path length (L), degree assortativity (r).

We also generate random graphs based on the con-

figuration model that have the same degree distribution

and average network degree as the empirical network but

are random with respect to other network properties for

each of the four empirical networks (Figure 6, dark gray

bars). Our modular random graph model identifies which

network measures assume their empirical values in a par-

ticular network because of (i) the observed degrees and

(ii) the latent community structure. The configuration

model, on the other hand, only specifies (i) and not (ii)

[13]. Comparison to these configuration model networks

thus helps us highlight the utility of our model to identify

which empirical patterns in a network are deserving of

further investigation. Figure 6 shows the value of each of

these properties for the empirical networks as well as the

ensemble mean of modular random and random graphs

with matched degree distribution.

From Figure 6 it is evident that none of the empiri-

cal biological networks have network structure identical

to their null counterparts. This suggests that the struc-

ture of each of these biological systems is governed by

more than what is specified by the degree distribution

and community structure. However, the observed net-

work properties of empirical networks are closer to the

ensemble means of the modular random graphs, which

indicates that modularity is an essential structural com-

ponent of real biological networks and that it plays an

important role in influencing other structural proper-

ties of the network. For instance, compartmentalization

induced by modularity promotes species persistence and

system robustness by containing localized perturbation

[11,62,63], which might favor their selection during the
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Figure 6 Comparisons of empirical networks, modular random graphs and random graphs with matched degree distribution (based on

the configuration model). The figure summarizes network statistics of the empirical network as well as the ensemble mean of two types of

random graphs in terms of (a)Modularity, Q ; (b) Assortativity, r; (c) Path length, L and (d) Clustering coefficient, C. The path length value for the

empirical Yeast-Protein interaction network is missing as the network contains disconnected components. Error bars denote standard deviation

from the ensemble mean of the generated random graphs. Errors bars for modular random graphs in Figure 6(a) have been omitted as the value of

modularity (Q) match the empirical networks perfectly. FW = Little Rock food web, YP = Yeast protein interaction network, CM = C.elegans

metabolic network and DS = Dolphin social network.

course of evolution. Our results show that the empiri-

cal networks tested have a much higher modularity than

the simple random graphs (Figure 6a) and therefore pro-

vide evidence for this selection. Out of the three network

properties that we tested apart frommodularity, we found

clustering coefficient of the generated random graphs to

be significantly different from each of the empirical coun-

terparts. This may point to a functional role for “triangles”

in these biological networks, significantly above or

below what is prescribed by the degree and community

structure.

Little Rock Lake foodweb interactions (FW)

Among the four empirical networks that we tested, the

properties of the ensemble mean of null models such

as assortativity and path length closely match most of

the observed properties of Little Rock food web. The

observed clustering coefficient of food web is strikingly

lower than either of the random graphs which confirm

the observations of low clustering in food web made by

earlier studies (Figure 6d). The observed path length of

this food web is short (Figure 6c) and only slightly longer

than the path lengths of random graphs, which has also

been noted before [64-66]. We note that for this food

web, the structural properties of the random graphs with

matched degree distribution are quite similar to those of

modular random graph counterparts, suggesting that the

degree distribution, particularly the high density of edges

in the network governs most of the other topological char-

acteristics of this network. Modularity, on the other hand,

seems to play a minor role in dictating the structural

properties of this network.
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Yeast protein-protein interaction network (YP)

The empirical yeast protein network is more disassor-

tative than the ensemble mean of null modular graphs

(Figure 6b). Disassortative interactions in protein-protein

interaction networks are known to reduce interferences

between functional modules and thus increase the over-

all robustness of the network to deleterious perturbations

[6], while also allowing for functions to be performed

concurrently [67]. The results therefore suggest that disas-

sortative interactions may be selected for in the evolution

of biological networks. From Figure 6(d) it is also evident

that the yeast protein network has a higher value of clus-

tering coefficient than the expected value predicted by

the modular random graphs. A high value of clustering

coefficient indicates that there are several alternate inter-

action paths between two proteins, making the system

more robust to perturbation [68].

C.elegansmetabolic interaction network (CM)

The C.elegans metabolic network demonstrates a shorter

path length but higher clustering coefficient than both

modular and random graphs with matched degree dis-

tribution (Figure 6c and 6d). A high clustering coeffi-

cient and short path length suggests that the graph has

small-world properties, which has been observed in other

metabolic networks as well [69]. A highly disassortative

degree structure is also well known in metabolic net-

works, although the mechanism leading to this property

is unclear (see review by [39]). As the predicted value of

disassortativity of the modular random graphs is closer

to the observed value, our results suggest that the strong

community structure of the metabolic networks could

be one of the factors contributing to high degree dis-

assortativity. (As discussed earlier, community structure

leads to significant degree correlations in small networks

with long-tailed degree distributions; see Figure S5 in

Additional file 1 for an example).

Social interaction network of dolphins network at Doubtful

Sound, New Zealand (DS)

The empirical social interaction network of dolphins that

we investigated demonstrated a negative assortativity (or

disassortativity) similar to other real biological networks

(Figure 6b). Interestingly, the assortativity value of both

null modular and random graphs with matched degree

distribution counterparts of the dolphin network is lower

than the observed value, which suggests that the network

is more assortative than expected. Degree assortativity has

also been observed in other animal [70] and human [4]

social interaction networks. This result is quite intuitive

for a social network and is also referred to as homophily:

more gregarious individuals tend to interact with other

gregarious individuals while introverted individuals prefer

to associate with other introverts [14]. The empirical

dolphin network also demonstrated a lower value of clus-

tering coefficient than the expected values of either null

model. Low clustering coupled with high degree assor-

tativity indicates that dolphin populations may be more

susceptible to the propagation of infection or informa-

tion, as transmission may occur rapidly through the entire

network with such properties [70,71].

Conclusions
In summary, the model that we propose in this study

generates modular random graphs over a broad range

of degree distribution and modularity values, as well as

module size distributions. We highlight that our model

is specifically designed to generate networks which have

modularity evenly divided across its modules, modulo

the impact of module size. This means that we are mit-

igating the resolution limit effect and indeed generating

networks with the maximum modularity partition. We

also confirm that structural properties of our generated

modular graphs such as assortativity, clustering and path

length remain unperturbed for a broad range of param-

eter values. This important feature allows these graphs

to act as benchmark and control graphs to explicitly test

hypotheses regarding the function and evolution of mod-

ularity in biological systems. Of the approaches available,

our method provides flexibility and has been explored the

most fully for these applications.

Compartmentalization of biological networks has been

an area of great interest to biologists. What we refer to

as community structure in this work is any segregation of

a biological system into smaller subunits inter-connected

by only a few connections. It has been suggested that

modularity in a system promotes system robustness and

enhances species persistence by containing localized per-

turbations [11,63]. Metabolic networks of organisms liv-

ing in a variable environment have indeed been found to

bemoremodular [62].Maintaining and selecting formod-

ularity in biological networks, however, comes at a great

cost of reducing system complexity [72], longer develop-

mental time and cost of complete module replacement in

case of failure [73]. It is therefore unclear why modular-

ity would be strongly selected for as a structural feature

of biological systems. There is also a lack of evidence to

prove that the functional localization of sub-goals overlaps

with the structural segregation of the network into com-

munity structure. Our work provides a tool for the sys-

tematic study of network structure (through benchmark

graphs) and of the impact of connectivity and compart-

mentalization on system function and dynamics (through

control graphs).

The detection of community structure plays a crucial

role in our topological understanding of complex
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networks. Currently the performance of community

detection methods is usually evaluated based on ground-

truth from real networks. However, determining reference

communities in real networks is often a difficult task.

Also, ground truth data on empirical network partitions

do not necessarily identify system features based on net-

work topology and thus may create a bias when analyzing

community structure. A more convenient technique of

evaluating community detection method is to use artifi-

cial random graphs, but has been limited as most of the

models fail to incorporate degree heterogeneity of real

networks. By providing a systematic method to generate

benchmark graphs, our model can aid in the develop-

ment of more robust community detection algorithms,

and therefore improve our topological understanding of

empirical networks.

A step beyond identifying the topological presence of

network communities is the understanding of its evo-

lution as well as the functional and dynamical role of

community structure. We believe this process can be

facilitated by using an appropriate class of control or

null graphs. As a model for generating null networks,

our method joins a suite of random graph models, each

contributing to a hierarchy of null models. The sim-

plest model for generating random graphs (based on

only a single parameter) is the Erdős-Rényi random

graph model, which produces graphs that are com-

pletely defined by their average degree and are random

in all other respects. A slightly more complex and gen-

eral model is one that generates graphs with a spec-

ified degree distribution (or degree sequence) but are

random in all other respects [13,74,75]. These mod-

els can be extended to sequentially include additional

independent structural constraints, such as degree dis-

tribution and clustering coefficient [2], or degree struc-

ture and community structure, as we have demonstrated

here. A further extension to this work will be design-

ing models that generate random graphs with multi-

ple structural constraints. For example, our model can

be combined with the one proposed by [2] to gener-

ate random graphs with specified degree distribution as

well as tunable strength of modularity and clustering

coefficient.
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