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Exploring Complex Systems Aspects of
Blackout Risk and Mitigation
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Abstract—Electric power transmission systems are a key infra-
structure, and blackouts of these systems have major consequences
for the economy and national security. Analyses of blackout data
suggest that blackout size distributions have a power law form over
much of their range. This result is an indication that blackouts
behave as a complex dynamical system. We use a simulation of
an upgrading power transmission system to investigate how these
complex system dynamics impact the assessment and mitigation of
blackout risk. The mitigation of failures in complex systems needs
to be approached with care. The mitigation efforts can move the
system to a new dynamic equilibrium while remaining near criti-
cality and preserving the power law region. Thus, while the abso-
lute frequency of blackouts of all sizes may be reduced, the under-
lying forces can still cause the relative frequency of large blackouts
to small blackouts to remain the same. Moreover, in some cases,
efforts to mitigate small blackouts can even increase the frequency
of large blackouts. This result occurs because the large and small
blackouts are not mutually independent, but are strongly coupled
by the complex dynamics.

Index Terms—Blackout risk, cascading failure, complex system,
electric power transmission system, infrastructure, power law, self-
organized criticality.
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Cost

DC load flow Linearized real power flow

Blackout frequency

Power flow through transmission line
joining node to node

Maximum power flow through transmission
line joining node to node

Fractional loading of line
joining nodes and

Fractional loading averaged over lines, a
measure of network loading

OPA Simulation of evolving network with
cascading transmission line outages; Initial
letters formed from the authoring institutions
Oak Ridge National Laboratory, Power
Systems Engineering Research Center at the
University of Wisconsin, and University of
Alaska.

Probability for a transmission line outage
due to external physical cause

Probability for an overloaded transmission
line to outage

Average total load power

Power margin; Maximum total generator
power minus average load power

Fractional power margin

Minimum fractional power margin;
threshold for increase in generator
maximum power

Blackout size

Constant

Time

Power law exponent

Power law exponent

Controls rate of increase of average load

I. INTRODUCTION

E LECTRIC power transmission systems are a key element
of the national infrastructure; and blackouts of these

systems have major direct, and indirect consequences for the
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economy and national security. Though large cascading black-
outs in the power transmission system are relatively rare, their
impact is such that understanding the risk of large blackouts is a
high priority. In addition to the direct consequences of electric
blackouts, the growing interconnections between different
elements of the infrastructure (i.e. communications, financial
markets, transportation etc.) can cause an electric blackout to
impact other vital infrastructures.

While it is useful to do a detailed analysis of the specific
causes of individual blackouts, it is also important to under-
stand the complex dynamics of the power transmission network,
and the frequency distribution of blackouts that it creates. There
is evidence that the complex dynamics of complex systems is
largely independent of the details of the individual triggers such
as electrical shorts, lightning strikes, etc. In this paper, we focus
on the intrinsic dynamics of blackouts, and how this complex
system dynamics impacts blackout risk assessment and the mit-
igation of blackout risk. It is found, perhaps counter intuitively,
that apparently sensible attempts to mitigate failures in com-
plex systems can have adverse effects, and therefore must be
approached with care. (Although there are a variety of defini-
tions and types of complex systems, our main interest here is
systems that behave in self-organized critical manner. Further
discussion of how evolving power systems qualify as complex
systems may be found in [1].)

First, as motivation for our work, we consider the statistical
properties of a series of blackouts. The North American Elec-
trical Reliability Council (NERC) has a documented list sum-
marizing major blackouts of the North American power trans-
mission system from 1984 to 1998 [2]. If component failures in
blackouts were largely uncorrelated with each other, one might
expect a probability distribution of blackout sizes to fall off ex-
ponentially (as, for example, in a Weibull distribution). How-
ever, analyses of the NERC data [3]–[6] show that the proba-
bility distribution of the blackout sizes does not decrease expo-
nentially with the size of the blackout, but rather has a power
law region. As an example, one measure of blackout size is load
shed, and Fig. 1 plots on a log-log scale the empirical probability
distribution of load shed in the North American blackouts. The
fall-off with blackout size is approximately a power law with an
exponent of about 1.1. (An exponent of 1 would imply that
doubling the blackout size only halves the probability.) Thus the
NERC data suggests that large blackouts are much more likely
than might be expected, which has implications for risk analysis
models. Additionally, power law regions, particularly with an
exponent between 1 and 2, are consistent with those found
in many complex systems models, and this helps motivate the
use of such models to understand the electric power transmis-
sion system. Power law dependence of blackout probability with
blackout size is also observed in Sweden [7], Norway [8], New
Zealand [9], and China [10], [11]. While the NERC blackout
data are the best we have found, the statistics have limited res-
olution because the data are limited. Moreover, there are many
different mechanisms that can produce power laws [12]. There-
fore the NERC data suggests rather than proves the existence of
the power law region, and is consistent with complex systems
models rather than conclusively validating them. Because of the
potential benefits, including risk and mitigation information that

Fig. 1. Log-log plot of the scaled probability density function of energy un-
served for North American blackouts 1984 to 1998 compared with the OPA
model on a 382 node network.

Fig. 2. Probability distribution for the number of line outages for �-indepen-
dent line outages and cascading line outages from the OPA model on the ex-
ample 382 node network.

cannot be accessed without them, modeling and simulation of
the complex system dynamics is clearly indicated. Progress has
been made in modeling the overall forces shaping the complex
dynamics of series of blackouts. Simulations of power networks
using the OPA model [13] of these complex dynamics yield
probability distributions that are remarkably consistent with the
NERC data, as shown in Fig. 1. OPA and the grid model are
summarized in Section V.

As a simple illustration of the importance of the complex
dynamics, we apply the OPA model to an idealized transmis-
sion network of 382 nodes [14], and investigate the probability
distribution of blackout sizes in two different ways. First, the
blackouts governed by the complex system dynamics were gen-
erated by the OPA model, and the resulting probability distribu-
tion of line outage sizes was plotted as a dashed line in Fig. 2
(the line outages shown are only the line outages that occurred
when there was a blackout; that is, when load was shed). Next,
the probability of any one line failing at a given time was also
computed from the OPA results, and this probability was then
used to construct the pdf of the blackout sizes assuming that
the probabilities of outage for each line are -independent of
each other. This result, which is of course a binomial distribu-
tion with an exponential tail, is then compared to the OPA results
in Fig. 2. The distribution of the smaller events is similar for the
two calculations. However, above the size of approximately 10
line outages, the OPA model distribution diverges from the ex-
ponential, and exhibits the power law region characteristic of
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many complex systems. This is an illustration of what Charles
Perrow [16] calls interactive complexity in the case of a power
transmission system. The probability of, say, 20 line outages is
more than 6 orders of magnitude lower using the independent
probability model. This discrepancy gets even larger for a larger
number of lines. The absolute probability of the large events is
still very low (in good agreement with the observed probability
(Fig. 1)); however, because it is many times higher than the in-
dependent probability, it plays a much larger role in the overall
impact. In fact, the presence of power tails has a profound ef-
fect on risk and cost analysis for larger blackouts, particularly
in the case that the power law exponent is between 1 and 2.
In this case, the large blackouts are the major contributor to the
overall impact. This result bolsters the need to develop an un-
derstanding of the frequency of large blackouts and how to af-
fect this frequency. The main purpose of this paper is to outline
some of these effects, and suggest ideas to ward quantifying and
mitigating the risks of larger blackouts from a complex systems
perspective. This paper is an extension of the work that appeared
in the conferences [17], [18]. For a survey of approaches to cas-
cading failure analysis and simulation in electric power systems,
see [19].

II. BLACKOUT COST

To evaluate the risk of a blackout, we need to know both the
frequency of the blackout and its cost. It is difficult to deter-
mine blackout costs, and there are several approaches to esti-
mate these costs including customer surveys, indirect analytic
methods, and estimates for particular blackouts [20]. The esti-
mated direct costs to electricity consumers vary by sector, and
increase with both the amount of power interrupted and the dura-
tion of the blackout. Billinton [21] defines an interrupted energy
assessment rate IEAR in $/kWh that is used as a factor multi-
plying the unserved energy to estimate the blackout cost. That
is, for a blackout with size measured by unserved energy, the
direct cost in dollars is

Unserved energy (1)

There are substantial nonlinearities and dependencies not ac-
counted for in (1) [20], [22], [23], but expressing the direct costs
as a multiple of unserved energy is a commonly used crude
approximation. However, studies of individual large blackouts
suggest that the indirect costs of large blackouts, such as those re-
sulting from social disorder, are much higher than the direct costs
[20], [24]. Also, the increasing and complicated dependencies of
other infrastructures mentioned earlier on electrical energy tend
to increase the costs of blackouts [25], [26]. Setting aside these
considerations, we will use (1) as one way to calculate the direct
cost of blackouts. In particular, we will use the NERC data for
the duration and power lost in North American blackouts [2] to
compute the unserved energy as the product of the power loss
times the duration of the blackout to obtain the direct cost

Power loss Duration (2)

Equation (2) is a crude approximation given the uncertainties
in the data; but for a statistical evaluation, we hope to capture
some of the systematic trends in the dependence of the cost on
blackout size.

Fig. 3. Example of a fit using (3) to the data on blackout cost of the industrial
customers of Australia, as given in [27]. The fit has parameters � � �����,
� � ������, � � ����� 	
���	, and � � ����� 	
���	.

An alternative way of evaluating blackout costs uses customer
surveys. In the report [27], there are data from several countries
on the cost of power interruptions per customer. These costs
are separated for residential, commercial, industrial, and large
users. In several countries, the data cover blackout durations
from seconds to 24 hours. The best documented data in [27]
come from Great Britain and Australia.In those countries, the
cost of interruptions as a function of the duration of the blackout
fits very well with the following function.

Cost per customer
Duration

(3)

where , , , and are free parameters, which we have deter-
mined by fitting the British and Australian data, as illustrated
in Fig. 3. Because the same functional form seems to apply to
residential, commercial, industrial, and large users, we use the
functional form (3) as a representative of the cost of interrup-
tion for all customers, and use the parameter values ,

, and that are averaged
over the different types of customers ( does not matter for com-
puting cost and risk measured in arbitrary units). We then mul-
tiply this averaged cost by the total number of customers. This
multiplication leads to the following form for the direct cost as
a function of the number of customers and blackout duration.

Duration
Customers (4)

In particular, to compute the direct cost, we will use (4) and
the NERC data for the duration and number of customers dis-
connected in North American blackouts. One problem with the
data and (4) is that they only apply to blackouts in duration up
to 24 hours, and here we are interested in large blackouts that
can last more than 24 hours. We can just add the hyperbolic tan-
gent part of the cost for any hours past the initial 24 hours, or
do a linear extrapolation. We have done this extrapolation both
ways, and we have not found much difference in the scaling of
the cost with the size of the blackout.

III. BLACKOUT RISK ANALYSIS AND POWER TAILS

The previous section approximately quantified the blackout
direct cost in two ways, based on unserved energy, or on the
number of customers disconnected and blackout duration. This
section uses the NERC data to estimate blackout risk and its
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Fig. 4. Risk of a blackout as a function of the size of the blackout measured by
the energy unserved, and using (2) to obtain the blackout cost.

dependence on blackout size measured either by unserved
energy, or by the number of customers disconnected. Then we
discuss the power laws in the frequency of blackouts and their
impact on the risk.

The NERC data give the power lost, duration, and number
of customers disconnected for each blackout.1 We compute for
each blackout the cost using either (2) or (4), and the energy
unserved as the product of power lost and duration. We also can
use the NERC data to estimate the blackout frequency as a
function of blackout size measured either by unserved energy,
or by the number of customers disconnected. The risk of each
blackout is then the product of blackout frequency and cost2:

Risk (5)

Equation (5) estimates the risk up to an arbitrary multiplicative
constant because we have not accounted for the absolute value
of the cost. Fig. 4 plots risk as a function of blackout size
measured by energy unserved, and with blackout cost (2). The
risk is well approximated by a power law

Risk (6)

where . Figs. 5 and 6 plot the risk as a function of the
blackout size measured using number of customers discon-
nected, and with blackout cost (2), and (4) respectively. The risk
is approximated by the power law (6), but the exponent depends
on the way costs are calculated, with for the cost (2),
and for the cost (4). All these results give a substantial
increase in risk as blackout as size increases, which means that
the direct cost of blackouts is dominated by the largest sizes.
If we also account for the indirect costs of large blackouts, we
expect an even stronger weighting of the cost for larger black-
outs relative to smaller blackouts. From this result, we conclude
that, although large blackouts are much rarer than small black-
outs, the risk of large blackouts is significantly greater than the
risk of small blackouts.

1There are missing entries for some blackouts that require these blackouts to
be omitted from the calculations. We are not aware of any pattern in the omitted
data that could potentially bias the results.

2In detail, the blackout frequency for size � is proportional to the number
of blackouts in a bin of blackout size ��� � � ���. In the case of blackout
size � measured by the number of customers disconnected, there are several
different blackout costs in ��� ����� due to the dependence of (4) on blackout
duration, and we average over these to compute the average risk of the blackouts
in ��� � � ���.

Fig. 5. Risk of a blackout as a function of the size of the blackout measured by
the number of customers, and using (2) to obtain the blackout cost.

Fig. 6. Risk of a blackout as a function of the size of the blackout measured by
the number of customers that lost power, and using (4) to obtain the blackout
cost.

The NERC data indicates that the blackout probability as a
function of the size measured by the number of customers
disconnected is very well described by a function of the form

(7)

with the exponent very close to 2. (Using other measures for
the blackout size, one gets the same functional form, but some
variation in the value of .) Therefore, the frequency of the
blackout for large blackouts can be approximated as a power
law

(8)

The power law (8) combined with the blackout cost (2) or
(4) yields the power law in the blackout risk as a function of
blackout size , and the greater risk of the large blackouts.

In contrast, consider the same risk calculation if the blackout
frequency decreases exponentially with size so that

(9)

With the simple accounting for direct costs only, we get

Risk (10)

for which the risk peaks for blackouts of some intermediate size,
and decreases exponentially for larger blackouts. Then, unless
one deals with an unusual case in which the peak risk occurs for
blackouts comparable to the network size, we expect the risk
of larger blackouts to be much smaller than the peak risk. This
is likely to remain true even if the indirect blackout costs are
accounted for unless they are very strongly weighted (exponen-
tially for example) toward the large sizes.
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While there is some uncertainty in assessing blackout costs,
and especially the costs of large blackouts, the analysis above
suggests that, when all the costs are considered, power law re-
gions in the blackout size frequency distribution will cause the
risk of large blackouts to exceed the risk of the more frequent
small blackouts. This is strong motivation for investigating the
complex dynamics of series of blackouts that can lead to power
law regions.

If one is able to develop a model for the probability distribu-
tion function based on the complex systems dynamics, by nor-
malizing the pdf to the observed frequency of the more common
small blackouts, we could construct the frequency distribution.
This would allow the evaluation of realistic frequencies of the
occurrence of rare large blackout events that are so important in
risk analysis. Additionally, by comparing the width and shape
of the small blackout region of the pdf, one might be able to de-
termine how close to the critical point the system is.

We now put the issue of power law regions in context by dis-
cussing other aspects of blackout frequency that impact risk.
The power law region is of course limited in extent in a practical
power system by a finite cutoff near system size corresponding
to the largest possible blackout. More importantly, the risk is
impacted by the frequency of smaller blackouts, and hence the
shape of the frequency distribution away from the power law
region. Also significant is the absolute frequency of blackouts.
When we consider the effect of mitigation on blackout risk, we
need to consider changes in both the absolute frequency, and the
shape of the blackout frequency distribution.

IV. MITIGATING FAILURES IN COMPLEX SYSTEMS

Large disruptions, or normal accidents in Perrow’s termi-
nology [16], can be intrinsic to large infrastructures such as
power transmission systems. Measures to mitigate these risks
are not always easy to determine, and some of the mitigation
measures may backfire, making the problem worse [28]. This
phenomenon is also well-known in the complex dynamics of
systems displaying self-organized criticality [29]–[32]. A self-
organized critical system is one in which the nonlinear dynamics
in the presence of perturbations organizes the overall average
system state near to a critical state that is marginal to large dis-
ruptions. These systems are characterized by a spectrum of spa-
tial and temporal scales of the disruption that exist in remark-
ably similar forms in a wide variety of different physical sys-
tems. Systems that operate near criticality have power laws; the
frequency of large disruptions decreases as a power function of
the disruption size. This is in contrast to Gaussian systems or
failures following a Weibull distribution in which the frequency
decays exponentially with disruption size.

The success of mitigation efforts in self-organized critical
systems is strongly influenced by the dynamics of the system.
One can understand self-organized critical dynamics as in-
cluding opposing forces that drive the system to a dynamic
equilibrium near criticality in which disruptions of all sizes
occur (see [6], [13], [33] for an explanation in the context of
power systems). Power laws are a characteristic feature of this
dynamic equilibrium. Unless the mitigation efforts alter the
self-organization forces driving the system, the system will
be pushed to criticality. To alter those forces with mitigation
efforts may be quite difficult because the forces are an intrinsic

Fig. 7. Numbers of forest fires of varying size with and without fire fighting.

part of our society. Then the mitigation efforts can move the
system to a new dynamic equilibrium while remaining near
criticality and preserving the power law. Thus, while the abso-
lute frequency of disruptions of all sizes may be reduced, the
underlying forces can still cause the relative frequency of large
disruptions to small disruptions to remain the same.

Moreover, in some cases, efforts to mitigate small disruptions
can even increase the frequency of large disruptions. This occurs
because the large and small disruptions are not independent, but
are strongly coupled by the dynamics. Before discussing this
result in the more complicated case of power systems, we will
illustrate this complex systems phenomenon in the context of a
forest fire model [30]. The objective of this illustration is only to
explain a complex systems effect known in another application
with an easier model description than power systems. While it
is not surprising that the corresponding power systems results
in Section VI are analogous, the validity of the power systems
results needs, of course, to be considered independently from
any analogy.

The forest fire model has trees that grow with a certain prob-
ability, lightning which strikes (and therefore lights fires) with
a certain probability, and fires that spread to neighboring trees
(if there are any) also with a given probability. The opposing
forces in the forest are tree growth and fires, which act to in-
crease and decrease the density of trees respectively. The forest
settles to a dynamic equilibrium with a characteristic average
density of trees. The rich dynamics of this model system has
been extensively studied [30]. In our version of the forest fire
model, there are two types of forests. The first type is an un-
controlled forest in which the fires are allowed to burn them-
selves out naturally. The second type of forest has an efficient
fire-fighting brigade that can extinguish small fires with a high
probability. At first, this support appears to be good; after all, we
want to decrease damaging fires. However, in the longer run, the
effect of the fire fighting is to increase the density of flammable
material (trees). Therefore, when one fire is missed, or a few
start at once (from multiple lightning strikes), the fire brigade is
overwhelmed, and a major conflagration results. (This seems to
be the cause of the large fires in the southeastern United States
in 2001.) The enhanced probability of large fires can be seen in
Fig. 7 in which the frequency distribution of fire sizes is plotted
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for the two different situations. In the case where the small fires
are efficiently extinguished, the large fire tail of the distribution
is significantly increased over the case with no mitigation. This
type of behavior is typical because, in a complex system, there
is a strong nonlinear coupling between the effect of mitigation
and the frequency of the occurrence. Therefore, even when mit-
igation is effective and eliminates the class of disruptions that
it was designed for, it can have unexpected effects such as an
increase in the frequency of other disruptions. As a result, the
overall risk may be worse than the case with no mitigation.

V. SUMMARY OF OPA

To study the real impact on the system of different mitigation
measures, we use the OPA model of blackout dynamics. This
section summarizes OPA, and the grid models used. OPA and
the artificial grid model are described in detail in [13]. Another
perspective on the complex dynamics of OPA is given in [1], and
OPA is placed in the context of other cascading failure models
in [33].

In the OPA model, the dynamics of blackouts involve two in-
trinsic time scales. There is a slow time scale on the order of
days to years, over which load power demand slowly increases,
and the network is upgraded in response to the increased de-
mand. The average load power demand slowly increases at a
fixed rate by multiplying the average load by a fixed number
slightly greater than one at the start of every simulated cas-
cade. There are two sorts of upgrades. Transmission lines are
upgraded as engineering responses to blackouts and maximum
generator power is increased in response to the increasing de-
mand. The transmission lines selected for upgrade are those
transmission lines involved in a blackout. The transmission lines
are upgraded by increasing their maximum flow limits. The gen-
eration upgrade is done as needed to maintain coordination with
the transmission line upgrades. In particular, the generation is
increased at randomly selected generators subject to coordina-
tion with the limits of nearby lines when the generator capacity
margin falls below a threshold [6]. These slow opposing forces
of load increase and network upgrade self organize the system
to a dynamic equilibrium. As discussed elsewhere [13], this dy-
namical equilibrium is close to the critical points of the system
[14], [33], [34].

In the OPA model, there is also a fast time scale, of the order
of minutes to hours, over which cascading transmission line
overloads or outages may lead to blackout. Cascading black-
outs are modeled by overloads and outages of lines determined
in the context of a standard DC load flow model of the network
power flows and generator power dispatch optimized by linear
programming. Each simulated cascade starts from a solution of
a standard DC load flow. The initial disturbance is modeled by
-independent outage of each transmission line with a given

probability . If any lines are in a state of outage, the power
flows and injections are recomputed using the DC power flow
equations and standard linear programming optimization of the
generation redispatch [35]. The linear programming of the gen-
eration redispatch can shed load, but a large weighting factor
in the cost function ensures that load shedding is avoided where
possible. The redispatch of generation and load shedding are the
only corrective actions modeled during the cascade, and other
operator actions or remedial action schemes are not modeled.

A cascading overload may start if one or more lines are over-
loaded during the solution of the linear programming problem.
These overloaded lines are assumed to be the lines that are vul-
nerable to further outage, and this is implemented by assuming
that there is a probability, , that an overloaded line will suffer
an outage. When a solution is found, the overloaded lines of the
solution are tested for possible outages. If an outage is found, a
new solution is calculated. This process can lead to multiple it-
erations, and this cascading process continues until a solution is
found with no more line outages. Then the total load shed and
lines tripped are recorded. The cascade is considered to cause a
blackout if a non-trivial amount of load is shed. The overall effect
of the process is to generate a possible cascade of line outages
that is consistent with the network constraints and the linear pro-
gramming optimization. OPA represents in a simplified way the
physics and engineering of important mechanisms of cascading
blackouts, namely transmission line overloads and outages and
the evolution of the network in response to blackouts and load de-
mand. However, blackouts are extremely complicated, and there
are dozens of physical, socio-economic and human mechanisms
that combine together in blackouts. The state of the art in ana-
lyzing and simulating blackouts typically represents only a small
selection of the observed mechanisms [19]. Although the OPA
model includes very simple representations of the parts of the
power transmission system, it can nevertheless as a combined
model yield complicated complex system behaviors.

In this paper, OPA is run on artificial power grid networks, or
the standard IEEE test network of 118 nodes [15]. The artificial
networks are constructed by first generating a tree network with
three transmission lines incident on each node, and then adding
transmission lines to the circumference to join pairwise all the
nodes at the largest tree depth [14]. Although this network is
artificial, it has an advantage of allowing similar networks of
different sizes to be generated simply by varying the tree depth
in the first stage of the network generation. In this paper, we
use the above method to generate artificial networks of sizes 46,
190, and 382 nodes.

VI. ASSESSMENT OF MITIGATION MEASURES

The OPA model allows us to study the dynamics of black-
outs in a power transmission system. This model shows dynam-
ical behaviors characteristic of complex systems, and has a va-
riety of transition points as power demand is increased [14].
In particular, we can assess some generic measures that may
be taken for blackout mitigation, and the OPA model provides
some guidance on when and how such mitigation methods may
be effective.

To experiment with possible mitigation effects, we consider
three types of mitigation measures.

1 Require a certain minimum number of transmission lines
to overload before any line outages can occur. This sup-
pression of outages with only a few lines overloaded could
represent operator actions that can effectively resolve over-
loads in a few lines, but are less effective for overloads in
many lines.

2 Reduce the probability that an overloaded line outages.
This mitigation strengthens the transmission lines. For ex-
ample, it could roughly represent the effect of increased
emergency ratings so that an overloaded line would be
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Fig. 8. Time evolution of the power served and number of blackouts from the
OPA model on 382 node network.

more likely to operate while the operators resolve the line
overload.

3 Increase the generation margin. This implies having
greater power reserves available in the network to respond
more effectively to fluctuations in the power demand.
Clearly an increase in generator power available should
reduce the chances of blackouts.

In what follows, we discuss each of these three options from the
perspective of the OPA model. The strong dynamical correla-
tions observed in the results of the model will manifest in sev-
eral unpredicted consequences of these mitigation techniques.
In these studies, we have used the 382 node network [14] and
the IEEE 118 node network [15]. We note our assumption that
the mitigation methods work correctly in the sense of working
as designed. Although mitigation methods may sometimes fail
in practice, this is a reasonable starting assumption.

We collect the data for our statistical studies during the steady
state regime in the dynamical calculation. Here, steady state
is defined with relation to the dynamics of the blackouts, be-
cause the power demand is constantly increasing, as shown in
Fig. 8. The time evolution in the OPA model shows two dis-
tinct stages. At the beginning, and depending on the details of
the initial conditions, there is a transient period. This period is
followed by steady state evolution with stationary blackout sta-
tistics. This relationship is illustrated in Fig. 8, where we have
plotted the number of blackouts in 300 days as a function of
time. We can see a slight increase in the average number of
blackouts during the first 40 000 days. This transient period is
followed by a steady state where the number of blackouts in
an averaged sense is constant. Note that the properties in the
slow transient are not very different from the steady state. How-
ever, for statistical analysis, it is better to use the steady state
information. The length of this transient depends on the rate of
growth in power demand. In the calculations presented here, this
rate has been fixed to 1.8% per year. In the following calcula-
tions, we evaluate the statistics on blackouts by neglecting the
initial transients, and doing the calculations for a time period of
80 000 days in steady state. It is arguable whether the real elec-
tric power grid reaches steady state. However, it is pragmatic to
begin the study of the complex system dynamics by examining
their effect on the long-term steady state.

Fig. 9. Logarithm of the number of blackouts as a function of the number of
line outages for different suppressions of smaller outages on the IEEE 118 node
network.

A. Suppressing Line Outages When Only a Few Lines
Overload

There are two possible sources of line outages in the OPA
model. One is a random event causing a physical outage (for
instance, a tree shorting out a transmission line). Such events
happen with a prescribed probability . The first type of line
outage is not affected by the mitigation measure. The second
cause of line outages is line overloading during a cascading
event. We assume that there is a probability for an overloaded
line to outage. Here we assume that operator actions can effec-
tively resolve overloads in a few lines; therefore we require a
minimum number of transmission lines to overload before al-
lowing those lines to outage.

We implement this mitigation measure in the OPA model by
suppressing line outages unless there are more than a certain
number of overloaded lines. The expected result of this mitiga-
tion measure is the reduction of the blackouts involving a small
number of line outages. We have used the IEEE 118 node net-
work (178 transmission lines) for these calculations [15]. In the
calculations presented here, the maximum individual load de-
mand fluctuation is 60%, and the minimum generation margin
is 30%. When we consider the base case (no mitigation measure
applied), we found that only 9.7% of the blackouts had more
than 10 line outages, and only 4.7% of the blackouts had no line
outages. Therefore, the bulk of the blackouts, 85.6%, had 1 to
10 line outages. This result suggests that implementing the mea-
sure that there are no line outages unless, for instance, there are
at least 10 overloaded lines, should reduce substantially the total
number of blackouts. As we discuss below, that is not the case.

Fig. 9 plots the logarithm of the number of blackouts as a
function of the number of line outages. The logarithmic vertical
scale emphasizes the rarer large blackouts, but this is appropriate
given the risk analysis presented above. We can see that, with no
mitigation, there are blackouts with line outages ranging from
zero to 20. When we suppress outages unless there are a cer-
tain number of overloaded lines, there is a clear increase in the
number of blackouts with line outages greater than that number
of lines. There is also an increase in the number of blackouts
with no line outage. In particular, for suppressing outages with
up to 10 lines, blackouts with 1 to 10 outages are reduced by
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Fig. 10. Time evolution of the number of outages per blackout, and the network
loading ��� before and after the mitigation of suppressing outages with less
than 30 lines goes into effect on the 382 node network.

40%. However, blackouts with no line outage, or with more than
10 line outages, increase by 110%. The overall result is only a
reduction of 15% of the total number of blackouts. Furthermore,
as the number of large blackouts has increased, this reduction on
blackouts may not lead to any overall benefit to the consumers.

As there is a significant increase of rare but very large black-
outs, this mitigation may have an overall negative economic ef-
fect. If we measure the economic impact of a blackout as being
proportional to the power loss, we can make an estimate of the
blackout cost reduction due to the reduction in the frequency of
outages. If the number of transmission lines for which outages
are suppressed is kept below 10, then there is a decrease in the
cost of the blackouts. However, if the number of transmission
lines for which outages are suppressed is larger than 10, then
there is an increase in the blackout cost. However, the increase
in the blackout cost is at most 60%.

It is interesting to explore in more detail the consequences of
implementing such a measure. To do so, we can look in detail
at the time evolution of the system after the measure has been
applied. In Fig. 10, we plot the number of outaged lines during
a blackout as a function of time. We start with the base case, and
can see that during this initial phase the number of outages per
blackout oscillates between 0 and 20, as expected from the pdf in
Fig. 9. At time , the mitigation goes into effect, and
we require 30 transmission lines to overload before any over-
loaded line outages can occur. Fig. 10 shows that the number
of line outages per blackout is immediately reduced. The fre-
quency of blackouts is also immediately reduced as the mitiga-
tion goes into effect, but the frequency start to slowly increase to
its steady state value. At first, after the mitigation goes in to ef-
fect, there are very few blackouts with a high number of line out-
ages, but their frequency increases until it reaches the expected
value from the steady state calculation. It is because of the dy-
namics induced by the growth of the demand that the system
self-organizes to a new dynamical state in which the improve-
ments introduced by the mitigation are eroded, and an overall
situation worse than that with no mitigation emerges.

In Fig. 10, we have also plotted a measure of the net-
work loading. is the fraction of loading of
the line connecting nodes and . (Here is the power flow

Fig. 11. Frequency distribution of blackouts for different values of the proba-
bility for an overloaded line to outage on a 190 node network.

through this line, and is the power flow limit.) The av-
eraged value of over all the lines of the system, , gives
a measure of how close to its transmission limits the system is
operated. In the example plotted in Fig. 10, we can see a jump
in the value of as soon as the mitigation measure is im-
plemented. This jump is followed by a slow evolution to ward
a higher fraction of overloading. As the operators have learned
to deal with up to 30 overloaded lines without line outages, the
system has been operated with more lines closer to their limits.
When an incident happens that triggered a blackout, this higher
level of overloading makes a large blackout more likely.

Because of the time taken to reach to the new steady state with
large blackouts, it is clear that in a real system it will be difficult
to determine that the mitigation introduced at time
is the cause of the situation at a time more than 13
years later. The transition time is a function of how drastic the
mitigation is. For instance, for suppressing outages with up to 10
lines, the transition time to a larger blackout is barely detectable,
although the largest blackouts also appear a few years later.

B. Reducing the Probability That an Overloaded Line Outages

Strengthening the transmission lines can be represented by a
reduction in the probability that an overloaded line outages. The
expectation from this mitigation method is an overall decrease
in the frequency of the blackouts. Furthermore, multiple black-
outs are also expected to be less likely because of the decreased
probability of failure of each of the components. In Fig. 11, we
show a plot of the distribution of the number of blackouts as a
function of the load shed for different values of the probability
of line outage, .

As expected, we see that reducing reduces the probability
of large blackouts. However, this is not the only change observed
in the dynamics. With the decrease of large blackouts, there is
a concomitant increase in the number of small blackouts. The
overall result is that there is hardly any change on the frequency
of blackouts. In the intermediate range, where the probability
distribution of the load shed varies inversely proportional to the
size of the blackout, there is not much change. The functional
form remains algebraic with exponents close to 1. This robust-
ness of the algebraic tail of the pdf is characteristic of self-orga-
nized critical system [31].
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Fig. 12. Frequency of blackouts, and mean number of line outages per blackout
as a function of ����� � on the 46 node network.

Because the OPA model represents the power system in a
simplified form that lumps together multiple effects, the miti-
gation measures that we can represent with OPA are limited,
and may be implemented in several ways. For example, there
may be several ways to upgrade the power system to reduce the
overall probability that an overloaded line outages, such as
increasing line ratings or operational rules that provide more
margin. Although the initial parts of cascading sequences can be
understood, it remains a challenge to assess the average effect of
upgrades on the subsequent parts of long cascading sequences,
even when complex systems effects are neglected.

C. Increasing the Generation Margin

In power systems, the maximum total generation power avail-
able exceeds the average load by an amount . The gen-
eration margin can then be expressed as the fraction .
In the OPA model the maximum generator power is increased
when the generation margin falls below the minimum generator
power margin [13].

Increasing is possibly the simplest mitigation ap-
proach [36], and we expect a reduction of the overall number of
blackouts. We find that the frequency of blackouts decreases as
the capacity margin increases. We have carried out these cal-
culations for several idealized networks. In Fig. 12, we have
plotted the frequency of blackouts as a function of
for an idealized network with 46 nodes. The frequency decrease
with increasing only happens when this margin is
greater than the standard deviation of the load demand fluctu-
ations. When they are comparable, there are no simple miti-
gation measures that are effective in reducing the blackout fre-
quency. Also note the increase in mean blackout size (measured
by the number of line outages) as blackout frequency decreases
in Fig. 12. When we increase the generator margin, the char-
acter of the blackouts changes. When the generator margin is
small, the blackouts are of small size with mostly no line out-
ages. However, at high generation margin, they became consid-
erably less frequent, but have a large size with many line out-
ages. This pattern is illustrated in Fig. 13, where we have plotted
the number of blackouts for a given number of line outages for
different values of . This result suggests that the in-
creases on generator margin need to be associated with upgrades
of the transmission grid.

Fig. 13. Frequency of blackouts as a function of number of line outages for
different values of ����� � on the 46 node network.

VII. CONCLUSIONS

Complex system dynamics in the power transmission system
has important implications for mitigation efforts to reduce the
risk of blackouts. As expected from studies of general self-or-
ganized critical systems, the OPA model shows that apparently
sensible efforts to reduce the risk of smaller blackouts can some-
times increase the risk of large blackouts. This result is due to the
nonlinear interdependence of blackouts of different sizes caused
by the dynamics. The possibility of an overall adverse effect on
risk from apparently sensible mitigation efforts shows the im-
portance of accounting for complex system dynamics when de-
vising mitigation schemes.

When we apply mitigation measures that tend to reduce the
probability of small blackouts, we can often see an increase in
the frequency and/or the size of large blackouts. Conversely,
when we try to eliminate the large blackouts, there can be an
increase in frequency of the small ones. The negative effects
of some mitigation measures may not necessarily appear right
away. They can cause a slowly worsening of the system perfor-
mance over an extended period of time. That may increase the
difficulties in assessing the effectiveness of a measure, and in
identifying the cause of worsening of operational conditions.

The importance of developing methods of blackout mitigation
can only increase as the power system not only gradually evolves
as assumed in this paper, but also changes its character through
changes in the nature of generation, loads, and regulation. These
additional changes will also be shaped by complex dynamics, but
the needs for analysis are greater, because there is less assurance
that the historical patterns of high reliability will persist.

Our complex system approach, which implies interdepen-
dence between large and small blackouts, should be contrasted
with an approach in which large and small blackouts occur
-independently as uncorrelated events. The difference be-

tween the two approaches cannot be deduced from a frequency
distribution of blackout sizes (for these could be the same in
both approaches), but from assumptions about the dynamics
governing the system that produce these statistics. The complex
system approach to risk analysis illustrated here is novel in that it
analyses the long-term, steady state risk of failure in a system that
is dynamically evolving as the system is upgrading in response
to increasing demand. This approach is different than evaluating
the risk of failure in a system that is assumed to be fixed.
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We hope that this initial work on risk assessment and mitiga-
tion of blackouts of upgrading transmission systems will spur
general interest in the risk analysis of complex dynamical infra-
structure systems.
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