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Abstract

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken

communication. Machine learning models such as neural networks have already been proposed for audio signal

modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the

implementation of several neural network-based systems for speech and music event detection over a collection of

77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to

YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The

first one is the training of two different neural networks, one for speech detection and another for music detection.

The second approach consists on training a single neural network to tackle both tasks at the same time. The studied

architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks.

Comparative results are provided in terms of classification performance and model complexity. We would like to

highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid

convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore,

a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most

harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

Keywords: Acoustic event detection, Speech activity detection, Music activity detection, Neural networks,

Convolutional networks, LSTM

1 Introduction
Recognizing and labeling the events found in audio signals

is not a new challenge for machine perception. Such task

has already been studied in the literature from several per-

spectives. While the term acoustic event detection (AED)

is used for the recognition of sound events in a wide sense,

the set of acoustic events under study is usually defined by

the field of application.

Works on the detection of specific events can be also

found, such as voice activity detection for recognizing the

presence of human speech [1–3] or music activity detec-

tion, the analogous detection problem oriented to musical

contents [4, 5]. In both cases, the complexity of the prob-

lem does not come from the number of different event
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classes to be detected, but from the high variability of the

contents found in speech and music signals. Detecting the

presence of speech and music events is particularly use-

ful in speech-processing technologies. On the one hand,

a voice activity detection stage allows the system to oper-

ate only over the relevant audio segments, namely, those

which contains speech. Nevertheless, musical contents,

which are very common in real-life recordings and audio

broadcasts, are likely to be detected as speech as well,

having a negative impact on the system.

Previous research in these fields usually involved rule-

based systems and relatively small-sized datasets, being

convenient settings for event-specific detection and clas-

sification of reduced sets of events [6, 7]. However, large-

scale AED systems would need enough data to represent

the huge amount of different acoustic events we can hear

in the real world as well as the variability of those events.
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Guided by the success of ImageNet [8], a large-scale

image dataset which has favored the recent development

of computer vision and its related fields, Google intro-

duced AudioSet [9] in 2017 as a large-scale dataset con-

sisting of more than two million 10-s audio segments

directly extracted from YouTube videos. Each audio seg-

ment in AudioSet is weakly labeled (i.e., the temporal

location of each audio event along the 10-s length is not

available) with the different events contained in it, regard-

less of the sequential or simultaneous nature of the events.

Every label refers to a specific acoustic event class defined

in the AudioSet Ontology. This ontology was provided

along with the dataset and defines a hierarchical structure

of 632 audio event categories (of which 527 are used as

labels for the segments in the dataset).

The ontology and the dataset defined in Google

AudioSet have already been used to carry out several

works and evaluations, such as the last editions of the

DCASE challenge [7]. The size of this dataset in both the

number of utterances and the diversity of audio events

draws a new paradigm for the development of machine

learning-based AED systems, where some research has

been already performed [10–13].

The primary aim of this work is to study the perfor-

mance of different neural network-based classifiers in the

detection of speech and musical events along the wide

variety of audio segments found in AudioSet. In contrast

with most of the research conducted on this dataset so far,

we employ a standard time-frequency representation of

each audio segment (mel-spectrogram) as features, rather

than the embeddings computed and provided by Google

[9, 10]. Another differential aspect of our approach is the

selection of two specific categories of events as targets,

speech, and music, which is motivated by the relevance of

these events to speech processing applications. Although

the labeling of the rest of event classes is ignored during

classification, such information has been useful in order to

perform an audio event distractor analysis. This analysis

is one more contribution of this work that has indicated

which acoustic events are the most harmful for speech or

music detection.

Through this work, we also compare two different

setups for classification: (a) training a single classifier for

each particular class as a binary problem, and (b) training

a four-class model that includes each possible combi-

nation of both classes: “music and speech,” “speech and

no-music,” “no-speech and music,” and finally “no-music

and no-speech.”

The rest of the paper is organized as follows: Section 2

explains the choice of Deep Neural Networks for the

task at hand, briefly presenting the different architectures

that will be used. Section 3 describes the data and labels

considered for our experiments and defines the parame-

ters used to design the neural network models. Section 4

contains the experimental results for the tasks of speech

event detection, music event detection, and simultaneous

speech-music event detection, which are then compared

and discussed. The distractor analysis is explained and

discussed in Section 5, listing the most relevant distrac-

tor events in each category. Finally, Section 6 includes the

conclusions of this work and highlights its key points.

2 Why DNNs in speech andmusic detection?
One of the main features of audio signals is their variation

with time. Digital audio signals are formed by a stream of

samples with a temporal structure. Thus, the content of

a given time window is significantly more relevant when

future and previous intervals of the signal are consid-

ered as context [14]. Such a property can be exploited in

machine learning by means of recurrent models, where

the input data is treated as a temporal sequence and the

context is taken into account by the internal state of the

model.

In recurrent neural networks (RNNs) [15], the state

information of the current timestep is supplied as feed-

back when processing the following window. In other

words, each neuron or node has an additional input

which is computed from the activations of the layer in

the previous timestep, providing the model with a mem-

ory. However, such memory still fails to model long-term

dependencies in the input sequences. As new information

flows into the network, the potential influence of pre-

vious timesteps in the present output decreases rapidly.

This unconvenience of RNN structures is known as the

vanishing gradient problem [16].

Long short-term memory (LSTM) [17] recurrent neu-

ral networks are composed of recurrent units designed to

avoid the vanishing gradient problem. Each LSTM unit

takes the input data as temporal sequences. At each time

step, they decide whether they store, forget, or output the

information they have gathered. This is possible thanks

to their input, output and forget gates, which depend

on the input data and trainable weights. The output of

each LSTM unit is another temporal sequence, allowing a

model to stack several consecutive LSTM layers.

The spectrum of audio signals, in particular its tem-

poral structure, is widely used to model such signals in

a tractable way, leading to well-known two-dimensional

representations of audio such as the spectrogram or the

melgram. These representations can be interpreted as

single-channel images. Convolutional neural networks, or

CNNs, are known for their suitability to image data pro-

cessing [18], as they are able to take advantage of this

kind of representations using convolutional layers. CNNs

store learnable filters which are applied by means of a

convolution to the input data. The use of convolution

operations allows the network to take advantage of the

context of each feature (i.e., the adjacent values) in the
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two-dimensional input. When processing spectrogram-

like representations, that implies being able to learn time-

frequency patterns, achieving remarkable performance

[10, 11].

Different approaches have been proposed to feed the

networks directly with the waveform of the audio signals

instead of extracting features from the data as a first step,

in order to develop end-to-end systems. The CLDNN [3,

19] (acronym for convolutional LSTM DNN) architec-

ture is specifically designed for such task, which is also

referred to as feature learning. Related research in the field

includes models like SincNet [20] or Wavenet [21], the

latter being mainly proposed as a generative model for

audio signals. Through this work, we propose neural net-

works containing both convolutional and LSTM stages as

well. In contrast with the aforementioned CLDNN struc-

tures, our convolutional LSTM models are fed with the

mel-spectrograms extracted from the audio segments, not

with the audio waveforms.

Aside from recurrent and convolutional networks, feed-

forward (also called fully connected) neural networks can

be applied to audio signals as well. These models treat

each value in the input data as time-independent features;

hence, they are not optimal to learn and recognize pat-

terns in audio signals. However, temporal context can be

introduced by feeding these networks with the informa-

tion of previous and future timesteps next to the current

one (e.g., concatenating feature vectors of consecutive

frames).

Although this work focuses on speech and music detec-

tion, neural networks have been applied to other audio

signal processing tasks as well, some of them aiming to

find high-level features of speech signals (e.g., language

[22, 23], speaker [20, 24], or speech recognition [25–27])

or music (such as musical genre [28] or key [29]).

3 Experimental framework
3.1 Datasets and labels description

3.1.1 Speech andmusic labels

We define music and speech classes directly from the

weak labels found in AudioSet. Thus, our “music” seg-

ments are those which include the music event tag

(/m/04rlf), meaning that music can be heard at some

point in those audio segments. In a similar way, our

“speech” segments are chosen as those which include not

only the human speech event tag (/m/09x0r) among

their labels, but also those segments which include any

subcategory of speech that directly implies the presence

of speech (e.g., “male speech,” “female speech,” “child

speech,” or “conversation”). This simple inference mech-

anism avoids some of the labeling inconsistencies in seg-

ments that contain spoken voice, but are not labeled with

the speech event tag due to the human-labeling process of

AudioSet.

We decided not to expand the music class in a simi-

lar way, because the definition of music is considerably

more complex. For instance, some random notes played

in a piano would make clear the presence of the “piano”

acoustic event, but considering those sounds as music

would depend on the listener and on a wider cultural

context.

3.1.2 Original AudioSet subsets

Google AudioSet dataset is originally divided in three

disjoint subsets, named balanced train, evaluation and

unbalanced train. Both balanced train (22,160 segments)

and evaluation (20,371) subsets are built following a crite-

rion of maximum class balance across every type of event.

Audio segments are not provided by Google, each seg-

ment is instead identified by its YouTube video ID and

its temporal location inside the video. This information

is enough to obtain the corresponding audio files using

an automated script. Such files have been downloaded in

WAV-PCM stereo format, with 16 bits per sample and a

sample rate of 16 kHz. Additionally, it is worthmentioning

that public access to the videos is not assured, as they are

web content that could be deleted by the uploader in any

moment or retired by the platform for some reason (e.g.,

inappropriate content or copyright infringement). This is

the reason why our evaluation and balanced train down-

loads contain less segments than they were supposed to

(40,906 instead of 42,351).

Althoughmusic and speech events are particularly com-

mon in the dataset, the event class balance found in the

balanced train and the evaluation subsets does not guar-

antee the balance between “speech” and “non-speech” or

“music” and “non-music” segments. Observing the prior

probabilities of music and speech over the downloaded

balanced train + evaluation subset (Table 1), we found

that 27.81% of the segments include events labeled as

music and 26.26% include speech events. Additionally,

only 6.83% of the segments include simultaneously speech

and music events. On the other hand, 52.75% of the

segments do not include speech or music events.

These priors make the balanced train + evaluation

subset inconvenient for our proposed task, specially

when considering a four-class problem, where the classes

would be very unbalanced. Meanwhile, unbalanced train

(Table 2) shows a more reasonable balance among the

Table 1 Distribution of speech and music events over the 40,906

downloaded balanced train + evaluation segments

No-music (%) Music (%) Total (%)

No-speech 52.75 20.99 73.74

Speech 19.44 6.83 26.26

Total 72.19 27.81 100
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Table 2 Distribution of speech and music events over the

unbalanced train segments

No-music (%) Music (%) Total (%)

No-speech 17.30 33.50 50.80

Speech 33.76 15.44 49.20

Total 51.06 48.94 100

studied classes, with 49.20% of its segments containing

speech events and 48.94% of segments including music.

3.1.3 AUDIAS-balanced—June 2018 set

We have solved the unbalance problem by adding to

our experimental set 37,030 segments from the unbal-

anced train subset. This subset is big enough to let

us select segments from the underrepresented classes

and obtain a more balanced set (Table 3), where the

four possible classes show priors above 24%. We have

named this new set AUDIAS-balanced—June 2018, and

the list of segments and their labels are available at

the following URL: http://audias.ii.uam.es/Downloads/

AUDIAS_Junio18_filelist_sep.txt.

3.2 Feature extraction (mel-spectrograms)

Each audio segment has been represented as a mel-

spectrogram or melgram. This representation is a time-

frequency matrix where the frequency axis follows the

mel-frequency scale [30], a log-based perceptual repre-

sentation of the spectrum.

The mel-spectrogram transformation is based on the

computation of the short-time Fourier transform (STFT)

spectrogram. The frequency bins of the STFT are then

transformed to themel scale bymeans of amel-filter bank.

For this process, we have used Hanning windows of 32 ms

with 20 ms shifts and 128 mel-filters.

The modulus M of the obtained mel-spectrograms has

been transformed to decibels using the expression in Eq. 1.

MdB = 20 log10(1 + M) (1)

The result for each audio segment is a 128 ×500 matrix,

with 128 frequency bins and 500 time steps.

The waveform, spectrogram, and mel-spectrogram rep-

resentations are illustrated in Fig. 1 (speech segment) and

Fig. 2 (music segment).

Table 3 Distribution of speech and music events over the 77,936

AUDIAS-balanced—June 2018 segments

No-music (%) Music (%) Total (%)

No-speech 27.69 24.10 51.79

Speech 24.10 24.10 48.21

Total 51.79 48.21 100

3.3 Design and parameterization of the models

In this work, we have evaluated several neural net-

work architectures on the defined classification problems.

All these architectures receive the log-compressed mel-

spectrogram of the audio segment as an input. As an

output, the networks provide an estimation of the poste-

rior probability of the segment belonging to each possible

class. For this purpose, we included in every architec-

ture a SoftMax output layer, which is a multidimensional

generalization of a logistic function. The dimension of

the SoftMax layer depends on the number of considered

classes: two nodes for the music and speech binary setups

(a) and four in the case of the simultaneous music-speech

classification setup (b).

We have designed five different families of architec-

tures: fully connected networks (FConn), also known as

feed-forward; convolutional neural networks (CNN), long

short-term memory (LSTM) networks, and two hybrid

convolutional-LSTM networks, C1-LSTM and C2-LSTM,

with one-dimensional and two-dimensional convolutional

filters respectively.

In order to tackle the large amount of design possibili-

ties, two integer parameters have been defined, L (related

to the number of hidden layers) and N (the number of

neural units contained in each hidden layer).

3.3.1 Fully connectedmodels

The proposed fully connected (FConn) models consist

on L fully connected hidden layers, each one containing

N units (Fig. 3). The first hidden layer of these models

takes the whole mel-spectrogram as an input, row-wise.

The ReLU activation function is applied to the outputs of

every hidden layer. As this architecture is the most simple

neural network design, it is considered as a baseline for

our experimental set.

The ReLU activation function is a continuous function

consisting on two linear segments (Eq. 2). Its derivative

is not continuous, but this does not suppose a problem

in practice. Actually, as the computation of its derivative

is immediate, ReLU activations are widely used and allow

training processes to converge considerably faster.

ReLU(x) =

{

0, x ≤ 0

x, otherwise
(2)

3.3.2 CNNmodels

Our CNN models contain L hidden convolutional layers

with N filters each. After each convolutional layer, we add

a MaxPooling layer with a 2 × 2 grid, aiming to isolate

the relevant information and reduce the size of the feature

matrices. Thus, each layer operates in a different scale of

the mel-spectrogram, allowing the latter layers to access

wider temporal and frequential contexts. The proposed

CNNmodels end with a flatten layer which transforms the

features to 1-D vectors, and a fixed-size fully connected

http://audias.ii.uam.es/Downloads/AUDIAS_Junio18_filelist_sep.txt
http://audias.ii.uam.es/Downloads/AUDIAS_Junio18_filelist_sep.txt
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Fig. 1Waveform, spectrogram, and mel-spectrogram of a 10-s speech segment obtained from Google AudioSet. The mel-spectrogram, based on

the auditory-based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram

layer with 512 units right before the output layer. The fil-

ter size is fixed in each network to 3×3 (CNN3x3) or 7×7

(CNN7 × 7).

3.3.3 LSTMmodels

Our LSTM models consist on L hidden layers, each one

with N LSTM units. At the last hidden layer, the last

value of each sequence is selected in order to reduce

dimensionality before the output layer.

In addition to the already described networks, two

hybrid architectures are proposed which feature both con-

volutional and LSTM stages.

3.3.4 C1-LSTMmodels

The first hybrid architecture consists on L one-

dimensional convolutional layers of N filters, each one

followed by aMaxPooling layer of size 2. The length of the

filters is 3, and they affect only the frequential dimension.

After these convolutional layers, we add L LSTM layers.

Thus, the aim of these models is to process the frequen-

tial context in the convolutional stage, then the temporal

structure in the LSTM layers. These architectures will be

referred to as C1-LSTM.

3.3.5 C2-LSTMmodels

The last architecture contains L two-dimensional convo-

lutional layers withN filters of size 3×3, each one followed

by a MaxPooling layer with 2×2 grid. The difference with

respect to the CNN3 × 3 models is the substitution of

the flatten layer with a single LSTM layer of N units. The

last value of the LSTM output is selected and passed to

a fully connected layer of 512 units. This is intended to
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Fig. 2Waveform, spectrogram, and mel-spectrogram of a 10-s music segment obtained from Google AudioSet. The mel-spectrogram, based on the

auditory-based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram

Fig. 3 Basic scheme of a fully connected neural network with five inputs, two outputs, and a single hidden layer
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work as a time-aware dimensionality reduction of the pro-

cessed information. These architectures will be referred to

as C2-LSTM.

3.4 Training method andmodel selection criteria

The subset of Google AudioSet used in this work, defined

in Section 3.1 and containing 77,936 audio segments, has

been divided into training, validation, and test sets. We

have taken apart 30% of the segments for test (23,383), and

the other 70% has been used during training, divided into

a 80% partition for training (43,643) and 20% for valida-

tion (10,910). This separation maintains the class priors in

each set.

The loss function chosen to optimize is the empirical

cross-entropy, a common loss function for classification

tasks. The empirical cross-entropy measures the adequa-

tion of the estimated posterior distribution (i.e., the out-

put of the SoftMax layer) to the ground truth labels. The

optimizer used is Adam [31], widely used to train neural

networks.

The criterion for model selection is the minimization of

the validation loss. Thus, the model that obtains a lower

cross-entropy over the validation set is the one selected

as best model, regardless of its number of parameters, its

training time, or any other aspect.

We have implemented, trained, and evaluated the pro-

posed models in Keras [32], using TensorFlow as back-

end [33] and single GPU acceleration (NVIDIA Ge-Force

GTX 1080).

Dropout is a well-known technique to prevent overfit-

ting and improve the classification performance of the

models [34]. However, it has not been applied to the

networks from the beginning, but only to the best set-

ting found for each classification task (Section 4.5). This

way, we have been able to evaluate the effect of dropout

while minimizing the additional computational time

required.

4 Results and discussion
The proposed models have been trained performing a

grid search over discrete values of L and N. Such values

depend on the architecture and the classification task and

will be detailed in the corresponding sections. We present

results for a total of 260 networks, considering 6 architec-

tures or model families (FConn, CNN3 × 3, CNN7 × 7,

LSTM, C1-LSTM and C2-LSTM) in three different clas-

sification tasks (speech detection, music detection, and

simultaneous speech-music detection).

As a first step, we have looked for adequate values for

the learning rate and the batch size, obtaining the fastest

convergence of the fully connected training when using

a learning rate of 10−4 and a batch size of 128 exam-

ples. Although this learning rate allowed the convergence

of every architecture, convolutional networks required

a reduced batch size of 8 examples due to memory

limitations.

4.1 Speech event detection results

We have trained a total number of 100 different neu-

ral network architectures for the speech event detection

task, defined by the parameterization of the number of

hidden layers (L) and the number of units contained in

each layer (N) (a more detailed description is provided in

Section 3.3).

• FConn: L = [2, 3, 4, 5, 6], N = [16, 32, 64, 128, 256,

512, 1024, 2048] (40 networks)
• CNN3 × 3: L = [4, 5, 6, 7], N = [32, 64, 128, 256] (16

networks)
• CNN7 × 7: L = [6, 7], N = [32, 64, 128, 256] (8

networks)
• LSTM: L = [1, 2, 3], N = [32, 64, 128, 256] (12

networks)
• C1-LSTM: L = [1, 2, 3, 4], N = [32, 64, 128, 256] (16

networks)
• C2-LSTM: L = [6, 7], N = [32, 64, 128, 256] (8

networks)

The grid-search performed for each of the six architec-

tures receives different ranges of the parameters L and N.

The ranges are selected according to the complexity of the

models, their particular features and the observation of

previous results. For instance, we have decided the range

of the parameter L in CNN7x7 convolutional networks

once the results of CNN3× 3 were observed. A full-range

parameter exploration in each model would have been

unfeasible due to training time limitations.

Our fully connected models (FConn) serve as a baseline

for the classification task. A total of 40 FConn networks

have been trained, ranging from 2 to 6 hidden layers and

16 to 2048 nodes per layer. The best FConn setting in

terms of validation cost has 6 hidden layers with 512 nodes

each, and yields an accuracy of 76% in the validation and

test subsets (Table 4, first row).

Table 4 shows the classification results obtained with

the best network found in each architecture in terms of

cost (empirical cross-entropy) and accuracy over the train,

validation, and test subsets. The best network is selected

as the one which yields the minimum cost over the val-

idation set. The number of trainable parameters of each

network is included in each row in logarithmic scale (p =

log10(no. parameters)).

Each point drawn in the scatter plot in Fig. 4 represents

one of the neural networks trained for the speech event

detection task (a total of 100 networks), using a different

shape for each model family. The position of each point

along the vertical axis shows the cross-entropy yielded by

the network in speech event detection over the validation
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Table 4 Speech event detection results with different network architectures

Model L N p
Train Validation Test

Cost Acc.% Cost Acc.% Cost Acc.%

FConn 6 512 6.23 0.489 77.03 0.510 76.45 0.518 75.58

CNN3 × 3 7 128 6.04 0.322 86.86 0.383 83.65 0.387 83.72

CNN7 × 7 6 64 6.17 0.362 85.02 0.380 84.07 0.390 83.21

LSTM 1 64 4.70 0.547 73.69 0.544 73.51 0.547 73.41

C1-LSTM 3 256 6.40 0.406 82.56 0.436 80.96 0.437 80.80

C2-LSTM 6 256 6.59 0.377 84.30 0.375 84.34 0.382 83.99

The Model column refers to the network architecture, L and N are the number of hidden layers and nodes in each layer (the detailed function of these parameters in each

structure can be found in Section 3.3). p is a base-10 logarithmic measure of the number of parameters. The value of the cost or loss function and the clasiffication accuracy is

included for the training, validation, and test subsets. The best model in terms of validation cost is highlighted in italics

subset (i.e., the validation cost). Additionally, the complex-

ity of the networks is illustrated by the horizontal axis

of the scatter plot, representing the number of trainable

parameters of each network in a logarithmic scale.

The network which achieves the lowest validation cost

in speech event detection is a C2-LSTMmodel with L = 6

and N = 256. Following the description of the C2-LSTM

architecture (Section 3.3.5), this network consists on 6

convolutional layers, where each layer contains 256 two-

dimensional filters of size 3×3, followed by a single LSTM

layer of 256 units and a fully connected layer of 512 units.

A 2 × 2 MaxPooling layer is included after each con-

volutional layer in order to reduce dimensionality. Such

network yields a 84% accuracy in both validation and test

subsets. The false negative and false positive rates of this

network are detailed in the confusion matrix in Fig. 5.

4.2 Music event detection results

Following the same procedure as for the speech event

detection task (Section 4.1), we trained 100 different neu-

ral network architectures for music event detection. In

this case, the grid-search parameterization is identical to

the one described in Section 4.1.

Table 5 summarizes the classification results of the

trained networks, including the best one from each archi-

tecture. The best network in terms of validation cost is a

CNN7x7 with L = 6 and N = 128 (Section 3.3.2). Such

network is composed of six convolutional hidden layers

including 128 filters with size 7 × 7. Each convolutional

layer is followed by a MaxPooling 2 × 2 layer, and a fully-

connected layer containing 512 units is found immediately

before the output layer.

The scatter plot in Fig. 6 illustrates the validation

cost obtained by each network versus the number of

trainable parameters, and the confusion matrix obtained

by the best network over the test set is represented

in Fig. 7.

4.3 Simultaneous speech-music event detection results

We have trained a set of 60 different neural networks to

perform both the speech and the music event detection

tasks simultaneously. Thus, these networks are tackling

Fig. 4 Speech event detection validation cost across the evaluated models. Each point in the scatter plot represents one of the trained networks,

and its position along the horizontal and vertical axes indicates the number of parameters (in a logarithmic scale) and the validation cost obtained,

respectively
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Fig. 5 Confusion matrix of the best network setting for speech event

detection (C2-LSTM model with L = 6 and N = 256). The

percentages indicate the total amount of test segments in each

possible real class-predicted class combination

a four-class problem where the possible classes for a

segment are “no-music and no-speech,” “speech and no-

music,” “no-speech and music,” and “music and speech.”

There is only one correct class for each segment in

this approach, even if the segment contains both speech

and music events. Then, the classification accuracy only

considers as correct the segments where both detections

(speech andmusic) are right. Such is amore strictmeasure

than the accuracies obtained in Sections 4.1 and 4.2.

Table 6 summarizes the results obtained for the double

event detection task. In view of the results obtained in the

previous tasks (Sections 4.1 and 4.2), we performed the

grid search over the FConn, CNN3 × 3, C1-LSTM, and

C2-LSTM structures. In those experiments, LSTM net-

works did not perform as well as other structures, and the

CNN7 × 7 networks showed practically the same perfor-

mance as the CNN3 × 3 models (Figs. 4 and 6), so we

decided not to include these structures in the simultane-

ous speech-music detection experiments. The grid search

over the FConn hyperparameters has also been reduced to

the most relevant ranges of

The scatter plot in Fig. 8 illustrates the validation cost

obtained by each network in this task versus the number

of trainable parameters.

itL and N.

The best setting is a C2-LSTM architecture with 6 con-

volutional layers of 256 nodes, followed by an LSTM layer

of 256 blocks and a fully connected layer of 512 nodes.

Such network achieves 71% classification accuracy in both

the validation and the test sets. The resulting confusion

matrix is showed in Fig. 9. However, to better compare

these results to those yielded by the models obtained in

Sections 4.1 and 4.2, we have divided this 4×4 matrix into

two 2 × 2 matrices (Fig. 10) which represent the perfor-

mance of the model in speech and music event detection,

respectively.

The examination of the 2 × 2 confusion matrices in

Fig. 10 lets us assess the accuracy of the selected model at

the speech event detection task, 83.81%, and at the music

event detection task, 84.16%.

4.4 Comparison (single-task vs. double-task)

As the results in Sections 4.1, 4.2 and 4.3 show, the clas-

sification accuracies of the best settings for speech event

detection and music event detection are near 84%, not

only when training separate networks for each task, but

also when tackling both tasks simultaneously with a single

network.

Table 7 shows the different classification accuracies

achieved in each task by the selected networks over

the test subset, along with the false-positive and false-

negative rates obtained. In both speech and music

event detection, the dedicated networks yield slightly

superior accuracies, albeit the results are practically

identical.

Table 5 Music event detection results with different network architectures

Model L N p
Train Validation Test

Cost Acc.% Cost Acc.% Cost Acc.%

FConn 4 2048 7.15 0.518 74.73 0.552 72.50 0.554 72.74

CNN3x3 7 256 6.60 0.362 85.28 0.386 84.14 0.396 83.51

CNN7x7 6 128 6.69 0.355 85.46 0.379 84.19 0.379 84.20

LSTM 3 32 4.57 0.559 72.39 0.553 72.98 0.554 72.65

C1-LSTM 3 256 6.40 0.431 81.08 0.466 79.48 0.460 79.75

C2-LSTM 6 128 6.00 0.333 86.61 0.383 84.34 0.380 84.49

The Model column refers to the network architecture, L and N are the number of hidden layers and nodes in each layer (the detailed function of these parameters in each

structure can be found in Section 3.3). p is a base-10 logarithmic measure of the number of parameters. The value of the cost or loss function and the clasiffication accuracy is

included for the training, validation and test subsets. The best model in terms of validation cost is highlighted in italics
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Fig. 6Music event detection validation cost across the evaluated models. Each point in the scatter plot represents one of the trained networks, and

its position along the horizontal and vertical axes indicates the number of parameters (in a logarithmic scale) and the validation cost obtained,

respectively

It is important to highlight that using a single network

to detect both kinds of events neither has an impact on

the classification or implies an increase on the model

complexity. While the selected speech detection network

uses 3.9 × 106 trainable parameters and the selected

music detection network uses 4.9 × 106, the best setting

for detecting music and speech with a unique network

requires 3.9 × 106 parameters, concluding that a similar

Fig. 7 Confusion matrix of the best network setting for music event

detection (CNN7 × 7 with L = 6 and N = 128). The percentages

indicate the total amount of test segments in each possible real

class-predicted class combination

amount of trainable weights is sufficient to perform both

classification tasks with a single network.

From this point on, further analysis will be carried out

using the best double-task network (C2-LSTM structure

with L = 6 and N = 256, with results presented in

Table 6).

4.5 Dropout

Dropout [34] is a commonly used technique to prevent

the phenomenon of overfitting in deep neural networks

and improve generalization. It is based on a random deac-

tivation of the nodes in a layer during training time (i.e.,

activations are set to zero with some probability P).

A neural network where dropout is applied has differ-

ent neurons available in each training update, stopping the

network from storing the training data or concentrating

all the meaningful information in a few nodes. Dropout

leads to longer training times, but often lets the networks

reach better results in validation and test.

A full search for the most appropriate configuration of

dropout would involve the tuning of the dropout proba-

bility of each layer in the network, as we could consider

different probabilities in each hidden layer. However, a

more simple approach is to tune a unique probability

Pdrop for the whole network, which would only require an

additional hyperparameter.

The parameter sweep to find the best Pdrop is fea-

sible once we have fixed every other design decision,

as it only requires training a few extra networks. Our

search has considered the following range for the dropout

probability:

Pdrop =[ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] (3)
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Table 6 Simultaneous speech-music event detection results with different network architectures

Model L N p
Train Validation Test

Cost Acc.% Cost Acc.% Cost Acc.%

FConn 6 256 5.77 0.977 58.93 1.038 56.19 1.043 55.80

CNN3x3 6 256 6.68 0.726 71.10 0.740 70.39 0.746 70.37

C1-LSTM 4 256 6.53 0.788 67.58 0.877 64.82 0.886 64.04

C2-LSTM 6 256 6.59 0.651 74.43 0.726 71.48 0.733 70.98

The model column refers to the network architecture, L and N are the number of hidden layers and nodes in each layer (the detailed function of these parameters in each

structure can be found in Section 3.3). p is a base-10 logarithmic measure of the number of parameters. The value of the cost or loss function and the clasiffication accuracy is

included for the training, validation and test subsets. The best model in terms of validation cost is highlighted in italics

Actually, typical dropout probabilities range from 10 to

40%, whereas higher values tend to have a negative impact

in the performance of the network. Including 50% and 60%

dropout probabilities allows us to check and measure this

negative effect.

Our results, shown in Table 8, confirm the theoreti-

cal assumptions. The best network in terms of validation

loss is obtained with Pdrop = 0.4 (val. cost = 0.692).

Such model reaches an accuracy of 72.44% over the test

set, while the best result without dropout was 70.98%.

Although such is a slight improvement, it shows that

the network actually benefits from the dropout technique

even when no clear signs of overfitting were detected.

4.6 Receiver operating characteristic curves and average

precision results

Across the previous sections, the performance of the

proposed models has been measured in terms of empir-

ical cross-entropy—the cost function optimized during

training—and classification accuracy. Validation cost has

been used for model selection, whereas accuracy has

provided a more interpretable perspective of the perfor-

mance of the classifiers.

However, additional metrics such as the area under the

ROC (receiver operating characteristic) curve or the aver-

age precision (AP) per class are common in the field of

acoustic event detection and can further describe the per-

formance of the systems. The following sections present

the ROC curves and AP yielded by the best obtained

model, which is described in Table 8.

4.6.1 ROC curves

The ROC curve is plotted as the true positive rates of a

given classifier against its false-positive rates in a range

of different decision thresholds. The area under the curve

(AUC) is bounded between 0 and 1 and summarizes the

performance of the classifier.

ROC curves have been computed for both event cat-

egories (speech and music) separately and are shown in

Fig. 11. Posterior probabilities for speech and music are

obtained from the SoftMax output of the double-task

network as the sum of individual class probabilities (i.e.,

Fig. 8 Speech-music event detection validation cost across the evaluated models. Each point in the scatter plot represents one of the trained

networks, and its position along the horizontal and vertical axes indicates the number of parameters (in a logarithmic scale) and the validation cost

obtained, respectively



de Benito-Gorron et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:9 Page 12 of 18

Fig. 9 Four-class confusion matrix of the best network setting for speech and music event detection (C2-LSTM model with L = 6 and N = 256). The

percentages indicate the total amount of test segments in each possible real class-predicted class combination

“speech and no-music” + “speech and music” for speech,

“no-speech and music” + “speech and music” for music).

AUCs of 0.917 and 0.916 are obtained respectively for the

speech and music categories.

4.6.2 Average precision

The performance of an acoustic event detection system

across every class can be described computing its mean

average precision (mAP), which is obtained as the mean

of the average precision of the system for each individual

class.

Our best system achieves an AP of 0.904 for speech

event detection and 0.898 for music event detection, out-

performing the results reported in [9] or [13] for these

specific event categories. It should be highlighted that,

in contrast with our system, the cited works target every

Fig. 10 Two-class confusion matrices of the best network setting for speech and music event detection (C2-LSTM model with L = 6 and N = 256).

The percentages indicate the total amount of test segments in each possible real class-predicted class combination
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Table 7 Comparison of the event detection results obtained by the best single-task networks and the best double-task network

Accuracy (%) False positive (%) False negative (%)

Speech Single-task network 83.99 10.41 5.60

Double-task network 83.81 10.67 5.52

Music Single-task network 84.20 9.86 5.94

Double-task network 84.16 8.68 7.16

event category in the AudioSet ontology and use the whole

AudioSet training sets, whereas we only consider two

target categories. Additionally, our training set is a much

smaller part of AudioSet. For these reasons, the results are

not fully equivalent.

Table 9 shows the AP results for both categories and the

mAP. However, it is to be noted that mAP should only

be compared to other experiments with the same set of

events, as a larger, less balanced set of event categories

would be likely to lead to a lower mAP.

Thus, the results support the hypothesis that focus-

ing on few event categories which are of special interest

(instead of considering the entire set of events described

in the AudioSet ontology) favors a better performance

of the resulting system for those events, even with less

training data.

5 Distractor analysis
So far, we have considered that each audio segment could

contain spoken voice, music, both, or none of them.

Although appropriate for the proposed task, this is a very

limited description of the wide diversity of contents that

can be found in AudioSet segments or in other real-

life audio signals. Furthermore, those segments without

music or voice present a very high variability due to its

very own definition.

It is for these reasons that we have found it necessary

to perform a posterior analysis of the classification results

where we could include information about other event

tags found in the AudioSet ontology. The purpose of this

study is to give an insight on which events are the most

likely to cause a music or speech detection error (i.e.,

false positive or false negative) when they are found in a

segment. These events will be referred to as distractors.

Along Section 4, three different networks have been

selected and compared, one trained for speech event

detection (4.1), another one trained for music event detec-

tion (4.2) and finally a network that performs both detec-

tions at the same time (4.3). Given that the perfomances

shown by these networks are very similar (Table 7), the

analysis has been performed over the results of the com-

bined network, which is able to detect both kinds of

events.

In order to carry out the distractor analysis, we defined

the following notations for the collection of event tags in

AudioSet, T :

T = {t1, t2, ..., tn} (4)

And for the set of audio segment labelings in the data, S:

S = {s1, s2, ..., sm} (5)

Where each segment labeling si is a subset of the events

in T, representing that a single segment could be labeled

with more than one event tag. For the sake of clarity,

we can stablish t1 = tsp (speech label) and t2 = tmu

(music label), as well as represent the relationship between

a segment labeling and a tag as

τi,j =

{

1, tj ∈ si
0, otherwise

(6)

Defining the decisions of a network about a segment

as (yi,sp, yi,mu), false positives (FP) and negatives (FN) in

speech or music can be expressed as

FPi,sp ≡ (yi,sp = 1, τi,sp = 0)

Table 8 Results of the Pdrop sweep using the best setting of the double-task network (C2-LSTM, L = 6,N = 256)

Pdrop
Train Validation Test

Cost Acc.% Cost Acc.% Cost Acc.%

0 0.651 74.43 0.726 71.48 0.733 70.98

0.1 0.634 75.02 0.736 71.25 0.745 70.25

0.2 0.669 73.69 0.708 72.19 0.721 71.25

0.3 0.601 76.10 0.704 73.01 0.721 72.10

0.4 0.668 73.37 0.692 73.43 0.701 72.44

0.5 0.702 72.12 0.726 71.51 0.741 70.91

0.6 0.734 71.06 0.723 71.78 0.735 70.91

The best setting in terms of validation cost is highlighted in italics



de Benito-Gorron et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:9 Page 14 of 18

Fig. 11 ROC curves (solid blue lines) of the best obtained system for speech and music event detection. The AUC (area under curve) is 0.9171 for

speech event detection and 0.9160 for music event detection

FN i,sp ≡ (yi,sp = 0, τi,sp = 1)

FPi,mu ≡ (yi,mu = 1, τi,mu = 0)

FN i,mu ≡ (yi,mu = 0, τi,mu = 1)

An interesting metric to find distractor events is the

conditional probability of obtaining a false negative or a

false positive (in speech or in music detection) given that a

certain event label is present in the audio segment. For the

general case of segment labeling si and event label tj, the

conditional probability of a false negative in speech would

be expressed as follows:

P(FN i,sp | τi,j = 1) = P(yi,sp = 0, τi,sp = 1 | τi,j = 1)

(7)

Nonetheless, this conditional probability can be biased

by the probability of finding tsp given that the segment is

labeled with the event tj (P(τi,sp = 1 | τi,j = 1)), leading

to high probabilities in those events often found together

with speech (e.g., its subcategories in the ontology). For

this reason, we find the following expression more appro-

priate to measure the influence of the event label tj in the

false negatives in speech:

P(yi,sp = 0 | τi,sp = 1, τi,j = 1) (8)

In a similar way, we obtain the three remaining

combinations:

Table 9 Average precisions per class and mean average

precision of the best obtained system

Speech AP Music AP mAP

0.904 0.898 0.901

P(yi,sp = 1 | τi,sp = 0, τi,j = 1) (9)

P(yi,mu = 0 | τi,mu = 1, τi,j = 1) (10)

P(yi,mu = 1 | τi,mu = 0, τi,j = 1) (11)

These new conditional probabilities can be approxi-

mated in a simple way as the ratios of the number of favor-

able cases to the number of possible cases. For instance,

the probability in Eq. 8 can be represented as the number

of segments with yi,sp = 0, τi,sp = 1 and τi,j = 1 divided by

the number of segments with τi,sp = 1 and τi,j = 1. Addi-

tionally, we would like to give more importance to more

frequent events, as their ratios will be more meaningful

(i.e., the ratio 1
1 is greater but less confident than 299

300 ).

With these aspects in mind, we have defined the follow-

ing scoring functions for distractor events:

d−
j,sp =

N(yi,sp = 0, τi,sp = 1, τi,j = 1)

µ + N(τi,sp = 1, τi,j = 1)
(12)

d+
j,sp =

N(yi,sp = 1, τi,sp = 0, τi,j = 1)

µ + N(τi,sp = 0, τi,j = 1)
(13)

d−
j,mu =

N(yi,mu = 0, τi,mu = 1, τi,j = 1)

µ + N(τi,mu = 1, τi,j = 1)
(14)

d+
j,mu =

N(yi,mu = 1, τi,mu = 0, τi,j = 1)

µ + N(τi,mu = 0, τi,j = 1)
(15)

Where µ is an auxiliar term included to penalize those

events where few occurrences are observed. The value of

µ has been set to the average number of event labels in the

subsets under study, in a similar fashion to the Dirichlet

smooting method for language models [35].

An event ranking has been built for each score function.

The score functions d− will be maximized by negative
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distractors, i.e., events that harm the correct detection

of speech or music when they are present in the audio

segment, causing false negatives. On the other hand, the

scoring functions d+ will help us find positive distrac-

tors, in other words, those events that are able to cause

false detections of speech or music in those segments

containing them.

Negative distractors are expected to have a noisy

nature or be related to environments where the detec-

tion of musical or spoken contents would be more dif-

ficult, whereas positive distractors can be explained as

very similar events to those we are targeting, and they

even could uncover flaws in the definition of the target

events.

5.1 Negative distractors for speech

The top 10 distractor events according to the d−
sp scor-

ing function are shown in Table 10. These events have

been found to harm the detection of spoken voice events.

The top score is held by the “whispering” event, which

appears in 30 segments that contain spoken voice, but

such spoken contents are only detected in 6 of those seg-

ments. Whispered voice is sometimes labeled as speech,

but its spectral features are very different. Listening to

the false-negative speech segments labeled as “whisper-

ing” we can assert that this event is not a proper distractor,

but a subgroup of the target class with very particular

features.

The rest of events found with the proposed score are

related to singing voices (both male and female) and

music. This fact suggests that background music is not a

convenient acoustic environment for speech event detec-

tion, but also that singing is difficult to detect as spoken

voice when labeled as so.

Table 10 Top 10 negative distractor events for speech (event

labels related to false negative decisions of the network about

the “speech” class)

Event Event ID Ratio d−
sp

Whispering /m/02rtxlg 24/30 0.301

Male singing /t/dd00003 22/52 0.216

Musical instrument /m/04szw 66/293 0.193

Female singing /t/dd00004 19/50 0.191

Singing /m/015lz1 17/45 0.179

Violin, fiddle /m/07y_7 13/23 0.179

Music /m/04rlf 810/5636 0.143

Disco /m/026z9 10/23 0.137

Bass guitar /m/018vs 10/23 0.137

Guitar /m/0342h 34/204 0.134

d−
sp score (Eq. 12) is used to rank the events. The ratio column shows the number of

false negatives for speech where the distractor event label is found (numerator) and

the number of speech segments that contain the distractor event (denominator)

5.2 Positive distractors for speech

Table 11 lists the top 10 positive distractors for speech,

ranked by descending d+
sp score. Some of the events,

as “crowd,” “cheering,” or “children shouting,” could be

expected to cause false-positive detections of speech

events as they can be similar to spoken voice, whereas

other distractors do not have such immediate explanation.

For example, “sizzle” is present in 40 segments where no

spoken contents are labeled, but 35 of those segments are

detected as speech, and more than a half of the 137 seg-

ments that contain the “water” event but are not labeled

as speech lead to false-positive detections. Further exami-

nation of these “water” and “sizzle” segments has revealed

that, in many cases, the speech event detection errors are

due to labelingmistakes and the segments actually contain

speech.

5.3 Negative distractors for music

The negative distractor events found for music are shown

in Table 12. It contains several events describing environ-

ments (“inside, small room,” “outside, rural, or natural,”

“outside, urban, or manmade”) that are not ideal to record

music because of the presence of reverberation effects and

the background noise (as opposed to studio or high quality

recording devices).

Meanwhile, other distractors for music are “animal,”

“speech,” “dog,” or “vehicle”—these acoustic events tend to

be loud and in the foreground, with music playing on the

background and being more difficult to detect.

The case of the “flute” event is worth mentioning. There

are 17 test segments labeled as both “music” and “flute,”

but only 4 of them are correctly detected as music. A

brief analysis of these segments suggests that some types

Table 11 Top-10 positive distractor events for speech (event

labels related to false positive decisions of the network about the

“Speech” class)

Event Event ID Ratio d+
sp

Crowd /m/03qtwd 76/94 0.521

Insect /m/03vt0 67/111 0.411

Water /m/0838f 76/137 0.403

Sizzle /m/07p9k1k 35/40 0.381

Battle cry /m/04gy_2 36/44 0.376

Fowl /m/025rv6n 64/119 0.375

Cheering /m/053hz1 36/45 0.372

Stir /m/07ptfmf 32/36 0.364

Children shouting /t/dd00135 33/39 0.363

Mechanisms /t/dd00077 42/67 0.353

d+
sp score (Eq. 13) is used to rank the events. The ratio column shows the number of

false positives for speech where the distractor event label is found (numerator) and

the number of non-speech segments that contain the distractor event

(denominator)
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Table 12 Top-10 negative distractor events for music (event

labels related to false negative decisions of the network about

the “Music” class)

Event Event ID Ratio d−
mu

Animal /m/0jbk 32/84 0.230

Speech /m/09x0r 1266/5617 0.223

Inside, small room /t/dd00125 49/166 0.221

Vehicle /m/07yv9 39/135 0.205

Domestic animals, pets /m/068hy 19/40 0.199

Dog /m/0bt9lr 16/27 0.194

Outside, rural /t/dd00129 22/61 0.190

Flute /m/0l14j_ 13/17 0.180

Outside, urban /t/dd00128 20/63 0.169

Television /m/07c52 15/40 0.157

d−
mu score (Eq. 14) is used to rank the events. The ratio column shows the number of

false negatives for music where the distractor event label is found (numerator) and

the number of music segments that contain the distractor event (denominator)

of flute might be detected poorly as music when they are

played solo because of their high pitch and narrow-band

spectral content.

5.4 Positive distractors for music

Table 13 shows the ten events with the highest d+
mu scores.

In this case, the ratios and scores are considerably higher

than in the previous rankings, and all of the events are

related to music. These results suggest on the one hand

that the definition of music is very subjective—a musi-

cal instrument playing a single note might be considered

music or not depending on the listener—, and on the other

hand that a wider definition of the music class in terms of

Table 13 Top 10 positive distractor events for music (event

labels related to false positive decisions of the network about the

“music” class)

Event Event ID Ratio d+
mu

Percussion /m/0l14md 110/137 0.600

Pizzicato /m/0d8_n 73/78 0.588

Drum /m/026t6 82/94 0.585

Organ /m/013y1f 74/81 0.582

Keyboard (musical) /m/05148p4 77/87 0.578

Brass instrument /m/01kcd 85/116 0.524

Singing /m/015lz1 51/62 0.471

Hammond organ /m/03gvt 43/46 0.466

Bass drum /m/0bm02 43/47 0.461

Tabla /m/01p970 40/41 0.459

d+
mu score (Eq. 15) is used to rank the events. The ratio column shows the number of

false positives for music where the distractor event label is found (numerator) and

the number of non-music segments that contain the distractor event (denominator)

event labels would be appropriate to train and evaluate the

models more consistently.

Overall, the distractor analysis has thrown some light

on the interactions between the different acoustic events

of AudioSet and their impact in the detection of spo-

ken voice and musical contents. The obtained results

have highlighted some labeling mistakes in the dataset

as well as the convenience of a wider definition of the

music class.

6 Conclusions
In this paper, we have presented our work with the novel

database Google AudioSet in the fields of speech activ-

ity detection and music activity detection. These events,

among the variety of acoustic classes labeled in AudioSet,

are particularly relevant to speech processing technolo-

gies. To accomplish these tasks, we have proposed and

evaluated different neural network architectures, includ-

ing fully connected, convolutional, LSTM, and hybrid

convolutional-LSTM networks. We have considered

2-class and 4-class classification approaches.

The networks are fed with the mel-spectrograms of

the audio segments, and the best results are obtained by

hybrid Convolutional-LSTM structures (C2-LSTM), that

count with a two-dimensional convolutional stage prior

to an LSTM layer. These models first process the input

features with time-frequency filters and then expand the

temporal context in the LSTM blocks.

The audio segments found in AudioSet—collected from

YouTube videos—show a vast diversity of contents and

are weakly labeled. Nonetheless, the classification perfor-

mances of the proposed models reach 85% accuracy in

both speech and music event detection, thus asserting the

capability of neural network models for music and speech

detection in real life audio signals. The 2-class and 4-

class approaches yield very similar results in terms of both

accuracy and number of parameters.

A comparison with general-purpose audio event detec-

tion works has been possible in terms of average precision.

Our best system achieves average precisions near 0.9 for

both speech and music classes, a similar performance to

systems which use much more training data. This sug-

gests that focusing on fewer event categories means an

advantage for the classifiers.

Additionally, the distractor analysis specifically

designed for this work has been proven useful to under-

stand the classification results in more depth. We have

proposed two different scoring functions for the events in

the ontology, which have uncovered some particularities

of the tasks, such as the difficulty of detecting “whisper-

ing” as speech or a solo “flute” as music. This analysis has

as well flagged some labeling mistakes in AudioSet, and

its results will allow us to enhance both these labelings

and the definitions of the target classes in future work.
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