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Abstract

Technological advances in computer science, namely cloud computing and data mining, are

reshaping the way the world looks at data. Data are becoming the drivers of discoveries and

strategic developments. In environmental sciences, for instance, big volumes of information

are produced by monitoring networks, satellites and model simulations and are processed to

uncover hidden patterns, correlations and trends to, ultimately, support policy and decision

making.

Hydrologists, in particular, use models to simulate river discharges and estimate the concentra-

tion of pollutants as well as the risk of floods and droughts. The very first step of any hydro-

logical modelling exercise consists of selecting an appropriate model. However, the choice is

often made by the modeller based on his/her expertise rather than on the model’s suitability to

reproduce the most important processes for the area under study. Since this approach defeats

the “scientific method” for its lack of reproducibility and consistency across experts as well as

locations, a shift towards a data-driven selection process is deemed necessary.

This work presents the design, development and testing results of a completely novel data min-

ing algorithm, called AMCA, able to automatically identify the most suitable model configu-

rations for a given catchment, using minimum data requirements and an inventory of model

structures. In the design phase a transdisciplinary approach was adopted, borrowing techniques

from the fields of machine learning, signal processing and marketing.

The algorithm was tested on the Severn at Plynlimon flume catchment, in the Plynlimon study

area (Wales, UK). This area was selected because of its reliable measurements and the homo-

geneity of its soils and vegetation. The Framework for Understanding Structural Errors (FUSE)

was used as sample model inventory, but the methodology can easily be adapted to others,

including more sophisticated model structures.

The model configuration problem, that the AMCA attempts to solve, can be categorised as “fully

unsupervised” if there is no prior knowledge of interactions and relationships amongst observed

data at a certain location and available model structures and parameters. Therefore, the first set

of tests was run on a synthetic dataset to evaluate the algorithm’s performance against known
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outcomes. Most of the component of the synthetic model structure were clearly identified by

the AMCA, which allowed to proceed with further testing using observed data.

Using real observations, the AMCA efficiently selected the most suitable model structures and,

when coupled with association rule mining techniques, could also identify optimal parameter

ranges. The performance of the ensemble suggested by the combination of AMCA and associa-

tion rules was calibrated and validated against four widely used models (Topmodel, ARNOVIC,

PRMS and Sacramento). The ensemble configuration always returned the best average effi-

ciency, characterised by the narrowest spread and, therefore, lowest uncertainty.

As final application, the full set of FUSE models was used to predict the effect of land use

changes on catchment flows. The predictive uncertainty improved significantly when the prior

distributions of model structures and parameters were conditioned using the AMCA approach.

It was also noticed that such improvement is due to constrains applied to both model and pa-

rameter space, however the parameter space seems to contribute more.

These results confirm that a considerable part of the uncertainty in prediction is due to the defi-

nition of the prior choice of the model configuration and that more objective ways to constrain

the prior using formal data-driven techniques are needed. AMCA is, however, a procedure that

can only be applied to gauged catchment. Future experiments could test whether AMCA config-

urations could be regionalised or transferred to ungauged catchments on the basis of catchment

characteristics.
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Chapter 1

Introduction

River hydrology is a complex science that uses physical, empirical or statistical models to learn

hydrological processes occurring in a river catchment and infer predictions in time and space.

Hydrological modelling has a multitude of applications, from hazard risk management (e.g.

flood and droughts) to water quality planning (e.g. European Water Framework Directive1) and

water supply and sanitation2 programmes. Regardless of the specific objectives, modelling is

an important tool to support policy and decision making because it allows to understand and

compare the effects of policy options and assess consequences on population, properties and

infrastructures.

In hydrology, modelling consists of an analysis of local climate data (such as precipitation and

potential evapotranspiration) and their transformation into streamflow discharge using a set of

equations, also called “hydrological model”. Depending on the phenomena taken into con-

sideration the equations involved may vary, changing the so called “model structure”. Over

the last two centuries a wide variety of models have been implemented, some of which are

designed to fit particular climatic-hydrologic behaviours. As an example, TOPMODEL is a

physically based distributed watershed model designed by Beven and Kirkby (1979) to simu-

1http://ec.europa.eu/environment/water/water-framework/
2European Water Supply and Sanitation Technology Platform: http://wsstp.eu/

1
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late the rainfall-discharge relationship in mountainous catchments under humid climates where

surface runoff is mainly generated by surface saturation.

The different steps of the modelling process are formally described by Beven (Figure 1.2,

2001b). Indeed, Beven’s modelling process has become, over the years, an important refer-

ence for hydrologists and practitioners but relies heavily on the role of the local expert. This is

usually the modeller, who identifies relevant hydrological processes and translates this percep-

tion of the reality in a mathematical model and then into a computer code that can be used for

generating simulations.

Although the expert’s role is fundamentally important, especially when there is high uncer-

tainty due to insufficient data, it also makes the modelling exercise inherently subjective because

the modelling strategy is influenced by the individual training and previous modelling experi-

ence. Considering these limitations, Beven (2007) introduces the need for more evidence-based

modelling approaches. He envisages the use of a “modelling system” in which hydrological

predictions are made taking into account the relationship among process representations, site

characterisations and boundary conditions. The implementation of such a system, called “Envi-

ronmental Models of Everywhere”, could theoretically allow more consistent and reproducible

modelling, but has never been implemented in practice.

This research project presents a way to implement Beven’s modelling procedure reducing sub-

jectivity and hence improving reproducibility. The main idea is that, with the advent of new

technologies and mathematical methods (e.g. as cloud computing and data mining) the role

of the local expert could be replaced by an instance of artificial intelligence, such as an algo-

rithm. In other words, modellers could avoid to make a subjective model selection by using

all the model structures available and simulate all the possible hydrological behaviours. Data

mining of model performances should, then, allow to discern between suitable and unsuitable

configurations.
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1.1 Problem statement

In computational sciences it is important to rely on reproducible workflows to be able to audit,

examine and review suggested procedures. Over the years, reproducibility has become a major

concern for managers and policy makers committed to consistent and transparent modelling

applications. Reproducibility should span from the discovery of relevant data, through the

selection and use of models and algorithms (including pre/post-processing) to communication

and dissemination of results.

Data-driven reproducible protocols are needed to extract evidence from data and dictate the most

suitable choices amongst those available to the modeller. Various branches of mathematics and

computer science focus on the automatic extraction of trends and patterns from data, examples

are: Information Retrieval (IR), Machine Learning (ML) and Artificial Intelligence (AI). These

disciplines provide a plethora of tools and techniques for supervised (e.g. classification) and

unsupervised learning (e.g. clustering, similarity search and pattern matching). Designing the

sequence and mode of combining these techniques together, in order to discover information

from a large amount of data, is generally called a Data Mining (DM) procedure.

In the hydrology domain, reproducibility is often compromised by the widespread use of ex-

pert elicitation. The model selection problem, for instance, would certainly benefit from a less

subjective approach to the analysis. Currently, there are relatively few attempts to define DM

procedures relevant for hydrological purposes and it is deemed to be plenty of scope for re-

searchers to design new ones.

Based on the problems mentioned above, the following research objectives are identified:

• To design simulation experiments and data mining procedures to reveal trends and pat-

terns leading to a more objective model configuration process.

• To explore how model components and parameters are expected to interact based on

evidence from data, and consequently improve reliability of predictions.
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• To extend findings to non-stationary conditions and data-poor environments, exploring

the relation between model configuration and time-dependent catchment characteristics

so that modellers can learn and infer information on hydrological processes.

1.2 Research questions

The primary objective of this thesis is to answer the following research questions:

1. Can a data mining procedure be designed for automatic model configuration? How can

its performance be determined?

2. What determines an optimal model configuration? Is it the interaction amongst model

components and/or parameters? Can this improve parameter identifiability and predic-

tions and reduce uncertainty?

3. When land use changes occur, how can model configurations be adapted accordingly?

How to condition model predictions for data-rich as well as data-poor environments?

1.3 Contributions

This dissertation contributes to several aspects of environmental and hydrological modelling,

data science and uncertainty estimation using a trans-disciplinary approach. It explores the lim-

itations of current modelling tools for hydrologists and borrows techniques from data science,

signal processing and marketing to trigger novel thinking.

It explores the use of these techniques to make the modelling exercise less subjective and more

transparent and reproducible. This is done by proposing a novel data mining procedure for

automatic configuration of hydrological models. The proposed algorithms, based mainly on

unsupervised machine learning techniques, can be used as learning tool to uncover non-trivial
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catchment/processes information. Its plotting functionalities provide a systematic approach to

summarise multi-dimensional model results while exploring data patterns through parameter

and model similarities and interactions. Finally, it shows how to combine various sources of

information to understand whether and how anthropogenic changes to the environment can

be detected by model simulations and re-used as what-if scenario tools. The Table 1.1 maps

the objectives to the specific research questions, case studies, main contributions and chapter

references.

1.4 Development effort

The work carried out entails the development of computer code to automate tasks. Amongst

the different programming languages available, I have chosen to use a combination of R and

Bash because of their suitability and the excellent support of the open source communities. R is

used for data discovery, data preparation, data mining and visualisation. Bash is used for string

manipulation, and the automatic dispatch of jobs on High Performance Computing systems for

basic process parallelisation. Computer specifications of the system used to develop and test

the abovementioned code are described in appendix A.

1.5 Dissemination

As a part of this thesis, various attempts have been made to disseminate the work done within

the community of hydrologists. All the contributions have been implemented as computer code

and made available through a public repository under an open licence. For the major libraries,

web pages have been set up to facilitate discovery, retrieval and installation. All the libraries

are accompanied by in-depth code documentation, video demonstrations, tutorials and online

surveys to collect user feedbacks. The release of the information on libraries and any develop-

ment update is advertised in real-time via a dedicated social network community which already
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Table 1.1: Mapping objectives to specific research questions and contributions.

Chapter Objectives Research questions Case studies Contributions

5

To develop tools for the

analysis of a wide spectrum

of model simulations to

uncover trends and patterns

that may lead to a more

objective model

configuration.

Can a data mining

procedure be designed for

automatic model

configuration? How can its

performance be

determined?

Synthetically generated

datasets

Development of an

Automatic Model

Configuration Algorithm

(AMCA), implemented as

an R package.

Continued on next page



Table1.1 Mapping objectives to specific research questions and contributions (continued from previous page).

Chapter Objectives Research questions Case studies Contributions

6

To explore how model

components and parameters

are expected to interact

based on evidence from

data, and consequently

improve reliability of

predictions.

What determines an

optimal model

configuration? Is it the

interaction amongst model

components and/or

parameters? Can this

improve parameter

identifiability and

predictions and reduce

uncertainty?

Plynlimon (UK)

Guidelines to identify how

model components and

parameters interact.

Continued on next page
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Table1.1 Mapping objectives to specific research questions and contributions (continued from previous page).

Chapter Objectives Research questions Case studies Contributions

7

To extend findings to

non-stationary conditions

and data-poor

environments, exploring the

relation between model

configuration and

time-dependent catchment

characteristics so that

modellers can learn and

infer information on

hydrological processes.

When land use changes

occur, how can model

configurations be adapted

accordingly? How to

condition model predictions

for data-rich as well as

data-poor environments?

Plynlimon (UK)

Guidelines to understand

whether and how

anthropogenic changes to

the environment (e.g.

deforestation) can be

detected by model

simulations.
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counts dozens of members.

1.6 Structure of the thesis

Chapter 2 provides the intellectual context for the research, reviewing the state-of-the-art in

hydrological modelling and flexible model formulation, algorithm design and data mining tech-

niques. This is vital to identify opposing views, avoid duplicated efforts and also to identify

methods, information and ideas relevant to this research project.

Chapter 3 describes the Framework for Understanding Structural Errors (FUSE) (Clark et al.,

2008), the underlying concepts and its re-implementation into an R package. This framework

is used as an example model inventory.

Chapter 4 describes the Plynlimon catchments which are used as study areas for testing the pro-

posed algorithms. This Chapter also explores data availability and the use of a pre-processing

workfow for data quality assessment and pre-modelling data manipulations.

Chapter 5 presents the AMCA open source project: the design and implementation of a novel

data mining algorithm developed to identify the most suitable model configurations for a catch-

ment of interest. This is tested on a synthetic dataset and accompanied by a series of sensitivity

tests.

Chapter 6 presents a way of using the AMCA algorithm as a learning tool, exploring param-

eters and model component similarities and interactions to improve parameter identifiability,

predictions and reduce uncertainties.

Chapter 7 proposes a methodology to understand whether and how anthropogenic changes to the

environment can be detected by model simulations. Model simulations are conditioned based

on regionalised information, enabling predictions in data-rich as well as data-poor environments

and the implementation of what-if scenario tools.
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Finally, Chapter 8 presents a summary and a critical assessment of the work that has been carried

out, the most important conclusions and possible future research activities that could stem from

it.
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Chapter 2

Hydrological modelling and (Big) Data

analytics: a brief literature review

Observed data is used to run model simulations which, in turn, help design development strate-

gies and facilitate decision making. In hydrology, the understanding of processes is tightly

linked to the way models are conceptualised and these tools have evolved significantly over less

than 200 years of dedicated scientific research.

From simple mathematical equations to complex distributed physically-based models and en-

sembles, modellers have a plethora of options to choose from. Single model structures are

usually designed ad hoc to model particular regions/processes. Multi-model ensembles and

physically based models, instead, have wider ranges of applications. The choice can be based

on data availability and suitability to reproduce known hydrological behaviours, on the project’s

objectives, or more pragmatically, based on the computer system in use and familiarity with a

certain model.

Once suitable models are identified, their behaviour can be manipulated configuring the param-

eter space. Calibration is the operation that aims to find optimal model parameters. It consists

of a search in a multidimensional space that can be carried out at random or optimised employ-
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ing combinatorial, evolutionary or stochastic methods. The search identifies areas for which the

combination of parameters is more likely to generate a response similar to the observations.

This review covers the main literature on hydrological models, their calibration and related un-

certainties as well as the analytical implications of having to interpret large volumes of complex

data.

2.1 Hydrological models

Hydrological models initially consisted of empirical formulas or modified forms of the rational

method (Mulvany, 1851; Dooge, 1957; Todini, 1988), whose development was largely driven

by the need to address particular engineering problems. With the advent of digital computers,

it became possible to numerically simulate processes occurring in a watershed and hence many

complex hydrological models were developed. An extensive overview of available hydrological

models is available in Beven (2001b).

The simplest type of model is conceptually lumped, treating the basin as a single homogeneous

element. These models consider geological, climate and land use information averaged over

the catchemnt area and develop a single outflow hydrograph (Jones, 1997). They are typically

used for water resources assessment and management including real-time forecasting (Blackie

and Eeles, 1985; Paudel, 2010). Their main disadvantage is that they may not capture all of the

important processes occurring in a catchment.

Distributed models, on the other hand are usually physically based and take into account spatial

heterogeneity of parameters, topographic features, geologic and land cover variability (Kampf

and Burges, 2007). They are often used for forecasting the effects of land-use changes or the

movements of pollutants and sediments (Beven and OConnell, 1982; Paudel, 2010). Some

widely used distributed models are: GBHM model (Yang et al., 1998), IHDM model (Morris,

1980), SHE model (Beven et al., 1980; Abbott et al., 1986), SWAT model (Arnold et al., 1998),
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TOPMODEL (Beven and Kirkby, 1979), VIC (Liang, 1994).

However, in order to deal with the complexity of hydrological systems, many distributed physi-

cally based (hydrological) models have become too complex to understand and too data-hungry

to be widely applied (Ma and Yang, 2010). There are widely divergent points of view as to

whether they offer a significant improvement in actual performance when compared to the well-

proven lumped conceptual model type (Refsgaard and Knudsen, 1996).

A more recent approach, developed in the 1970s, consists of a model structure able to adapt

itself to the inputs and outputs of the system without taking into account underlying physics.

Such a model is known as “empirical black box” and it can be either a simple autoregressive

model, based on time series analysis, or incorporate information based on newer data (e.g.

artificial neural network models).

Although each type of model has its advantages and disadvantages, this research does not deal

with empirical black box models because it is intended to be an opportunity to understand more

about the hydrological processes occurring in the investigated catchments. This research is

concerned with providing an objective methodology to approach the hydrological modelling

exercise in a location-agnostic manner. Considering the limited availability of distributed infor-

mation on a global scale, only lumped models are considered hereafter.

2.1.1 Model calibration approaches and uncertainty

Model calibration is a process in which model parameters are modified to minimise the differ-

ence between model output and measurement data or maximise some goodness-of-fit criteria,

e.g. root mean square error. Manual calibration can be performed, for instance, by changing

one parameter at the time while the others are kept constant or at random with a trial and er-

ror approach (Boyle et al., 2000). This approach is also used to explore model sensitivity to

parameter variations. However, even for models with a low number of parameters, exploring

manually the range of responses over the entire parameter space can be rather tedious.
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Calibration can be made automatic taking advantage of computer power. A number of param-

eter sets can be generated by randomly sampling the parameter space, then the model outputs

corresponding to these parameter sets (Monte Carlo simulations) are compared to observed data

using a fitting criteria. Local search optimization methods assume that there is a unique opti-

mum in the parameter space, therefore the optimum parameter set is the one that corresponds to

the maximum value of a given criteria (Dawdy and O’Donnell, 1965; Nash and Sutcliffe, 1970;

Gupta and Sorooshian, 1985). Duan et al. (1992), however, showed that in case of multiple max-

ima, global optimization is preferable because does not incur in a premature convergence to a

local optimum. Examples of global optimization approaches are given by Genetic Algorithms

(Wang, 1991) and the Shuffled Complex Evolution algorithm (Duan et al., 1992). However,

even with global searches parameters may be poorly identified generating a high level of un-

certainty in the model results. Methods like the likelihood ratios (Beven and Binley, 1992),

parameteric bootstrapping (Tarantola, 1987) and Markov Chain Monte Carlo (e.g. Metropolis-

Hastings samplers: Kuczera and Parent, 1998; Vrugt et al., 2003) have introduced approaches

to estimate parameter uncertainty.

Modellers can incur in four sources of uncertainty: random and systematic errors in the input-

s/boundary conditions, random and systematic errors in the observed outputs, identification of

sub-optimal parameter values (as mentioned above) and utilisation of incomplete/biased model

structures (Butts et al., 2004). While issues related to observed variables and parameter estima-

tion have been widely investigated, the impact of model structure error remains relatively less

explored (Butts et al., 2004).

Depending on how a model structure is defined, the predictive uncertainty may vary. This is

demonstrated, for instance, by a number of streamflow simulation studies and climate change

impact studies. Butts et al. (2004) tried to identify a trade-off between model complexity

and predictive ability and compared the magnitude of model structure uncertainty to the other

sources of uncertainty. They showed high level of dependency between model performance and

model structure and that “the sensitivity to variations in acceptable model structures are of the
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same magnitude as uncertainties arising from the other evaluated sources”. Jiang et al. (2007)

used six monthly water balance models and 29-year long records of monthly streamflow and

climate in the Dongjiang basin in China and showed that the simulated runoff change differed

up to 20% under an increasing temperature of 4◦C and decreasing precipitation of 20%. Najafi

et al. (2011) conducted a study over the Tualatin River Basin in Oregon (USA) and showed

that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, except

during the dry season, suggesting that the hydrologic model selection-combination is critical

when assessing the hydrologic climate change impact. These results seem also to suggest that,

in order to improve the reliability of streamflow predictions, modellers should combine, or at

least compare, several model structures.

2.1.2 Modelling inventories

In theory, any model can be applied to any catchment but some can fails to provide satisfactory

performance in terms of predictability of results/uncertainty. A failure can be due to problems

in parameter identifiability, errors in data, structural inadequacy of the model, etc. Andréassian

et al. (2010) suggest a focus on diagnosing model failures in order to progress in hydrological

modelling.

Modern research is, however, moving towards “modelling frameworks, software tools combin-

ing single aspects of the catchment representation which, under rigorous constraints, enables

flexible and creative problem solving” (Andrews et al., 2011). In the last decade several frame-

works have been developed, some examples are: the Community Hydrologic Modeling Plat-

form (CHyMP by Murdoch et al., 2008), the Framework for Understanding Structural Errors1

(FUSE by Clark et al., 2008), the Hydrological Model Assessment and Development (Hydro-

MAD by Andrews et al., 2011), the Object Modelling System (OMS by Leavesley et al., 2006),

the PREcipitation Runoff EVApotranspiration HRU (PREVAH by Viviroli et al., 2009), the

1Based on BATEA, software for calibration and uncertainty analysis
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Rainfall-Runoff Modelling Toolbox (RRMT by Wagener et al., 2001), the Representative Ele-

mentary Watershed (REW by Reggiani et al., 1998) and SUPERFLEX (Kavetski et al., 2010).

Within the class of frameworks using lumped models, FUSE can be considered the most com-

plete inventory of conceptual model currently available. This modelling framework was re-

implemented by translating the original FORTRAN code into the R language and released as

open source project2. The following section reviews how model selection and calibration have

been carried out utilising single and multi-model frameworks.

2.1.3 Approaches for model selection and calibration in a multi-model

framework

The advantage of using an inventory of models rather than a single model stands in the possibil-

ity to compare different structure and assess how structural variability may affect predictions.

Given a hydrological model inventory, various strategies can be employed to perform model

selection and calibration.

Neural networks can be used to identify statistical relationships between inputs and outputs.

However, the relation (or statistical model) does not provide means to understand the physical

processes involved in the system (Lees, 2000). These black-box models can also be used within

a Data-Based Mechanistic (DBM) modelling framework to generated a physical understanding

(Young, 1998). Working with conceptual rainfall-runoff models, Coxon et al. (2014) built a

diagnostic approach testing multiple hypotheses of hydrological behaviour using hydrologic

signatures and time step-based metrics within the limits of acceptability uncertainty analysis

approach (Beven, 2006). Coxon et al. (2014) used the FUSE framework (Clark et al., 2008) and

stated that “the importance of selecting an appropriate model structure varies by catchment, and

in some catchments, the model-structural choice is relatively unimportant in comparison with

the selection of model parameters”.

2Available from the public repository: http://ichydro.github.io/r fuse/
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Marshall et al. (2005) suggest various options, ranging from single and multi-criteria approaches

for assessing model accuracy to Bayesian methods to describe parameter and model uncertainty

probabilistically. They also highlight that the former methods tend to favour complex models,

while Bayesian methods are usually biased towards simple models and the evaluation of vari-

ous statistics from the posterior distribution in multidimensional functions can be challenging

to evaluate analytically. Approximated methods exist and employ the use of Monte Carlo sam-

pling.

More recently, Clark et al. (2008) simulated streamflow discharges for two rivers in the United

States (the Guadalupe River in Texas and the French Broad River in North Carolina) comparing

79 model structures within the FUSE framework. Models were calibrated both independently

and as an ensemble and results were compared in terms of Nash-Sutcliffe efficiency. The en-

semble was always performing better than the single model structures. In a similar context,

McMillan et al. (2010) suggested to use FUSE’s model identification number as an additional

parameter and proceed with calibration using traditional methods.

Although the methods presented by Clark et al. (2008) and McMillan et al. (2010) are simple to

implement, they have a number of limitations. They do not allow to learn information about the

selection of a particular model structure nor provide insight on the interaction between model

components and parameter values. If this information becomes available, it could be used to

learn about the catchment of interest in terms of dominant processes.

2.2 Analytical implications of working with large volumes of

complex data

Calibrating multiple models in a multi-objective framework generates a large volume of com-

plex data which are difficult to analyse and interpret. In machine learning, data are analysed

building statistical models.
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From an analytical perspective, when problems involve complex domains, such as the simula-

tion of hydrological processes, these are not solvable by concise and neat formulas, and imply

the introduction of simplifications and assumptions. Wu (2013) suggests that “having more data

allows the data to speak for itself, instead of relying on unproven assumptions and weak cor-

relations”. This seems to be backed up by a number of machine learning studies that show the

data set size to be more important than the statistical model being trained (Halevy et al., 2009;

Brill, 2003). Shotton et al. (2013), for instance, as part of a Microsoft Research project related

to their Kinect gaming device, tried to recognise human poses from single-depth images. They

stated that the key factors in their success was the large volume of data they generated using

computer graphics and a simple classifier3.

However, there are also cases in which a complex statistical model allows to use less data

(Pilászy and Tikk, 2009). In reality, it all depends on finding the right model, the statistical

model that works best for a given problem. The performance of a model is often assessed in

terms of bias and variance of its results. If a statistical model is too complicated for the amount

of available data, this leads to model overfitting which is due to its high variance (Amatriain,

2015). Conversely, if the statistical model is too simple for the number and types of features to

be analysed, then the model has a high bias (Amatriain, 2015). It becomes clear that the best

statistical model is the one providing an optimal trade-off between bias and variance.

2.3 Algorithms and Workflows

An algorithm is “a set of steps to accomplish a task” (Cormen, 2013) and algorithm design is an

important area of scientific research. Designing a novel algorithm does not necessarily involve

new operations, but finding “efficient ways of doing something that requires a higher level of

intuition than the most apparent solution” (Cutrell, 2012).

Methodologically, there are a number of steps in developing an algorithm (Goodrich and Tamas-

3A classifier is a statistical model used for supervised learning.
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sia, 2002):

• Problem definition

• Development of a model

• Specification of Algorithm

• Designing an Algorithm

• Checking the correctness of Algorithm

• Analysis of Algorithm

• Implementation of Algorithm

• Program testing

• Documentation Preparation

Based on the list of steps above, an algorithm is first designed in terms of mathematical equa-

tions and then converted into a computer code. When a task is particularly complex, it is good

practice to separate the functionality of a program into independent modules (Brogi et al., 1994).

A workflow is defined, hereafter, as a computer program in which multiple algorithms are used

in a modular fashion.

2.4 Machine Learning

Warden (2011) defines machine learning as the “systems [or algorithms] to automate decision

making and classification of data”. In machine learning there are two major types of algorithms:

supervised and unsupervised learning (Mohri et al., 2012). The first is used to make predictions

based on a set of examples. The dataset is usually divided into two parts, the training and test
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sets. The first set typically contains labels that are missing in the second set. The scope of these

algorithms is to classify the cause-effect relationship based on observed data and use these

classes to make prediction on new data. Supervised Learning algorithms are widely used in

environmental modelling: Ireland et al. (2015) use them to extract flooded areas from Landsat

TM imagery, Wohlfahrt et al. (2010) for assessing the impact of the spatial arrangement of

agricultural practices on pesticide runoff in small catchments, Chandramouli and Raman (2001)

for training neural networks in multireservoir modeling, Chang and Chen (2003) for water-

stage forecasting in an estuary under high flood and tidal effects and Rogers and Dowla (1994)

uses them to set up a nonlinear groundwater management methodology that optimizes aquifer

remediation.

In Unsupervised Learning, instead, the dependent variable is unknown and the algorithm ex-

plores possible interactions amongst the features of the dataset. The aim is to “provide structure

to relatively unstructured data” (Perry, 2013). This type of algorithm is also widely used in

hydrology: Lin and Chen (2006) use them to identify the homogeneous regions for regional

frequency analysis, Lin and Wu (2011) for developing a reservoir inflow forecasting model,

Einax et al. (1998) for the evaluation and interpretation of river pollution data.

The combination of supervised and unsupervised learning seems far less common and, to the

best knowledge of the author, there have been no attempt in literature to combine these tech-

niques to automate model selection and calibration.

2.5 Conclusions

This research is concerned with providing an objective methodology to guide the model selec-

tion and configuration process in a location-agnostic manner. As a consequence, the procedure

is designed to rely on minimal data requirements and, therefore, only lumped models are con-

sidered hereafter.
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Amongst the many inventories of available conceptual rainfall-runoff models, FUSE was se-

lected to test the algorithms designed in the following chapters because it provides the largest

number of model structures. Next chapter illustrates in detail the implementation of the FUSE

modules and the design of model building options.

To the best knowledge of the author, there seem to be no attempt in literature to combine su-

pervised and unsupervised learning algorithms to implement an automatic model selection and

configuration. This PhD work attempts to cover this gap.
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Chapter 3

The FUSE modelling framework

The Framework for Understanding Structural Errors (FUSE) was developed by Clark et al.

(2008) and is a state-of-the-art modelling toolbox which includes well established models for

rainfall-runoff simulations (i.e. PRMS, SACRAMENTO, TOPMODEL and ARNO/VIC, also

defined as parent models). Each model is characterised by a different architecture of the upper

and lower soil layers and parameterisation of processes such as: evaporation, vertical percola-

tion, interflow, base flow and surface runoff. FUSE can combine elements from different models

to obtain several structures. Rainfall and potential evapotranspiration observations are used as

inputs to simulate a streamflow discharge time series. As part of this PhD work, the original

FORTRAN code was re-implemented in the R programming language to facilitate interoperabil-

ity with other pre/post processing algorithms. The code is available from a public repository1.

This chapter illustrates the peculiarity of this modelling framework, its input requirements and

outputs.

1FUSE R package: http://ichydro.github.io/r_fuse/
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3.1 Introduction

FUSE is a modular framework of conceptual rainfall-runoff models. The catchment is consid-

ered a closed system in which the precipitation is the only input2. The potential evapotranspira-

tion is a loss and it is generally derived from temperature, humidity and other climate variables.

The streamflow discharge is the output that closes the long-term water balance equation:

Q = P−E (3.1)

The framework consists of four widely used models, called parent models: PRMS, SACRA-

MENTO, TOPMODEL and ARNO/VIC. Each model structure consists of a list of building

decisions describing the type of rainfall error (if included in the inference), the structure of up-

per and lower soil layers and the parameterisation of processes such as: evaporation, vertical

percolation between soil layers, interflow, base flow, surface runoff and routing scheme. Each

building decision can be parameterised using different modelling options. In FUSE, modelling

options have been implemented as separate modules using a consistent set of parameters. The

major advantage in doing so is that additional model structures can be generated by shuffling

the parent models’ options. For instance, a model structure can be generated by combining the

upper soil layer characterised by a single state variable (as in TOPMODEL) with the lower soil

layer characterised by a combination of three storages (two for tension and one for free water,

as in SACRAMENTO) with the PRMS runoff mechanism and no interflow (as in ARNO/VIC).

Figure 3.1 shows FUSE’s parent models, state variables and fluxes, as defined by Clark et al.

(2008).

The default list of FUSE’s model structures is represented by a table made of 1248 rows and

9 columns. Each row represents a model structure which is identified by a Model ID number

(first column, “mid”). Table 3.1 lists the first ten model structures in the list.

2If relevant, the snow melt should be modelled and added to the precipitation.
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Figure 3.1: Parent models used in FUSE.

source by: Clark et al. Clark et al. (2008)

Table 3.1: First 10 model structures in the FUSE’s model list.

mid rferr arch1 arch2 qsurf qperc esoil qintf q tdh

1 additive e tension1 1 tens2pll 2 arno x vic perc f2sat sequential intflwnone rout gamma

2 multiplc e tension1 1 tens2pll 2 arno x vic perc f2sat sequential intflwnone rout gamma

3 additive e onestate 1 tens2pll 2 arno x vic perc f2sat sequential intflwnone rout gamma

4 multiplc e onestate 1 tens2pll 2 arno x vic perc f2sat sequential intflwnone rout gamma

5 additive e tension1 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

6 multiplc e tension1 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

7 additive e tension2 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

8 multiplc e tension2 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

9 additive e onestate 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

10 multiplc e onestate 1 unlimfrc 2 arno x vic perc f2sat sequential intflwnone rout gamma

The first column contains the model identification number (mid), an integer between 1 and

1248. The second column is the rainfall error type (rferr), which can be either additive or mul-

tiplicative. The third column contains the architecture of the upper soil layer (arch1), this can

be characterised by a single state variable, broken up into tension and free storage or charac-

terised by a tension storage sub-divided into recharge and excess. The fourth column contains

the architecture of the lower soil layer (arch2), which can be characterised by either a limited

or unlimited size reservoir. In case of a reservoir of limited size, this can be defined by a single
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state variable or as a tension reservoir plus two parallel tanks (in this case the upper soil layer

cannot be split into two tension and one free storage). In case of an unlimited reservoir, the

depletion rate can be either a power function or a fraction. In the fifth column is the surface

runoff scheme (qsurf), based only on the saturation-excess mechanism. The saturated area is

calculated using one of the following parameterisations: the ARNO/VIC (upper zone control),

the PRMS variant (fraction of upper tension storage) or the TOPMODEL. In the sixth column

is the percolation scheme (qperc), in which water availability for percolation is limited by the

moisture content in lower layer, field capacity or wilting point (in this case the upper soil layer

can only be single state). The evaporation scheme (esoil) is in the seventh column and can be

either sequential or depending on the relative root fractions in each of the soil layers. In the

former case the potential evaporative demand is first satisfied by evaporation from the upper

layer, then the residual from the lower layer. The interflow (qintf) (column 8) can be allowed

or not allowed (e.g. for TOPMODEL and ARNO/VIC). Similarly the routing (q tdh) can be

allowed or not allowed (column 9). If allowed, this uses a two-parameters gamma distribution

to empirically route runoff to the basin outlet.

In the original FUSE’s model list the variables that identify the options are expressed in terms of

character strings. In the R implementation, instead, all the strings are converted into numerical

factors to speed up processing3. All the possible modelling option names/IDs and dependent

parameters are summarised in Table 3.2.

3The code using numerical values was benchmarched against the code using strings and it was found to run

about 100 times faster.
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Table 3.2: FUSE model building decisions, options (name and ID number) and depending

parameters.

Model building decision Option name Option ID Depending parameters

Rainfall Error
additive e = additive rainfall error 11 r f erradd

multiplc e = multiplicative rainfall

error
12 r f errmlt

Upper layer architecture

onestate 1 = single state variable 21 S1,max, φtens

tension1 1 = tension and free

storage
22 S1,max, φtens

tension2 1 = 2 tension and 1 free

storage
23 S1,max, φtens, φrchr

Lower layer architecture

fixedsiz 2 = fixed size 31 S2,max, ks, n

tens2pll 2 = tension reservoir and

two parallel tanks
32 S2,max, κ, φbase, νA, νB

unlimfrc 2 = unlimited (frac. rate) 33 S2,max, ν

unlimpow 2 = unlimited (power

recession)
34 S2,max, ks, n, λ, χ

Runoff

arno x vic = ARNO-Xzang-VIC

(Unsaturated zone Pareto)
41 b

prms varnt = PRMS (Unsaturated

zone linear)
42 Ac,max

tmdl param = TOPMODEL

(Saturated zone topographic)
43 n, λ, χ

Percolation

perc f2sat = water availability from

field capacity to saturation
51 ku, c

perc lower = percolation defined

by moisture content in lower layer

(gravity drainage)

52 α, ψ

perc w2sat = water availability

from wilt point to saturation

(Saturated zone control)

53 ku, c

Evaporation
rootweight = root weighting 61 r1

sequential = sequential evaporation

model
62 -

Interflow
intflwnone = interflow denied 71 -

intflwsome = interflow allowed 72 ki

Routing
no routing = routing denied 81 -

rout gamma = routing allowed 82 µτ

3.1.1 Distribution of modelling options

Each building decision can have from a minimum of 2 to a maximum of 4 options. Table

3.3 shows the frequency of each option within the default list of FUSE’s model structures.

According to this list, the options for rainfall error, runoff, evaporation, interflow and routing are
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evenly distributed. The upper and lower soil layer along with the percolation parameterisation,

instead, have preferential options that are more frequent than the others. For instance, 46% of

the model structures have an upper soil layer made of a single state variable (onestate 1 = 21),

31% of the model structures is characterised by one tension and one free storage (tension1 1 =

22) and only the remaining 23% has two tension and one free storage (tension2 1 = 23). The

lower soil layer made of one tension reservoir and two parallel tanks (tens2pll 2 = 32) is found

in only 19% of the model structures while the remaining options are evenly distributed (27%

each). Similarly the percolation scheme dependent on the wilt point (perc w2sat = 53) is only

found in 16% of the structures, while each of the other options covers 42% of the structures.
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Table 3.3: Distribution of FUSE modelling options.

Model building decision Option name
Option

ID

Frequency

(%)

Rainfall Error
additive e = additive rainfall error 11 50

multiplc e = multiplicative rainfall error 12 50

Upper layer architecture

onestate 1 = single state variable 21 46

tension1 1 = tension and free storage 22 31

tension2 1 = 2 tension and 1 free storage 23 23

Lower layer architecture

fixedsiz 2 = fixed size 31 27

tens2pll 2 = tension reservoir and two

parallel tanks
32 19

unlimfrc 2 = unlimited (frac. rate) 33 27

unlimpow 2 = unlimited (power recession) 34 27

Runoff

arno x vic = ARNO-Xzang-VIC

(Unsaturated zone Pareto)
41 33

prms varnt = PRMS (Unsaturated zone

linear)
42 33

tmdl param = TOPMODEL (Saturated

zone topographic)
43 33

Percolation

perc f2sat = water availability from field

capacity to saturation
51 42

perc lower = percolation defined by

moisture content in lower layer (gravity

drainage)

52 42

perc w2sat = water availability from wilt

point to saturation (Saturated zone

control)

53 16

Evaporation
rootweight = root weighting 61 50

sequential = sequential evaporation model 62 50

Interflow
intflwnone = interflow denied 71 50

intflwsome = interflow allowed 72 50

Routing
no routing = routing denied 81 50

rout gamma = routing allowed 82 50

3.2 Parameters, state variables and internal fluxes

The FUSE framework uses 24 parameters. Each model structure, however, only uses a subset

between 7 and 15 parameters. The full list of parameters with description, units and naming

convention is available in Table 3.4.

FUSE’s models are based on a set of ordinary differential equations (ODEs) that are solved with

respect to a list of state variables describing the capacity of the water storages in each soil layer
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(see Table 3.5). Depending on the complexity of the model, the ODEs have from a minimum of

4 to a maximum of 10 state variables.

Beside instantaneous and routed runoff, FUSE can calculate a total of 18 internal fluxes. The

percolation, for instance, is the flow of water that moves from the upper to the lower soil layer.

The interflow is a lateral loss for the system and occurs in the unsaturated zone of the upper soil

layer. The surface runoff is the volume of water that does not enter the soil due to excess of sat-

uration. The soil is schematised as a combination of water storages (or buckets). When a bucket

reaches its capacity the volume in excess moves to another bucket generating an overflow. Gen-

erally, water moves from one bucket to another in the same soil layer. If the upper layer reaches

saturation then the overflowing water becomes additional runoff. If the free storage in the lower

layer reaches saturation then the overflowing water becomes additional baseflow. Base flow is

the volume of water in the lower layer which was accumulated due to precedent rainfall events.

This can be a constant or decreasing function. Each of these fluxes is described in Table 3.6.
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Table 3.4: FUSE’s parameters

Description Name Symbol

Additive rainfall error (mm day-1) rferr add r f erradd

Multiplicative rainfall error (-) rferr mlt r f errmlt

Fraction of tension storage in recharge zone (-) frchzne φrchr

Fraction total storage as tension storage (-) fracten φtens

Maximum total storage in upper soil layer (mm) maxwatr 1 S1,max

Fraction of percolation to tension storage in the lower layer (-) percfrac κ

Fraction of storage in the first baseflow reservoir (-) fprimqb φbase

Baseflow depletion rate in the first reservoir (day-1) qbrate 2a νA

Baseflow depletion rate in the second reservoir (day-1) qbrate 2b νB

Baseflow depletion rate (day-1) qb prms ν

Maximum total storage in lower soil layer (mm) maxwatr 2 S2,max

Baseflow rate (mm day-1) baserte ks

Fraction of roots in the upper layer (-) rtfrac1 r1

Percolation rate (mm day-1) percrte ku

Percolation exponent (-) percexp c

Sacramento model percolation multiplier for dry soil layer (-) sacpmlt α

Sacramento model percolation exponent for dry soil layer (-) sacpexp ψ

Interflow rate (mm day-1) iflwrte ki

ARNO/VIC ”b” exponent (-) axv bexp b

Maximum saturated area (-) sareamax Ac,max

Mean value of the log-transformed topographic index (m) loglamb λ

Shape parameter for the topo index gamma distribution (-) tishape χ

Baseflow exponent (-) qb powr n

Time delay (days) timedelay µτ

Table 3.5: FUSE’s state variables

Description Name Symbol

Total water content in the upper soil layer (mm) watr 1 S1

Tension water content in the upper soil layer (mm) tens 1 ST
1

Primary tension water content in the upper soil layer (mm) tens 1a STA
1

Secondary tension water content in the upper soil layer (mm) tens 1b ST B
1

Free water content in the upper soil layer (mm) free 1 SF
1

Total water content in the lower soil layer (mm) watr 2 S2

Tension water content in the lower soil layer (mm) tens 2 ST
2

Free water content in the lower soil layer (mm) free 2 SF
2

Free water content in the primary base flow reservoir (mm) free 2a SFA
2

Free water content in the secondary base flow reservoir (mm) free 2b SFB
2
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Table 3.6: FUSE’s internal fluxes

Description Name Symbol

Evaporation from the upper soil layer evap 1 e1

Evaporation from the lower soil layer evap 2 e2

Evaporation from the primary tension store evap 1a eA
1

Evaporation from the secondary tension store evap 1b eB
1

Surface runoff qrunoff qsx

Percolation of water from the upper to the lower layer qperc 12 q12

Interflow qintf 1 qi f

Base flow qbase 2 qb

Base flow from the primary reservoir qbase 2a qA
b

Base flow from the secondary reservoir qbase 2b qB
b

Overflow of water from the primary tension store in the upper soil layer oflow 1 quro f

Overflow of water from tension storage in the upper soil layer tens2free 1 quto f

Overflow of water from free storage in the upper soil layer rchr2excs qu f o f

Overflow of water from tension storage in the lower soil layer tens2free 2 qsto f

Overflow of water from free storage in the lower soil layer oflow 2 qs f o f

Overflow of water from primary base flow storage in the lower soil layer oflow 2a qs f o f a

Overflow of water from secondary base flow storage in the lower soil

layer
oflow 2b qs f o f b

Instantaneous runoff U
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3.3 FUSE modules

The FUSE framework is divided into two modules: a soil moisture accounting module and a

routing module. In the fuse R package, each module can be run separately using dedicated func-

tions. Forcing inputs are in tabular format (e.g. data.frame) with fixed headers. Two columns

are required: P (precipitation time series) and E (potential evapo-transpiration time series). A

third column, named Q (discharge time series) is used for calibration only. Precipitation, poten-

tial evapotranspiration and streamflow discharge are measured in mm/day. The parameter set is

provided as a named list (for suggested parameter ranges see Clark et al., 2008).

As already mentioned before, within FUSE it is possible to modify the precipitation input to

take into account measurement errors of the following forms: additive and multiplicative. The

former modifies the precipitation input by a fixed volume measured in mm/day and it is usually

used to correct shifts in the recordings. The latter is a number between 0 and 1 and modifies the

precipitation input by a given percentage. The new input is called effective precipitation. For

the purpose of this work, the rainfall error is always excluded from the inference, therefore the

effective precipitation is always equal to the input precipitation.

3.3.1 The Soil Moisture Accounting module

The Soil Moisture Accounting (SMA) module is used to determine catchment wetness in terms

of moisture storage volumes and rainfall losses. The SMA function takes as inputs:

• the table containing time series of precipitation and potential evapo-transpiration;

• the model id number (mid, e.g. 5);

• the model list (modlist);

• observation time step in days (deltim, e.g. 1/24 for hourly time steps);
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• states output options (TRUE outputs all the state variables);

• fluxes output options (TRUE outputs all the internal fluxes);

• initial water content (fracstate0, by default this is equal to 25% of the maximum storage

capacity);

• a parameter set.

3.3.2 Routing module

The routing module is used to simulate the delay in runoff (in days). This would normally

require an hydraulic model to calculate the wave propagation based on topography, condition of

the channel and any hydraulic structure along the river. For small catchments, where man-made

modifications are negligible, this can be simplified by applying an empirical formula. FUSE

uses the gamma function.

The routing function takes as inputs: the instantaneous runoff computed using the SMA module

(U), the model id number, the model list, daily delay in runoff (timedelay) and the observation

time step.

3.4 Concluding remarks

FUSE is a modular framework of conceptual rainfall-runoff models in which modelling options

have been implemented as separate modules using a consistent set of parameters. By shuffling

the default modelling options, FUSE generates 1248 model structures which can be used to

simulate a wide range of hydrological behaviours.

The R implementation of the FUSE framework presented in this chapter was designed to work

not only as a stand alone package for the R environment but also as an openly available build-
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ing block to compose modelling workflows that can be re-used and re-purposed to generate

information useful across different projects, fields and research domains.
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Chapter 4

Study area

A case study site was selected to test the algorithms proposed in Chapters 5 to 7: the Plynlimon

catchments in the United Kingdom. In this chapter, the site is first described in relation to

its geographical location and climatic characteristics. The available information is collated

exploring various data sources. A screening of the available datasets is carried out to highlight

the presence of missing and unrealistic values, fill gaps in the records as well as preparing the

datasets to be used within the FUSE modelling framework.

4.1 Site description and data sources

Plynlimon area is located in mid-Wales (see Figure 4.1) and its climate is classified as “warm

temperate climate, fully humid with warm summer” according to the Koeppen-Geiger classifi-

cation system (Kottek et al., 2006; Peel et al., 2007).

The Global Runoff Data Centre’s catalogue identifies two main catchments in the area: the Wye

at Cefn Brwyn and the Severn at Plynlimon flume. The GRDC also points to the National River

Flow Archive (NRFA), hosted by the UK Centre for Ecology and Hydrology (CEH), as the

official data provider.
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Figure 4.1: Location of Plynlimon Experimental Catchments. Streamflow gauges are shown as

purple diamonds, automatic weather stations are shown as red stars. The shading illustrates the

elevation.

According to the NRFA records, the Severn at Plynlimon flume is a small upland catchment

(8.7Km2) mainly covered with coniferous forest (67%). This is divided into four sub-catchments:
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Tanllwyth, Hafren, Upper Hore and Lower Hore. The Severn at Plynlimon flume and its up-

stream tributaries have steep profiles, rapid mean flow and flashy hydrographs. The mean pre-

cipitation is around 1700-2500 mm/yr.

The Wye at Cefn Brwyn is also quite small (10.55 Km2) mainly covered with grazed grassland.

It is divided into three sub-catchments: Gwy, Cyff and Iago. The total annual average rainfall

is about 2500 mm/yr. On the high plateau, the predominant vegetation is grassland and heath,

whereas mires dominate on the valley floors. Soils are rather shallow (thickness is generally less

than 1 m) and dominated by peat, peaty peazols and peaty gleys overlying shales and mudstone

(Storm and Jensen, 1984).

Catchments and sub-catchments are shown in Figure 4.1, while their main characteristics are

summarised in Table 4.1. The Information Gateway portal (CEHIG1), also hosted by the CEH,

provides the most detailed datasets for Plynlimon catchments.

Table 4.1: Plynlimon stations. Area (A), Length of main channel (L) and average slope (S) are

calculated from GIS layers.

ID Name River
A

[Km2]

L

[Km]

S

[%]

Z

[mAOD]

54022 Severn at Plynlimon flume Severn 8.70 4.601 6.3 331

54090 Tanllwyth at Tanllwyth flume Tanllwyth 0.89 0.974 10.9 357

54091 Severn at Hafren flume Severn 3.67 3.263 5.94 357

54092 Hore at Hore flume Hore 3.08 3.350 7.05 336

54097 Hore at Upper Hore flume Hore 1.60 1.668 10.6 412

55008 Wye at Cefn Brwyn Wye 10.55 5.363 3.63 341

55033 Wye at Gwy flume Wye 3.98 2.989 2.03 405

55034 Cyff at Cyff flume Cyff 3.13 2.703 2.76 356

55035 Iago at Iago flume Iago 1.02 1.228 3.07 386

4.1.1 Geospatial information

The CEHIG datasets contain spatial data as well as time series data. Topographic information

is represented by a Digital Terrain Model with a resolution of 15 m and spot heights. In regard

1https://gateway.ceh.ac.uk/, accessed 15th September 2014.
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to the quality of the DTM, the CEHIG metadata catalogue states:

“Plynlimon digital terrain model was derived from digitised elevation data. The elevation data

had been digitised from scanned topographic maps (reference below). Once the elevation data

was captured (spot heights and contour lines) a TIN was created which was then used to derived

a hydrologically corrected, grid-based DTM. All the processing was done in ARCINFO however

it was not documented therefore no further details can be provided. Topographic maps refer-

ence: Plynlimon Catchment Areas - Severn Catchment. Sheet No. 1. Scale 1:5000. Wallingford,

Berkshire. Institute of Hydrology, Natural Environmental Research Council, 1968. Plynlimon

Catchment Areas - Wye Catchment. Sheet No. 2. Scale 1:5000. Wallingford, Berkshire. Institute

of Hydrology, Natural Environmental Research Council, 1968.”

The same source provides maps of vegetation classes (Figure 4.2) and soil types (Figure 4.3).

The former has a spatial resolution of 25 m resolution and is derived by digitizing aerial pho-

tography of the area from 2009 and was published in 2013. CEHIG states that:

“...the digitised map was verified on the ground and amended as needed”.

Over the period 1990-2007 Land Cover Maps were also produced but CEH states that the

methodologies used are fundamentally different, which implies that it is not possible to derive

assessment of land use changes over time.

Soil related information can be derived from the Hydrolody of soil types (Boorman et al., 1995)

or from the map of soil materials. The latter was digitised from a scanned paper map. CEHIG

states:

“...most likely the soil type boundaries had been hand drawn on a paper map as a result of

direct observations on site”.
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Figure 4.2: Vegetation map of the study catchment (source: Centre for Ecology and Hydrology

Information Gateway). The Severn at Plynlimon flume is generally covered with forest while

the Wye at Cefn flume area is mainly covered with grassland.
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Figure 4.3: Soil map of the study catchment (source: Centre for Ecology and Hydrology Infor-

mation Gateway). The Severn at Plynlimon flume and the Wye at Cefn flume have similar soil

types. The upstream areas are characterised by bare rocks while the downstream areas by clays

and peaty soils.
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4.1.2 Time series information

Both Plynlimon catchments are heavily instrumented and used in numerous studies Storm and

Jensen (1984); Kirby et al. (1991); Beven and Binley (1992); Hudson et al. (1997); Bulygina

et al. (2011). Five weather stations and nine gauging stations are currently installed, these are

represented in figures4.2 and 4.3 as stars and diamonds respectively. Streamflow time series

were available only for eight gauging stations (the dataset for Iago at Iago flume is known to be

recorded but not available). Streamflow (Q) is recorded in m3/s while weather stations provide

the following variables:

• incoming Solar Radiation (SR) averaged over the recording interval and measured in

W/m2 (Watts per square metre);

• Net Radiation (NR), the difference between the incoming and outgoing radiation (i.e.

reflected by the ground) averaged over the recording interval and measured in W/m2

(Watts per square metre);

• Temperature Wet bulb (TW), air temperature as a function of the moisture content of the

air, averaged over the recording interval and measured in ◦C (degree Celsius);

• Temperature Dry bulb (TD), temperature of the air averaged over the measuring interval,

measured in ◦C (degree Celsius);

• Wind Speed (WS) averaged over the recording interval and measured in m/s (metres per

second);

• Wind Direction (WD) averaged over the recording interval and measured in degrees;

• Precipitation (P) accumulated over the recording interval and measured in mm (millime-

ters).
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4.2 Data pre-processing

In order to prepare Plynlimon data for feeding the modelling framework FUSE (used in the

following chapters), few pre-processing steps were needed. FUSE requires as forcing inputs:

rainfall (plus snowmelt, if relevant), potential evapotranspiration and streamflow (for calibration

only) time series. The inputs should be made of gap-free areal averaged time series, measured in

mm/day, for consistency with the default parameter ranges. It is assumed that, in the Plynlimon

study area, the contribution of snowmelt to runoff is negligible while potential evapotranspira-

tion is expected to have a small but not negligible impact.

The computer code to reproduce the data preparation steps is available as an R package (called

pure2). The pure package, was developed as part of this PhD work and is currently being

tested on various case studies within the NERC-funded Probability, Uncertainty and Risk in the

Environment (PURE) project3. The package consists of a collection of utility functions used

in a pre-defined sequence to improve the reproducibility of the pre-processing task. This is

achieved in four steps, according to Figure 4.4:

• initial screening to identify missing and unrealistic values,

• calculating derived variables,

• averaging time series over a catchment area,

• filling gaps in the records and converting to common units.

2http://cvitolo.github.io/r_pure/, accessed 27th September 2014.
3http://www.nerc.ac.uk/research/funded/programmes/pure/, accessed 27th September 2014.
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Figure 4.4: The PURE data preparation workflow. Raw data is made ready for modelling

through a series of processing steps schematised as green rectangles. Each process belongs to

one of four operations: report, correct, aggregate and model specific preparation. The first op-

eration consists of scanning the time series for unrealistic values (e.g. negative rainfall), records

irregurarly spaced in time and missing value. A summary report is produced, based on which,

unevenly spaced time series are transformed to evenly spaced ones by linearly interpolating be-

tween data points. Unrealistic values are removed generating additional missing values. These

are not infilled straight away but after some additional steps. The time series are first aggre-

gated in time, if the modelling time step is longer than the one of the regular time series. The

length of the time series is trimmed to take into account only simultaneous recordings. Any

derived variable is calculated, then gaps are infilled and finally units are converted according to

the model’s requirements.
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4.2.1 Screening

During screening, time series are first scanned to identify start and end date of the dataset,

percentage of missing values, presence of any unrealistic values or obvious outliers. According

to this initial screening, Plynlimon time series are characterised by regular recordings from 1968

to 2010 with various degrees of coverage. There are neither unrealistic values, nor clear outliers.

Weather variables are characterised by time series with less then 15% of missing values, while

streamflow datasets have generally less than 2% missing values. The detailed results of the

screening are summarised in Tables 4.2 and 4.3.

Table 4.2: Summary of available 15-minute datasets from streamflow stations, where the vari-

able flow is measured in m3/s. A line separates the first three stations falling within the Wye at

Cefn Brwyn catchment from the remaining five stations falling within the Severn at Plynlimon

flume catchment.

ID SiteName Start of record End of record
% missing

values

55033 Wye at Gwy flume 1973-10-10 2008-12-31 1.96

55034 Cyff at Cyff flume 1973-10-02 2008-12-31 0.84

55033 Wye at Cefn Brwyn 1968-10-01 2008-12-31 0.23

54097 Hore at Upper Hore flume 1985-11-08 2008-12-31 1.91

54092 Hore at Hore flume 1973-10-01 2008-12-31 0.32

54091 Severn at Hafren flume 1976-01-01 2008-12-31 0.15

54090 Tanllwyth at Tanllwyth flume 1973-10-01 2008-12-31 0.48

54022 Severn at Plynlimon flume 1971-10-01 2008-12-31 0.14
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Table 4.3: Summary of available hourly datasets from automatic weather stations.

ID SiteName Start of record End of record Variable
% missing

values

cefn Cefn Brwyn 1975-04-02 2003-06-10

SR 9.27

NR 10.84

TW 11.22

TD 10.17

WS 9.88

WD 10.34

P 8.99

eistg Eisteddfa Gurig 1976-01-07 2010-12-31

SR 13.93

NR 11.26

TW 10.87

TD 11.09

WS 10.19

WD 10.53

P 14.46

gwy Gwy 1999-07-06 2010-12-31

SR 0.13

NR 0.06

TW 5.03

TD 0.13

WS 1.99

WD 3.72

P 7.51

carreg Carreg Wen 1976-01-03 2010-12-31

SR 8.25

NR 10.66

TW 8.03

TD 7.84

WS 9.94

WD 7.43

P 8.06

tan Tanllwyth 1975-04-25 2010-12-31

SR 1.65

NR 12.84

TW 9.49

TD 8.38

WS 12.43

WD 7.67

P 10.17
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4.2.2 Deriving potential evapotranspiration from weather variables

The Penman-Monteith method was used to generate potential evapotranspiration values from

weather information. The methodology used to transform hourly time series is suggested by the

Food and Agriculture Organization (FAO) of the United Nations (Allen et al., 1998).

The FAO method assumes grass as reference crop, therefore the potential evapotranspiration is

equal to the reference evapotranspiration [mm/h]. This can be calculated as follows:

E =
0.408∆(NR−G)+ γ 37

T+273
WS(eo − ea)

∆+ γ(1+0.34WS)
(4.1)

In equation 4.1, NR is the net radiation at the grass surface measured in MJ/(m2 hour). As the

observed net radiation is measured in W/m2, the following conversion was applied:

1[
MJ

m2hour
] = 1000000/3600[

J

m2s
] = 277.778[

W

m2
]. (4.2)

G is the soil heat flux density measured in MJ/(m2 hour). Hourly G can be approximated during

daylight periods as

Gday = 0.1NR, (4.3)

and during night time periods as

Gnight = 0.5NR. (4.4)

T is the mean hourly air temperature, which can be approximated to the dry bulb temperature

T D [◦C].
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∆ is the saturation slope vapour pressure curve at T [kPa/◦C].

∆ =
4098(0.6108exp 17.27T D

T D+237.3)

(T D+237.3)2
(4.5)

Also, γ is the psychrometric constant measured in kPa/◦C and available as tabulated values for

different altitudes (z) (Allen et al., 1998, p. 214).

The saturation vapour pressure at air temperature T , called eo, is measured in kPa:

eo = 0.6108exp
17.27∗TW

TW +237.3
(4.6)

Finally, WS is the average hourly wind speed measured in m/s, while ea is the average hourly

actual vapour pressure measured in kPa:

ea = eo − γ(T D−TW ) (4.7)

However, FAO’s is only one of the available methods to calculate the potential evapotranspira-

tion. Depending on the granularity of the weather information and any missing inputs, other

methods may be more appropriate to use. Grace and Quick (1988) and Lu et al. (2005) proved

that the application of different methods may induce very large discrepancies in the PE estimate

with serious consequences in decision making applications such as irrigation scheduling.

4.2.3 Areal averaging

Although areal averaging can be achieved using a number of interpolation methods, Singh and

Chowdhury (1986) demonstrated that often simpler methods are preferable. In this work, pre-

cipitation and evapotranspiration for each subcatchment are averaged over the relative area us-

ing the Voronoi tessellation method (Voronoi, 1908), also known as the Theissen’s method. This
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method assumes that each weather station is representative of an area. This area can be drawn

following a three-step procedure:

1. stations are connected to each other with a straight line segment,

2. a perpendicular line is drawn through the middle point of each segment,

3. these lines split the catchment in smaller polygons and the area of influence of station X

is given by the polygon that contains such a station.

Figure 4.5 shows areas of influence, while tables 4.4 and 4.5 summarise the areal weights as-

signed to each station, based on which the average precipitation and potential evapotranspiration

were calculated. In case one or more stations have missing values, an arithmetic mean from the

remaining stations is calculated. This procedure reduces significantly the number of missing

values.

Table 4.4: Wye at Cefn Brwyn catchment, areal weights from Voronoi polygons. The weights

are calculated as the ratio between the area of a polygon and the total area of a subcatchment.

ID Name cefn eistg gwy carreg

55034 Cyff at Cyff flume 0.30 0.60 0.10 0

55033 Wye at Gwy flume 0 0.48 0.38 0.14

55008 Wye at Cefn Brwyn 0.20 0.34 0.41 0.05

Table 4.5: Severn catchment, areal weights from Voronoi polygons. The weights are calculated

as the ratio between the area of a polygon and the total area of a subcatchment.

ID Name tan gwy carreg

54097 Hore at Upper Hore flume 0.03 0.02 0.95

54092 Hore at Hore flume 0.32 0.12 0.56

54091 Severn at Hafren flume 0.21 0 0.79

54090 Tanllwyth at Tanllwyth flume 0.53 0 0.47

54022 Severn at Plynlimon flume 0.38 0.04 0.58
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Figure 4.5: Voronoi polygons of the Plynlimon catchments. Each subcatchment is partitioned

into regions (polygons) based on their closeness to a certain recording station. For instance, the

Severn at Hafren flume (54091) is divided into 2 polygons: the upstream polygon delineates

the area closer to the carreg weather station, the downstream polygon delineates the area closer

to the tan weather station. The ratio between the area of a polygon and the total area of a

subcatchment returns a weight (see Tables 4.4 and 4.5) that is used to calculate the rainfall

contribution from each region.
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4.2.4 Filling gaps and converting to common units

Remaining gaps (up to ten consecutive time steps) are infilled using a linear interpolation. Al-

though quadratic and higher order functions could interpolate the ascending/descending limb

of the hydrograph better than linear function, at low flows, they generate unrealistic negative

values. Therefore, linear interpolation was used. As alternative methods arithmetic mean and

infilling methods using donor stations could also be used.

Finally, time series are converted to mm/day. In order to be able to compare observed discharges

and simulated values, the streamflow time series were first converted in depth of water per

unit area (m/h, dividing the observed values by the relative catchment area), then converted to

mm/day. Figure 4.6 shows discharge, precipitation and potential evapotranspiration time series

for Severn at Plynlimon flume from the 6th October 1981 to the 2nd November 1981.

Figure 4.6: Manipulated time series for Severn at Plynlimon flume. The top panel shows pre-

cipitation records (P), the middle panel potential evapotranspiration (E) and the bottom panel

streamflow discharge (Q). All the variables are measured in mm/d.
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4.3 Concluding remarks

Two major catchments are identifiable in the Plynlimon area: the Severn at Plynlimon flume

and the Wye at Cefn Brwyn. They are both highly instrumented and data is managed by the

Centre for Ecology and Hydrology via the Information Gateway web service. The available in-

formation was collated and manipulated to convert the time series in consistent gap-free forcing

inputs for the FUSE framework that will be used in the following chapters.

Data, at this location, is highly reliable thus considered suitable to investigate the variability of

simulated hydrological responses using different model structure (see Chapters 5 and 6) because

the noise due to input data errors is expected to be negligible.

Both catchments are characterized by steep profiles and responsive regime. The major differ-

ence between them is in the predominant land cover. The Severn at Plynlimon flume is mainly

afforested while the Wye at Cefn Brwyn is under extensively grazed grassland. These charac-

teristics make this location suitable to investigate the effects of land use changes on catchment

flows (see Chapter 7).
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Chapter 5

A data mining algorithm for automatic

hydrological model selection and

parameterisation

Hydrological modelling practice is characterised by a large degree of subjectivity, especially in

the selection of model structures and parameter ranges. When making such decisions, a wide

range of options exists and a particular choice is often hard to justify on the basis of model as-

sumptions and knowledge about the hydrological system that is to be modelled. In this chapter,

a novel Data Mining workflow is presented to facilitate an explicit and transparent approach to

model structure selection, parameter identifiability and redundancy reduction combining Pareto

filtering, clustering techniques and time series matching algorithms in a multi-objective frame-

work. The result of the algorithm is a set of suggested model configurations. The selection is

less modeller dependent and more consistent and reproducible than traditional approaches. A

series of experiments are presented, using the FUSE modelling framework as model inventory.

The approach is tested using a synthetic dataset to validate the results against the known model

configuration and investigate the sensitivity of the proposed approach to factors such as the size

of the sampled space and parameter variability.

52



5.1 Introduction

Hydrological modelling on the catchment scale, although based on scientific procedures and

techniques, still remains subjective and is strongly influenced by the modelling experience and

hydrological judgement of the investigator for the selection of the most suitable model struc-

tures, parameter ranges and objective functions (Pechlivanidis et al., 2011).

Given the high variability of catchment properties and processes, it would be ideal if modellers

could construct tailored model structures that correspond as closely as possible to their expert

perception of the local hydrology. In this context, Beven (2001b) suggests a standard theoretical

approach to the modelling process by defining a number of consecutive steps. Modellers make

use of local knowledge, experience and expertise to translate their perception of the hydrolog-

ical processes occurring in a catchment (the so-called “perceptual model”) into a “conceptual

model” structure: a set of mathematical equations used to simulate the hydrological behaviour

at a given scale. The perceptual model evolves into the conceptual model through a series of

assumptions and simplifications, thus potentially increasing the expected uncertainty. When

the equations are translated into computer code, these uncertainties are inflated even further by

numerical approximation. At this stage, the model becomes “procedural” and can finally be

calibrated and validated.

In practice, modellers do not produce tailored model structures on a project-by-project basis

but often refer to inventories of existing models, such as those suggested by Nemeč (1993)

and Singh et al. (2006). Modellers’ preferences and familiarity for specific models can influ-

ence model selection and evaluation but typically the most important driving force remains the

scope of the project (Cunderlik, 2003). One model is usually preferred over another based on

criteria such as required model outputs, hydrological processes that need to be modelled, in-

put data availability and costs (World Meteorological Organization, 1975; Nemeč, 1993; Klok

et al., 2001). A model selection based primarily on such pragmatic criteria has important con-

sequences for the interpretation of model simulations and can lead to “disappointing results”,
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as recognised by (CRCCH, 2005) who suggest guidelines to select models as trade-off between

model complexity and predictive performance. Very often the lack of benchmarks for model

adequacy causes the need to evaluate models in relative terms (Oreskes et al., 1994; Schaefli

and Gupta, 2007). A model structure, for instance, can be compared to itself under different

scenarios, including variable initial/boundary conditions, and climatic/topographic conditions.

Andréassian et al. (2009) suggests a focus on model improvement using “crash tests for a stan-

dardised evaluation of hydrological models”, while Reusser and Zehe (2011) use temporal dis-

aggregation of model performance to identify model deficiencies. However, there is a large

body of experimental evidence that suggests the existence of limits to the single model struc-

ture improvement. This is due to the difficulty of describing all the aspects of the response

hydrograph by simply acting on the parameter space (Gupta et al., 1998; Wagener et al., 2001).

An alternative to improving a single model structure is to work with multiple model components

and objective functions, which can reveal useful insights into structural adequacy (Wagener

et al., 2001). Abbott et al. (1986) give one of the first examples of multi-model approach

in the introduction to the European Hydrological System “SHE”. This distributed model was

developed to flexibly adapt its structure to more or less information, according to the availability

of data. Leavesley et al. (1996) introduce the concept of “Modular Modeling System” expanded

over many years to collect functions taking into account a “variety of constraints that include

the types of data available and the spatial and temporal scales of application” (Leavesley et al.,

2002).

The model flexibility pioneered by Abbott et al. (1986) and Leavesley et al. (1996, 2002) was

taken to a next level with the development of modelling frameworks (and toolboxes) such as the

Rainfall-Runoff Modelling Toolbox (RRMT) (Wagener et al., 2001) and HYDROMAD (An-

drews et al., 2011). In this context, the Framework for Understanding Structural Error (FUSE)

(Clark et al., 2008) deserves a particular mention because it contains an unprecedented number

of model structures and has led to the introduction of the highly customisable SUPERFLEX

representation (Fenicia et al., 2008, 2011).
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Beven (2000b) highlighted the problem that every catchment is unique in relation to model

representation of flow processes (“uniqueness of places”). If there were a model that perfectly

represented these processes and a set of observations that could describe the full “distribution of

characteristics that may be important in controlling storm runoff generation” (Beven, 2001a),

model parameters could be deterministically identifiable. In the real world, neither the perfect

model nor the perfect set of observations exist. Therefore, given a model, there could be several

“optimal” parameter sets and, given multiple models, there would be even more “optimal”

model configurations1, which Beven (2006) calls “equifinality problem”.

Based on the availability of multi-model frameworks, many suggest tailor-made solutions com-

bining model components and existing libraries (Buytaert et al., 2008; David et al., 2002; Cas-

tronova, Goodall and Ercan, 2013; Castronova, Goodall and Elag, 2013; Fenicia et al., 2011;

Ames et al., 2012). Systems like CUAHSI HIS (Ames et al., 2012) integrate smart ways of

combining models and heterogeneous data sources (Beran and Piasecki, 2009) but still rely on

the modeller’s input for model selection and parameter definition. Similarly, the Australian

“eWater CRC toolkit” (Jordan et al., 2007) provides various water and catchment management

utility tools and a series of documents, the ”Model Choice series”, to help modellers decide

the right catchment model for their needs. Others propose flexible approaches to support a

wide range of hydrological behaviours. Argent et al. (2005), for instance, introduced the “E2

framework” which is based on hierarchical model selection, while Young (1998) proposed a

data-based mechanistic (DBM) modelling approach. The latter uses statistical procedures to

identify the most appropriate structure from a class of models.

Unlike other approaches, this work builds upon the schematic modelling process outlined by

Beven (2001b) to provide a transparent, data-based procedure for the selection of an accept-

able ensemble of model configurations for a given catchment using locally available data. The

selection is made using a combination of machine learning techniques, multiple model struc-

tures and multiple objective functions. This algorithm is tested on a sample inventory, but the

1A model configuration is defined here as the combination of one model structure and one parameter set.
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methodology can easily be adapted to others, including more sophisticated model structures.

5.2 Method

This work presents an Automatic Model Configuration Algorithm, called AMCA hereafter,

based on the selection process suggested by Beven (2001b). The process is illustrated in Figure

5.1 and consists of the following 4 steps:

1. Step I: defining the procedural model space. In line with a rejectionist modelling ap-

proach, modellers should initially consider any model structure that may represent a plau-

sible conceptualisation and define parameters in the most conservative range. The output

of this step is the ensemble equivalent of Beven’s procedural model, for which a further

reduction of model structures is only made on practical considerations, due, for example,

to the availability of code implementations and compatibility with the available data.

2. Step II: generating the configuration space. Performance indices are defined to compare

simulated results to the observations. A number of parameter sets are uniformly sampled

and Monte Carlo simulations are generated for each configuration2.

3. Step III: filtering the configuration space. This step consists of a Data Mining proce-

dure to progressively reduce the model structure and parameter spaces. The algorithm

takes into account model performances, Pareto efficiency and structural redundancies. It

is designed to make model selection and evaluation more transparent, and amenable to

comparative studies, sensitivity analysis and further refinement in general.

4. Evaluating the simulated results. The output of the algorithm is an ensemble of configu-

rations for which accuracy, precision and statistical reliability are calculated.

2A model configuration is defined here as the combination of a model structure and a parameter set.
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Figure 5.1: The Automatic Model Configuration Algorithm (AMCA). Green rectangles are

user inputs, yellow rectangles are automatic procedures. Ellipses are generated data objects

containing: MPIs (I), and simulated discharges (T). A is the 3-dimensional array containing

both I and T.
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5.2.1 Step I: Defining the procedural model space

In theory, the model space can be imagined as made of an infinite number of model structures.

In practice, only a subset of these models are available. This is either because not all perceptual

models can be formulated as conceptual models and implemented as procedural models, or for

more practical reasons related to incompatibilities of computer platforms and licensing issues.

The subset of available models is called here Inventory of models.

A first selection criterion for procedural modelling is data availability. After data collection, the

inventory of models may be reduced to accommodate only structures compatible with the avail-

able data at the location under study (e.g. if only lumped information is available, distributed

models can usually be discarded). In this study, the multi-model framework FUSE developed

by Clark et al. (2008), and extensively described in Chapter 3, is adopted as model inventory.

FUSE’s models require as inputs hydrological and meteorological observations lumped over

the region of interest (precipitation plus snowmelt and potential evapotranspiration, expressed

in mm/day regardless of the recording time step) and return the simulated streamflow discharge

at the outlet. Any FUSE model can be used in regions where this information is available as

direct or derived observation. Therefore, the inventory of models is not subsetted at this stage.

Finally, some modelling hypotheses are defined. These are related to the model’s initial condi-

tions, the length of the warmup period3, the number of parameter sets to take into account and

the type of model performance measures to adopt.

Model Performance Indices

The goodness of fit between simulated and observed discharges is usually evaluated via mea-

sures of model performance, for which a wide variety is available in literature (Legates and

McCabe, 1999; Krause et al., 2005; Dawson et al., 2007; Reusser et al., 2009). The choice of

3The warmup period is defined here as the number of time steps needed by the model to eliminate the bias

generated by initial conditions.
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performance indices should relate to aspects of the simulated hydrograph that can be controlled

by the model. For example, in flood related projects is very important to match the timing and

magnitude of observed and simulated hydrograph peaks. Similarly, for drought related projects,

it is important to match the volumes of water available over a given period. By contrast, an in-

dex that measures the amount of snow that becomes runoff would not be useful using FUSE

because its models have no power to change this proportion.

A list of 5 Model Performance Indices (MPIs) are used here:

1. the shift resulting in the maximum cross correlation of the observed and simulated time

series. According to the implementation used by Reusser (2014), this has a bounded range

[−36,+36] days. The absolute value of this shift is the index LAGTIME used hereafter to

measure timing errors and varies in the range [0,36] days.

2. the module of the mean of the difference between the observed and simulated discharge

(Van Den Boogaart et al., 2014; Jachner et al., 2007), with a range of variability is [0,+∞[.

This index is called MAE and is used to detect volume errors.

3. the Nash-Sutcliffe efficiency, this objective function is particularly sensitive to high flows

(Nash and Sutcliffe, 1970). The range of variability goes from [−∞,1[, however, the

index NSHF considered hereafter is calculated as 1 minus the efficiency, which varies in

the range [0,+∞[.

4. the Nash-Sutcliffe efficiency calculated using the logarithm of observed and simulated

discharges and it is particularly sensitive to low flows (Krause et al., 2005). The index

NSLF considered hereafter is calculated as 1 minus the efficiency, which varies in the

range [0,+∞[.

5. Rainfall-Runoff coefficient, defined as the volume of runoff divided by the correspond-

ing rainfall (Sawicz et al., 2011). The RR index considered hereafter is the difference

between observed and simulated RR, varying in the range [0,+∞[. It is used to match the

percentage of runoff generated relative to incoming rainfall.
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All the indices are rescaled to an interval between 0 and 1, with 0 being the best performance

and 1 the worst.

5.2.2 Step II: Generating the result space

Model simulations

Monte Carlo experiments are employed to investigate how model performances are affected by

different combinations of parameter sets and model structures. A number of parameter sets are

generated using the Latin Hypercube Sampling (LHS) method (McKay et al., 1979).

The LHS method is used here only as screening tool. This is based on the hypothesis that a

limited number of parameter samples could be enough to highlight the model structures that

are more suitable to simulate a given response. Once these model structures are identified,

however, modellers are required to carry out more rigorous searches of the parameter space

using, for instance, optimization algorithms.

The Initial Ensemble

The generated result space consists of a three-dimensional array A containing the simulated time

series for each combination of model structure and parameter set plus the corresponding set of

MPIs. In order to apply the Data Mining algorithm described in the next section and produce

graphical representations of the result space, the array A is split into two sub arrays: T and I.

T contains one simulated discharge time series for each parameter set and model structure. I

contains only the MPIs corresponding to each realisation.

The most conservative result in terms of simulated discharge, is obtained by combining all the

simulated time series contained in T . This composite result will hereafter be referred to as the

Initial Ensemble (IE). This is expected to be characterised by a wide spread of the simulated
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flows, due to the large variability of structures and parameters. If observations do not fall within

the IE’s bounds, the modeller should assess whether this is due to input errors or the relevant

model configurations are missing from the inventory.

5.2.3 Step III: Filtering the ensemble response space

This step aims to filter out the realisations which are clearly unsuitable to predict the given

response and those which are redundant. It consists of 3 tasks:

1. Preliminary Selection;

2. Identification of non-dominated points (Pareto Front);

3. Redundancy Reduction, which can be subdivided into

(a) Cluster Analysis and

(b) Time Series Matching.

The majority of the filtering procedure makes use of the array I, while array T is used only in

the time series matching algorithm.

Preliminary Selection

Amongst the numerous FUSE model structures, it is expected that only some of them contain

parameterisations of processes that are relevant for the catchment under study. Therefore some

of them will be more suitable than others in reproducing the observed behaviour. In order to

identify the most suitable model structures with regards to a certain MPI, the variability of

the index over the parameter space can be analysed for each model structure and quantified in

terms of a basic statistics, the median. The median of each MPI is calculated for each model

structure across the parameter space. It is assumed that a set of suitable models can be identified
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by looking for a median lower than a certain threshold. Such approach is vaguely similar to

that used by Hornberger and Spear (1981) and within the Generalised Likelihood Uncertainty

Estimation by Beven and Binley (1992). In these methodologies, the threshold is set by the

modeller making the result highly subjective.

The algorithm presented here, however, has an internal mechanism to automatically set a thresh-

old which consists of the following steps:

• define a sequence of thresholds, e.g. from 0.1 to 1 with 0.1 step,

• for each model structure calculate the median of each MPI across all the parameter sets,

• for each threshold, the model structures with median below the threshold for all the MPIs

are selected as suitable and collected in a vector called nS,

• in case all the performances are above the threshold, the entire set of models is considered

suitable for the next step, at the cost of a slower processing,

• the auto-generated threshold is the one that correspond to the minimum length of nS (red

dot in Figure 5.2).
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Figure 5.2: Various thresholds (on the x-axis) are plotted against the number of selected model

structures (on the y-axis) calculated in the pre-selection step. The red dot shows the threshold

selected by the algorithm.

It should be noted that this method only identifies the overall behaviour of a model structure over

the parameter space but does not take into consideration isolated well-performing realisations.

The array containing only the pre-selected models is called I′ and its related ensemble T ′.

Pareto Front

Given the (reduced) number of combinations of model structures, the best realisation minimises

a given index (maximises performance). However, this may not correspond to the best possible

scenario with respect to other indices.

To obtain a set of optimal solutions over a multi-dimensional performance space, the Pareto

Front is extracted using the related function in the R package “emoa” (Mersmann, 2015). This

leads to the partitioning of I′ into dominated (to be discarded) and non-dominated realisations

I′′. T ′′ is the ensemble corresponding to I′′.

The filtering efficiency of a Pareto front algorithm is known to decrease with an increase in the
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number of performance indices taken into account (Corne and Knowles, 2007). This means

there will probably be groups of realisations characterised by similar combinations of perfor-

mance indices and that the Pareto front cannot discern amongst them. The redundancy reduction

task is set up to identify and remove redundant realisations from the Pareto Front utilising a clus-

tering technique to group them and a time series matching procedure to filter one representative

configuration from each cluster.

Redundancy Reduction

The clustering is based on Self Organising Maps (SOM), non-linear representations of multi-

dimensional data already widely used in hydrological modelling (Herbst et al., 2008; Reusser

et al., 2009; Ley et al., 2011; Toth, 2013). A SOM is represented as a map of a pre-defined

size showing interconnected nodes (see examples in Figure 5.3). Each node represents a cluster

centroid. The dimension of the node is proportional to the number of elements contained in the

cluster and the distance between nodes is a measure of the associated weight (Kohonen et al.,

1996; Yan, 2010). It is assumed a Gaussian neighbourhood function and rectangular topology,

whose dimensions are defined based on the total number of realisations selected up to this point.

For instance, if 50 realisations have been selected, the first dimension is the square root of 50

(rounded up to the nearest integer). The second dimension is the square root of 50 divided by

the first dimension and rounded up. In this way, if there are no similarities, realisations will not

be forced to cluster.

The Pareto front is used as input of the SOM algorithm, and the weight vector is initialised with

the linear grid obtained from the first and second principle component directions. When the

SOMs are trained, the realisations are grouped in a number of clusters which does not neces-

sarily equal the number of nodes (some nodes can be empty). Similarities between time series

belonging to a certain cluster cannot be evaluated using MPIs as clustering, by definition, tries

to minimise within-cluster variability. Therefore, observations and simulations are compared

using an additional similarity score, called the Dynamic Time Warping distance.
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Figure 5.3: Example of Self Organizing Maps for 5 MPIs and dimension 10 x 10. The nodes

are colour coded based on the performance of the realisations contained. The range goes from

0 (blue, best performances) to 1 (yellow, worst performances). There is no particular meaning

associated with the x and y axes.

The time series matching algorithm called Dynamic Time Warping (DTW) was developed by

Sakoe and Chiba (1978) for speech recognition to align two time series by warping iteratively

the time axis until a suitable metrics is satisfied. The example matrix in Figure 5.4 shows two

time series: A and B. These time series are made of a discrete number of observations. At the

first time step (starting from the bottom left cell), the distances between the first point of A and
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all the points of B are calculated. The element in the matrix that corresponds to the minimum

distance is highlighted with a red dot. The same procedure is repeated for the remaining time

steps and the sequence of dots determines the minimum distance path (or warping path). Being

based on matrix operations, this method becomes computationally very expensive for long time

series.

In the AMCA algorithm, time series A and B are the observed and simulated streamflow re-

spectively. DTW assumes that simulations are non-linear time-stretched modifications of the

observations and the similarity score depends on how the simulation is stretched in respect to

the observation (Berndt and Clifford, 1994). For this reason the similarity score is expressed in

terms of “distance”. The AMCA only compares time series with the same length but in case

time series of different length need to be compared, a normalised distance should be adopted.

This is because “longer timeseries have naturally higher distances, making comparisons impos-

sible” (Giorgino, 2009; Tormene et al., 2009). From each cluster identified by SOMs, only one

member is selected, the one with the lowest DTW distance.
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Figure 5.4: Schematic example of Dynamic Time Warping path. A and B are two numeric

vectors

The result of the redundancy reduction task is a set of realisations (I′′′ and T ′′′), which composite

result is referred to as the Reduced Ensemble (RE). Although the techniques illustrated here are

widely used, the main novelty of this work is to combine them in a reproducible workflow,

which have not been previously done.

5.2.4 Step IV: Evaluating the simulated results

The result of the suggested procedure is assessed taking the Initial Ensemble as baseline and

scoring the Reduced Ensemble based on: the accuracy, precision and statistical reliability.

Although, there are more complex ways to assess the accuracy of an ensemble coverage (Ga-

raud and Mallet, 2011), here this is calculated as the percentage of time steps in which the

observations fall into the predicted interval. According to Christoffersen (1998) an indicator

67



variable can be defined as follows:

ct =















1 if dt ∈ [Lt(q),Ut(q)]

0 if dt /∈ [Lt(q),Ut(q)]

(5.1)

where Lt(q) and Ut(q) are the lower and upper bounds of the ensemble, dt is the observation

and q is the coverage probability. The actual coverage gives a measure of the accuracy of the

interval (expressed in percentage):

Actual Coverage =
1

N

N

∑
t=1

ct (5.2)

It is desirable for an ensemble result to be accurate but also precise (as close to a deterministic

output as possible). The reason for this is two-fold. On one hand, the “best (deterministic) esti-

mate” is often a requirement for many practical applications such as flood forecasting systems

(Vaughan and McIntyre, 2012). On the other hand, the frequency and distribution of the ensem-

ble’s parameters and model components could be highly informative (if there is a good level of

consistency). Yadav et al. (2007) suggest to measure precision as the relative spread between

two ensembles, calculated as the average distance between Ut and Lt for the Reduced Ensemble

divided by the average distance between Ut and Lt for the Initial Ensemble. This measure is

expressed in percentage with 0% meaning no reduction compared to the Initial Ensemble and

100% meaning the Reduced Ensemble is a line.

Laio and Tamea (2007) suggest to evaluate the statistical reliability of an ensemble using a

graphical approach known as Quantile-Quantile plots. In this study a more-quantitive approach

is adopted, summarising the “overall statistical reliability” (α) based on the shape and distance

of the result from the bisector of the plot, as suggested by Renard et al. (2010).
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5.2.5 Experimental setup

The procedure is tested on one hydrological year of hourly data at the Severn at Plynlimon

flume catchment in the Plynlimon area, United Kindgom (see Chapter 4). Data comprises of

precipitation, potential evapotranspiration and streamflow discharge time series recorder be-

tween October 2005 and September 2006. The period between October 2004 and September

2005 is used to warmup the models. This period was chosen due to the low number of missing

values.

A synthetic experiment is set up to analyse the efficiency of every intermediate step. The syn-

thetic dataset was generated using the forcing inputs described above along with model structure

and parameters listed in Table 5.1.

The experiments include a sensitivity analysis investigating how the Reduced Ensemble’s per-

formances are affected by changes in the following factors:

• Size of the sampled parameter space,

• Routing parameter range,

• Preliminary model selection step,

• Warmup period.

5.3 Results

5.3.1 Stepping in the algorithm using synthetic data

In order to clarify the implications of each part of the workflow, this section shows the out-

come of each step of the AMCA algorithm applied to the synthetic dataset. The results are

summarised in Table 5.2.
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Table 5.1: Model structure (first eight lines) and parameters (remaining 24 lines) used to gener-

ate the synthetic dataset. Parameters with no values are not used by the selected model structure.

Description Name Value

Model structure IDs mid 55

Upper layer architecture made of tension and free storages tension1 1 22

Lower layer architecture made of a reservoir size characterised by a

unlimited power recession
unlimpow 2 34

Topmodel-like Runoff parameterisation tmdl param 43

Percolation scheme with water availability from field capacity to

saturation
perc f2sat 51

Sequential evaporation scheme sequential 62

Interflow denied intflwnome 71

Routing allowed rout gamma 82

Additive rainfall error (mm/day) rferr add 0

Multiplicative rainfall error (-) rferr mlt -

Fraction of tension storage in recharge zone (-) frchzne -

Fraction total storage as tension storage (-) fracten 0.57

Maximum total storage in upper soil layer (mm) maxwatr 1 220

Fraction of percolation to tension storage in the lower layer (-) percfrac -

Fraction of storage in the first baseflow reservoir (-) fprimqb -

Baseflow depletion rate in the first reservoir (day−1) qbrate 2a -

Baseflow depletion rate in the second reservoir (day−1) qbrate 2b -

Baseflow depletion rate (day−1) qb prms -

Maximum total storage in lower soil layer (mm) maxwatr 2 3385

Baseflow rate (mm/day) baserte 95

Fraction of roots in the upper layer (-) rtfrac1 -

Percolation rate (mm/day) percrte 41

Percolation exponent (-) percexp 17

Sacramento model percolation multiplier for dry soil layer (-) sacpmlt -

Sacramento model percolation exponent for dry soil layer (-) sacpexp -

Interflow rate (mm/day) iflwrte -

ARNO/VIC ”b” exponent (-) axv bexp -

Maximum saturated area (-) sareamax -

Mean value of the log-transformed topographic index (m) loglamb 5.54

Shape parameter for the topo index gamma distribution (-) tishape 2.19

Baseflow exponent (-) qb powr 3.53

Time delay (days) timedelay 2.7

At step I, the algorithm uses the full set of FUSE’s model structures (1248) as inventory. Based

on the available data, there is no need to subset the initial model inventory while the modelling

hypotheses are based on the default FUSE settings listed below:
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Figure 5.5: Synthetic time series of hourly precipitation (P in the top panel), potential evapo-

transpiration (E in the middle panel) and streamflow discharge (Q in the bottom panel). All the

units are in mm/day.

• The extent of the parameter space is set to the default ranges suggested by Clark et al.

(2011).

• 10000 parameter sets are sampled using the Latin Hypercube Sampling method. The

same hypercube is used with all models.

At step II, the result space is generated by running each of the 1248 models using the same

10000 sampled parameter sets. The simulated discharges are collected in the array T while

MPIs are collected in the array I. Due to the large number of simulations taken into account at

this stage (12,480,000), there is a plethora of factors (e.g. sensitivity to particular model com-

ponents and parameters) which effects overlap and impede a clear distinction between suitable

and unsuitable model structures. For this reason, the filtering process is designed to act in a se-

quential fashion. At first, it performs a screening of inputs to remove equivalent settings. This

happens, for instance, when the rainfall error is not included in the inference and the additive

and multiplicative error factors are set to 0 and 1 respectively. If this initial screening is not
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performed, the result space is populated with pairs of identical performances. The algorithm,

therefore, checks whether the rainfall errors are set to the default values. If so, model structures

with multiplicative rainfall errors are automatically filtered out reducing the model space from

1248 to 624 model structures.

The preliminary model selection in the filtering process (step III in Figure 5.1), sets an optimal

performance threshold using simple statistics and set theory operations to summarise the suit-

ability of each model to reproduce the desired response. The array I can be sliced along the

dimension representing an MPI to extract and inspect the resulting 2D array, as in Figure 5.6.

Figure 5.6: Array I, sliced along one of the axes to extract 2D array containing the NSHF

index. MID is the model ID number, PID is the parameter set ID number and MPI is the Model

Performance Index.

Figure 5.7 shows a 2-dimensional representation of the array I sliced along each MPI, which

gives a first insight into the variability of performances across model structures and parameter

sets. This plot is divided in 5 panels (one for each MPI). Each panel shows 1248 FUSE models

on the x-axis (labelled by the original FUSE Model ID number, MID) and the first 1000 param-
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eter sets on the y-axis (labelled by the parameter set ID number, PID). Plotting only a portion of

the result space is necessary for practical reasons, however the overall pattern is only negligibly

different.

Each cell is colour coded depending on the value of the MPI, which is represented by a gradient

of colours going from green (best performance) to red (worst performance). Each column

represents the performance of a model structure, across all the sampled parameter sets, and each

row represents the performance of a parameter set, across all the model structures. Prevalence

of red on vertical bands suggests that the correspondent model structure is not likely to be able

to simulate the given response, and vice-versa in the case of prevalence of green. Similarly,

inspecting horizontal bands, can help identifying problems with parameter ranges.

In this setting, the need for a multi-objective evaluation framework becomes immediately evi-

dent. The prevalence of green in the panels related to NSHF and NSLF suggests that the range

of magnitude of the observations are captured by the vast majority of model-parameter set com-

binations, as over 98.7% of realisations are below 0.5. These measures, if used on their own,

are not able to identify the true differences between realisations and observations which, as is

discussed below, are due to timing errors.

Timing errors are captured by the LAGTIME index (first panel from left in Figure 5.7) which

shows less than 33% of the values below 1 and that the first half of the model structures per-

formed better than the second half (see also Figure 5.8). The first half is characterised by model

structures in which there is a component that delays the instantaneous runoff (routing allowed),

while for the second half routing is not allowed.

The less restrictive threshold that can be applied is 1, the upper limit of the performance range.

This means that models whose median of any MPI is equal to 1 are always discarded. Amongst

the remaining model structures, many are still performing better then others as some columns

show a prevalence of red. This can also be summarised by calculating the median of perfor-

mances over each column and plotting it against the MID as shown in Figure 5.8. This figure
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is made of 5 horizontal panels (one for each MPI) and shows the MIDs on the x-axis and the

median of performances for each model structure on the y-axis. First, third and fourth panels

(from the top) confirm that performances tend to worsen using the second half of the model

structures (MID from 624 to 1248), for which no routing is allowed. The algorithm filters out

these models reducing the number from 624 to 312.
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Figure 5.8: The 5 horizontal panels show the median of performances calculated for each model

structure. The most concerning performance relates to timing (top panel) as all the model struc-

tures have a median performance above 0.5. The first half of the model structures (routing

allowed) is generally performing better then the second half (routing not allowed). The oscil-

lating pattern suggests there are also other model components to be discarded.
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Distribution of performances

In order to understand better the multi-objective nature of the results for a single model, Figure

5.9 shows the variability of the performances of model 55 as a scatterplot. On the x-axis are

the PID numbers (in order to make the plot easier to read, only the first 1000 are visualised).

The values on the y-axis vary in the range [0,1] and shows the rescaled performances. these

are colour coded: red (LAGTIME), dark green (MAE), light green (NSHF), blue (NSLF), pink

(RR). With the exception of the LAGTIME, the majority of the other performances does not

exceed 0.2. The different appearance of the performance distributions is due to the fact that

LAGTIME is the only measure with a bounded upper limit prior to rescaling. This means that

LAGTIME does not have outliers but all the extremes are forced to fall on the upper bound.

Because the AMCA focuses on the lower bound of the range (best performance), this effect

could be considered negligible in relation to the selection process. However future experiments

could be performed to verify whether the use of a timing performance measure with unbounded

upper limit would affect the selection.

Nevertheless, timing errors are dominant and this is also evident for other model structures.

Figure 5.10, for instance, compares the results obtained for model 55 (first horizontal panel) to

the results obtained for FUSE’s parent models: Topmodel (MID = 59), Arno/Vic (MID = 229),

PRMS (MID = 341), Sacramento (MID = 425). Performances are distributed differently across

models, timing errors are dominant for the 5 model structures, however, the RR and NSHF

errors for models 341 and 425 span wider ranges compared to the other models. The different

distribution of performances is probably due to the interflow model component. Assuming that

in the catchment there is no interflow, when this option is switched off (as in models 55, 59 and

229) the model performs generally better. Switching on the interflow option (as in models 341

and 425), instead, reduces the simulated streamflow incrementing the volume errors (NSLF)

and errors related to the ratio between generated runoff and incoming rainfall (RR).

Referring back to Figure 5.8, this shows peculiar oscillating patterns on the left hand side of

each panel. In order to understand which model configuration causes the spikes, the frequency
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of model components can be analysed with regards to the highest MPI values. In this case,

the bad-performing configurations have in common a combination of two model components:

percolation due to gravity drainage (qperc = perc lower) and an architecture of the lower soil

layer (arch2) characterised by a baseflow reservoir of unlimited size with a fractional depletion

rate (arch2 = unlimfrc 2). The percolation due to gravity depends on the moisture in the lower

soil layer through a fraction where the denominator is infinite due to the unlimited size of the

reservoir. The percolation from the upper to the lower soil layer, therefore, is always zero

causing a consistent runoff overestimation and low performances. Removing these structures

reduces the total number of models from 312 to 276.

78



F
ig

u
re

5
.9

:
P

er
fo

rm
an

ce
s

o
f

m
o
d
el

id
5
5
.

O
n

th
e

x
-a

x
is

ar
e

th
e

fi
rs

t
1
0
0
0

p
ar

am
et

er
se

ts
id

n
u
m

b
er

s
(P

ID
).

O
n

th
e

y
-a

x
is

is
th

e
p
er

fo
rm

an
ce

(v
al

u
e

in
th

e
ra

n
g
e

[0
,1

])
.

T
h
e

p
er

fo
rm

an
ce

s
ar

e
co

lo
u
r

co
d
ed

:
re

d
(L

A
G

T
IM

E
),

d
ar

k
g
re

en
(M

A
E

),
li

g
h
t

g
re

en
(N

S
H

F
),

b
lu

e
(N

S
L

F
),

p
in

k

(R
R

).

79



F
ig

u
re

5
.1

0
:

T
h
e

fi
v
e

h
o
ri

zo
n
ta

l
p
an

el
s

sh
o
w

th
e

co
m

p
ar

is
o
n

o
f

p
er

fo
rm

an
ce

s
o
f

fi
v
e

m
o
d
el

s
(M

ID
):

5
5
,

5
9
,

2
2
9
,

3
4
1
,

4
2
5
.

O
n

th
e

x
-a

x
is

ar
e

th
e

fi
rs

t
1
0
0
0

p
ar

am
et

er
se

t
id

n
u
m

b
er

s
(P

ID
).

O
n

th
e

y
-a

x
is

is
th

e
p
er

fo
rm

an
ce

(v
al

u
e

in
th

e
ra

n
g
e

[0
,1

])
.

T
h
e

p
er

fo
rm

an
ce

s
ar

e
co

lo
u
r

co
d
ed

:
re

d
(L

A
G

T
IM

E
),

d
ar

k
g
re

en
(M

A
E

),
li

g
h
t

g
re

en
(N

S
H

F
),

b
lu

e
(N

S
L

F
),

p
in

k
(R

R
).

80



Preliminary Selection (PS) Ensemble

The threshold identified by the algorithm is 0.6, therefore model structures with any median

MPI in the range [0.6,1] are also discarded. The pre-selection retains 94 model structures with

a dimensionality reduction of 92% (the Initial Ensemble is used as baseline).

Figure 5.11 shows the minimum and maximum bounds of the Initial Ensemble (T ) and the

ensemble generated from the pre-selected realisations (T ′). A dimensionality reduction of about

92% translates in filtering out configurations that overestimate discharges at peaks and initial

time steps. The accuracy of the 5th and 95th percentiles (area between red lines) is still 100%

while the precision increases to 70%. Although the spread of T ′ is still significantly wide, the

majority of the selected simulations lay in the dark blue area. This shows that the wide spread is

due to very few realisations with high magnitude errors that have not been successfully filtered

out in this preliminary stage.

Pareto Front (PF) Ensemble

Figure 5.12 compares the 5th and 95th percentiles of T ′ (black dotted lines) with the distribu-

tions percentiles over time of T ′′ generated from the Pareto front (grey-blue area). T” is still

100% accurate and slightly more precise (81%), simulating better timing and magnitude of the

peaks.

Reduced Ensemble (RE)

Figure 5.13 compares the 5th and 95th percentiles of T ′′ (black dotted lines) with the distri-

bution percentiles over time of T ′′′ generated from the redundancy reduction steps (grey-blue

area). The difference between the two ensembles is extremely subtle demonstrating the config-

urations removed at this last step do not add much to the overall results and can be considered

as redundancies.
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Compare cumulative probabilities

Figures 5.14 to 5.18 show the cumulative probability of each MPI, a black line for the Initial

Ensemble, a red line for the ensemble derived from the Pre-selection (PS), a blue line for the

one derived from the Pareto front (PF) and a green line for the Reduced Ensemble. Blue and

green lines have very similar ranges but the green one is generally performing better which

demonstrates, again, the success of the redundancy reduction step.

Figure 5.14: Cumulative probability distribution of the performance indicator LAGTIME.
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Figure 5.15: Cumulative probability distribution of the performance indicator MAE.

Figure 5.16: Cumulative probability distribution of the performance indicator NSHF.
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Figure 5.17: Cumulative probability distribution of the performance indicator NSLF.

Figure 5.18: Cumulative probability distribution of the performance indicator RR.
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Algorithm’s suggestions in terms of model components and parameters

To check whether the algorithm selects the correct modelling options, the frequency distribution

of the selected model components is compared to the synthetic model structure. Figure 5.19

shows seven vertical panels (one per model building decision), the relative frequency4 on the

y-axis and modelling options on the x-axis. The options that correspond to the synthetic model

structure are green, while the others are red. The algorithm performs a correct selection if the

most frequent options coincide with the synthetic model structure. In other words, the highest

bar in each panel should be green.

The algorithm suggests a model structure with an upper soil layer made of two storages (one

tension and one free), a lower soil layer of unlimited size and power recession law, a Topmodel

runoff mechanism, sequential parameterisation for the evaporation scheme, no interflow and

routing allowed. All these options coincide with the synthetic model components. However,

the algorithm failed to identify the correct percolation parametrisation.

Similarly, the posterior distribution of parameters can be compared to the synthetic values to

check whether the algorithm can identify optimal parameter ranges. Figure 5.20 illustrates a

comparison between the parameter distributions of the Initial Ensemble (grey) and the Reduced

Ensemble (yellow). On the x-axis of each plot is the parameter range, while on the y-axis is

the kernel density estimate. Only parameters used to generate the synthetic data are shown,

so that the distributions can be compared with the true values (red dots). The procedure did

not noticeably reduce the initial parameter ranges, except for the “timedelay” parameter, which

narrowed from [0,5] to [2.1,4.7] bracketing closer the synthetic value of 2.7 days.

4The relative frequency is defined here as the ratio between the frequency count of a modelling option and the

total number of ensemble components.
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Figure 5.19: Relative frequency of the selected model components. Components used in the

synthetic model are shown in green, the others are in red. The majority of the most frequent

components coincide with the synthetic ones.
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While the prior (Initial Ensemble) parameter distributions were designed to be uniform, a χ2 test

showed that most posterior (Reduced Ensemble) distributions were not (e.g. timedelay, percrte,

maxwatr 1 and maxwatr 2). This is also evident by visually inspecting Figure 5.20. If both

prior and posterior distributions of a generic parameter X are uniform, it means that the AMCA

filtering process is not affected by its variations and therefore X is considered a not sensitive

parameter. Conversely, if the posterior distribution spans only a subrange and/or is not equally

spread across the range of possible values, X is considered a sensitive parameter. Amongst

all the parameters, the timedelay appears to be the most sensitive as it spans a subrange much

smaller than the original one and within this subrange the majority of the values are concentrated

around 2.7 days (the synthetic value). This is a sign that timedelay was sampled from a too wide

range. The sampling error generated significantly poor timing performances that dominated the

overall result space hiding the effect of the model structure variability. Section 5.3.2 investigates

whether the algorithm’s performances can be improved by sampling the timedelay from a more

realistic range.
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Table 5.2: Summary table of the filtering algorithm’s results. At each step i, a number of outputs

are reported: utilised model structures (# Models), parameter sets (# Parameter sets), number of

realisations (# Realisations), dimensionality reduction (D-reduction, calculated as the ratio of

the number of realisation at step i over the number of realisations of the Initial Ensemble) and

accuracy and precision of derived ensembles. In addition, at the third step is also reported the

auto-generated threshold and at the last step the statistical reliability of the Reduced Ensemble.

Step Description Type of result Value

1 Result Space −→ I/T

# Models 1,248

# Parameter sets 10,000

# Realisations 12,480,000

Accuracy (%) 100

Precision (%) 0

2 Rain f all error screening

# Models 624

# Parameter sets 10,000

# Realisations 6,240,000

D-reduction (%) 50

Accuracy (%) 100

Precision (%) 0

3 Pre.model selection −→ I/T ′

Auto-generated threshold 0.6

# Models 94

# Parameter sets 10000

# Realisations 940000

D-reduction (%) 92

Accuracy (%) 100

Precision (%) 70

4 Pareto Front −→ I/T ′′

# Models 32

# Parameter sets 39

# Realisations 1248

D-reduction (%) +99

Accuracy (%) 100

Precision (%) 81

5 Redundancy Reduction −→ I/T ′′′

# Models 8

# Parameter sets 9

# Realisations 72

D-reduction (%) +99

Accuracy (%) 100

Precision (%) 84

Reliability (%) 84
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5.3.2 Sensitivity analysis

Based on the synthetic test illustrated in the previous section, the AMCA algorithm seems to

be fairly accurate in filtering out unsuitable model structures and narrowing parameter ranges.

However, it is difficult to determine the potentials of such an approach without further testing.

This section collects a series of experiments to analyse the sensitivity of the algorithm to the

size of the sampled parameter space, to the variability of the routing parameter, to the use of the

preliminary model selection step and to the length of the warmup period.

Size of the sampled parameter space

The AMCA algorithm uses random sampling to define the parameter space. The number of

runs required could be determined based on the number of parameters forming a set. Beven

(2001b, p. 219) suggests that a typical dependency can be formulated as follows:

nS = 10nP (5.3)

where nS is the number of required runs to sample and nP is the number of parameters in a set.

FUSE’s models use a total of 22 parameters, leading to an ideal number of runs being simply

unmanageable. Therefore, it is important to identify an ideal trade-off between a satisfactory

representation of the sampled space, the processing time and the use of computer resources.

There are few factors that could justify a reduction in the required number of runs, one being that

each model in the FUSE framework only utilises a subset from a minimum of 8 to a maximum

of 16 parameters.

The HPC facilities available at Imperial College are based on a queueing system that only allows

the use of a maximum of 40 cores at a time. The AMCA algorithm itself is highly demanding
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in terms of resources. Using the synthethic case and limiting the processing time to 1 day, a

maximum of 10000 parameter sets could be sampled.

It is expected that the more parameter sets are sampled, the more accurate and precise the

Reduced Ensemble is going to be. Experiments were carried out to understand how accuracy

and precision of the Reduced Ensemble worsen when reducing the number of samples, and it

was extrapolate what results could be expected if a higher number of samples could be used.

The performance of the algorithm is valued in terms of the accuracy, precision and reliability of

the Reduced Ensemble. Performances were collected for samples of the following sizes: 1000,

2500, 5000, 7500, 10000.

Figure 5.21 summarises the results of these experiments. On the x-axis is the number of sam-

ples, while on the y-axis percentages from 0 to 100. The red line shows that the accuracy of the

Initial Ensemble is always 100%, regardless of the sample size. This suggests that the variability

over the model structure space could compensate for a sparsely sampled parameter space.

The yellow, green and light blue lines show the accuracy, precision and reliability of the Re-

duced Ensemble, respectively. these are always above 68%. The smallest set of samples (1000),

is characterised by the lowest accuracy. However this rapidly increases to 100% with as few as

5000 samples. An increase in accuracy generally corresponds to a loss in precision and reliabil-

ity. However, results become fairly stable using as few as 5000 parameter sets suggesting that

the AMCA does not need a more densely sampled parameter space to converge, at least for the

dataset used for testing.

The next section illustrates an experiment to understand whether narrowing the range of what

appears to be the most sensitive parameter (timedelay) allows the use of an even more sparsely

sampled parameter space.
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Figure 5.21: Algorithm performances based on parameter sample size. The x-axis shows the

number of samples and the y-axis the percentage value. IE = Initial Ensemble, RE = Reduced

Ensemble.

Routing parameter range

The timedelay has been found to be the most sensitive parameter of the FUSE framework. It is

expected that narrowing the range of this parameter could improve the accuracy, precision and

reliability of more sparsely sampled parameter spaces.

The true timedelay of the synthetic example is known to be 2.7 days, therefore the results of the

algorithm were compared in the following cases:

• parameter sets are sampled setting the timedelay equal to the true value,

• parameter sets are sampled from the default range [0.1,5] days.

Figure 5.22 shows the bounds of the Reduced Ensemble for the default parameter ranges as

black dotted lines, while fixing the timedelay to 2.7 days returns the bounds shown as red
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lines. Imposing the timedelay equal to the true value significantly improves the ensemble results

which are highly accurate but more precise (87%) and reliable (92%). The identification of

model components also looks more clearly defined, as shown in Figure 5.23, suggesting a lower

layer of unlimited size and power recession law, a Topmodel-like runoff parameterisation, a

percolation scheme dependent of the field capacity and no interflow. However, the algorithm

failed to identify the correct upper soil layer architecture.

The experiment in the previous section was also repeated imposing the timedelay equal to 2.7

days and the results illustrated in Figure 5.24. Even though there is a slight descrease in ac-

curacy, the performances are generally higher than in the previous case. This suggests that, in

order to obtain better ensemble predictions and well identified model components, parameter

ranges should be as close as possible to realistic values.

Using real datasets, the timedelay could be calculated as the time of concentration, derived from

the geospatial characteristics of the catchment, such as length of the longest river reach, mean

slope and area of the catchment. When this information is not available, the algorithm itself can

be used recursively, running a first time to narrow the parameter ranges and a second time to

analyse model structure variability.
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Figure 5.23: Improved identification of model components obtained by imposing a timedelay

equal to its true value (2.7 days). The plot shows the relative frequency of the selected model

components. Components used in the synthetic model are shown in green, the others are in red.
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Figure 5.24: Algorithm performances based on parameter sample size. The x-axis shows the

number of samples and the y-axis the percentage value. IE = Initial Ensemble, RE = Reduced

Ensemble. In the above simulations the time delay is always equal to 2.7 days.
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Avoiding the preliminary model selection step

The preliminary model selection was designed to expedite processing, with fewer realisations

to process, runs are performed faster but this may translate into a loss of information as filtering

out model structures based on their “overall performance” could lead to ignore isolated well

performing realisations. The convenience of having a preliminary selection was evaluated by

comparing the results in Table 5.2 to the case in which the preliminary selection step is skipped.

Skipping the preliminary selection step can be considered a more conservative approach, as

the new RE is characterised by an increase in reliability (from 84% to 85%) and a decrease

in precision (from 83% to 66%) while still 100% accurate. Figure 5.25 shows that the RE

medians with (red dotted line) and without (blue dashed line) pre-selection are very similar.

However the two approaches differ significantly in the spread of the results at the beginning of

the simulation period (see Figure 5.26). This is a sign that the warmup period of 3.5 days (for

hourly datasets) is not adequate and a longer warmup should be allowed (this is further discusses

in Section 5.3.2). The model structures causing the wider spread are all characterised by a

runoff generation mechanism different from Topmodel (see all the selected model components

in Figure 5.27). These model structures are more sensitive to the initial conditions but the

Pareto algorithm seems not being able to detect the difference in terms of MPIs. The use of

the preliminary selection is, therefore, always recommended as this not only speeds up the

processing time but also complements the filtering capabilities of the Pareto algorithm when

using multiple performance indices and short time series for which the warmup period may not

be adequate.
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Figure 5.25: Comparison of observed results with the median of the Reduced Ensembles ob-

tained with (red dotted line) and without (blue dashed line) pre-selection step.
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Figure 5.27: Relative frequency of the model components obtained by skipping the preliminary

selection step. Components used in the synthetic model are shown in green, the others are in

red.
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Warmup period

Hydrological models can be very sensitive to initial and boundary conditions (Stephenson and

Freeze, 1974; Beven, 2001b). This is also true for FUSE, which core is a set of ordinary dif-

ferential equations to be resolved with regards to the state variables once initial conditions are

defined. These state variables represent the water storages in the upper and lower soil layers,

defining the structure of the Soil Moisture Accounting module. By default, the state variables

are initialised as containing 25% of the maximum storage capacity (Clark et al., 2008). This is a

generic assumption that tends to overestimate the soil moisture in dry periods and underestimate

it in wet periods. In order to limit the effects of such arbitrary assumption, model performances

are generally calculated after running the model for a certain number of time steps which length

is known as ”warmup period” (or spin-up). Western and Grayson (1998) suggest to assign the

warmup period based on the response time of the system, however, there is no general rule to

quantitatively determine an “adequate” number.

The sensitivity to the initial conditions is not part of the model behaviour as it tends to disappear

over time. However, choosing an inadequate warmup period can cause the model behaviour

to be masked behind the model sensitivity to the initial conditions and during the selection

process model structures could be filtered out for the “wrong reason”. This section describes

an experiment to relate the time-response of a catchment to the warmup period, for models

within the FUSE framework. This test is useful to assess whether the 3.5 days warmup period

used in the previous experiments was an adequate choice. If not, it could help quantifying the

performance loss.

Using a synthetic example, the response time of the system corresponds to the timedelay param-

eter (known) and the warmup period can be set a number of times greater than this parameter.

The first experiment compares the results of the AMCA using a 2 year synthetic dataset and

four different warmup periods: 0%, 10%, 30% and 50% of the dataset length. The last year is

used for calculating the MPIs, while different portions of the first year are used to warm up the

models. It is expected that for adequate warmup periods the model configuration converges in
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terms of ensemble accuracy, precision and reliability.

The dataset in the first experiment is generated using the same model and parameters listed

in Table 5.1 with the exception of the timedelay which is set to 1 hour. Other three datasets

are generated setting the timedelay equal to: 6 hours, 1 day and 3 days. The previous experi-

ment is then repeated. From the parameter space, 2500 sets are sampled and used with all the

combinations of timedelay/warmup periods.

Figure 5.28 shows the combined results of these experiments. For fast responses (timedelay set

to 1 and 6 hours) the accuracy of simulations with no warmup is generally lower than in other

cases, this is probably because too many models have been erroneously eliminated at the pre-

selection step. For slow responses (timedelay set to 1 and 3 days), instead, all the performances

seem not to be significantly affected by the warmup period. Therefore, increasing the warmup

period in the previous sections’ experiments would not have had a noticeable effect on the

algorithm’s performances.
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Figure 5.28: Multipanel plot to illustrate sensitivity to warmup period, the number of time steps

needed by the model to eliminate the initial bias. The experiments were running on 3 synthetic

time series: the first one was generated using a timedelay parameter of 1 day (top panel), the

second using a timedelay of 3 days (middle panel) and the third using a time delay of 5 days

(bottom panel). On the x-axis is the warmup period, expressed as percentage of the total length

(1 year). On the y-axis are the performances (accuracy = pink line, precision = green line and

reliability = blue line), in the range between 0 and 100 %.
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5.4 Discussion

The definition of a suitable model configurations to be used for simulating scenarios, is often

modeller dependent. In this chapter an automated algorithm, called AMCA, was developed

with the aim to reduce subjectivity in the analysis or at least make the modelling hypotheses

more explicit and transparent. This algorithm cannot be considered an alternative to calibration

and optimization procedures but, rather, an initial screening tool that compares possible config-

urations and selects the most adequate subset among those available to the modeller. Its main

purpose is to identify the basic and most suitable model configuration, in terms of modelling

options and parameter ranges. However, these configurations should then be calibrated and

validated in subsequent steps.

The core of the AMCA is a filtering process that attempts to discard as many unsuitable model

configurations (combinations of modelling options and parameter sets) as possible without com-

promising the representation of model structure uncertainty. The filtering process is based on

the analysis of errors related to different attributes of the response (timing, volume, magnitude

of the peaks and low flows). The algorithm can easily be adapted to incorporate different/addi-

tional indices, as the suggested list is only a selection of the most widely used in literature and

should not be considered exhaustive. There are, for instance, no attempts to identify errors in

the baseflow rate which would have required modelling separately groundwater flows.

The first step of the algorithm filters model structures based on their overall performance, dis-

carding isolated well performing configurations. The concept of equifinality (Beven, 2006)

suggests that there might be multiple model configurations that can simulate equally well a cer-

tain hydrological response. Therefore, are model configurations interchangeable? Implicitly,

the preliminary selection step assumes they are. It removes model structures based on their

overall performance and ignores isolated well performing configurations assuming that there

will probably equifinal configurations amongst those not discarded. This assumption was tested

comparing the AMCA results with and without the preliminary selection step. Results showed
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that the two ensembles are not significantly different and that the selected configurations com-

pensated for those filtered out.

In the second part of the filtering process, the Pareto Front generally identifies less than 0.01%

of the realisations as non-dominated. However, the Pareto efficiency is expected to decline

increasing the number of competing criteria (Corne and Knowles, 2007) and this could result

in a much larger number of realisations to consider at the redundancy reduction stage. If some

of the Pareto non-dominated realisations are redundant, these are removed by the redundancy

reduction step which uses Self-Organizing Maps and time series matching methods. These

are powerful tools to identify (also visually) clusters and inspect time series similarities. In a

SOM, similar realisations arrange themselves into clusters on a 2-dimensional map projecting

not only multiple performances but also the relationships amongst them into weights, node sizes

and connections. One of the advantages of using SOMs over other clustering techniques is that

there is no need to assign a priori the number of clusters. Working with SOMs, however, is

not a completely objective procedure. The clustering is quite variable with the dimension of

the map (Reusser et al., 2009). Using a small map size forces the data to cluster in few groups

without necessarily mirroring real similarities. Conversely, increasing the map size could show

the data as too dispersed. In this study, an adaptive map size was adopted, dependent on the

dimension of the Pareto Front. This was necessary to make sure that each realisation could

fall in a different cluster, if necessary. Further studies are needed to understand how results are

affected.

From each cluster only one ’representative’ realisation is selected. The selection is made via

the DTW method which is based on matrix operations and therefore suitable only for relatively

short-length time series. It could be interesting to investigate the DTW’s limit of applicability

in terms of length of time series to be processed. Some preliminary tests showed that, based on

the computing capabilities of the machine used, the process would fail to allocate memory for

datasets longer than 10000 time steps. There might also be a lower limit, as the effect of the

initial conditions could be difficult to minimize for very short datasets. Finally, the results of
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the redundancy reduction step are combined in a model ensemble. The fact that clustering and

DTW only remove redundancies is confirmed by the high degree of similarity of the cumulative

distribution functions calculated for the Pareto step and the RE.

The performance of the algorithm is measured in terms of accuracy, precision and statistical

reliability. The information that can be derived depends on how consistent the ensemble com-

ponents are. The synthetic case obtained by imposing default parameter ranges shows well

defined model components which often coincide with the true modelling options used for gen-

erating the synthetic data.

The algorithm generally converges towards stable values of accuracy, precision and reliability

with less than 5000 samples. Using a smaller number of parameter samples and more realistic

parameter ranges considerably reduces the number of simulations and related processing time.

For instance, if a realistic range of the time delay is identifiable, the number of model structures

to take into consideration halves because structures not allowing routing can be removed. If

the parameter sets to take into account are also halved (from 10000 to 5000), the processing is

generally reduced to 25% of the original time.

It was also noticed that model component identifiability can be further improved by narrowing

parameter ranges to more realistic values. One of the experiments showed that there is much

less uncertainty in the definition of model components when the timedelay is set to its synthetic

value. However, in this particular case, the algorithm failed to identify the correct architecture

for the upper soil layers. The one suggested by the algorithm consist of a single storage unit,

while the true one is made of two storages. This inconsistency may be due to the fact that mod-

elling options are not evenly distributed across the various model structures. In fact, 576 model

structures are characterised by a single storage, 384 are characterised by an upper layer split

into tension and free storage, and the remaining 288 model structures have the tension storage

sub-divided into recharge and excess. Therefore, as the majority of the structures contain a

single upper storage option, it is likely that this option is selected as the most suitable one.
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For the purpose of testing the AMCA, a short dataset (about one month) was used, even though

FUSE models are generally used with multiple years of daily data (Clark et al., 2008; McMil-

lan et al., 2010; Clark et al., 2011; McMillan et al., 2011). The reason is that the Severn at

Plynlimon catchment is relatively small (below 10 Km2) and characterised by fast responses,

therefore, in order to properly describe the hydrological behaviour observations are recorded

hourly. With this temporal resolution, only a short dataset would have allowed to run many

million simulations in a feasible time frame: about 12.5 million simulation were generated for

the synthetic test illustrated in Section 5.3.1 and 132 millions for the sensitivity tests in Section

5.3.2. However, in the next two chapters the AMCA is tested on much longer real observations.

More experiments are needed to understand whether parameter identifiability can be improved

by narrowing model component options. Is a low degree of parameter identifiability linked to

parameter interaction? How can this interactions be investigated? Next chapter tries to answer

these questions engaging association rule mining.

5.5 Concluding remarks

This chapter describes the design, development and testing of an automated algorithm to select

an adequate set of model structures and parameter ranges to simulate the dominant processes

occurring in a catchment while properly accounting for model structural uncertainty. This is

achieved by using a Data Mining approach and combining various techniques (e.g. set theory

operations, clustering, time series matching) into one single algorithm which is able to uncover

non-trivial data patterns.

The algorithm was tested using synthetic events, demonstrating that the result space is affected

by many overlapping effects ranging from redundancies due to default framework settings, to

systematic discharge overestimations/underestimations due to arbitrary initial conditions and

sub-optimal parameter ranges.
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Results are analysed in terms of precision, accuracy and reliability. It is important to highlight

that the best configurations are not those corresponding to the most precise ensemble, nor to

the most accurate or reliable one but rather those identifying the best trade-off. Next chapter

illustrates further experiments carried out to understand whether the identifiability of model

components and parameters can be improved mining their interactions.
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Chapter 6

Coupling the AMCA with association rule

mining to improve the identifiability of

optimal model configurations

In the previous chapter, an automatic data mining procedure was introduced to identify the

most suitable model configurations for a catchment of interest. The algorithm was applied to

a synthetic dataset in a multi-objective and multi-model framework, returning model config-

urations characterised by high level of consistency with the expected results. However, the

algorithm performed poorly when trying to narrow parameter ranges, probably due to high de-

gree of parameter interaction. The aim of this chapter is to investigate how model components

and parameters interact. This is done by coupling the AMCA with association rule mining, a

machine learning technique that can efficiently identify the simultaneous occurrence of a set of

variables within multivariate distributions. The methodology is tested on the Plynlimon area in

the UK. Results show that a significant degree of interaction can be identified amongst model

components and parameters. The combined use of AMCA and association rules-based filtering

allowed to identify an optimum set of 2 out of 312 model structures and constrain 7 out of 15

parameter ranges. The ensemble generated by the suggested configurations was found 100%
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accurate and 37% more precise than the default FUSE ensemble. The same configurations were

calibrated using an optimisation algorithm and generated the best average efficiency and small-

est uncertainty (for both calibration and validation periods) when compared with the calibrated

FUSE’s parent models.

6.1 Background

Conceptual lumped rainfall-runoff models are widely used for hydrological modelling due to

their parsimonious use of parameters and fast computation time, when compared to physically

based models. The parameters of a conceptual model cannot be measured in situ, they are

evaluated by inferential procedures using historical data. For models base on non-linear ordi-

nary differential equations, such as most FUSE model structures (Clark et al., 2008), parameter

estimation becomes notoriously difficult (Strebel, 2013) because more than one set of parame-

ters may generate the same distribution of simulations, known as equifinality problem (Beven

and Freer, 2001). Parameter identification problems and sensitivity analysis often consider

model parameters independent, and therefore uncorrelated. The relative importance of individ-

ual parameters in determining model performance can be investigated using regional sensitivity

analysis (RSA) based on Monte Carlo simulations (Hornberger, 1980; Spear, 1980). In RSA,

model simulations are evaluated using an objective function (e.g. Nash-Sutcliffe efficiency) and

divided in behavioural and non-behavioural simulations depending on whether the perfomance

falls above or below a given threshold. For each parameter, the empirical cumulative distri-

bution function (CDFs) from behavioural simulations is compared to the CDF computed from

non-behavioural simulations via either visual inspection or using formal statistical tests such as

the Kolmogorov-Smirnov test (Spear, 1980). If the CDFs are significantly different, the param-

eter is considered sensitive. Pianosi and Wagener (2015) use CDFs to assess how the simulated

distributions vary altering inputs. However, Mo et al. (2006) noticed that the model performance

becomes behavioural (or non-behavioural) depending on the interaction between the individual

parameter values, therefore, the entire parameter set is important to achieve a behavioural simu-
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lation. Relaxing the hypothesis of independence, it becomes important to define the structure of

a covariance matrix in order to implement a Monte Carlo procedure. Beck (1987) pointed out

that, as the number of parameters increases, the posterior parameter distributions become more

difficult to interpret. Multivariate analysis can be used to take into account interactions. Spear

(1980) suggested to use a principal components analysis of the covariance matrix to explore

the problem over multiple dimensions. According to Kuczera (1997), interacting parameters lie

in small narrow regions of the parameter space and suggested a subspace probabilistic search

strategy. Spear et al. (1994) explored the connectedness of these small regions of interaction us-

ing nearest neighbour metrics and concluded that “this is generally a single connected region”.

They suggested to describe this region using a tree-structured density estimation approach.

However, using multi-model frameworks, the complexity increases due to the number of com-

binations of models and parameter sets able to produce the same distribution of simulations.

In the previous chapter, an ensemble of suitable configurations for a catchment of interest was

generated using the AMCA approach. The ensemble was highly accurate and combined many

configurations from which suggestions on optimal model components could be derived. How-

ever, excluding the routing coefficient (timedelay), optimal parameter ranges could not be iden-

tified. Assuming that the lack of identifiability is due to parameter interaction, if significant

interactions are uncovered these could be used to contain the size of the ensemble improving its

precision and without compromising its accuracy. As it is formulated, this is an ensemble prun-

ing problem. This kind of problem is well known in machine learning, for which unnecessarily

large ensemble can lead to a number of issues such as extra memory usage and computational

costs (Zhang et al., 2006). Ensemble pruning can be approached in numerous ways, involving

various degrees of complexity. For instance, statistical tests can be used to subset models that

differ significantly from the others in terms of accuracy (Tsoumakas et al., 2004, 2005). If each

ensemble member is given a weight, optimization can improve the performance of the ensemble

by tuning these weights (Mason et al., 1998). The effectiveness of this approach depend on the

number of zeros in the weights (Demiriz et al., 2002) and there is no control over the dimension

of the final ensemble. In this regard, Zhang et al. (2006) proposed to constrain the weights to be
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binary and set the size of the final ensemble using a cardinality constraint. All these approaches,

however, assume parameters and model components to be independent of each other. In Chap-

ter 5, frequency-based approaches that assume configuration variables independent were found

to be of limited use. The true model configuration was checked, for instance, against the Re-

duced Ensemble by plotting the relative frequency of each model component (i.e. see Figure

5.19). This type of plot is useful to highlight model components occurring more often than the

competing ones but did not inform on the frequency of occurrence of a particular combination

of these components.

The possibility to formulate the ensemble pruning problem to enforce the independence of its

variables is an active field of research. This is based on the assumption that an ensemble member

should be preserved based on whether its variables show a significant level of correlation. This

is a combinatorial problem that, in other disciplines, is solved using association rule mining.

This technique works by identifying all possible combinations of variables within discrete mul-

tivariate distributions and sorts them based on their joint frequency of occurrence. Association

rule mining was first introduced by Agrawal et al. (1993) and has been used since in computer

science for mining web usage and traffic (Mobasher et al., 2001), in finance for market basket

analysis1 and in the field of bioinformatics for the analysis of gene expression (Carmona-Saez

et al., 2006). Hydrological applications are relatively limited and focus mainly on finding rules

for clustering hydrological time series and spatial characteristics(McGuire and Gangopadhyay,

2006; Wan et al., 2007; Malhotra and Venugopal, 2011).

This chapter explores the possibility to combine the AMCA to unsupervised learning tech-

niques called association rules as a multi-model alternative to Kuczera (1997) and Spear et al.

(1994) approaches to identify the region in the configuration space where parameters and model

components interact. The ensemble members for which variables fall in the region of high in-

teractions will be preserved, while the remaining will be pruned. Being a technique that can

1http://machinelearningmastery.com/market-basket-analysis-with-association\

-rule-learning/, accessed 27th November 2014.

http://www.xlstat.com/en/learning-center/tutorials/how-associations-rules-can-help-\

for-market-basket-analysis.html, accessed 27th November 2014.
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be adopted for data as well as text mining Wong et al. (1999); Manimaran and Velmurugan

(2013), this is particularly suitable in the context of an AMCA ensemble, for which parameters

are numerical while model components are categorical variables.

The chapter is organised as follows: Section 6.2 describes the proposed methodology, Section

6.3 illustrate the modelling setup, 6.4 illustrates results for a case study and explores the limita-

tions of the use of association rules mining, while Section 6.6 draws the concluding remarks.

6.2 Methodology

Given a catchment of interest, FUSE (Clark et al., 2008) is used as model inventory to generate

simulated discharge time series combining 1248 model structures and 10000 parameter sets.

The AMCA algorithm, then, is used to select from the available 12480000 configurations those

that best suit the observations. The result of this procedure, as seen in the previous chapter,

is the Reduced Ensemble, which is a table that contains all the variables for all the selected

configurations.

In the context of association rules, the Reduced Ensemble is called transaction table. In a trans-

action table, configurations are presented such that each row of the table represents a configu-

ration, called transaction, and each column represents a variable, called item. A group of items

occurring together is called itemset. Each transaction is made of 33 items: 9 model components

(see Tables 3.1 and 3.2) and 24 parameters (see Table 3.4).

Association rules expect all the items to be categorical variables2, therefore, each parameter

range is first divided into a number of bins of equal size, then each parameter value is converted

to a categorical variable through binning. As an example, if the timedelay is defined in the

range [0,5], and I divide this range into 5 bins, each parameter value belongs to one of these 5

2A categorical variable is defined as a variable that can assume a limited number of values so that it can be

assigned to a particular group or category.
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categories: (0,1], (1,2], (2,3], (3,4] and (4,5]. A timedelay of 0.2 days is converted into (0,1],

1.5 days is converted into (1,2] and so forth.

The itemsets occurring in two or more transactions are identified, collected and analysed against

each other to determine whether any if-then relationships, also called rules, can be identified.

For instance, if for any itemset the timedelay is always (0,1], this generates the following rule:

{} =⇒ timedelay = (0,1]

where the empty curly brackets stand for “any itemset”. This rule has length 1, because only

one item is involved. Another example involving more than one item is the following: if in a

certain number of transactions the timedelay is (0,1], then the maximum water storage capacity

of the upper soil layer is (120,215]. This rule can be written as follows:

timedelay = (0,1] =⇒ maxwatr 1 = (120,215]

This rule has length 2, because there are two items involved: one on the left hand side (lhs) and

one on the right hand side (rhs).

In general mathematical terms, rules are expressed as follows:

X =⇒ Y (6.1)

where X is called antecedent itemset (lhs) and can be made of 1 or multiple items. Y is called

consequent itemset (rhs) and it is made of only 1 item. X and Y are mutually exclusive and the

number of identifiable rules depends on the number of observed itemsets. The more variables

are in a transaction, the more rules may be generated. However some rules are more significant

than others and Agrawal and Srikant (1994) designed the apriori algorithm to define a way
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to choose the most relevant rules amongst all the possible ones, based on three measures of

significance: support, confidence and lift.

The support is the proportion of transactions containing a certain itemset.

Support = supp(X) = fi/n (6.2)

where fi is the frequency of a certain itemset and n is the total number of transactions.

The confidence is the ratio of the observed support to the support of X and is an indication of

the number of times the if-then relationship was true in the transaction table:

Con f idence = con f (X =⇒ Y ) =
supp(X ∪Y )

supp(X)
(6.3)

The lift is the ratio of the observed support to that expected if X and Y were independent:

Li f t = li f t(X =⇒ Y ) =
supp(X ∪Y )

supp(X)× supp(Y )
(6.4)

The apriori algorithm assumes, by default, that a rule is significant if the support is above 10%

and confidence is above 80%. In this work, I used a slightly more restrictive threshold for

the support (30%) to be able to work with a small and highly significant set of rules. The

implications of such subjective decision are discussed further in Section 6.5. It is important

to note that this algorithm does not distinguish the direction of the implication (i.e. whether

X implies Y or viceversa), to remove any redundancies and avoid double counting, the list of

rules should be pruned before visualisation or further manipulation. All the possible rules can

be ordered in a sparse symmetrical matrix, therefore, rules pruning simply consists of retaining

the elements above (or below) the diagonal.

There are several visual aids that can help exploring pruned rules. They can be visualised

schematically as in the examples in Figures 6.1 to 6.3. The scatterplot (Figure 6.1) is used to

determine how the lift changes based on support and confidence. Generally, rules with high lift
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have a relatively low support and the most interesting rules reside on the boundary (Bayardo

and Agrawal, 1999).

Figure 6.1: Example scatter plot showing support level on the x-axis, confidence level on the

y-axis. Each point is colour coded from light to dark grey to show the degree of lift.

Figure 6.2 illustrates the circle-connection graph which shows items as text, rules as circles

(colour coded based on the lift and with size dependent on the support) and implications as

arrows. This plot is useful to highlight items of particular interest (arrows converging to a

certain item).

The parallel coordinates plot (bottom) shows on the x-axis the number of items forming a rule.

In this particular example, the consequent itemset (rhs) is made of 1 item, while the antecedent

itemset (lhs) is made of a maximum of two items (position 1 and 2). On the y-axis are the items

involved in the rules. The arrows are colour coded based on the lift. The parallel coordinates

plot is useful because it detects the most significant links amongst variables. In the example
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Figure 6.2: Example circle-connection graph which shows items as text, implications as arrows

and rules as circles (size and colour depend on the support and lift, respectively).

one of the arrows is coloured in red to demonstrate how to read a rule from the plot. The rule

is made of 2 antecedent items: qb powr in the range (1.5,5] is in position 2 and maxwatr 1 in

the range (25,262] is in position 1 of the lhs. The simultaneous occurrence of these two items

causes the selection of possible interflow (qintf = 72), which is the rhs item.

The scatterplot is considered the preferred plotting option in the case of a high number of rules,

as the cloud of points and connections would make the other plots unreadable. The circle-

connection graph and the parallel coordinate plot are, instead, preferable when dealing with a

low number of rules.
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In order to interpret the results of association rules plots, it is suggested to refer to the lookup

tables 3.2 and 3.4, that list the FUSE model building decisions, options and depending parame-

ters.

Interactions amongst model components and parameters are identified in terms of association

rules using a recursive approach which consists of the following steps:

1. run the AMCA using default settings,

2. identify interactions using association rules,

3. narrow the AMCA model structures/parameters based on the identified rules and re-run

the AMCA,

4. repeat points 2 and 3 until no additional interactions can be identified.

At each loop new parameter sets are sampled, using the Latin Hypercube Sampling method. As

the number of model structure reduces, the sampling becomes more efficient because takes into

account only the parameters used in the selected model structures.

Lastly, the configuration obtained pruning the original ensemble using association rules, called

AR hereafter, is compared to the default FUSE configurations to test whether the use of associ-

ation rules leads to an ensemble more precise than the original one, without compromising its

accuracy.

Increasing the precision of an ensemble should allow to reduce the expected uncertainty in

predictions. To test this hypothesis, the configurations in AR are calibrated and compared with

the calibrated results obtained from the 4 FUSE parent models.
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6.3 Case study and modelling set up

An experiment is set up to determine how model configuration components tend to interact and

whether these can be used to improve parameter identifiability. The proposed methodology is

tested on the Severn at Plynlimon flume catchment (UK) in the period from 1975 and 1984.

During this 10 year period, there is no record of human activities that could have altered the

hydrological regime. The first five years (from 1975 to 1979) are used as training period, while

the period from 1980 to 1984 is used as validation period.

The AMCA algorithm was run using 312 model structures (the rainfall error is not accounted

for and the routing is always allowed) and 10000 parameter sets sampled, using a Latin Hyper-

cube, from the default ranges. The RE tables for each year were appended one after the other

to generate the transaction table and the levels of support and confidence are set to 30% and

80% respectively. The minimum length of the rules is set to 2 when looking for simultaneous

occurrences, it is set to 1 when the search is extended to also independent frequent variables.

Parameters are converted splitting the ranges into 5 categories.

The AR model configurations and the FUSE parent models (Topmodel, ARNOVIC,PRMS and

Sacramento) were calibrated separately over the period from 1975 to 1979 using the DiffeRen-

tial Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt and Ter Braak, 2011), limiting

the calibration runs to a maximum of 10000 function evaluations per model structure. The

DREAM algorithm was used to identify the parameter set in each model that minimises the

Nash-Sutcliffe efficiency factor (Nash and Sutcliffe, 1970). The calibrated parameters were

then used to validate the results over the period from October 1979 to April 1985.

6.4 Results

Parameters and model components are first analysed separately. Figure 6.4 shows that, at the

first loop, only two rules emerged, each made of 1 item. This means that these parameter ranges
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are frequent but that one does not necessarily implies the other. The first rule suggests that

the timedelay should be in the lowest sub-range ([0.01,1]), which is consistent with the small

size of the catchment and its typical flashy response. This rule has strong significance, with

support and confidence of about 0.8 and a lift of 1. The second rule suggests that the maximum

storage in the lower soil layer should also be narrowed to the lowest sub-range ([50,1000]).

Although characterised by a lower support and confidence (0.3), this rule is consistent with the

low permeability soils characterising the area.

Figure 6.4: Association rules for parameters in the period 1975-1979, loop n. 1. At this initial

stage there are only two rules identifiable: regardless between 30% and 70% of the selected

realisations are characterised by a timedelay and maxwatr 2 parameters in the lowest range. As

the circles are not connected, it can be derived that these two rules do not necessarily occur

within the same model structure.

The process is repeated by restricting the analysis to model components only. Figure 6.5 shows

38 pruned rules emerged. The rules are made of 1 consequent item (rhs on the x-axis) and a

maximum of 3 antecedent items. The rule with highest lift (darkest grey), for instance, con-

verges to a lower soil layer architecture made of a single state reservoir with no evaporation

(based on a power recession law, arch2=34). This item is selected as a consequence of the si-

multaneous occurrence of the ARNOVIC model (qsurf=41), an upper soil layer made of a single
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reservoir (arch1=21) and no interflow (qintf=71). Other suggestions can be derived following

the trajectory of the other arrows. In summary, the 38 rules suggest:

• to limit the upper soil layer to either a single state (21) or separate tension storage (22);

• to limit the lower soil layer to a single state reservoir with no evaporation (based on a

power recession law) (34);

• to limit the runoff mechanism to those defined in the ARNOVIC model (41) and the

PRMS model (42);

• drainage above field capacity (51);

• rootweight evaporation (61);

• and absence of interflow (71).
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Figure 6.5: Association rules for model components in the period 1975-1979, loop n. 1. The

strongest rule (darkest arrow) seems to suggest that if the runoff mechanism at this catchment

uses an ARNOVIC parameterisation, then the baseflow model component should be schema-

tised as an unlimited reservoir with power recession law.

Finally, model components and parameters are combined and the minimum length of the rules

is set to 2, so that only rules showing evidence of interactions are considered. A total of 45

rules emerged (see Figure 6.6) confirming interactions among the same model components and

parameters identified above with the addition of a weaker but still significant possibility that

the lower layer could be described by a tension reservoir plus two parallel tanks (arch2=32).

Although the parameters timedelay and maxwatr 2 do not necessarily interact with each other,

there is evidence of interaction with certain model components. For instance, the timedelay in

the lowest range is always linked to the absence of interflow. The maximum lower storage in the

lower range, instead, shows a direct implication with the rootweighted evaporation mechanism

and runoff mechanisms depending on the saturation rate of the upper soil layer. The strongest

rule (darkest arrow) shows that the combination of a ARNOVIC runoff mechanism and a lower

soil layer made of a tension reservoir plus two parallel tanks (arch2=32) implies the frequent

occurrence of an upper soil layer made of a single reservoir. These rules represent all the most
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frequent model configurations and significant interactions, they are used to constrain the AMCA

default settings and start a new loop.

Figure 6.6: Association rules identified for parameters and model components in the period

1975-1979, loop n. 1. Here the strongest rule (darkest arrow) seems to suggest that if the runoff

mechanism at this catchment uses an ARNOVIC parameterisation, then the baseflow model

component could be schematised as a tension reservoir and two parallel tanks combined with

single storage in the upper soil layer.

The second loop is characterised by a slightly smaller parameter space, as only two parameter

ranges were narrowed (timedelay and maxwatr 2). However, the model space significantly

reduced, from 312 to only 8 model structures. The new set of rules identified confirms a strong

interaction with a lower soil layer made of a tension reservoir plus two parallel tanks (line

converging to arch2=32 in Figure 6.7). Interactions involving the upper soil layer architecture

do not add additional information to the previously identified configuration, while the PRMS

mechanism seems to be preferred to the ARNOVIC. These considerations reduce the number

of model structures to 2. The rule with highest support (largest circle), for instance, assumes

that if the upper soil layer is made of a single reservoir, the runoff mechanism is PRMS and the

maximum saturated area (sareamax) is in the range [0.05,0.41], then the lower layer is likely to

be characterised by a tension reservoir plus two parallel tanks (arch2=32). Similar suggestions
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can also be made in regard to the following parameters:

• baseflow depletion rates for primary and secondary reservoirs are limited to the lowest

ranges (qbrate 2a and qbrate 2b in range [0.001,0.05]);

• fraction of percolation to tension storage in the lower layer (percfrac) in the range [0.59,0.77];

• maximum total storage in upper soil layer in the lowest range (maxwatr 1 in [25,120]);

• lastly, the timedelay could be further narrowed to the range [0.2,0.4].

Figure 6.7: Association rules identified for the REs in the period 1975-1979, loop n. 2.

One more loop followed until no more rules where identified for the pre-defined threshold of

support and confidence. Table 6.1 summarises the final suggested configuration.

Figure 6.8 shows a large event occurred between February and March 1982 (black line). The

ensemble generated using the default FUSE configurations (yellow polygon) is compared with

the ensemble generated by the AR configurations in Table 6.1 (green polygon). The event is

bracketed with 100% accuracy by both FUSE and AR but the latter is 37% more precise.
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Figure 6.8: Simulated ensembles for a large event in February/March 1982. The observation

is shown as black line, while the yellow and green polygons show the maximum extents of the

ensembles generated using the default FUSE and AR (from Table 6.1) configurations, respec-

tively.

To test whether the reduction in precision determines lower prediction uncertainty, the AR con-

figurations is calibrated and compared with the calibrated results using the FUSE parent models

(FUSE60 = Topmodel, FUSE230 = ARNOVIC, FUSE342 = PRMS, FUSE426 = Sacramento).

Figures 6.9 and 6.10 show the boxplots of function evaluations after convergence for the cali-

bration and validation periods respectively. As expected, the AR configuration returns the best

average efficiency. This is also characterised by the narrowest spread with a standard deviation

of 0.01 for the calibration and 0.02 for the validation period. Although FUSE230 and FUSE426

show the potential to reach the highest performances in the validation period, they are also

characterised by a much wider spread, with a standard deviation of 0.09 and 0.16 respectively.
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Figure 6.9: Boxplots of NS efficiencies for FUSE models 60 (Topmodel), 185 (configuration

identified by the association rules), 230 (ARNOVIC), 342 (PRMS), 426 (Sacramento) over the

calibration period.

Figure 6.10: Boxplots of NS efficiencies for FUSE models 60 (Topmodel), 185 (configuration

identified by the association rules), 230 (ARNOVIC), 342 (PRMS), 426 (Sacramento) over the

validation period.
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Table 6.1: Suggested model configuration obtained by coupling AMCA and association rule

mining techniques for the period 1975-1984 (pre-fell). The line divides the first six rows, de-

scribing the suggested model structures, from the list of optimal parameter ranges. Ranges in

bold are narrower than the default ones.

Description Name Range

Upper layer architecture made of either a single state variable or

tension and free storages

onestate 1

tension1 1
21 - 22

Lower layer architecture made of a tension reservoir and two

parallel tanks
tens2pll 2 32

Runoff PRMS-like, unsaturated zone linear prms varnt 42

Percolation scheme with water availability from field capacity to

saturation
perc f2sat 51

Evaporation, rootweighted rootweight 61

Interflow not allowed intflwnone 71

Additive rainfall error (mm/day) rferr add 0

Multiplicative rainfall error (-) rferr mlt 1

Fraction total storage as tension storage (-) fracten [0.05, 0.95]

Maximum total storage in upper soil layer (mm) maxwatr 1 [25, 120]

Fraction of percolation to tension storage in the lower layer (-) percfrac [0.59, 0.77]

Fraction of storage in the first baseflow reservoir (-) fprimqb [0.05, 0.95]

Baseflow depletion rate in the first reservoir (day−1) qbrate 2a [0.001, 0.05]

Baseflow depletion rate in the second reservoir (day−1) qbrate 2b [0.001, 0.05]

Maximum total storage in lower soil layer (mm) maxwatr 2 [50, 1000]

Fraction of roots in the upper layer (-) rtfrac1 [0.05, 0.95]

Percolation rate (mm/day) percrte [0.01, 1000]

Percolation exponent (-) percexp [1, 20]

Maximum saturated area (-) sareamax [0.05, 0.41]

Mean value of the log-transformed topographic index (m) loglamb [5, 10]

Shape parameter for the topo index gamma distribution (-) tishape [2, 5]

Baseflow exponent (-) qb powr [1, 10]

Time delay (days) timedelay [0.2, 0.4]

6.5 Discussion

There are various subjective decisions related to association rule mining. The first occurs when

numerical variables are converted into categorical ones. The conversion assumes that the ranges

are split into bins but, the ideal number is not well defined. This certainly depends on the

extent of the range and on the models’ sensitivity to parameter variation. If a low number is

chosen (e.g. 2 or 3) and the ideal range falls across two or more bins, the identifiability of the

parameter could be hindered. Choosing a higher number, multiple bins can be merged together
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if necessary, but there is also the risk that the occurrences in each single bin do not reach the

minimum level of support and confidence.

The second subjective decision involved in association rule mining: what is the ideal threshold

for support and confidence levels? The apriori algorithm uses as default threshold 10% for

support and 80% for confidence level. Adopting these thresholds, thousands of rules where

identified and they did not highlight any particular interaction. On the contrary, rising the

level of support above 0.5 did not return any significant rule. More experiments should be

carried out to identify the ideal trade-off, however a support threshold to 0.3 was deemed to be

reasonable as it allowed to identify configurations highly consistent with the observed level of

soil permeability and type of expected hydrological regime.

The minimum length of items per rule is another factor controlling the number of identifiable

rules. In the experiments carried out in this chapter, the minimum length was set to 2. Rules

made of 1 item have no implications to other items, meaning that they are frequent but do not

show significant evidence of interactions.

The recursive nature of this approach allows to discover interactions over multiple layers of

complexities. In the first loop parameter interactions were not visible, probably due to the

overwhelming timing errors (in Chapter 5 was already noticed that ensemble results are highly

sensitive to the timedelay). Once this first layer of complexity was revealed, new rules became

identifiable allowing to constrain 7 out of 15 parameter ranges relevant for the selected model

structures. Unconstrained parameters are probably the less sensitive.

Identifying optimal model components and parameter ranges allows to considerably increase

the precision of the ensemble without jeopardising its accuracy. This reduces the expected

uncertainty, improving the usability of the ensemble for problems related to design.

The approach to combine AMCA and association rules, to select suitable models and iden-

tify dependencies between model components and parameters, could be easily transferred to

other modelling framework, assuming that the required processing time is similar to FUSE’s.
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Conversely, frameworks made of large distributed models, instead, would not be compatible

because the processing would be too computationally expensive. However, association rule

mining could be used on its own, as machine learning tool, to learn about variable interdepen-

dencies for any model settings. An interesting application, for instance, could be to set up a

regionalisation experiments in which a spatially distributed model (e.g. the UK MetOffice’s

JULES model) is calibrated on a number of catchments where association rules are used to de-

rive dependencies between model parameters and catchment characteristics and automatically

construct spatial regression laws.

6.6 Concluding remarks

This chapter suggests to combine the AMCA to association rule techniques to guide the in-

terpretation of ensemble results. Interactions among parameters and model components are

revealed over multiple layers of complexities using associations rules to constrain the AMCA

settings through a recursive approach.

The Severn catchment closed at Plynlimon flume was used as study area because of its limited

extension and the homogeneity of its soils and vegetation. Results show that the most significant

rules can be used to constrain the default model configuration increasing the average simulated

performance. According the suggested configurations, the Severn at Plynlimon flume appears

to be characterized by an upper soil layer characterised by either a single storage or divided into

free and tension storages, with a maximum capacity below 120mm and a fraction of percolation

to the tension storage in the lower layer in the range [0.59,0.77]. The lower soil layer is made

of a tension reservoir plus two parallel tanks with a maximum storage capacity of 1000mm

and depletion rates below 0.05 day-1 for both primary and secondary reservoirs. The runoff

generation mechanism depends on the excess of saturation in the tension storage of the upper

soil layer (PRMS) with a maximum saturated area of 41%. The percolation depends on the field

capacity, the evaporation on the fraction of soil in which there are roots, while lateral flows are
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negligible. Finally, the delay in runoff is expected to be in the range [0.2,0.4] days.

Association rules appear to be a powerful tool to identify model interactions and guide the con-

figuration of the ideal model ensemble. A similar approach could be used to investigate whether

significant changes in the hydrological regime can be mapped in terms of model configuration

shifts. This will be further explored in the next chapter.
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Chapter 7

Using a probabilistic multi-model

framework to predict the effects of land

use changes on catchment flows

Land use and cover changes are altering the Earth’s surface at an unprecedented pace. Assess-

ing their impact is still problematic, due to the limited availability of documented cause-effect

records. In this chapter, a multi-model probabilistic framework is presented to predict the effects

of land use changes on catchment flows. The framework uses regionalised information on soil

and vegetation summarised in two catchment signatures: the Base Flow Index and the Curve

Number. The former is an indicator of the runoff properties for a particular area under extreme

precipitation events and therefore high flow response, while the latter is an indicator of low flow

response. As these signatures can theoretically classify a wide range of catchment responses,

in this work they are used to condition model configurations and make predictions for defor-

estation/afforestation scenarios. Performances are assessed using the Nash-Sutcliffe efficiency

analog for probabilistic predictions. The methodology is tested on the upland area of Plynlimon

in the United Kingdom. Results show that flow peaks increase and become more sensitive to

changes as the land use condition worsen. Prediction bounds from regionalised information are
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characterised by high accuracy but low sharpness, probably due to the signatures’s low con-

straining power. However, the same signatures allow to discern amongst modelling options and

identify configurations similar to those suggested by the AMCA in the previous chapter. When

the AMCA approach is used to condition the prior, performances improve significantly. This is

due to constrains applied to both model and parameter space, however the latter contributed to

80% of the improvement.

7.1 Introduction

Human activities can significantly shape the hydrology of a catchment, affecting hydrological

processes in a complex way that makes it difficult to predict their impact on streamflow vari-

ability. Upland agricultural management practises such as deforestation and intense grazing,

for instance, can reduce water interception and infiltration to the deeper soil layers determin-

ing faster surface runoff, and consequently increasing the frequency and magnitude of floods

(Marshall et al., 2009; Boardman et al., 1994; Burt, 2001).

A number of studies have attempted to assess quantitatively the impact of deforestation and

tree plantation on local hydrology (McCulloch and Robinson, 1993; Bird et al., 2003). Main

challenges are related to limited data availability, lack of modelling methods and tools (McIn-

tyre et al., 2013). For only few experimental catchments there is a historical record of land use

changes and information and methodologies available to characterise the impact of these non-

stationarities are still limited (Beven, 2001b) and characterised by major uncertainties. There

is, therefore, scope for further investigations that could provide reliable guidelines for policy

and land management strategies (Bird et al., 2003).

The effects of land use changes on streamflow generation can be assessed using methods based

on either paired catchment analysis or hydrological models (Zégre et al., 2010). The former

method investigates the statistical relationships between the flow records at a control catchment

(A) and at a treated catchment (B), where A and B have similar characteristics in terms of soil,
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vegetation, topography and climate. The relationship is often expressed in terms of regression

model that is calibrated on the pre-change period. When a change in land use occurs on catch-

ment B, this is detected if the residuals exceed the model prediction limits. A comprehensive list

of paired catchment studies can be found in Brown et al. (2005). Changes occurring in the same

catchment can also be analysed. This is usually done using a first time window as reference

period and observing the response to a change in vegetation over a second time window. In this

approach, however, the predictive uncertainty is inflated by the effect of weather variability.

An alternative method to paired catchment analysis is based on hydrological modelling. Within

this category, various approaches are possible. The classical bottom-up approach defined by

Blöschl and Sivapalan (1995) assumes that the model structure is defined a-priori by the mod-

eller, the model is physically-based and predictions are made through detailed simulation of

hydrological processes at small temporal and spatial scales. On one side, this type of models

allows to characterise explicitly the spatial heterogeneity of catchment properties and investi-

gate the corresponding physical changes. On the other side, they are computationally expensive

and the interpretation of local processes is not straightforward to scale up to the catchment level

(Ballard, 2011). Dominant processes are scale dependent and some of them can be considered

negligible at a small scale but more and more relevant at bigger scale (e.g. large-scale pref-

erential flow paths in the subsurface, Sivapalan et al., 2003). Furthermore, in case of limited

data availability the risk of over-parameterisation becomes larger thus leading to large uncer-

tainties in predictions, parameter non-identifiability and equifinality (Beven, 2000a; Grayson

and Blöschl, 2001). Therefore, in many studies, the rigid bottom-up methodology, that relies

on complex physically based models, has been set aside preferring a more generic and flexible

top-down approach. This approach consists of defining statistical relationships between climate

forcing (e.g. rainfall) and hydrological responses (e.g. streamflow) without attempting to in-

terpret the underlying physical processes (Sivapalan et al., 2003). Bowling et al. (2000), for

instance, used a mechanistic model to assess the effect of logging on peak flow events. Al-

though less complex, these models return results that cannot be safely extrapolated to predict,

for instance, scenarios that have not been previously observed (Ballard, 2011). Nowadays, such
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unobserved scenarios are designed using agro-economic models which can predict feasible land

use systems based on political, economic, social and ecological conditions (Breuer et al., 2009).

Some examples with variable degrees of complexity are the ProLand model (Weinmann et al.,

2006), the CLUE model (Veldkamp and Fresco, 1996) and four basic conceptual models de-

signed by Hersperger et al. (2010). There is, therefore, the need to interpret future scenarios

using parsimonious and computationally efficient models. This need is met by conceptual mod-

els that treat the basin as a single homogeneous entity in the sense that all the inputs are lumped

over the catchment area (e.g areal average rainfall) and develop a single outflow hydrograph

(Jones, 1997). The parameters are constant over the catchment area but can vary significantly

from one catchment to another.

To be able to apply this type of models in data poor as well as data rich areas, it is important

to estimate the spatial variability of model parameters. In data-poor environments, for instance,

Buytaert and Beven (2009) used TOPMODEL to predict streamflow discharge in a set of catch-

ments in the Ecuadorian Andes. In this experiment, parameters are first generated for a donor

catchment and then transformed using a probabilistic transformation function, to migrate the

model properties from one catchment to another. According to McIntyre et al. (2005), another

common approach is to consider the regression of model parameters against catchment descrip-

tors. In other words, if there is a clear correlation between a catchment descriptor (e.g. area)

and a model parameter, it is possible to define a statistical model to infer the parameter value

given the descriptor with a certain level of confidence. They reviewed a number of regionali-

sation studies and concluded that this type of regression methods have a limited applicability

because of parameters interdependencies and the weak relationships between model parame-

ters and catchment descriptors. They suggested to improve flow prediction using ensemble

modelling and a probabilistic approach called Similarity Weighted Averaging (SWA). Bulygina

et al. (2011), in the same context, proposed a Bayesian conditioning method that uses region-

alised indices to investigate the effect of land use changes in the UK. These experiments utilised

a single model structure, the Probability-Distributed Model (PDM), and predicted flows in vari-

ous soil/vegetation conditions. McIntyre et al. (2005) identified as primary source of prediction
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bias the model structure error and suggested to integrate the results of a wider range of model

types in further work.

This chapter builds upon the methodology proposed by Bulygina et al. (2011) to predict the

impact of replacement of forest by pasture (and viceversa) in areas where these changes have

not been observed yet. The novelty of this work stands in the integration of multiple models in

a probabilistic framework, as was suggested by McIntyre et al. (2005), and shows whether the

effect of land use changes can be estimated more precisely allowing to switch amongst different

models.

Section 7.2 describes the proposed methodology, Section 7.3 the data sources selected for the

Plynlimon study area and the land use scenarios and 7.4 the modelled set up. Appendices C

and B provide additional details on the procedures carried out to calculate catchment signatures

from soil and vegetation data and time series data of precipitation and streamflow discharge.

Section 7.5 illustrate the results obtained for the Severn at Plynlimon flume and the Wye at

Gwy flume, over two different periods, while Section 7.6 draws the main conclusions.

Functions and scripts needed to reproduce the results of this work are publicly available under

the ad-hoc implemented R-package “CurveNumber”(Vitolo and Le Vine, 2015).

7.2 Methodology

The objective of this work is to provide a methodology to estimate the streamflow discharge un-

der unobserved deforestation/afforestation scenarios, in gauged as well as in ungauged catch-

ments. Given a study area and the regionalisation model underlying the soil and vegetation

classifications (e.g. USDA and HOST), the proposed methodology consists of the following

steps:

1. Obtain regionalised catchment signatures based on information about soil and vegetation.

139



2. Using a set of rainfall-runoff model structures and a prior parameter distribution calculate

signatures for different combinations of model structures and parameters.

3. Calculate the corresponding posterior parameter distribution based on the likelihood of

simulated signatures.

4. Based on the considered land use change scenario, modify the information about vegeta-

tion and repeat steps 1 to 3.

7.2.1 Catchment signatures

Bulygina et al. (2011) suggests to summarise the hydrological properties of a catchment us-

ing two catchment signatures: the Curve Number from the U.S. Department of Agriculture’s

(USDA) Soil Conservation Service soil and land use classification and the Base Flow Index

from the UK Hydrology of Soil Types (HOST) classification.

According to the USDA, the CN is an empirical measure that characterizes the runoff properties

for a particular area. It is an integer between 0 and 100, where higher values mean more surface

runoff and less infiltration to deeper soil layers (USDA, 1986; Reynolds et al., 1988). It can be

calculated from an event-based analysis of observed precipitation and streamflow discharge time

series using, for instance, the asymptotic method suggested by Hawkins (1993). Over the years,

the CN has also been experimentally measured for a wide variety of catchments, allowing the

tabulation of the results based on the combination of soil and land cover classes (USDA, 1986).

The availability of tabulated values makes it possible to estimate CN for ungauged catchments

from soil and vegetation maps, and use it as catchment signature in regionalisation problems

(Bulygina et al., 2011; Blöschl et al., 2013).

Bulygina et al. (2011) showed that the CN method can also be used to identify the hydrological

properties of catchments in the UK, and propose a mapping between the USDA classes and

the HOST classification developed by the UK Institute of Hydrology1 (Boorman et al., 1995).

1The UK Institute of Hydrology is now part of the Centre for Ecology and Hydrology.
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A similar mapping was proposed by Halcrow and University of Stirling (2011) for the Allan

Water at Kinbuck catchment in Scotland (UK). They also proposed a mapping between the

runoff Curve Number for HOST hydrologic soil group and dominant Land Cover Map 2000

classification (LCM2000 code).

There are a number of location-dependent factors that may significantly affect the mapping be-

tween runoff Curve Number and the Land Cover Map code, such as topography, vegetation,

soil’s hydrological condition, drainage density, depth to water table and unclassified vegetation

types. Some of the above mentioned factors are stable in the long term (e.g. soil and topogra-

phy), while others may change in relatively short time (e.g. land use, land management prac-

tices, presence of drainage systems). It is widely recognised, for instance, that steep slopes are

associated with increased surface runoff and the Curve Number should be consistently adjusted

(Huang et al., 2006; Ebrahimian et al., 2012).

The HOST classification also provides, for catchments in the UK, theoretical values of BFI

associated with each HOST class, which were derived from multiple regression analyses Boor-

man et al. (1995). In this work, CN and BFI are calculated as spatially weighted averages

of the distributed soil and vegetation information (see detailed procedure in appendix C) and

from precipitation and flow records using the asymptotic method suggested by Hawkins (1993)

and illustrated in appendix B. These signatures provide a low-dimensional objective framework

able to assess similarities in the magnitude of observed extreme events as well as low flows

characteristics.

7.2.2 Likelihood of model configurations

In this chapter, I use Bayesian statistics as a probabilistic approach to uncertainty analysis. In

the context of a multi-model probabilistic framework for simulating streamflow predictions,

Bayesian statistics assumes that the degree of belief in a single configuration2 is non-negative

2A configuration is defined here as the combination of one model structure and one parameter set.
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and the total belief in all possible configurations is fixed to be one. To reflect the lack of

prior knowledge it is common to assume that, initially, probabilities are uniformly distributed.

This prior distribution can then be updated on the basis of evidence (comparing regionalised

signatures to the simulated ones) to obtain posterior beliefs, which may be used as the basis for

inferential decisions.

In mathematical terms, the posterior probability of a certain configuration c is:

p(c|D) =
p(c)p(D|c)

p(D)
(7.1)

where c is the configuration (combination of one model structure and one parameter set), D is

the data (or signature), p(c) is a prior configuration distribution, p(D|c) is the likelihood that

a certain configuration is suitable to simulate the target signature and p(D) is a normalising

coefficient. Assuming that the residuals between observed and simulated signatures (εs) are

normally distributed, their probability density function is as follows:

f (εs) =
1
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(7.2)

In equation 7.2, s can be one of the two signatures CN and BFI, while µ and σs are the mean

and standard deviation of the residuals, respectively. For unbiased residuals the mean is equal

to zero and equation 7.2 becomes equivalent to:
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Assuming also that the residuals are independent, the likelihood is calculated as the product of

their probabilities:

P(D|c) =
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(7.4)

Bulygina et al. (2011) suggest to assume the standard deviation of regionalisation residuals of
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CN equal to 3, based on the inter-separation of CN values across land use and management

classes. The standard deviation of regionalisation residuals of BFI, instead, is tabulated for

each HOST soil class and can be calculated as follows:

σBFIHOST
=

√

n

∑
i=1

a2
i ·σ

2
i (7.5)

where ai is the fraction of catchment area that falls in the HOST/USDA class i and σi is the

related standard deviation reported in table S1 of Bulygina et al. (2011).

The simulated ensembles will be compared in terms of Nash-Sutcliffe analog for probabilistic

predictions (Bulygina et al., 2009):
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(7.6)

where o0
t is the observed discharge at time t, o0 is the average of o0

t , st is the simulated discharge

at time t, while Var[] and E[] denote the variance and the expectation, respectively.

7.3 Study area and land use scenarios

The proposed methodology is tested on the Severn at Plynlimon flume and the Wye at Gwy

flume catchments (United Kingdom). Catchments, flow and input data are described in Chapter

4. Although more than 30 years of hourly records are available, predictions were made only

for the period 1979-1981 (using the first year as warmup) to limit computation time and data

storage. This particular period was selected because it does not contain missing records. The

information related to soil, vegetation, topography and drainage network was retrieved from the

CEH Information Gateway portal and summarised in Table 7.1.

143



Table 7.1: Data sources.

Type Source Notes

Soil Hydrology of Soil Types
The area is characterised by low

permeability bedrock.

Vegetation

Plynlimon vegetation (2013) which

classes correspond to those defined in

CEH Land Cover Map 2000

Wye at Cefn Brwyn is mainly covered

with grassland, while the Severn at

Plynlimon flume is mostly afforested.

Topography

The hydrologically corrected digital

terrain model (DTM) of Plynlimon

catchments published in June 2010

Slopes are generally below 11%.

River network

The digital river network of the natural

and artificial streams within the Plynlimon

catchments was published in June 2010

In the Wye at Cefn Brwyn area the natural

drainage system is combined to a dense

network of artificial ditches. The ratio

between artificial and natural stream

length is in the range 28-44%. Although

there is no record of artificial drainage in

the river network map for the Severn at

Plynlimon flume area, Kirby et al. (1991)

mentioned that part of the Severn at

Plynlimon flume was hand-dug for turf

planting and sparsely drained. Therefore

the entire Plynlimon area is considered

artificially drained, with a ratio below

50%.

The entire Plynlimon area was pasture for sheep grazing until 1930s, when a significant de-

crease in land prices led to government purchase of the Severn at Plynlimon flume area (Kirby

et al., 1991). Various interventions of conifer planting started in late 1930s and continued until

mid 1960s. In the summer 1985, the Forestry Commission initiated a major tree-felling in the

Severn side of Plynlimon. In the first instance, the programme lasted four years and slopes were

replanted within two years of felling. Few other deforestation and afforestation cycles followed.

Each time, only a relatively small portion of the catchment would be affected by the change,

making difficult to detect the effect of changes on the streamflow signal.

In order to provide few simple examples of how to analyse the impact of land use changes, in

this work two scenarios are taken into account: 1) a forested catchment is converted to pasture

and 2) viceversa, an area used for pasture is planted with forest. The first scenario is assessed on

the Severn at Plynlimon flume catchment, while the second on the Wye at Gwy flume catchment.

The proposed methodology, however, can be applied to any change in land use and hydrological
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condition.

CN and BFI have been calculated with the following methods: a) using observed precipitation

and streamflow discharge time series (observed signatures, CNO and BFIO) and b) using soil

and vegetation maps (regionalised signatures, CNR and BFIR). In the former case, the observed

BFI is calculated using the baseflow separation filter suggested by Gustard et al. (1992) while

the observed CN is obtained using the asymptotic method suggested by Hawkins (1993) and

described in detail in Appendix B. Results for all the Plynlimon subcatchments are listed in

Tables B.1 and B.2, in particular, BFIO is 0.34 for Severn at Plynlimon flume and 0.33 for Wye

at Gwy flume, while CNO is 81 for Severn at Plynlimon flume and 88 for Wye at Gwy flume.

The method to calculate regionalised signatures, instead, is described in Appendix C. The work-

flow schematised in Figure C.1 shows that it is possible to calculate CN and BFI given soil,

vegetation, slope and hydrological condition of the soil (which may depend on the drainage

level). Soil compaction problems due to overgrazing in the Plynlimon area have been reported

by Thomas (1965). According to USDA (1986) guidelines, this was interpreted classifying

the area as pasture in poor condition. Also, the dense network of ditches in the Plynlimon

soils causes an excess of drainage and therefore an increase in the runoff potential, which was

interpreted classifying afforested areas as woods in fair condition. Based on the above consid-

erations, the regionalised values of CN and BFI were calculated for all the Plynlimon subcatch-

ments and listed in Tables C.4 and C.3, in particular, BFIR is 0.33 for Severn at Plynlimon flume

and 0.34 for Wye at Gwy flume. Based on this method CN can be calculated for any land use

scenario by creating fictitious vegetation maps. CN can increase/descrease depending on the

hydrological condition of the soil which are tabulated values. For instance, CNR the for both

Severn at Plynlimon flume and Wye at Gwy flume is 77 in case of forest coverage and 88 for

pasture.

In this study, the likelihood calculated using observed and regionalised indices uses the same

standard deviations: 3 for CN and about 0.02 for BFI. The detailed procedures to calculate

regionalised and observed flow indices are reported in appendices C and B. Based on the re-
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gionalised and observed indices, the two catchments look very similar. However, being char-

acterised by different existing land use (forest for the Severn at Plynlimon flume and pasture

for the Wye at Gwy flume), they will be used for the assessment of prediction quality for the

different land uses.

7.4 Modelling set up

The FUSE multi-model ensemble (Clark et al., 2008) was used to model the transformation

of rainfall into runoff. A total of 1000 parameter sets were sampled uniformly, using a Latin

Hypercube, from the default ranges suggested by Clark et al. (2011). Excluding the rainfall error

from the inference and allowing the routing scheme, the maximum number of model structures

available within the framework is 312. On one hand, this choice allows a wide range of possible

responses but at a considerable computational cost3. More computationally efficient alternatives

are also considered. Bulygina et al. (2011), for instance, uses expert knowledge to identify the

PDM as suitable model structure. Unfortunately, the PDM model used by Bulygina et al. (2011)

is not embedded in the FUSE framework and direct comparison with previous results could not

be drawn. Beside expert knowledge, for gauged catchments the model configuration space can

also be constrained based on evidence from data. In this cases, the prior configuration could be

that suggested by the AMCA algorithm. In the previous chapters the ideal model configurations

for the Severn at Plynlimon flume catchment were indentified for the period 1975-1985 and

summarised in Table 6.1. The AMCA configurations are, therefore, retained for comparison to

the default FUSE configurations.

The prior distribution of simulated flows is approximated by two different discrete distributions:

1. FUSE, in this case values are defined by 312000 model configurations (312 models are

3Running the suggested workflow for a single model structures takes about 18 hours. The slow computation

is due to a non-optimised code to calculate the Curve Number using the event-based methodology suggested by

Hawkins (1993).
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combined with 1000 parameter sets sampled, from default ranges, using the Latin Hyper-

cube Sampling method),

2. AMCA, in this case values are defined by 2000 model configurations (the two models

suggested by AMCA are combined with 1000 parameter sets sampled, from AMCA-

narrowed parameter ranges, using the Latin Hypercube Sampling method, for details on

how these configurations were generated see Chapters 5 and 6).

For each model configuration (c), two indices are calculated: CNc and BFIc. The residuals

obtained as difference between the regionalised (CNR and BFIR) and empirical signatures (CNc

and BFIc) are then used to calculate the likelihood of each configuration, based on equation

7.4. The prior distributions have all equal weights, while the posterior weights are calculated

by normalising the related likelihood (probability).

In order to characterize the frequency of modelling options for each probability-bin, a new

measure called Persistence Rate (PR) is defined as the ratio between the percentage frequency

of one option in the posterior distribution and the percentage frequency of the same option in

the prior. If the persistence is 0, it means that the option was not selected in the posterior. If the

persistence is 1, the option is as frequent in the posterior as it is in the prior. If the persistence

is greater than 1 the option is more frequent in the posterior than in the prior.

The reader is reminded that FUSE modelling options are not uniformly distributed (see Table

3.3). The single reservoir in the upper soil architecture, for instance, is used by over 46%

of the configurations and it is expected that, being more frequent, it is also more likely to

be selected. In order to take into account the non-uniformity in the prior configurations, an

additional measure is introduced. This is called Normalised Frequency (NF) and it is defined

as the probability of each modelling option to belong to one of the probability bins when all

options are sampled uniformly a priori. According to probability rules, this can be calculated

as follows:

pu(o|D) =
pu(o)pnu(o|D)

pnu(o)
(7.7)
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where o is a model option, D is data, u stands for uniform, nu stands for non-uniform, pu(o) is

the prior uniform probability of modelling options, pnu(o|D) is the posterior non-uniform prob-

ability of modelling options, pnu(o) is the prior non-uniform probability of modelling options.

NF is the above probability after normalisation, which allows to characterize the configuration

frequency over each bin, after accounting for configuration non-uniformity in the initial popu-

lation of models (when some configurations appear more often than others). The performances

of the various scenarios analysed are summarised in terms of Nash-Sutcliffe analog for proba-

bilistic predictions (Bulygina et al., 2009), while the accuracy and precision of the ensembles

are assessed as described in Chapter 5.

7.5 Results and discussion

The aim of this section is to predict the effects of land use changes, considering the uncertainty

related to the soil’s hydrological conditions and model structure variability.

7.5.1 Comparing predictions from observed and regionalised indices

The first experiment consists of comparing flow predictions generated using observed4 and re-

gionalised5 indices, to quantify the uncertainty due to the regionalisation process. For the Sev-

ern at Plynlimon flume catchment (covered with forest in fair hydrological condition) and the

FUSE prior configurations, results show that the prior 95% confidence interval is characterised

by 90% accuracy. Low and medium events are accurately encompassed but major high flows

are underestimated. An example of inaccurately simulated event is shown in Figure 7.1. The

event occurred between the 6th and 8th October 1980. The grey-blue shaded area is the prior’s

distribution percentiles over time (95% probability mass).

4CNO and BFIO are calculated from precipitation and streamflow time series using the asymptotic method

suggested by Hawkins (1993), see appendix B.
5CNR and BFIR are calculated from soil and vegetation information, see appendix C.
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Constraining the predictions using flow indices improves significantly the accuracy and reduces

uncertainty. For instance, the posterior from observed indices (green dotted lines) encompasses

98% of the observations. The regionalised posterior (red dotted lines) is also highly accurate

(96%) and brackets more closely the observations, with an increase in precision of 22%. The NS

efficiencies are also similar, 0.54 for the posterior constrained by observed indices and 0.51 for

the posterior constrained by regionalised indices. Based on this comparison, the regionalisation

process is not expected to add a significant layer of uncertainty to the predictions.

Although regionalised indices improve the predictions, CN and BFI seem to have a low con-

straining power as the confidence intervals still remain wide. This is also evident for smaller

events. Figure 7.2 shows predictions for July 1981 for which low flows appear over-estimated

and slightly shifted in time.

Table 7.2: Nash-Sutcliffe efficiency (NS) analog for probabilistic predictions for the Severn at

Plynlimon flume in the period 1979-1981.

Predictions (FUSE configurations) NS

Prior 0.19

Posterior constrained by observed indices 0.54

Posterior constrained by regionalised indices 0.51

7.5.2 Modelling options

The indices’ constraining power was assessed in relation to the distribution of modelling options

for different probability-bins. For about 1% of the simulations it was not possible to calculate

the likelihood due to the lack of asymptotic behaviour in the relationship CN-P (non-standard

behaviour). The posterior probabilities of the remaining configurations were divided into prob-

ability bins. 99% of the probability mass is concentrated in zero while the remaining 1% is

below 0.004.

Nonetheless, the regionalised CN and BFI allow to clearly discern amongst modelling options.

Figure 7.3 shows the persistence of each option on the y-axis, grouped based on the related
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model building decision, and 6 ranges of probability values (bins) on the x-axis. Discarded

model components appear uniformly spread, as the persistence at zero-probability is always

equal to one. Options with highest probabilities, instead, suggest the following configuration:

a single reservoir for the upper soil layer, a baseflow reservoir of unlimited size and fraction

recession law, a runoff mechanism based on ARNOVIC parameterisation, a percolation scheme

controlled by the satured zone, evaporation scheme dependent on the fraction of roots and no

interflow. The upper soil architecture, percolation and interlow schemes coincide with those

identified by the AMCA algorithm in Chapter 6.

Figure 7.4 shows the normalised frequency, which is the option frequency normalised over a

probability-bin, after accounting for configuration non-uniformity. From this plot, the distribu-

tion of options for the upper soil layer, evaporation and interflow schemes do not look signifi-

cantly different from the initial population of models, while a clear diversion from the original

distribution is observed for the lower soil architecture, percolation and runoff schemes.

7.5.3 Predictions based on different land use conditions

The USDA classification mentions that good hydrological conditions correspond to low runoff

potential but do not attempt to set quantitative ranges to discern between good, fair and poor

conditions. Therefore the assumptions on the hydrological conditions made earlier, on the basis

of the drainage system and current grazing practice, can be considered subjective. In this sec-

tion, the predictions for the Severn at Plynlimon flume (forest) and Wye at Gwy flume (pasture)

are compared in case of good, fair and poor conditions to quantify the impact of this decision

as well as assess the prediction quality based on the existing land uses.

Forest in fair condition is considered the reference scenario for the Severn at Plynlimon flume

catchment. Results are shown with regard to the largest event in the period taken into account,

occurred in the October 1980. As already mentioned before, CN varies depending on the hy-

drological condition of the soil and the mapping is available as tabulated values (see an example
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of lookup table in Appendix C, Table C.1), therefore changing soil condition can be simulated

by simply reading the tabulated values from a different row in the lookup table. Switching from

fair to poor conditions, for instance, leads to a 28% weighted mean increase in the peak flow,

while a 12% weighted mean decrease is expected switching to good hydrological conditions

(see Figure 7.5). Therefore, high flows are sensitive to the hydrological condition selected.

Looking at the same event in October 1980 for the Wye at Gwy flume catchment, results show

that the prediction quality changes for different land uses. Assuming pasture in fair condition as

the reference scenario, 52% weighted mean increase in the peak flow is expected switching to

poor conditions, while 29% weighted mean decrease is expected switching to good hydrological

conditions (see Figure 7.6). Therefore, high flows sensitivity depends on both land use and

hydrological condition selected.

7.5.4 Forest to pasture scenario

Changes in land use have a direct effect on CN. For the Plynlimon soils, in various conditions,

100% forest coverage leads to a Curve Number in the range [75,81] while for pasture the Curve

Number is expected in the range [78,88].

Figure 7.7 compares predictions, at the Severn at Plynlimon flume catchment for the October

1980 event, for the hypothesised current land use condition (forest in fair conditions, red area)

and for the scenario in which forest becomes pasture in poor condition (green area). The re-

gionalised CN for fair woods is 77 while for poor pasture is 88. This scenario leads to 60%

mean increase in the peak flow. The opposite case is shown at the Wye at Gwy flume catch-

ment (Figure 7.8) where the current land cover is pasture that becomes forest. In this case, it is

expected a 56% mean decrease in the peak flow.

The CN ranges for forest and pasture overlap and the difference in CN values increases as the

soil hydrological conditions worsen. This means that the increase/decrease in flow peak be-

comes more subtle in case of both land uses are in good hydrological conditions. An interesting
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case arises when the CN ranges overlap, as in the case in which forest is in poor condition and

pasture in good condition. Figure 7.9 shows this case for the event in October 1980 for the

Severn at Plynlimon flume. Predictions are very similar, but a 17% mean decrease in the peak

flow is expected converting forest to pasture. This is the only case in which, the conversion of

forest to pasture generates a reduced runoff.

7.5.5 Comparing predictions from different prior configurations

In this section, predictions generated from different prior configurations are compared to quan-

tify the uncertainty related to model structure variability. Figures 7.10 and 7.11 compare the

regionalised posterior generated using FUSE configurations (red polygon) to the posterior gen-

erated by AMCA configurations (green polygon) for high and low events.

In order to keep the computation time for each catchment manageable on the available com-

puter cluster, the number of parameter samples was limited to 1000, which led to poorly sam-

pled parameter space. Without time constraints, or using a larger cluster, it could be possible

to explore better the parameter space and therefore have a more representative prior. Keeping

the same number of parameter samples and conditioning the procedure using the AMCA prior,

the performance increases significantly (from 0.51 to 0.71). Simply conditioning the prior us-

ing regionalised indices and restricting the model space to the two model structures identified

by the AMCA, the posterior’s performance increased from 0.51 to 0.55 (20% of the total im-

provement). By also adding the restrictions imposed on the parameter space, the posterior’s

performance raises to 0.71. It is, therefore, clear that the improvement is due to constrains ap-

plied to both model and parameter space, but the parameter space seems to contribute the most

(80% of the total improvement).

Analysing a various high and low flow events, however, the AMCA predictions in correspon-

dence of the lowest flows were found to have a rather low accuracy (68%). This loss in perfor-

mance could be due, again, to the BFI’s low constraining power.
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Figure 7.5: Weighted mean of flow predictions for Severn at Plynlimon flume covered with

forest in good (red), fair (green), poor (blue) conditions.

Figure 7.6: Weighted mean of flow predictions for Wye at Gwy flume covered with pasture in

good (red), fair (green), poor (blue) conditions.
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Figure 7.7: Posterior’s 95% confidence intervals of streamflow predictions for the Severn at

Plynlimon flume covered with forest in fair condition (red polygon) and pasture in poor condi-

tion (green polygon). Dashed lines show the weighted mean for forest (red) and pasture (green).

Figure 7.8: Posterior’s 95% confidence intervals of streamflow predictions for the Wye at Gwy

flume covered with pasture in poor condition (red polygon) and forest in fair condition (green

polygon). Dashed lines show the weighted mean for a forest cover (red) and pasture (green).
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Figure 7.9: Posterior’s 95% confidence intervals of streamflow predictions for the Severn at

Plynlimon flume covered with forest in poor condition (red polygon) and pasture in good con-

dition (green polygon). Dashed lines show the weighted mean for forest (red) and pasture

(green).

159



Figure 7.10: Posterior’s 95% confidence intervals of streamflow predictions generated using

312 models (red polygon) and the AMCA configuration (green polygon) for event in October

1980 (high flows).

Figure 7.11: Posterior’s 95% confidence intervals of streamflow predictions generated using

312 models (red polygon) and the AMCA configuration (green polygon) for event in August

1981 (low flows).
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7.6 Concluding remarks

In this chapter a multi-model probabilistic framework is presented to allow predictions of land

use changes impact. The proposed methodology builds upon a previous study by Bulygina et al.

(2011) in which the authors show that the propensity of a catchment area to generate runoff and

its baseflow contribution can be estimated in terms of two indices: the Curve Number and

the Base Flow Index. Bulygina et al. (2011) suggested that in data-poor environments, these

indices can be estimated from soil and vegetation data. In data rich environments, instead, the

same information can be calculated from time series data and validated against the regionalised

ones.

In this study, various steps forward were taken automating the existing procedure and extending

it to: use topography, drainage, soil and vegetation maps to derive the regionalised indices, ex-

pand the model configuration options to make use of multiple model structures and to improve

predictions by constraining the prior model configurations using the data mining workflow de-

scribed in Chapters 5 and 6. The methodology was tested on the Plynlimon area in the United

Kingdom, where subcatchments are characterised by similar soil and topography but different

vegetation cover.

Results showed that prediction are highly accurate but bounds appear rather wide due to CN

and BFI low constraining power. However these signatures clearly allow to discern amongst

modelling options. Grouping the weights associated with each configuration showed that some

of them are increasingly frequent as the probability increases. As the land use hydrological

conditions worsen, predictions become more sensitive to changes, as the hydrological condition

of the land use worsen. For instance, simulating the transformation of forest to pasture, both

in good condition, led to 20% mean increase in the peak flow of a large event. The conversion

of a forest in fair condition to pasture in poor condition, instead, led to 60% mean increase in

the peak flow of the same event. This increase might be due to the greater water use of mature

forests, compared to pasture lands (McCulloch and Robinson, 1993; Blackie and Robinson,
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2007) and to the reduction in the infiltration capacities of the soil as result of soil compaction due

to the use of vehicles and/or the presence of grazing animals. Bulygina et al. (2011) performed

a similar analysis using the PDM model and assuming good hydrological conditions for both

Severn and Wye. They found that for the same event in October 1980, the “median peak flow in

the Severn increases by 9% when the afforested area becomes pasture” and added that, although

“consistent with the difference in event-averaged unit hydrographs between the Wye and Severn

catchments found by the Institute of Hydrology in their Plynlimon study (Figure 28, Kirby

et al., 1991)”, there is a significant uncertainty in this value.

Prediction performances improved significantly when conditioning the prior distributions using

the AMCA approach. This suggests that a considerable part of the uncertainty in prediction is

due to the definition of the prior and that more objective ways of constraining the prior using

formal data-driven techniques are needed. AMCA is, however, a procedure that can only be ap-

plied to gauged catchment. Future experiments could test whether AMCA configurations could

be regionalised or transferred to ungauged catchments on the basis of catchment characteristics.

Finally it was noticed that the improvement in prediction is due to constrains applied to both

model and parameter space, but the parameter space seems to contribute the most.
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Chapter 8

Conclusions

This thesis set out to explore the opportunities arising from the use of data mining techniques

within the hydrology domain and focused on developing tools and methods to facilitate strate-

gic problem solving for hydrologists, modellers and practitioners. This chapter provides a brief

summary of the methodologies adopted, the main findings and scientific contributions. It iter-

ates the main limitations of the approaches taken and points to possible future work.

8.1 Summary and contributions

The use of data mining, machine learning and cloud computing are no more exclusive to com-

puter science. Many scientific disciplines have borrowed these technologies to improve the

way domain specific datasets are handled, transferred over a network and manipulated. The

hydrology domain is characterised by various assets and resources that are often accessible

for educational/research purposes and there is a wider interest in information sharing, span-

ning from industry innovation to the governmental attempts to improve public involvement in

decision and policy making. However, in the attempt to exploit data for driving decision mak-

ing, scientists may end up “drowning in information, but thirsty for knowledge” (Königer and

Janowitz, 1995). Having large volumes of data and countless models does not necessarily imply
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better knowledge. Data can become “excessive and overwhelming, reaching a level of informa-

tion overload”, that hinders decision making rather than facilitating it (Bettis-Outland, 2012).

From a modelling perspective, De Vos et al. (2011) highlight that environmental models1 “lack

essential quality characteristics in terms of transparency and reproducibility”. In hydrological

studies, this happens when too many choices are given to modellers. What model to use? What

parameters to set? What data resolution to request? Being spoiled for choice is supposed to be

an added value but often becomes a liability when there is no guidance. Ironically, when there is

too much or too little information, modellers resort in expert elicitation to make decisions. But

expertise is subjective and non-reproducible, therefore efforts are needed to provide transparent

and reproducible guidelines to practitioners.

This work proposes a novel approach to guide the very first stage of any hydrological analysis:

model selection and parameterisation. To achieve the thesis objectives, a case study site was

identified: the Plynlimon catchments in the United Kingdom (described in Chapter 4). This area

was selected because it is highly instrumented, geologically and climatically homogeneous, but

divided in two major catchments with different land cover. These characteristics allowed to

explore model structure variability as well as the effect of land use changes on the ideal model

configuration. In order to explore ways of optimising model configuration to best replicate the

hydrological response in the selected study area, an inventory of conceptual rainfall-runoff mod-

els was considered: the FUSE ensemble model (Clark et al., 2008). This framework has min-

imal data requirements, provides several hundreds model structures and allows users to switch

between one model and another as well as build ensembles, maintaining a consistent definition

of model structure components and parameters. FUSE was re-implemented as R-package as

part of this PhD work and made openly available. It has rapidly become a widely used tool for

building reproducible workflows for hydrological modelling and used by a number of NERC-

funded projects such as the Environmental Virtual Observatory pilot for the UK (EVOp uses

FUSE as web service), the Probability, Uncertainty and Risk in the Environment (PURE uses

FUSE as workflow component) and the Environmental Research Workbench (ERW uses FUSE

1Hydrological models fall in the category of environmental models.
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as cloud-enabled modelling tool on High Performance Computing facilities).

While the use of multi-model frameworks provides flexibility to modellers, often the selection

of a set of suitable models to simulate scenarios and make predictions is dictated by pragmatic

criteria rather than evidence from data. Chapter 5 illustrates the design of the Automatic Model

Configuration Algorithm (AMCA). AMCA is a novel algorithm that consists of machine learn-

ing techniques to mine model performances, filtering out unsuitable model configurations, clus-

tering similar behaviours to reduce redundancies and selecting the best configurations using

time series matching algorithms. When tested, the algorithm returned a model configuration

highly consistent with the synthetic inputs. This demonstrates that data-driven methods can

provide guidance in making model selection and configuration more transparent (first research

question). Results from various experiments suggested that model configurations could be con-

sidered interchangeable and that variability over the model structure space can often compen-

sate for a sparsely sampled parameter space. However, the algorithm failed to identify optimal

ranges for the majority of parameters.

In order to improve parameter identifiability, in Chapter 6, the interactions between model com-

ponents and parameters were mined using association rules. This type of unsupervised machine

learning technique was applied to the AMCA results in a recursive manner to identify the signif-

icance of simultaneous occurrences of parameter values and model components over multiple

layers of complexities. Experiments showed that evidence of interaction are detectable, at first,

among model components. This is probably because the model structure space is more limited

compared to the parameter space. Constraining the model structure space first, allows to re-

move a layer of complexity and new interactions (also among parameters) become identifiable

(second research question). Approaches such as the AMCA and its coupling to association rule

mining are a novelty in hydrology and, although further testing is needed, they hold potential to

become a valuable screening tool for hydrologists in a number of contexts.

Chapter 7 then demonstrates with a practical example the value of the newly designed data min-

ing approaches applying them to the uncertainty analysis of simulated streamflow under land
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use changes. In this modelling exercise, regionalised information related to soil and vegetation

cover was used to assess the propensity of a catchment to generate runoff and its baseflow con-

tribution through the use of two flow indices (Curve Number and Base Flow Index) that can

be independently calculated for gauged as well as ungauged catchments. Experimental results

showed good consistency between theoretical and empirical values which confirms that these

indices can be used in regionalisation studies with good level of confidence. For all the catch-

ments investigated, the predictions improved significantly initialising the prior using the AMCA

approach. It was also proved that in gauged catchments, changes in land use can be interpreted

in terms of shift in the model configuration and that ungauged catchments can also benefit from

the AMCA approach as prior flow distributions can be constrained using donor-configurations.

8.2 Limitations and discussion

The modelling experiments, from Chapter 5 to 7, are limited to the use of a specific category

of models, known as conceptual rainfall-runoff models. Within this category, the modelling

framework adopted in this study is FUSE (Clark et al., 2008). It can be argued that the model

selection problem is simply shifting from the subjective identification of a model structure to

the equally subjective identification of a modelling framework. This is only relatively true, as

in theory results from different frameworks should converge if the same processes are mod-

elled. However at the current stage, hydrological models are far from being exhaustive and the

adoption of one framework rather than another can still result in dissimilar predictions, as they

represent only a limited number of processes and use specific forcing inputs (rather than all the

available information).

The AMCA algorithm was tested using a synthetic dataset. The predictions reproduced the

observed discharge with a conservative uncertainty estimation that bracketed the observations,

even though neither model structure nor the parameter set used for generating the data were

contained in the configuration space. The same procedure, coupled with association rule min-
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ing techniques was also tested on few experimental catchments in the Plynlimon area in UK

but more investigations are needed in order to find out whether a wide range of real hydro-

logical responses can be accurately simulated. Problems may occur, for instance, in case this

methodology is applied to catchment characterised by processes which are not described in the

FUSE framework. This is, however, a limitation of the FUSE framework, not the proposed data

mining procedure. As, previously mentioned, AMCA can work with any modelling framework,

provided that parameters and model components are defined consistently across all the models

contained in the framework. Distributed modelling systems could also be used with AMCA, as

far as the processing time allows to generate, in a reasonable amount of time, an Initial Ensem-

ble that is representative of the range of possible responses. Sensitivity tests in Chapter 5 have

shown that the AMCA converges to stable performance values with as little as 2500 simulations

for each model structure. However this can change if a different modelling framework is used.

The AMCA, on its own, can efficiently filter model structures but fails to identify optimal pa-

rameter ranges. This is compensated by coupling the algorithm with association rule mining

techniques. The coupling, however, is a rather computational intensive task that demands the

use of a cluster of computers to parallelise the workflow. This makes the methodology unsuit-

able for users that do not have access or budget to utilise multiple (virtual) machines. Same

limitation applies to the workflow to perform uncertainty analysis under land use changes de-

scribed in the last chapter. This workflow requires 10 computational days to perform the analy-

sis on a single catchment. Part of the computational burden is due to a non-optimised computer

code which could be optimized as part of future activities.

8.3 Further work

The AMCA data mining procedure was completely designed and developed as part of this PhD

work. As such, the only applications of this novel methodology are those presented in this

thesis. As the results are encouraging, there is certainly scope for testing it further and explore

167



its potentials.

There are many questions that could not be answered within the time frame of this research

project and, if more time could be spent developing and testing the AMCA further, new research

could move in many different directions:

• Is the AMCA able to automatically configure models for any catchment size and type of

response? The AMCA was tested on a small area in the UK, characterised by high average

precipitations, low permeability soils and fast hydrological responses. The encouraging

results obtained in this study could be isolated to this particular setting. To prove whether

this is the case, AMCA should be tested on a variety of catchments. A barrier could be

to get hold of data, but public datasets could also be used, e.g. the MOPEX database

which collects areal averaged precipitation, potential evapotraspiration and streamflow

discharge time series (amongst other variables) for hundreds of catchments in the US

(Duan et al., 2006).

• Is AMCA suitable for regionalisation studies? If the AMCA can be used in any location,

it should be possible to examine how parameters and model components can be mapped

and correlated to catchment characteristics so that model configurations can be extrap-

olated to data-poor areas. This type of experiment would add a number of additional

variables to the problem such as the catchment characteristics but also another level of

interactions due to spatial proximity. As such, it would make another rather interesting

data mining problem that could be explored with spatially explicit techniques such as

Bayesian Networks (Blangiardo et al., 2013), which are currently used in epidemiology

to assess risk exposure to pollution.

• How is AMCA’s performance affected by the variability of the routing scheme, the granu-

larity of the observed data, the initial conditions and the size of SOMs to cluster redundant

data? This could be explored by undertaking a more in-depth sensitivity analysis. The

new analysis should be performed on a dataset much longer than the one used in Chapter
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5.

• More in general, can algorithms be more useful than expert elicitation in the context of

decision-making? Expert contribution is certainly highly valuable but extremely subjec-

tivity, impossible to reproduce and assess in terms of uncertainty involved. Using algo-

rithms, instead, results are always reproducible, consistent and it is possible to track the

propagation of uncertainties through the entire data manipulation process. It would be

interesting to set up a comparative study to quantify potential trade-offs.
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Appendix A

Machine specifications

description: Notebook

product: U36SD ()

vendor: ASUSTeK Computer Inc.

version: 1.0

width: 64 bits

CPU: Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz

configuration: cores=2 enabledcores=1 threads=2

memory System board or motherboard size=8GiB
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Appendix B

Calculate CN and BFI from observed time

series data

In case of gauged catchments, CN and BFI can be calculated from observed precipitation and

streamflow discharge time series data, during steady state periods. The empirical BFI is cal-

culate using the filter for baseflow separation described in Gustard et al. (1992). This filter

assumes that observed precipitation and streamflow are recorded at least with daily frequency.

Data is first aggregated from the original frequency to daily. The series is divided in blocks

of five-day non-overlapping consecutive periods and the minima is calculated for each block.

Turning points in the sequence of minima are first identified, then connected and linearly inter-

polated to daily time steps to return the base flow hydrograph. The BFI is the ratio between the

volume below the baseflow hydrograph and the volume of the total recorded flow.

The observed CN, instead, is calculated using the asymptotic method suggested by Hawkins

(1993). This method was slightly modified to allow automatic identification of the precipitation

and flow events and illustrated in figure B.1. The plot shows on the x-axis the sequence of

time steps during the event, on the primary y-axis (left) the discharge measured in mm/h and

on the secondary y-axis (right) the precipitation, also measured in mm/h. Precipitation events

are identified based on the assumption that an event starts when a non-null value is recorded
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after at least 12 consecutive time steps of no rain (point P1). The event ends when no rain is

recorded for two or more consecutive time steps. The time index that identifies the start of the

precipitation event is taken as the start of the flow event as well.

At this point, Boorman et al. (1995) suggest to set the end of the flow event to the end of

the rainfall event plus four times the lag (time difference between the rainfall and the runoff

centroids). The procedure is recursive, as the flow-centroid (and therefore the lag) cannot be

calculated without knowing the end of the flow event. Probably Boorman et al. (1995) identified

the discharge centroid by visual inspection, or limited his analysis to single-peak events for

which the lag can be calculated directly as the time between the rainfall and flow peaks. This

approach, however, cannot be applied in case of multi-peak events. The procedure suggested

in this work, instead, is entirely automated and the runoff centroid was calculated by simply

extending the flow event for a certain number of time steps after the end of the rainfall depending

on the average response time of the catchment under study (point P3).

Five time steps before the start of the rainfall event are used to linearly model the recession limb

prior to the event. The linear model uses a fixed intercept (P1) while the slope is obtained by

minimizing the sum of the squares of the distances between the observed points and the line.

This line is then extrapolated through the event, up to the time of peak (point P2). A second

linear interpolation is then carried out connecting points P2 and P3. The baseflow (light grey

area) is the minimum between the two linear segments described above and the recorded flow,

while the difference between the recorded flow and the baseflow is the surface runoff (dark grey

area).

Figure B.2 shows an event in which the interpolated line through P1 has a positive slope. In this

case, it is suggested to correct the slope to be zero. If the slope is not corrected, the baseflow is

overestimated with the consequence that both surface runoff and CN become underestimated.

For each event the rainfall volumes (P) and surface runoff volumes (Q) are calculated. The

events are sorted in descending order (independently) and the matching return periods calcu-
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lated. For each return period the CN is calculated as follows:

CN =
25400

254+S
(B.1)

where S is the potential maximum retention in mm and calculated using the following formula:

S = 5 · (P+2 ·Q−
√

4 ·Q2 +5 ·P ·Q) (B.2)

Finally, the observed CN corresponding to the larger rainfall events is calculated fitting the CN-

P points to a non-linear curve using the least squares method. Hawkins (1993) suggests to fit

the CN-P relation using equation B.3, which was found to be appropriate for a wide array of

catchments. In this equation CN∞ is the CN that corresponds to larger storms and k1 is a fitting

constant.

CN(P) =CN∞ +(100−CN∞) · exp(−k1 ·P) (B.3)

The fitting returns a solution only in case the CN-P relationship follows what Hawkins (1993)

defines a standard response, where the CN decreases asymptotically with increasingly larger

storms, as in figure B.3. If no solution to the fitting is found, the CN-P relationship can follow

other two possible responses. The first is called complacent behaviour and it is characterised

by a progressive decrease of CN with every increase of P. The second is called violent response,

it shows CN increasing asymptotically to a constant value with increasing P and was mainly

observed in dry climates. Although it might be possible to adjust the fitting to different curves

according to the type of response, the estimation of CN becomes particularly unreliable in

case of complacent and violent behaviour. Therefore, in this work, only the case of standard

behaviour is considered.
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B.1 Empirical CN and BFI for Plynlimon

Tables B.1 and B.2 summarise the CN and BFI values for steady state periods in all the catch-

ments in the Plynlimon area.

Table B.1: Empirical CN variability based on catchments and recording period. Felling period

for the lower Hore: from May 1985 to Apr 1991. Felling period for the Tanllwyth: from Febru-

ary 1996 to Jan 1998 (but the period May 1994 - Feb 1996 was ignored because of the effect of

the borehole drilling). No time series records where available for the Iago subcatchment.

Catchment
Full

record
Pre-fell

1st felling

(May1985-

Apr1991)

(May1991-

Apr1994)

(May1994-

Feb1996)

2nd

felling

(Feb1996-

Jan1998)

Post-fell

Severn 81
81

(-Apr1985)
83 81 79 81

81

(Feb1998-)

Tanllwyth 86
87

(-Apr1994)
- - 84 86

86

(Feb1998-)

Hafren 79 - - - - - -

Lower Hore 83
83

(-Apr1985)
85 - - -

83

(May1991-)

Upper Hore 83 - - - - - -

Wye 86 - - - - - -

Gwy 87 - - - - - -

Cyff 87 - - - - - -

Iago - - - - - - -
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Table B.2: Empirical BFI variability based on catchments and recording period. Felling period

for the lower Hore: from May 1985 to Apr 1991. Felling period for the Tanllwyth: from Febru-

ary 1996 to Jan 1998 (but the period May 1994 - Feb 1996 was ignored because of the effect of

the borehole drilling). No time series records where available for the Iago subcatchment.

Catchment
Full

record
Pre-fell

1st felling

(May1985-

Apr1991)

(May1991-

Apr1994)

(May1994-

Feb1996)

2nd

felling

(Feb1996-

Jan1998)

Post-fell

Severn 0.35
0.34

(-Apr1985)
0.37 0.39 0.40 0.34

0.34

(Feb1998-)

Tanllwyth 0.31
0.30

(-Apr1994)
- - 0.34 0.29

0.31

(Feb1998-)

Hafren 0.38 - - - - - -

Lower Hore 0.31
0.31

(-Apr1985)
0.32 - - -

0.30

(May1991-)

Upper Hore 0.33 - - - - - -

Wye 0.30 - - - - - -

Gwy 0.33 - - - - - -

Cyff 0.30 - - - - - -

Iago - - - - - - -
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Appendix C

Calculate CN and BFI from soil and

vegetation data

CN and BFI can be calculated from on soil and vegetation and corrected based on topography

and drainage information. The procedure consists of various steps illustrated in the workflow

in Figure C.1. At first, the remotely sensed data are gathered from the relevant data providers.

These are in the form of separate GIS layers representing soil, vegetation, topography (usually

available as rasters) and drainage network (usually available as vectors). The slope raster is

calculated from the topography raster using the algorithm suggested by Horn (1981) and imple-

mented in the R library “raster”. The GIS layers, represented by dark blue database objects in

the workflow, are resampled to the same spatial resolution (e.g. 25m), projected in a common

Coordinate Reference System (e.g. British National Grid, epsg: 27700) and overlaid. The new

layers are represented by light blue database objects in the workflow.

A lookup table is compiled with all the possible combinations of HOST-USDA classes, land

cover classes and corresponding theoretical CN for hydrologic soil groups A, AB, B, BC, C,

CD and D (see example in table C.1, where grey shaded cells show the CN corresponding to a

certain soil-vegetation combination). The intermediate groups are calculated as the average of

the their extremes, e.g. if A = 50 and B = 70, AB = 60.
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Figure C.1: Workflow for calculating CN from remotely sensed data.

Table C.1: Example of lookup table for Plynlimon’s soil and vegetation classes. Grey-shaded

cells illustrate the USDA/HOST mapping proposed by Bulygina et al. (2011).

HOST

class
Vegetation class Description A AB B BC C CD D

15

1

(coniferous

woodland)

Good, woods 30 42 55 62 70 74 77

17

7

(improved

grassland)

Fair, pasture 49 59 69 74 79 82 84

29

6

(open dwarf

shrub heath)

Fair, brush 35 46 56 63 70 74 77

180



The presence of artificial ditches increases the soil drainage worsening the natural hydrological

conditions. In areas where the ratio between artificial drains and natural drains is below 50%,

this work suggests to correct CN degrading areas in apparently good hydrological conditions

to fair and areas in fair hydrological conditions to poor. No correction is applied if soils are

already in poor conditions. In areas where the ratio is above 50%, the hydrological conditions

are always considered poor.

Soil map units, as represented on the national soil maps, generate datasets with many HOST

classes in each 1km grid cell. In the HOST data set there is a maximum of seven classes in each

grid cell. HOST can be mapped by, for example, choosing only to display the dominant HOST

class, which would ignore the other up to six classes that are present. In this case, a new raster

(SV ) is calculated by assigning to each cell the result of the following formula:

SV = SOILclass +1000 ·V EGETAT IONclass (C.1)

Alternatively, the user can decide to utilise the information related to the seven classes in each

grid cell. In this case the equation C.1 should be applied to each layer of the soil raster stack

and then weighted based on the percentage coverage of each class.

For each SV value, the corresponding CN is extracted from the lookup table and the correspond-

ing theoretical BFI is obtained from table 3.4 of Boorman et al. (1995).

The CN0 frequency table summarises the number of cells for each calculated CN and the relative

percentage coverage. The CN values calculated at this step, are acceptable values for slopes

below 14% and no artificial drainage. Where the slope is above 14%, CN0 is corrected using

the equation proposed by Huang et al. (2006):

CNmaps =CN0 ·
322.79+15.63 ·S

S+323.52
(C.2)

where S is the slope in percentage.
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Signatures calculated using remotely sensed data are static and refer to the time/area for which

the mapped geology and vegetation cover were observed. As land use changes over time and

space, signatures are expected to change over these dimensions accordingly. A dynamic map

of signatures could be implemented by repeating the methodology above for various location

and update it as soon as changes are recorded. However, systematic and periodical updates

of land cover maps are still uncommon. In the UK, for instance, land cover maps have been

periodically published (in 1990, 2000, 2007 and 2013) but the classification is based on different

methodologies which implies that a systematic measure of changes cannot be performed.

In order to investigate the observed changes in signatures over time, CN and BFI were also

calculated from time series data of precipitation and streamflow discharge, as described in detail

in the next section.

C.1 Regionalised CN and BFI for Plynlimon

The soil classes identifiable in the Plynlimon area are: H15, H17, H22, H26 and H29. The

percentage coverages for each catchment and HOST class are summarised in table C.2. The

first row shows the theoretical BFI, calculated by (Boorman et al., 1995, page 34) from multiple

regression analysis. For each catchment, the BFIHOST is calculated as the weighted average of

these coefficients using the related percentage coverages as weights. The results are summarised

in table C.3. The first column lists the catchments, the second column shows the BFIHOST

according to the percentages published in Boorman et al. (1995), the third column shows the

values calculated using only the dominant soil classes, the fourth column shows the BFIHOST

calculated according to the percentages extracted from the latest soil map. These three columns

are explicitly shown to inform the reader that subtle differences should be expected switching

from one source of information to another. For clarity, the BFIHOST in the third column will be

considered as the theoretical/regionalised value. The fifth column of table C.3 lists the standard

deviations expected for each catchment.
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Table C.2: Percentages of HOST classes. When different, values calculated by Boorman et al.

(1995) are added in parenthesis. Rounding error can cause the sum of the percentages to be

different from 100. Percentages for the Upper Hore were not available before 1995.

HOST classes H15 H17 H22 H26 H29

BFI coefficients

from multiple

regression analysis

0.387 0.613 0.294 0.247 0.232

Severn 0.58 0.01 0.00 0.14 (0.15) 0.27 (0.26)

Tanllwyth 0.64 (0.76) 0.00 0.00 0.14 0.21 (0.11)

Hafren 0.42 (0.43) 0.02 (0.03) 0.00 0.15 0.41 (0.40)

Lower Hore 0.66 (0.64) 0.00 0.00 0.14 0.20 (0.22)

Upper Hore 0.50 0.00 0.00 0.15 0.36

Wye 0.64 0.13 0.02 0.12 0.09

Gwy 0.67 (0.66) 0.00 0.00 0.14 0.19

Cyff 0.71 (0.70) 0.15 (0.16) 0.02 0.11 0.01

Iago 0.70 (0.69) 0.00 0.00 0.14 0.17

Table C.3: Theoretical BFI values calculated by Boorman et al. (1995) (second column), using

only dominant classes (third column) and using the multi-layer HOST soil map (fourth column).

The fifth column lists the weighted standard deviations.

Sub-catchment
BFIHOST (Boorman et

al. 1995)

BFIHOST (dominant

classes)
BFIHOST σBFIHOST

Severn 0.328 0.339 0.328 0.020

Tanllwyth 0.354 0.346 0.331 0.020

Hafren 0.315 0.297 0.307 0.019

Lower Hore 0.333 0.367 0.336 0.021

Upper Hore - 0.347 0.314 0.020

Wye 0.384 0.418 0.384 0.019

Gwy 0.334 0.387 0.338 0.021

Cyff 0.404 0.398 0.402 0.021

Iago 0.341 0.387 0.345 0.021

Table C.4 shows CN values calculated using dominant classes (second column) but also for a

combination of good woods and fair pasture (third column) and fair woods and poor pasture

(fourth column). This is to make explicit the uncertainty related to hydrological condition of

the soil. However, the CNHOST in the fourth column is considered the theoretical/regionalised

value.
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Table C.4: Theoretical CN values calculated using the HOST soil map and the land cover map

updated in 2013.

Subcatchment
CNHOST

(dominant classes)

CNHOST

(good woods - fair

pasture)

CNHOST

(fair woods - poor pasture)

Severn 76 76 78

Tanllwyth 74 75 77

Hafren 76 76 76

Lower Hore 75 77 79

Upper Hore 77 77 80

Wye 79 81 87

Gwy 82 83 88

Cyff 81 81 87

Iago 82 83 88
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H.-G., Gräff, T., Hubrechts, L., Jakeman, A. J., Kite, G., Lanini, J., Leavesley, G., Letten-

maier, D. P., Lindström, G., Seibert, J., Sivapalan, M. and Viney, N. R. (2009), ‘Assessing

the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model

intercomparison with current land use’, Advances in Water Resources 32(2), 129–146.

Brill, E. (2003), Computational Linguistics and Intelligent Text Processing, Vol. 2588 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg.

Brogi, A., Mancarella, P., Pedreschi, D. and Turini, F. (1994), ‘Modular logic programming’,

ACM Transactions on Programming Languages and Systems (TOPLAS) 16(4), 1361–1398.

Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. and Vertessy, R. A. (2005), ‘A

review of paired catchment studies for determining changes in water yield resulting from

alterations in vegetation’, Journal of Hydrology 310(1-4), 28–61.

Bulygina, N., McIntyre, N. and Wheater, H. (2009), ‘Conditioning rainfall-runoff model pa-

rameters for ungauged catchments and land management impacts analysis’, Hydrology and

Earth System Sciences 13(6), 893–904.

Bulygina, N., McIntyre, N. and Wheater, H. (2011), ‘Bayesian Conditioning of a rainfall-runoff

model for predicting flows in unguaged catchments and under land use changes’, Water Re-

sources Research 47.

Burt, T. P. (2001), ‘Integrated management of sensitive catchment systems’, CATENA 42(2-

4), 275–290.

189



Butts, M. B., Payne, J. T., Kristensen, M. and Madsen, H. (2004), ‘An evaluation of the impact

of model structure on hydrological modelling uncertainty for streamflow simulation’, Journal

of Hydrology 298(1-4), 242–266.

Buytaert, W. and Beven, K. J. (2009), ‘Regionalization as a learning process’, Water Resour.

Res. 45.

Buytaert, W., Reusser, D. E., Krause, S. and Renaud, J. (2008), ‘Why can’t we do better than

Topmodel?’, Hydrological Processes 22(August), 4175–4179.

Carmona-Saez, P., Chagoyen, M., Rodriguez, A., Trelles, O., Carazo, J. M. and Pascual-

Montano, A. (2006), ‘Integrated analysis of gene expression by Association Rules Discov-

ery.’, BMC bioinformatics 7(1), 54.

Castronova, A. M., Goodall, J. L. and Elag, M. M. (2013), ‘Models as web services using the

Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard’, Environmen-

tal Modelling & Software 41, 72–83.

Castronova, A. M., Goodall, J. L. and Ercan, M. B. (2013), ‘Integrated modeling within a

Hydrologic Information System: An OpenMI based approach’, Environmental Modelling &

Software 39, 263–273.

Chandramouli, V. and Raman, H. (2001), ‘Multireservoir Modeling with Dynamic Pro-

gramming and Neural Networks’, Journal of Water Resources Planning and Management

127(2), 89–98.

Chang, F.-J. and Chen, Y.-C. (2003), ‘Estuary water-stage forecasting by using radial basis

function neural network’, Journal of Hydrology 270(1-2), 158–166.

Christoffersen, P. F. (1998), ‘Evaluating Interval Forecasts’, International Economic Review

39(4), 841.

Clark, M. P., McMillan, H. K., Collins, D. B. G., Kavetski, D. and Woods, R. A. (2011),

190



‘Hydrological field data from a modeller’s perspective: Part 2: process-based evaluation of

model hypotheses’, Hydrological Processes 25(4), 523–543.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T.

and Hay, L. E. (2008), ‘Framework for Understanding Structural Errors (FUSE): A modular

framework to diagnose differences between hydrological models’, Water Resour. Res. 44, 91–

94.

Cormen, T. H. (2013), Algorithms Unlocked, The MIT Press.

Corne, D. W. and Knowles, J. D. (2007), Techniques for highly multiobjective optimisation,

in ‘Proceedings of the 9th annual conference on Genetic and evolutionary computation -

GECCO ’07’, ACM Press, New York, New York, USA, p. 773.

Coxon, G., Freer, J., Wagener, T., Odoni, N. A. and Clark, M. (2014), ‘Diagnostic evaluation of

multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24

UK catchments’, Hydrological Processes 28(25), 6135–6150.

CRCCH (2005), Series on model choice n.1: General approaches to modelling and practical

issues of model choice, Technical report, Cooperative Research Centre for Catchment hy-

drology.

Cunderlik, J. (2003), Hydrologic Model Selection for the CFCAS Project: Assessment of Wa-

ter Resources Risk and Vulnerability to Changing Climatic Conditions - Book 9, Technical

report, Department of Civil and Environmental Engineering, The University of Western On-

tario, London, Ontario, Canada.

URL: http://ir.lib.uwo.ca/wrrr/9

Cutrell, J. (2012), ‘Understanding the Principles of Algorithm Design’.

URL: http://code.tutsplus.com/tutorials/understanding-the-principles-of-algorithm-design–

net-26561

191



David, O., Markstrom, S. L., Rojas, K. W., Ahuja, L. R. and Schneider, I. W. (2002), The

Object Modeling System - Chapter 15 in Agricultural System Models in Field Research and

Technology Transfer, CRC Press.

Dawdy, D. R. and O’Donnell, T. (1965), ‘Mathematical Models of Catchment Behavior’, Jour-

nal of the Hydraulics Division 91(4), 123–137.

Dawson, C. W., Abrahart, R. J. and See, L. M. (2007), ‘HydroTest: A web-based toolbox of

evaluation metrics for the standardised assessment of hydrological forecasts’, Environmental

Modelling & Software 22(7), 1034–1052.

De Vos, M. G., Janssen, S. J. C., Van Bussel, L. G. J., Kromdijk, J., Van Vliet, J. and Tope, J. L.

(2011), Are environmental models transparent and reproducible enough?, in ‘19th Interna-

tional Congress on Modelling and Simulation’, Perth, Australia.

URL: http://mssanz.org.au/modsim2011

Demiriz, A., Bennett, K. P. and Shawe-Taylor, J. (2002), ‘No Title’, Machine Learning

46(1/3), 225–254.

Dooge, J. C. I. (1957), ‘Rational method for estimating flood peaks’, Engineering 184, 374–

377.
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