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Recently, Deep Learning, especially through Convolutional Neural Networks (CNNs) has been widely used to enable the extraction
of highly representative features. �is is done among the network layers by �ltering, selecting, and using these features in the last
fully connected layers for pattern classi�cation. However, CNN training for automated endoscopic image classi�cation still provides
a challenge due to the lack of large and publicly available annotated databases. In this work we explore Deep Learning for the auto-
mated classi�cation of colonic polyps using di	erent con�gurations for training CNNs from scratch (or full training) and distinct
architectures of pretrainedCNNs tested on 8-HD-endoscopic image databases acquired using di	erentmodalities.We compare our
resultswith some commonly used features for colonic polyp classi�cation and the good results suggest that features learned byCNNs
trained from scratch and the “o	-the-shelf” CNNs features can be highly relevant for automated classi�cation of colonic polyps.
Moreover, we also show that the combination of classical features and “o	-the-shelf” CNNs features can be a good approach to
further improve the results.

1. Introduction

�e leading cause of deaths related to the intestinal tract is
the development of cancer cells (polyps) in itsmany parts. An
early detection (when the cancer is still at an early stage) and
a regular exam to everyone over an age of 50 years can reduce
the risk of mortality among these patients. More speci�cally,
colonic polyps (benign tumors or growths which arise on the
inner colon surface) have a high occurrence and are known
to be precursors of colon cancer development.

Endoscopy is the most common method for identifying
colon polyps and several studies have shown that automatic
detection of image regions which may contain polyps within
the colon can be used to assist specialists in order to decrease
the polyp miss rate [1, 2].

�e automatic detection of polyps in a computer-aided
diagnosis (CAD) system is usually performed through a
statistical analysis based on color, shape, texture, or spatial

features applied to the videos frames [3–6]. �e main prob-
lems for the detection are the di	erent aspects of color, shape,
and textures of polyps, being in
uenced, for example, by the
viewing angle, the distance from the capturing camera, or
even by the colon insu�ation as well as the degree of colon
muscular contraction [5].

A�er detection, the colonic polyps can be classi�ed
into three di	erent categories: hyperplasic, adenomatous,
and malignant. Kudo et al. [7] proposed the so-called “pit-
pattern” scheme to help in diagnosing tumorous lesions once
suspicious areas have been detected. In this scheme, the
mucosal surface of the colon can be classi�ed into 5 di	erent
types designating the size, shape, and distribution of the pit
structure [8, 9].

As can be seen in the Figures 1(a)–1(d), these �ve patterns
also allow the division of the lesions into two main classes:
(1) normal mucosa or hyperplastic polyps (healthy class) and
(2) neoplastic, adenomatous, or carcinomatous structures
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Figure 1: Example images of the two classes (a–d) and the pit-pattern types of these two classes (e–f).

(abnormal class). �is approach is quite relevant in clinical
practice as shown in a study by Kato et al. [10].

In the literature, existing computer-aided diagnosis tech-
niques generally make use of feature extraction methods
of color, shape, and texture in combination with machine
learning classi�ers to perform the classi�cation of colon
polyps [9, 11, 12]. For example, the dual-tree complex wavelet
transform DT-CWT features proved to be quite suitable for
the distinction of di	erent types of polyps as can be seen in
many works like, for example, [13–15]. Other features were
also proved to be quite suitable for colonic polyp classi�cation
as the Gabor wavelets [16], vascularization features [17], and
directional wavelet transform features [18]. Particularly, in
the work of Wimmer et al. [18], using the same 8 colonic
polyp databases of this work, an average accuracy of 80.3%
was achieved in the best scenario. In this work, we achieve an
average accuracy of 93.55% in our best scenario.

�e main di�culty of the feature extraction methods is
the proper characterization of these patterns due to several
factors as the lack or excess of illumination, the blurring due
tomovement orwater injection, and the appearance of polyps
[5, 9]. Also, to �nd a robust and a global feature extractor that
summarizes and represents all these pit-pattern structures in
a single vector is very di�cult and Deep Learning can be
a good alternative to surpass these problems. In this work
we explore the use of Deep Learning through Convolutional
Neural Networks (CNNs) to develop a model for robust
feature extraction and e�cient colonic polyp classi�cation.

To achieve this, we test the use of CNNs trained from
scratch (or full training) and o	-the-shelf CNNs (or pre-
trained) using them as medical imaging feature extractors. In
the case of the CNN full training we assume that a feature
extractor is formed during the CNN training, adapting to
the context of the database and particularly in the case of
o	-the-shelf CNNs we consider that the patterns learned in

the original database can be used in colonoscopy images
for colonic polyp classi�cation. In particular, we explore
two di	erent architectures for the training from scratch
and six di	erent o	-the-shelf architectures, describing and
analyzing the e	ects of CNNs in di	erent acquisition modes
of colonoscopy images (8 di	erent databases).�is study was
motivated by recent studies in computer vision addressing the
emerging technique of Deep Learning presented in the next
section.

2. Materials and Methods

2.1. UsingCNNs on SmallDatasets. Some researchers propose
replacing handcra�ed feature extraction algorithms with
Deep Learning approaches that act as features extractor and
image classi�er at the same time [19]. For example, the Deep
Learning approach using CNNs takes advantage of many
consecutive convolutional layers followed by pooling layers
to reduce the data dimensionality making it, concomitantly,
invariant to geometric transformations. Such convolution
�lters (kernels) are built to act as feature extractors during
the training process and recent research indicates that a
satisfactorily trained CNN with a large database can perform
properly when it is applied to other databases, which can
mean that the kernels can turn into a universal feature
extractor [19]. Also, Convolutional Neural Networks (CNNs)
have been demonstrated to be e	ective for discriminative
pattern recognition in big data and in real-world problems,
mainly to learn both the global and local structures of images
[20].

Many strategies exploiting CNNs can be used for medical
image classi�cation.�ese strategies can be employed accord-
ing to the intrinsic characteristics of each database [21] and
two of them, mostly used when it comes to CNN training,
are described in the following part.
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When the available training database is large enough,
diverse, and very di	erent from the database used in all the
available pretrained CNNs (in a case of transfer learning), the
most appropriate approach would be to initialize the CNN
weights randomly (training the CNN trained from scratch)
and train it according to the medical image database for
the kernels domain adaptation, that is, to �nd the best way
to extract the features of the data in order to classify the
images properly. �e main advantage of this approach is that
the same method can be used for the extraction of strong
features that are invariant to distortion and position at the
same time of the image classi�cation. Finally, the Neural
Network Classi�er can make use of these inputs to delineate
more accurate hyperplanes helping the generalization of the
network.

�is strategy, although ideal, is not widely used due to the
lack of large and annotated medical image database publicly
available for training the CNN. However, some techniques
can assist the CNN training from scratch with small datasets
and the most used approach is data augmentation. Basically,
in data augmentation, transformations are applied to the
image making new versions of it to increase the number
of samples in the database. �ese transformations can be
applied in both the training and the testing phase and
can use di	erent strategies such as cropping (overlapped or
not), rotation, translation, and 
ipping [22]. Experiments
show that using these techniques can be e	ective to combat
over�tting in the CNN training and improve the recognition
and classi�cation accuracy [22, 23].

Furthermore, when the database is small, the best alter-
native is to use an o�-the-shelf CNN [21]. In this case, using a
pretrainedCNN, the last or next-to-last linear fully connected
layer is removed and the remaining pretrained CNN is used
as a feature extractor to generate a feature vector for each
input image from a di	erent database. �ese feature vectors
can be used to train a new classi�er (such as a support vector
machine, SVM) to classify the images correctly. If the original
database is similar to the target database, the probability that
the high-level features describe the image correctly is high
and relevant to this new database. If the target database is not
so similar to the original, it can be more appropriate to use
higher-level features, that is, features from previous layers of
CNN.

In this work, besides using a CNNs trained from scratch,
we consider the knowledge transfer between natural images
andmedical images using o	-the-shelf pretrainedCNNs.�e
CNN will project the target database samples into a vector
space where the classes are more likely to be separable. �is
strategy was inspired by the work of Oquab et al. [24], which
uses a pretrained CNN on a large database (ImageNet) to
classify images in a smaller database (Pascal VOC dataset)
with improved results. Unlike that work, rather than copy
the weights of the original pretrained CNN to the target
CNN with additional layers, we use the pretrained CNN to
project data into a new feature space through the propagation
of the colonic polyp database into the CNN getting the
resultant vector from the last CNNs layer, obtaining a new
representation for each input sample. Subsequently, we use
the feature vector set to train a linear classi�er (e.g., support

vector machines) in this representation to evaluate the results
as used in [25, 26].

2.2. CNNs and Medical Imaging. In recent years there has
been an increased interest in machine learning techniques
that is based not on hand-engineered feature extractors but
using raw data to learn the representations [19].

Among the development of e�cient parallel solvers
together with GPUS, the use of Deep Learning has been
extensively explored in the last years in di	erent �elds of
application. Deep Learning is intimately related to the use of
raw data to do high-level representations of this knowledge
through a large volume of annotated data. However, when it
comes to the medical area, this type of application is limited
by the problem of the lack of large, annotated, and publicly
availablemedical image databases such as the existing natural
image databases. Additionally, it is a di�cult and costly task
to acquire and annotate such images and due to the speci�c
nature of di	erent medical imaging modalities which seems
to have di	erent properties according to each modality the
situation is even aggravated [21, 27].

Recently, works addressing the use of Deep Learning
techniques in medical imaging have been explored in many
di	erent ways mainly using CNNs trained from scratch. In
biomedical applications, examples include mitosis detection
in digital breast cancer histology [28] and neuronal seg-
mentation of membranes in electron microscopy [29]. In
Computer-Aided Detection systems (CADe systems), exam-
ples include a CADe of pulmonary embolism [30], computer-
aided anatomy detection in CT volumes [31], lesion detection
in endoscopic images [32], detection of sclerotic spinemetas-
tases [33], and automatic detection of polyps in colonoscopy
videos [27, 34, 35]. In medical image classi�cation, CNNs are
used for histopathological image classi�cation [36], digestive
organs classi�cation in wireless capsule endoscopy images
[37, 38], and automatic colonic polyp classi�cation [39].
Besides that, CNNs have also been explored to improve the
accuracy of CADe systems knee cartilage segmentation using
triplanar CNNs [40].

Other recent studies show the potential for knowledge
transfer from natural images to the medical imaging domain
using o	-the-shelf CNNs. Examples include the identi�cation
and pathology of X-ray and computer tomographymodalities
[25], automatic classi�cation of pulmonary peri�ssural nod-
ules [41], pulmonary nodule detection [26], and mammog-
raphy mass lesion classi�cation [42]. Moreover, in [26], Van
Ginneken et al. show that the combination of CNNs features
and classical features for pulmonary nodule detection can
improve the performance of the model.

2.2.1. CNNsTrained fromScratch: Architecture. In this section
we brie
y describe the components of a CNN and how it can
be used to perform the CNN from scratch.

A CNN is very similar to traditional Neural Networks
in the sense of being constructed by neurons with their
respective weights, biases, and activation functions. �e
structure is basically formedby a sequence of convolution and
pooling layers ending in a fully connected Neural Network as
shown in Figure 2. Generally, the input of a CNN is�×�×�
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Figure 2: An illustration of the CNN architecture for colonic polyp classi�cation.

image (or patch), where�×� is the dimension of the image
and � is the number of channels (depth) of the image. �e
convolutional layer consists of � learnable �lters (also called
kernels) with size �× �×� where � ≤ � which are convolved
with the input image resulting in the so-called activation
maps or featuremaps. As classic Neural Networks, the convo-
lution layer outputs are submitted to an activation function,
for example, the ReLU recti�er function �(�) = max(0, �),
where � is the neuron input. A�er the convolution, a pooling
layer is included to subsample the image by average functions
(mean) or max-pooling over regions of size 	 × 	. �ese
functions are used to reduce the dimensionality of the data
in the following layers (upper layers) and to provide a form
of invariance to translation thus making over�tting control.
In the convolution and pooling layers the stride has to be
speci�ed; the larger the stride, the smaller the overlapping,
decreasing the output volume dimensions.

At the end of the CNN there is a fully connected layer as a
regularMultilayerNeuralNetworkwith the So�max function
that generates a well-formed probability distribution on the
outputs. A�er a supervised training, the CNN is ready to be
used as a classi�er or as a feature extractor in the case of
transfer learning.

2.2.2. CNNs and Transfer Learning. Transfer learning is a
technique used to improve the performance of machine
learning by harnessing the knowledge obtained by another
task. According to Pan andYang [43], transfer learning can be
de�ned by the following model. We give a domain 
 having
two components: a feature space � = {�1, �2, . . . , ��} and a
probabilistic distribution �(�); that is, 
 = {�, �(�)}. Also,
we give a task 
 with two components: a ground truth
� = {�1, �2, . . . , ��} and an objective function 
 = {�, �(⋅)}
assuming that this function can be learned through a training
database. Function�(⋅) can be used to predict the correspon-
dent class�(�) of a new instance �. From a probabilistic point
of view,�(�) can be written as�(� | �). In colonic polyp clas-
si�cation, usually, a feature extractor is used to generate the
feature space. A given training database � associated to the
ground truth � consisting of the pairs {��, ��} is used to train
and “learn” the function �(⋅) or �(� | �) until it reaches a
de�ned and acceptable error rate between the result of the
function �(�) and the ground truth �.

In case of transfer learning, given a source domain

� = {(��1 , ��1), (��2 , ��2), . . . , (��� , ���)} and the learning
task
� and the target domain
� = {(��1 , ��1), (��2 , ��2), . . . ,(��� , ���)} and the learning task 
�, transfer learning aims
to help improve the learning of the target predictive function
��(⋅) using the knowledge in
� and 
�, where
� ̸= 
� and

� ̸= 
�.

Among the various categories of transfer learning, one,
called inductive transfer learning, has been used with success
in the pattern recognition area. In the inductive transfer
learning approach an annotated database is necessary for the
source domain as well as for the target domain. In this work,
we apply transfer learning between two very di	erent tasks
using di	erent labels (�� ̸= ��) and di	erent distributions
(�(�� | ��) ̸= �(�� | ��)). To bypass the di	erence between
the probability distribution of the images �(��), the last
layer from the original function ��(⋅) directly connected to
the classi�cation is removed being replaced by other linear
function (as SVM) to adapt it to the new task 
� turning
into the function��(⋅). In the following sections the functions
��(⋅) used in this work are presented. Also, the use of
transfer learning using pretrained CNNs can help to avoid
the problem of lack of data in the medical �eld. �e works
of Razavian et al. [19] and Oquab et al. [24] suggest that
the use of CNNs intermediate layer outputs can be used as
input features to train other classi�ers (such as support vector
machines) for a number of other applications di	erent from
the original CNN obtaining a good performance.

Despite the di	erence between natural and medical
images, some feature descriptors designed especially for nat-
ural images are used successfully in medical image detection
and classi�cation, for example, texture-based polyp detection
[3], Fourier and Wavelet �lters for colon classi�cation [18],
shape descriptors [44], and local fractal dimension [45] for
colonic polyp classi�cation. Additionally, recent studies show
the potential of the knowledge transfer between natural and
medical images using pretrained (o	-the-shelf) CNNs [34,
46].

2.3. Experimental Setup

2.3.1. Data. �e use of an integrated endoscopic appara-
tus with high-resolution acquisition devices has been an
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Table 1: Number of images and patients per class of the CC-i-Scan databases gathered with and without CC (staining) and computed virtual
chromoendoscopy (CVC).

i-Scan mode
No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

Non-neoplastic

Number of images 39 25 20 31 42 53 32 31

Number of patients 21 18 15 15 26 31 23 19

Neoplastic

Number of images 73 75 69 71 68 73 62 54

Number of patients 55 56 55 55 52 55 52 47

Total number of images 112 100 89 102 110 126 94 85

important object of research in clinical decision support
system area. With high-magni�cation colonoscopies it is
possible to acquire images up to 150-foldmagni�ed, revealing
the �ne surface structure of the mucosa as well as small
lesions. Recent work related to classi�cation of colonic
polyps used highly-detailed endoscopic images in combi-
nation with di	erent technologies divided into three cate-
gories: high-de�nition endoscope (with or without staining
the mucosa) combined with the i-Scan technology (1, 2,
and 3) [18], high-magni�cation chromoendoscopy [8], and
high-magni�cation endoscopy combined with narrow band
imaging [47].

Speci�cally, the i-Scan technology (Pentax) used in this
work is an image processing technology consisting of the
combination of surface enhancement and contrast enhance-
ment aiming to help detect dysplastic areas and to accentuate
mucosal surfaces and applying postprocessing to the re
ected
light being called virtual chromoendoscopy (CVC) [44].

�ere are three i-Scan modes available: i-Scan1, which
includes surface enhancement and contrast enhancement, i-
Scan2 that includes surface enhancement, contrast enhance-
ment, and tone enhancement, and i-Scan3 that, besides
including surface, contrast, and tone enhancement, increases
lighting emphasizing the features of vascular visualization
[18]. In thisworkwe use an endoscopic image database (CC-i-
Scan Database) with 8 di	erent imaging modalities acquired
by anHDendoscope (PentaxHiLINEHD+90iColonoscope)
with images of size 256 × 256 extracted from video frames
either using the i-Scan technology or without any computer
virtual chromoendoscopy (¬CVC).

Table 1 shows the number of images and patients per
class in the di	erent i-Scan modes. �e mucosa is either
stained or not stained. Despite the fact that the frames were
originally in high-de�nition, the image size was chosen (i) to
be large enough to describe a polyp and (ii) small enough
to cover just one class of mucosa type (only healthy or
only abnormal area). �e image labels (ground truth) were
provided according to their histological diagnosis.

2.3.2. Employed CNN Techniques. Due to the limitation of
colonic polyp images to train a good CAD system from
scratch, the main elements of the proposed method are
de�ned in order to (1) extract and preprocess images aiming
to have a database with a suitable size, (2) use CNNs for

learning representative features with good generalization,
and (3) enable the use of methods to avoid over�tting in the
training phase.

To test the application of a CNN trained from scratch
we used the i-Scan1 database without chromoscopy (staining
the mucosa) that presents a good performance in the tests
using classical features and pretrained CNNs (on average)
and subsequently applying the best con�guration to the i-
Scan3 without chromoscopy database that presented the best
results among the classical features results.

In the �rst experiment of CNN full training, it is proposed
that an architecture should be trained with subimages of
size 227 × 227 × 3 based on the work of [20] to �t into
the chosen architecture. Usually, some simple preprocessing
techniques are necessary for the image feature generation. In
this experiment we apply normalization by subtracting the
mean anddividing by the standard deviation of its elements as
in [48] corresponding to local brightness and normalization
contrast.We also performdata augmentation by 
ipping each
original image horizontally and vertically and rotating the
original image 90∘ to the right and le�. Besides that, we

ipped horizontally the rotated images, and then we 
ipped
vertically the horizontally 
ipped image, totalizing 7 new
samples for each original image. A�er the data augmentation
(resulting in 800 images), we randomly extract 75 subimages
of size 227×227×3 from each healthy image and 25 subimages
from each abnormal image for the training set to balance the
number of images in each class.

Also, in this experiment, to be able to compare the dif-
ferent architectures in a faster way, we used cross-validation
evaluation with 10 di	erent CNNs for each architecture. In
nine of them, we removed 56 patients for training and used
6 for tests and, in one of them, we removed 54 patients for
training and used 8 for test to assure that all the 62 patients are
tested. �e accuracy result given for each architecture is the
average accuracy from each of the 10 CNNs trained based on
the �nal classi�cation of each image between the two classes.

For the second experiment in the CNN full training we
propose to extract subimages of size 128 × 128 from the
original images using the same approach as in the �rst
experiment. In this case, we explore the hypothesis that the
colonic polyp classi�cation with the CNN can be done only
with a part of the image, and thenwe trained the networkwith
smaller subimages instead of the entire image. �is helps to
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reduce the size of the network reducing its complexity and
can allow di	erent polyp classi�cations in the same image
using di	erent subimages in di	erent parts of the image.
Additionally, choosing smaller regions in a textured image
can diminish the degree of intraimage variances in the dataset
as the neighborhood is limited.

Besides the di	erent architectures for the training from
scratch, we mainly explore six di	erent o	-the-shelf CNN
architectures trained to perform classi�cation on the Ima-
geNet ILSVRC challenge data. �e input of all tested pre-
trained CNNs has size of 224 × 224 × 3 and the descriptions
as well as the details of each CNN are given as follows:

(i) �e CNN VGG-VD [49] uses a large number of layers
with very small �lters (3 × 3) divided into two archi-
tectures according to the number of their layers. �e
CNN VGG-VD16 has 16 convolution layers and �ve
pooling layers while the CNN VGG-VD19 has 19 con-
volution layers, adding one more convolutional layer
in three last sequences of convolutional layers. �e
fully connected layers have 4096 neurons followed by
a So�max classi�er with 1000 neurons corresponding
to the number of classes in the ILSVRC classi�cation.
All the layers are followed by a recti�er linear unit
(ReLU) layer to induce the sparsity in the hidden units
and reduce the gradient vanishing problem.

(ii) �e CNN-F (also called Fast CNN) [22] is similar to
the CNN used by Alex et al. [20] with 5 convolutional
layers. �e input image size is 224 × 224 and the fast
processing is granted by the stride of 4 pixels in the
�rst convolutional layer. �e fully connected layers
also have 4096neurons as theCNNVGG-VD.Besides
the original implementation, in this work, we also
used the MatConvNet implementation (beta17 [50])
of this architecture trained with batch normalization
and minor di	erences in its default hyperparameters
and called here CNN-F MCN.

(iii) �e CNN-M architecture (Medium CNN) [22] also
has 5 convolutional layers and 3 pooling layers. �e
number of �lters is higher than the Fast CNN: 96
instead of 64 �lters in the �rst convolution layer
with a smaller size. We also use the MatConvNet
implementation called CNN-MMCN.

(iv) �e CNN-S (Slow CNN) [22] is related to the “accu-
rate” network from the Overfeat package [51] and
also has smaller �lters with a stride of 2 pixels in the
�rst convolutional layer.We also use theMatConvNet
implementation called CNN-S MCN.

(v) �e AlexNet CNN [20] has �ve convolutional layers,
three pooling layers (a�er layers 2 and 5), and two
fully connected layers. �is architecture is similar
to the CNN-F, however, with more �lters in the
convolutional layers. We also use the MatConvNet
implementation called AlexNet MCN.

(vi) �e GoogleLeNet [52] CNN has the deepest and most
complex architecture among all the other networks
presented here. With two convolutional layers, two

pooling layers, and nine modules also called “incep-
tion” layers, this networkwas designed to avoid patch-
alignment issues introducing more sparsity in the
inception modules. Each module consists of six con-
volution layers and one pooling layer concatenating
these �lters of di	erent sizes and dimensions into a
single new �lter.

In order to form the feature vector using the pretrained
CNNs, all images are scaled using bicubic interpolation to the
required size for each network, in the case of this work, 224×
224 × 3. �e vectors obtained by the linear layers of the CNN
have size of 1024×1 for theGoogleLeNet CNNand of 4096×1
for the other networks due to their architecture speci�cities.

2.3.3. Classical Features. To allow the CNN features com-
parison and evaluation, we compared them with the results
obtained by some state-of-the-art feature extractionmethods
for the classi�cation of colonic polyps [18] shortly explained
in the next items.

(i) BSAG-LFD. �e Blob Shape adapted Gradient using
Local Fractal Dimension method combines BA-LFD
features with shape and contrast histograms from the
original and gradient image [45].

(ii) Blob SC. �e Blob Shape and Contrast algorithm [44]
is a method that represents the local texture structure
of an image by the analyses of the contrast and shape
of the segmented blobs.

(iii) Shearlet-Weibull. Using the Discrete Shearlet Trans-
form this method adopts regression to investigate
dependencies across di	erent subband levels using
theWeibull distribution to model the subband coe�-
cient distribution [53].

(iv) GWT Weibull. �e Gabor Wavelet Transform func-
tion can be dilated and rotated to get a dictionary of
�lters with diverse factors [18] and its frequency using
di	erent orientations is used as a feature descriptor
also using the Weibull distribution.

(v) LCVP. In the Local Color Vector Patterns approach,
a texture operator computes the similarity between
neighboring pixels constructing a vector �eld from an
image [12].

(vi) MB-LBP. In theMultiscale Block Local Binary Pattern
approach [54], the LBP computation is done based
on average values of block subregions. �is approach
is used for a variety image processing applications
including endoscopic polyp detection and classi�ca-
tion [12].

For the classical features, the classi�cation accuracy is
also computed using an SVM classi�er, however, with the
original images (without resizing) trained using the leave-
one-patient-out cross-validation strategy assuring that there
are no images from patients of the validation set in the
training set as in [55] to make sure the classi�er generalizes
to unseen patients. �is cross-validation is applied to the
classical feature extractionmethods from the literature aswell
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Table 2: CNN con�guration for input subimages of size 227 × 227 × 3 and its respective accuracy in %.

Size of inputs
Number of convolutional �lters/size

Connected layer
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

227 × 227 × 3 96/11 × 11 256/5 × 5 384/3 × 3 384/3 × 3 256/3 × 3 384/3 × 3 384/3 × 3 4096/6 × 6 4096

Accuracy: 79.00

Table 3: Accuracy results from di	erent CNN con�gurations for inputs of size 128 × 128 × 3 in %.

Network index
Number of convolutional �lters/size

Connected layer Acc
Layer 1 Layer 2 Layer 3

CNN-01 48/7 × 7 72/4 × 4 512/5 × 5 512 76.00

CNN-02 48/11 × 11 72/5 × 5 512/6 × 6 512 84.00

CNN-03 24/11 × 11 48/5 × 5 1024/6 × 6 1024 86.00

CNN-04 24/11 × 11 72/4 × 4 2048/5 × 5 2048 80.00

CNN-05 48/11 × 11 72/5 × 5 1024/6 × 6 1024 87.00

Table 4: Accuracy of di	erent strides for overlapping subimages in
the CNN-05 evaluation for i-Scan1 database in %.

Stride Number of subimages Accuracy

1 16384 89.00

5 676 89.00

20 49 90.00

32 25 91.00

48 9 87.00

Random 9 87.00

Random 25 89.00

Random 49 89.00

as to the full training and o	-the-shelf CNNs features. �e
accuracy measure is used to allow an easy comparability of
results due to the high number of methods and databases to
be compared.

3. Results and Discussion

3.1. CNNs Trained from Scratch. In the �rst experiment for
the CNN full training, we �rst use the con�guration similar
to [20] that can be seen in Table 2 and it can be concluded that
the accuracy result was not satisfactory (79%). �is can be
explained by the fact that Neural Networks involving a large
number of inputs require a great amount of computation in
training, requiring more data to avoid over�tting (which is
not available given the size of our dataset).

For the second experiment, the hyperparameters pre-
sented in Table 3 were selected based on the works [48, 56]
and empirical adjustment tests in the architecture such as
changing the size and number of �lters as well as the number
of units in the fully connected layer were made and are also
shown in Table 3. It can be seen that the architecture CNN-
05 obtained the best results, therefore, chosen to perform the
subsequent tests.

In the third experiment, with the CNN-05 con�gu-
ration, we trained one CNN for each patient from the
database (leave-one-patient-out (LOPO) cross-validation).

Speci�cally, the results from the CNNs presented in Table 4
are the mean values of the validation set from 62 di	erent
CNNs, one for each patient, implemented using the Mat-
ConvNet framework [50]. A�er training the CNN, in the
evaluation phase, the �nal decision for a 256× 256 pixel image
of the dataset is obtained bymajority voting of the decisions of
all 128 × 128 pixel subimages (patches). One of the advantages
of this approach is the opportunity to have a set of decisions
available to acquire the �nal decision for one image. Also,
the redundancy of overlapping subimages can increase the
system accuracy likewise to give the assurance of certainty for
the overall decision.

As it can be seen in Table 4, �rst we tested with a
stride of 1 extracting the maximum number of 128 × 128
subimages available, totalizing 16384 subimages for each
image, resulting in an accuracy of 89.00%. �is evaluation is
very computationally expensive to perform, so we decided to
evaluate with di	erent strides resulting in di	erent number
of subimages as it is shown in Table 4. We also perform a
random patch extraction and it can be concluded that there
is not much di	erence between 16384 subimages or just 25
cropped subimages (accuracy of 91.00%), saving considerable
computation time and achieving good results. Besides that,
using the same procedure we evaluate the architecture CNN-
05 for the i-Scan3 database without staining the mucosa that
presented the best results among the classical features and
results are presented in Table 5.

For a better comparability of results, we trained an SVM
with the extracted vectors from the last fully connected layers
(LFCL) and from the prior fully connected layers (PFCL)
of CNN-05 as we make in the transfer learning approach
explained in the next section. �e vectors are extracted from
25 cropped subimages of size 128 × 128 (with stride of 32
pixels) feedforwarded into the CNN-05 subsequently used
to train a support vector machine also using the LOPO
cross-validation [55]. �e results from this approach using
the CNN-05 architecture trained with the i-Scan1 and i-
Scan3 without staining the mucosa databases are presented
in Table 5. As it can be seen, using the last-layer vectors
to train an SVM does not improve the results, mainly
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Table 5: Accuracy of CNN-05 architecture comparing to classical
features for the i-Scan1 and i-Scan3 databases in %.

Methods i-Scan1 i-Scan3

CNN-05 91.00 89.00

CNN-05 + SVM − LFCL 83.00 72.55

CNN-05 + SVM − PFCL 80.00 66.67

BSAG-LFD 86.87 82.87

Blob SC 83.33 75.22

Shearlet-Weibull 76.67 86.80

GWT-Weibull 78.67 84.28

LCVP 66.00 77.12

MB-LBP 80.67 83.37

because the amount of data is not su�cient to generate
representative features to be applied into a linear classi�er.
However, when the CNN is fully trained, the results surpass
the classical features results as can be seen also in Table 5
mostly because the last layers are more suitable to design
nonlinear hyperplanes in the classi�cation phase. However,
the problem of lack of data still is an issue and using all the
information in the image would be better than using cropped
patches. �e signi�cance comparison between the methods
will be explored in the next section. �erefore, in order to
try solving this problem, we also propose the use of transfer
learning by pretrainedCNNs that will be also explained in the
next section.

3.2. Pretrained CNNs. In this section we present the exper-
iments made exploring the 11 di	erent o	-the-shelf CNN
architectures with the classical features trying to achieve
better results than the CNN trained from scratch. As well as
in the CNN trained from scratch, we use the i-Scan1 without
staining the mucosa database for the �rst experiments.

In the �rst experiment, we tested the use of more
samples from the same image using overlapping patches by
randomly cropping 25 images of size 224 × 224 × 3 of each
original image of size 256 × 256 × 3 (resized using bicubic
interpolation for the tests presented in Table 8) increasing
the database from 100 to 2500 images. �e obtained results
a�er the feature extraction performed by the CNN and a�er
the SVM training also using the LOPO cross-validation are
presented in Table 6.

It can be observed that, in this case, the use of more
samples from the same image does not provide any signi�cant
improvement in the results. On the average, resizing the
images produces an accuracy of 87.70% while cropping the
images produces an average of 84.87%. One of the explana-
tions for this is that, in case of resized images, there is more
information about the polyp to provide to the network, so
the CNN can abstract more information and form a more
robust and intrinsic vector from the actual features of the
lesion. However, in three cases (GoogleLeNet, VGG-VD16,
andAlexNetMCN), the results using smaller cropped images
surpassed the results using the entire image.

In the second experiment, still using i-Scan1 without
staining the mucosa database, we also tested the use of other

layers of CNNs to extract features. Table 7 shows the results
obtained when the vectors are extracted from the last fully
connected layer and when the vectors are from the prior fully
connected layer. In the case of the last layer, the results are
worse (87.70% against 85.75% on average) because the vectors
from the prior fully connected layer are more related to high-
level features describing the natural images used for training
the original CNNs that are very di	erent from the features
to describe colonic polyp images. However, in this case, the
results from CNN-F and AlexNet CNN are better using the
features from the last fully connected layers.

Based on the results from the two experiments explained
before, we tested the methods with all the other databases
using the inputs resized to size 224 × 224 × 3 by bicubic
interpolation and extracting the features from the prior fully
connected layer. �e accuracy results for the colonic polyp
classi�cation for the 8 di	erent databases are reported in
Table 8. As can be seen, the results in Table 8 are divided
into three groups: o	-the-shelf features, classical features, and
the fusion between o	-the-shelf features and classical features
that will be explained as follows.

Among the 11 pretrained CNNs investigated, the CNNs
that present lower performance were GoogleLeNet, CNN-
S, and AlexNet MCN. �ese results may indicate that such
networks themselves are not su�cient to be considered o	-
the-shelf feature extractors for the polyp classi�cation task.

As it can be seen in Table 8, the pretrained CNN that
presents the best result on average for the di	erent imaging

modalities (�) is the CNN-M network trained with the
MatConvNet parameters (89.74%) followed by the CNN
VGG-VD16 (88.59%). �ese deep models with smaller �lters
generalize well with other datasets as it is shown in [49],
including texture recognition, which can explain the better
results in the colonic polyp database. However, there is a high
variability in the results and thus it is di�cult to draw general
conclusions.

Many results obtained from the pretrained CNNs sur-
passed the classic feature extractors for colonic polyp classi-
�cation in the literature. �e database that presents the best
results using o	-the-shelf features is the database staining the
mucosa without any i-Scan technology (¬CVC, 88.54% on
average). In the case of classical features, the database with
the best result on average is the database using the i-Scan3
technology without staining the mucosa (81.61%).

To investigate the di	erences in the results we assess the
signi�cance of them using the McNemar test [57]. By means
of this test we analyze if the images from a database are clas-
si�ed di	erently or similarly when comparing two methods.
With a high accuracy it is supposed that themethodswill have
a very similar response, so the signi�cance level � must be
small enough to di	erentiate between classifying an image as
correct or incorrect.

�e test is carried out on the databases i-Scan3 and i-
Scan1 without staining the mucosa using signi�cance level
� = 0.01 with all the o	-the-shelf CNNS, all the classical
features, and the CNN-05 architecture trained from scratch.
�e results are presented in Figure 3. It can be observed
by the black squares (indicating signi�cantly di	erences)
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Figure 3: Results of the McNemar test for the i-Scan1 (a) and i-Scan3 (b) databases without staining. A black square in the matrix means
that the methods are signi�cantly di	erent with signi�cance level � = 0.01 and a grey square in (a) means that the methods are signi�cantly
di	erent with signi�cance level � = 0.05. If the square is white then there is no signi�cant di	erence between the methods.

that, among the pretrained CNNs, in the i-Scan1 database
the results are not signi�cantly di	erent and in the i-Scan3
database the CNN-M MCN and GoogleLeNet present the
most signi�cantly di	erent results comparing to the other
CNNs. It also can be seen that the CNN-05 does not
have signi�cantly di	erent results comparing to the other
CNNs in the i-Scan1 database and has signi�cantly di	erent
results with CNN-M MCN and GoogleLeNet in the i-Scan3
database.

Also, in Figure 3, when comparing the classical feature
extractionmethodswith theCNNs features it can be seen that
there is a quite di	erent response among the results in i-Scan3
database, especially for CNN-M MCN that is signi�cantly
di	erent from all the classical methods with the exception
of the Shearlet-Weibull method. �e CNN-05 and CNN-05
+ SVM did not present signi�cantly di	erent results with
the classical features (except with LCVP in i-Scan1 database)
and with the pretrained CNNs (except with CNN-M and
GoogleLeNet in i-Scan3 database). Likewise, the methods
with high accuracy in the i-Scan3 database (BSAG-LFD,
VGG-VD16, andVGG-VD19) are not found to be signi�cantly
di	erent.

In the i-Scan1 database, with the signi�cance level � =
0.05, the results are not signi�cantly di	erent in general
(except for LCVP features). However, with the signi�cance
level � = 0.01, the signi�cance results represented by the grey
squares in Figure 3(a) show that the two databases presented
di	erent correlation between methods which means that it
is di�cult to predict a good feature extractor that can satisfy
both databases at the same time.

Observing the methods that presented signi�cantly dif-
ferent results in Figure 3 and with good results in Table 8 we
decided to produce a feature level fusion in the feature vectors
concatenating them to see if the features can complement
each other. It can be seen in Figure 3 that the two most suc-
cessful CNNsCNN-MMCNandVGG-VD16 are signi�cantly
di	erent from each other in both databases and the feature
level fusion of these two vectors improve the results from
89.74% and 88.59%, respectively, to an accuracy of 90.58% in
average as can be seen in Table 8 (Fusion 5/8).

In Figure 3(b) it can also be observed that the results
from CNN-MMCN are signi�cantly di	erent to the classical
features BSAG-LFD in the i-Scan3 database. With the feature
level fusion of these two features the accuracy increases to
91.03% on average. Concatenating the three feature vectors
(CNN-M MCN, VGG-VD16, and BSAG-LFD) leads to an
even better accuracy: 93.22%. It is interesting to note that in
both databases the results from CNN-M MCN and VGG-
VD16 are signi�cantly di	erent. Besides that, BSAG-LFD
results are signi�cantly di	erent to VGG-VD16 in database
i-Scan1. Furthermore, BSAG-LFD results are signi�cantly
di	erent to CNN-M MCN in database i-Scan3 which can
explain the improvement in the feature level fusion between
these three methods.

Making the fusion with these two o	-the-shelf CNNs
(CNN-M MCN and VGG-VD16) to other classical feature
vectors also increases the accuracy as it can be seen in Table 8
(Fusion 5/8/14 and Fusion 5/8/15).

When we add to the vector Fusion 5/8/12 one more
classical feature (MB-LBP) that is also signi�cantly di	erent
to CNN-M MCN in database i-Scan3 and at the same time
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True positive

100% 100%

False negative

63% 55%
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True negative

81% 81%

100% 100%
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(a) i-Scan1

True positive

100% 100%

False negative

65% 52%

False positive

44% 15%

True negative

95% 90%

100% 100%

False positive

44% 15%

True negative

(b) i-Scan3

Figure 4: Example results of the classi�cation in agreement from the methods tested in the McNemar test for each prediction outcome.

signi�cantly di	erent to BSAG-LFD in database i-Scan1, the
result outperforms all the previous approaches: 93.55% as it
can be seen in Table 8.

In Figure 4 we present some example images from the
classi�cation results of all the methods used in the McNemar
test with the higher agreement for each prediction outcome.
�e percentage above each image shows the average classi-
�cation rate of the prediction. For example, in the i-Scan1
database and i-Scan3 database (Figures 4(a) and 4(b)), the
two images presented in the true positive box were classi�ed
as such in all classi�ers. However, from i-Scan3 database,
in the case of the false negative box, one image had 44%
of misclassi�cation and another 15% of misclassi�cation in
average.

Comparing the results from all o	-the-shelf CNNs and
classical features with the CNN-05 trained from scratch using
the databases i-Scan1 and i-Scan3 inTable 8 it can be observed
that the full training CNN outperformed the results obtained
by the classical features and some of the pretrained CNNs.
�is approach can be considered an option for automatic
colonic polyp classi�cation, although the training time and
processing complexity are not worthwhile if comparing to the
o	-the-shelf features.

4. Conclusion

In this work, we propose to explore Deep Learning and
Transfer Learning approach using Convolutional Neural
Networks (CNNs) to improve the accuracy of colonic polyp
classi�cation based on the fact that databases containing large
amounts of annotated data are o�en limited for this type of
research. For the training of CNNs from scratch, we explore
data augmentation with image patches to increase the size
of the training database and consequently the information
to perform the Deep Learning. Di	erent architectures were
tested to evaluate the impact of the size and number of �lters
in the classi�cation as well as the number of output units in
the fully connected layer.

We also explored and evaluated several di	erent
pretrained CNNs architectures to extract features from
colonoscopy images by knowledge transfer between natural
and medical images providing what is called o	-the-shelf
CNNs features. We show that the o	-the shelf features may
be well suited for the automatic classi�cation of colon polyps
even with a limited amount of data.

Besides the fact that the pretrained CNNs were trained
with natural images, the 4096 features extracted from CNN-
M MCN and VGG-16 provided a good feature descriptor
of colonic polyps. Some reasons for the success of the
classi�cation include the training with a large range of
di	erent images providing a powerful extractor joining the
intrinsic features from the images such as color, texture, and
shape in the same architecture reducing and abstracting these
features in just one vector. Also, the combination of classical
features with o	-the-shelf features yields the best prediction
results complementing each other. It can be concluded that
Deep Learning using Convolutional Neural Networks is a
good option for colonic polyp classi�cation and the use of
pretraining CNNs is the best choice to achieve the best results
being improved by feature level fusion with classical features.
In future work we plan to use this strategy to also test the
detection of colonic polyps directly into video frames and
evaluate the performance in real time applications as well as
to use this strategy in other endoscopic databases such as
automatic classi�cation of celiac disease.
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[14] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and
F. Wrba, “Pit pattern classi�cation using extended local binary
patterns,” in Proceedings of the 9th International Conference on
Information Technology and Applications in Biomedicine (ITAB
’09), pp. 1–4, Larnaca, Cyprus, November 2009.
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