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OBJECTIVE

COVID-19 has become a major public health problem. There is good evidence that
ACE2 is a receptor for SARS-CoV-2, and high expression of ACE2 may increase
susceptibility to infection. We aimed to explore risk factors affecting susceptibility
to infection and prioritize drug repositioning candidates, based on Mendelian
randomization (MR) studies on ACE2 lung expression.

RESEARCH DESIGN AND METHODS

We conducted a phenome-wide MR study to prioritize diseases/traits and blood
proteins causally linked to ACE2 lung expression in GTEx. We also explored drug
candidates whose targets overlapped with the top-ranked proteins inMR, as these
drugs may alter ACE2 expression and may be clinically relevant.

RESULTS

The most consistent finding was tentative evidence of an association between
diabetes-related traits and increased ACE2 expression. Based on one of the largest
genome-wide association studies on type 2 diabetes mellitus (T2DM) to date (N5

898,130), T2DM was causally linked to raised ACE2 expression (P 5 2.91E203;
MR-IVW). Significant associations (at nominal level; P < 0.05) with ACE2 expression
were observed across multiple diabetes data sets and analytic methods for T1DM,
T2DM,and related traits including early start of insulin.Other diseases/traits having
nominal significant associations with increased expression included inflammatory
bowel disease, (estrogen receptor–positive) breast cancer, lung cancer, asthma,
smoking, andelevated alanine aminotransferase.Wealso identifieddrugs thatmay
target the top-ranked proteins in MR, such as fostamatinib and zinc.

CONCLUSIONS

Our analysis suggested that diabetes and related traitsmay increaseACE2 expression,
which may influence susceptibility to infection (or more severe infection). However,
none of these findings withstood rigorous multiple testing corrections (at false
discovery rate <0.05). Proteome-wide MR analyses might help uncover mechanisms
underlyingACE2expression andguidedrug repositioning. Further studies are required
to verify our findings.
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Coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has
resulted inapandemicaffectingmorethan
100 countriesworldwide (1–3).More than
2 million confirmed cases have been re-
ported worldwide as of 22 April 2020 (4),
while many mild or asymptomatic cases
may remain undetected. Considering
the severity of the outbreak, it is urgent
to seek solutions to control the spread of
the disease to susceptible groups and to
identify effective treatments. A better un-
derstanding of its pathophysiology is also
urgently needed.
Notably, recent studies showed that

more thanone-quarter of confirmed cases
had a history of comorbid conditions, such
as hypertension, diabetes, cardiovascular
disease, and respiratory diseases (2,3,5)
(Supplementary Table 1). In addition, the
severity of disease is likely be higher in
patients with chronic conditions (2). How-
ever, it is unclear whether such comor-
bidities are causally related to increased
susceptibility and, if so, what the under-
lying mechanisms may be. Confounding
bias (e.g., by age, sex, comorbidities, med-
ications received, smoking/drinkinghistory,
etc.) may lead to spurious associations that
preclude conclusions about causality. Es-
tablishing causality is important, as this is
closely related to the effectiveness of in-
terventions. Ifa risk factor iscausally related
to an outcome, then interventions on the
risk factor will lead to reduced risks of the
outcome, which may not be true for asso-
ciations per se.
Based on analysis of potential receptor

usage and the released sequences of SARS-
CoV-2, Wan et al. (6) proposed that the
host receptor of SARS-CoV-2 is ACE2. Virus
infectivity studiesonHeLa cell lines further
confirmed that ACE2 is a cellular entry
receptor for SARS-CoV-2 (7). Another line
of evidence came from structural study of
SARS-CoV-2.Wrappetal. (8)observedthat
the ACE2 protein could bind to the SARS-
CoV-2 spike ectodomainwith high affinity.
Importantly, ACE2 has previously been
established as a receptor for severe acute
respiratory syndrome coronavirus (SARS-
CoV) (9,10).Takentogether, there is strong
evidence that ACE2 is a key receptor of
the novel coronavirus.
A number of studies have looked into

the relationship betweenACE2 expression
level and coronavirus infection. For exam-
ple, it was found that overexpression of
ACE2protein leads tomore efficient SARS-

CoV replication, which was blocked by
anti-ACE2 antibodies in a dose-dependent
manner (9). Two further studies also
showed that susceptibility to SARS-CoV
infection was correlated with ACE2 ex-
pression in cell lines (11,12). It is therefore
reasonable to hypothesize that ACE ex-
pression also affects susceptibility to SARS-
CoV-2 infection. Revealing diseases/traits
causally associated with altered ACE2 ex-
pression may shed light on why certain
individuals are more susceptible to SARS-
CoV-2 infection(ormoresevere infections)
and the underlying mechanisms (whether
the increased susceptibility is mediated via
ACE2).

In this study, we wish to answer the
following question: what conditions or
traits may lead to increased ACE2 ex-
pression, which may in turn result in
higher susceptibility to SARS-CoV-2 infec-
tion? Here, we conducted a phenome-
wideMendelian randomization (MR) study
to explore diseases/traits that may be
causally linked to increased ACE2 lung
expression. Our study is different from
most existing MR studies: instead of
considering a disease as outcome, the
outcome measure is ACE2 expression,
interpreted as a surrogate for suscep-
tibility to infection, and the exposures
tested are diseases/traits.While a num-
ber of tissues may also be affected by
SARS-CoV-2 (13), pneumonia is a common
andmajor complication of the disease (3);
hence, we focused on lung expression in
this study. Regarding our study approach,
phenome-wide MR is a data-driven ap-
proach that has been used in other con-
texts as a powerful way to uncover
unknown causal risk factors for diseases
(14–16). This approachallowsmultiple risk
factors or outcomes to be studied simul-
taneously. MR makes use of genetic var-
iants as “instruments” to represent the
exposure of interest and infers causal
relationship between the exposure and
outcome (17). In general, MR is not af-
fected by reverse causality (18), as genetic
variants are fixed at conception (which
precedes the outcome). MR is also less
susceptible to confounding bias compared
with conventional case-control/cohort stud-
ies, as genetic instruments are usually less
strongly associated with environmental ex-
posures than ordinary risk factors (19)
(please also refer to Supplementary Text
for more detailed descriptions).

In addition to diseases, as a secondary
analysis we also studied serum/plasma

proteins as exposure, as they may point
to potential molecular mechanisms un-
derlying ACE2 expression and may serve
as potential predictive or prognostic bio-
markers. Such proteome-wide studies
may help to reveal drug repositioning
candidates (20) through the search for
drugs that target the top-ranked pro-
teins. For example, if a protein causally
increases the riskof adisease, thenby the
definition of causality, blocking the pro-
tein will lead to reduced disease risks. By
finding plasma/serum proteins causally
linked to ACE2 expression, one may find
drugs altering ACE2 expression, which in
turn may be useful for treatment.

RESEARCH DESIGN AND METHODS

Genome-Wide Association Study Data
All genome-wide association study (GWAS)
data are extracted from publicly available
databases, detailed below.

Exposure Data

Most GWAS data used were based on
predominantly European samples, and
proper correction for population strati-
fication has been performed. Please also
refer to Supplementary Tables 2A and 2B
for details on the ethnic composition and
methods to account for population strat-
ification for GWAS included in this work.

To perform the phenome-wide study,
here we made use of the latest MRC
Integrative Epidemiology Unit (IEU) (Uni-
versity of Bristol) GWAS database (https://
gwas.mrcieu.ac.uk/), which contains up
to 111,908,636,549 genetic associations
from 31,773 GWAS summary data sets
(as at 26 February 2020). Details of each
GWAS study may be retrieved from
https://gwas.mrcieu.ac.uk/datasets/. The
database was retrieved via the R package
TwoSampleMR (version 0.5.1). MR anal-
ysis was conducted with the same pack-
age. Due to theextremely huge number of
traits in thedatabase,weperformed some
preselection to the list of traits/diseases
before full analysis.

Briefly, we selected the following cat-
egories of traits: 1) traits listed as priority
1 (highpriority)and labeledas “disease”or
“risk factor” (81 and 71 items, respec-
tively), 2) traits labeled as “protein” (3,371
items originally studied in 21,22); and 3)
(selected) traits from the UK Biobank
(UKBB), as it is oneof the largest sourcesof
GWAS data worldwide (N 5 ;500,000).
We considered that a proportion of traits
have presumably low prior probability of
association with respiratory infections, and
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others are less directly clinically relevant.
For reductionof computational burdenand
for ease of interpretation, a proportion of
UKBB traitswerefiltered.More specifically,
we excluded GWAS data of diseases or
traits related to the following: eye or
hearingproblems,orthopedicandtrauma-
related conditions (except autoimmune
diseases), skin problems (except systemic
or autoimmune diseases), perinatal and
obstetric problems, operation history,
medication history (as confounding by
indication is common and may affect the
validityof results [23]),diet/exercisehabits
(as accuracy of information cannotbe fully
guaranteed and recall bias may be present),
and socioeconomic features (such as type
of jobs). A total of 425 UKBB traits were
retained for final analysis under the third
category.GWASofbloodproteinsandUKBB
traits were restricted to European samples.
GWAS of UKBB were based on analysis

results from theNeale laboratory (https://
www.nealelab.is/uk-biobank) and from
MRC IEU. GWAS analysis was performed
using linear models with adjustment for
population stratification (details of the
analytic approach: references 24–26).
For binary outcomes, we converted the
regression coefficients obtained from
the linearmodel to thoseunder a logistic
model, based on methodology previously
presented (27). The SE under a logistic
model was derived by the deltamethod
(equation 37 in reference 27).

Outcome Data

The outcome was pulmonary expression
of ACE2. While ideally one should study
the protein expression in the lung, such
data are scarce and corresponding ge-
notype data (required for MR) are not
available. Here we focus on the gene
expression of ACE2 in the lung (N5 515).
We retrieved GWAS summary data from
the Genotype-Tissue Expression (GTEx)
database (with API); it is one of the largest
databases to date with both genotype
and expression data for a large variety of
tissues.ThemajorityoftheGTExsamplesare
European in ancestry (;85%); other ances-
tries included African Americans, Asians,
and American Indians (Supplementary
Table 2A). Population stratification was
controlled by inclusion of principal com-
ponents in genetic association analysis.
For further details of GTEx please refer to
reference 28; the expression quantitative
trait loci (eQTL) analysis procedure is
described in reference 29.

MR Analysis
Here we performed two-sample MR, in
which the instrument-exposure and in-
strument-outcome associations were es-
timated in different samples.

Instrument Single Nucleotide

Polymorphism Selection

MR was performed on (approximately)
independent single nucleotide polymor-
phisms (SNPs) with r2 threshold of 0.001,
following default settings in the R package
TwoSampleMR. SNPs passing genome-
wide significance (P , 5e28) were in-
cluded as instruments. Clinical traits or
blood proteins were treated as exposures,
and we used the “extract_instruments”
function in TwoSampleMR to retrieve
SNPs for each trait from corresponding
GWAS. The source GWAS for each expo-
sure are listed in Supplementary Table 2.
Only SNPs with available SNP-exposure
and SNP-outcomeassociation datawere
retained.

MR Methods

We conducted MR primarily with the in-
verse variance–weighted (MR-IVW) (30)
and Egger regression (MR-Egger) (31) ap-
proaches, which are among the most
widely used MR methods. For exposure
with only one instrument, the Wald ratio
methodwas used. For analysis with fewer
than three genetic instruments, we used
MR-IVW only since MR-Egger cannot re-
liably be performed. The intercept from
MR-Egger was used to evaluate presence
of significantdirectional (imbalanced) hor-
izontal pleiotropy.

For selected traits with at least nomi-
nally significant associations by MR-IVW
orMR-Egger (P, 0.05), we also performed
further analysis by GSMR (generalized
summary data–based MR), weighted me-
dian(an“implicit”outlier-removalmethod
[32]), andMRrobustadjustedprofile score
(MR-RAPS). GSMR also accounts for cor-
related SNPs and removes likely pleiotro-
pic outliers (33).

We tried several r2 thresholds (0.001,
0.05, 0.1, 0.15, and 0.2) for GSMR analysis
ondiabetes basedon theworkofMahajan
et al. (34) (see RESULTS and Table 2). SNP
correlations were derived from 1000 Ge-
nomesEuropeansamples.MR-RAPS(35) is
another methodology that takes into ac-
count multiple weak instruments by a
robust procedure;weused amore relaxed
P value threshold for SNP selection (0.01)
forthismethod.Oneofthemajorconcerns
ofMR ishorizontal pleiotropy, inwhich the

genetic instruments have effects on the
outcomeother thanthrougheffectsonthe
exposure.MR-Egger,GSMR,weightedme-
dian, and MR-RAPS are able to provide
valid MR estimates under pleiotropy sub-
ject to certain assumptions (see Hemani
et al. [32] and Supplementary Text).

HeterogeneityamongtheMRestimates
across individual SNPs may indicate prob-
lems related to violation of instrumental
variable assumptions. One of the most
notableproblems is that oneormoreSNPs
may be showing horizontal pleiotropy
(32,36). The Cochran Q statistic and the
MR-PRESSO (Mendelian Randomization
Pleiotropy RESidual Sum and Outlier)
global test (37) were used to test for
heterogeneity for nominally significant
MR findings.

Interpretation of Effect Sizes From MR

Regarding the effect sizes of causal asso-
ciations, if theexposureswerebinary, the
regression coefficients (b) from MR may
beroughly interpretedasaveragechange
in the outcome (per SD increase in nor-
malizedACE2 expression levels) per 2.72-
fold increase in the prevalence of the
exposure (38). For continuous exposures,
theMR estimates are average changes in
outcome per unit increase of exposure
(see Supplementary Table 2A for the units).

Plasma/Serum Proteins as Exposure and

Further Analysis

In addition to MR analysis on individual
plasma/serumproteins,wealsoperformed
pathway analysis by ClueGO (39). Hyper-
geometric testswereconductedonthetop-
ranked proteins (with P , 0.05). As an
exploratory analysis, we also searched for
drugswithtargetsoverlappingwiththetop-
rankedproteins. Drug targetswere defined
based on the DrugBank database. Our aim
is to uncover drug candidates leading to
alteration of ACE2 expression, which may
be therapeutically relevant.

Multiple Testing Correction

We employed a false discovery rate (FDR)
approach to multiple testing correction. It
controls the expected proportion of false
positives among the hypotheses declared
significant. FDR is also valid under positive
dependency of tests (40).

The FDR in fact depends on the overall
fraction of truly null hypotheses, or p0. It
can also be considered as the prior prob-
ability that a null hypothesis is true. In
reality, p0 may vary for different sub-
groups of hypotheses. For instance, in
our analyses, one may expect different

1418 Exploring Causal Links to ACE2 Expression Diabetes Care Volume 43, July 2020

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/43/7/1416/630705/dc200643.pdf by guest on 27 August 2022

https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://doi.org/10.2337/figshare.12279131
https://doi.org/10.2337/figshare.12279131
https://doi.org/10.2337/figshare.12279131
https://doi.org/10.2337/figshare.12279131
https://doi.org/10.2337/figshare.12279131


p0fordiseases/exposuresofdifferentkinds.
Previous studies (see Supplementary Table
1) suggested that some chronic disease
patients are more likely affected by
the infection. Toaddress theaboveproblem,
weadoptedanFDRcontrolprocedure that
accounts for varying prior probabilities of
association (i.e., different p0) among dif-
ferent typesof hypotheses. Theprocedure
is “objective” in the sense that it estimates
p0 based on the data automatically, with-
out the need to specify p0 by the re-
searcher.We used themethodology “FDR
regression” proposed in 41 and the R
program by the author (FDRreg, version
0.2). In brief, we divided our hypothesis
based on the type of exposure/disease
(e.g., respiratory, cardiovascular diseases,
etc.).Thesecategoriesservedaspredictors
or covariates, which can be used as input
by FDRreg in a regression to estimate the
p0 of each hypothesis test. We also com-
puted the significance of each predictor; it
indicates which categories predicted non-
null associations better than chance. For
input intoFDRreg,wetooktheresults from
MR-IVW unless the Egger intercept had
P , 0.05.

RESULTS

MR Analysis for Diseases and Clinically
Relevant Traits
MR results are presented in Tables 1 and
2 (full results shown in Supplementary
Tables 3 and 4). Traitswere shown inmain
tables if MR-IVW or MR-Egger showed
nominally significant (P,0.05) resultsand
three or more instrument SNPs are avail-
able (such that pleiotropy can be assessed
and results are more informative).
Overall, 25 traits showed associations

with ACE2 expression at FDR ,0.2 and
10 had FDR ,0.1 (Supplementary Table
4). No MR results showed FDR ,0.05.
There were 68 nominally significant (P,
0.05) associations based onMR-IVW and
9 based on MR-Egger. Many significant
findings were concentrated on traits re-
lated to diabetes.

Diabetes-Related Traits

Remarkably, a number of top-ranked re-
sults were related to diabetes. We ob-
served five diabetes-related traits that
showed nominally significant MR results
with FDR ,0.1; they were all positively
associated with ACE2 expression. Three
are related to diagnosis of diabetes (in-
cluding both type 1 and 2) in the UKBB.
Both doctor-diagnosed diabetes and self-

reported cases of diabetes in the UKBB,
which were presumably comprised of
mainly type 2 diabetes mellitus (T2DM),
were significantly associated with higher
ACE2 expression (MR-IVW P5 0.0152 and
0.0343; FDR5 0.0547 and 0.0667 respec-
tively). Another finding (identifier: ieu-a-23)
was based on a transethnic meta-analysis
on T2DM in 2014 (42) (MR-IVW P 5
0.0421; FDR5 0.0748), which had no over-
lap with the UKBB sample. The finding
of a (nominally) significant result in this
data set can therefore be considered as
an independent replication of the UKBB
result.

We also observed that starting insulin
within1year of diagnosis,whichwasonly
assessed among patients with diabetes,
was causally associated with increased
ACE2 expression (MR-IVW P 5 0.031;
FDR 5 0.061). Early use of insulin may
indicate type 1 diabetes mellitus (T1DM)
as the underlying diagnosis or more se-
vere/late-stage disease for T2DMpatients
(43). We also observed that as a whole,
diabetes-related traits were significantly
associated with higher probability of hav-
ing nonnull associationswithACE2 expres-
sion (P5 0.026) (Supplementary Table 7),
based on FDRreg. No evidence of signif-
icant directional pleiotropy was observed
in the above results (Egger intercept P .
0.05).We thereforeprimarily reported the
results from MR-IVW, as generally the SE
of causal estimates is largerwithMR-Egger
(44) (resulting in weaker power).

In view of the consistent causal asso-
ciations with diabetes or related traits,
we further searched for GWAS summary
statistics that have not been included in
the IEU GWAS database. We found an-
other publicly available data set from the
DIAbetesGeneticsReplicationAndMeta-
analysis (DIAGRAM) consortium, based
on a recent meta-analysis of T2DM by
Mahajan et al. (34) based on European
samples (N 5 898,130). For a more
in-depth analysis, we also used GSMR at
various r2 thresholds and MR-RAPS in
addition to IVW and MR-Egger. The full
results are presented in Table 2 (also see
Supplementary Figures). Reassuringly,
with the exception ofMR-Egger (which is
less powerful [44]), all other methods
showed (at least nominally) significant
results. GSMR, which accounts for cor-
related SNPs, showed significant results
consistently across different r2 thresh-
olds (lowest P 5 9.74E218; r2 thresh-
old 5 0.2). While this study (34) has

partial overlap with the transethnic anal-
ysis in 2014 (42), the consistent associ-
ations provide further support to a causal
link between diabetes and expression of
ACE2.

We note that the Egger intercept P
valuewas borderline (P5 0.0545), which
may raise some concern for pleiotropy.
However, we have conducted multiple
tests for directional pleiotropy, so false
positive findings are possible. The cor-
responding FDR was 0.999 for this test if
multiple testing was taken into account
(573 items).

We did not find any evidence of het-
erogeneity based on Cochran Q (hetero-
geneity PIVW 5 0.431/PEgger 5 0.486) or
MR-PRESSO global test (P 5 0.418). To
further compare MR-IVW and MR-Egger
models, we followed the “Rucker frame-
work”proposed in (32,45) and computed
the improvement in model heterogene-
itybyusingMR-Egger. Thedifferencewas
small and nonsignificant (QIVW5 197.77;
QEgger 5 196.06; difference5 1.71; P 5
0.191), indicating MR-IVW is a reason-
ably good fit for the data.

For T2DM or self-reported cases of
diabetes from UKBB (which presumably
comprised mainly T2DM), the causal es-
timates ranged from;0.162 to 0.210. The
causal estimate from T1DM was slightly
lower and estimated to be ;0.1006.

Other Diseases/Traits

As shown in Table 1, a number of other
diseases/traits also showed (nominally)
significant results. Several neoplasms,
such as breast and lung cancer, may be
associated with increased ACE2 expres-
sion. We also observed that several au-
toimmunedisorders,especially inflammatory
bowel diseases, may be causally associated
with ACE2 expression. Interestingly, asthma
and tobacco use also showed nominal
significant associations with higher ACE2
expression.As forother traits, high alanine
aminotransferase (ALT), commonly asso-
ciated with liver diseases, may be related
to elevated ACE2 expression. Other com-
monlymeasuredbloodmeasures thatmay
lead to altered ACE2 expression included
red cell distribution width (often associ-
atedwith irondeficiency, folate,orvitamin
B12 deficiency anemia), basophil percent-
age (inverse relationship), calcium level,
urate level, and HDL and LDL cholesterol
(inverse relationship). Note that the FDR
is dependent on the category to which a
trait belongs; for example, diabetes-related
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and autoimmune diseases showed lower
FDR, likely because these types of diseases
had more significant associations in gen-
eral. As a tradeoff, other traits/diseases,
although having nominally significant re-
sults, may have higher FDR. FDR provides
an additional reference to guide prioriti-
zation of the findings; however, FDR es-
timation is subject tovariability and should
not be considered as an absolute guide.
Other traits with at least nominal sig-
nificance may still be worthy of further
studies, especially with support by clin-
ical observation or other evidence.
For traits showing nominally signifi-

cant findings (Table 1), we have per-
formed other additional analyses. We
donotobservesignificantheterogeneity in
MR estimates across SNPs (by IVW/Egger)
for most traits, except one related to lung
cancer (ukb-d-C3). The MR-PRESSO global
test was also nonsignificant for all traits,
supporting a lack of heterogeneity. This
lack of heterogeneity suggests that sub-
stantial horizontal pleiotropy is not very
likely. The weighted median estimator
supports associations for a subset of
traits, including three diabetes-related
traits (ukb-b-10694, ieu-a-23, and ukb-b-
8388). TheGSMRmethod,which removes
pleiotropicoutliers, is generally consistent
with IVW findings (SNPs clumped at r2 5
0.001 for both GSMR/IVW).

MR Results With Plasma/Serum
Proteins as Exposure
Full results are shown in Supplementary
Tables 3 and 4, and the enrichedpathways

are shown in Table 3 and Supplementary
Table 5. Since a large number of proteins
are involved, we only highlight a few top
pathways here. Some of the top pathways
include cytokine–and–cytokine recep-
tor interaction, VEGFA-VEGF2 signaling
pathway, JAS-STAT signaling pathway,
etc. Table 4 and Supplementary Table 6
show the list of drugs with targets that
overlapwith the top-ranked proteins. Note
that the tables do not explicitly discern the
direction of effects of the drugs. A few
drugs target more than one protein. If
theyare rankedby thenumberofproteins
targeted, the top drugs are fostamatinib,
copper, zinc,andzonisamide,whichtarget
three or more proteins.

CONCLUSIONS

In this study, we have used MR to un-
coverdiseases/traits thatmaybecausally
linked to ACE2 expression in the lung,
which in turnmay influence susceptibility
to the infection. MR is a relatively well-
established technique in evaluating causal
relationships, and the wide availability of
GWAS data enables many different expo-
sures to be studied at the same time.

Diseases/Traits Causally Linked to
ACE2 Expression
From our analysis, the most consistent
finding was the tentative causal link be-
tween diabetes (and related traits) with
ACE2 expression, which was supported
by multiple data sets and different ana-
lytic approaches. Other results were more
tentative but may be worthy of further

studies. For example, several neoplasms
(e.g., breast and lung cancers) and auto-
immune diseases, elevated ALT, asthma,
and smoking all showed nominally signif-
icant and positive associations with ACE2
expression.

Some of these findings were supported
by previous studies. A number of COVID-
19 cases (;5.4% from Supplementary
Table 1) were comorbid with diabetes.
This proportion is only a rough estimate,
since mild or asymptomatic cases may
remain undetected. Notably, diabetes
has been reported to be associated with
poorer outcomes among infected pa-
tients (46). Similarly, diabetes was also
common in patients infected with MERS-
CoV (47,48). Kulcsar et al. (49) built a
mouse model susceptible to MERS-CoV
infection and induced T2DM using a high-
fat diet. They found that, if affected by the
virus, these diabetic mice suffered from a
prolonged phase of disease and delayed
recovery, possibly due to a dysregulated
immune response. Regarding comorbidity
with cancers, Liang et al. (50) recently
carried out a nationwide analysis of 1,590
patients with confirmed COVID-19 and
suggested that patients with cancer
have higher infection and complication
risks than those without cancer.

We highlight a few research directions
of interest if our findings are confirmed
in future studies. For example, as far as
treatment is concerned, if certain condi-
tions (e.g.,diabetes) increasesusceptibility
to infection or severe infections via ACE2,
drugs targeting this gene/protein may
be particularly useful for this patient sub-
group. For example, human recombinant
ACE2 has been proposed as a treatment
and is under clinical trial (51,52). It will be
interesting to see if the drugmay bemore
beneficial for patients with patients with
diabetes. More generally speaking, if di-
abetes is causally linked to elevated ACE2
and potentially increased susceptibility to
infection, then antidiabetes drugs or im-
proved glycemic control may ameliorate
the process. Interestingly, a recent work
highlighted metformin as one of the top
repositioning candidates for COVID-19,
based on a different mechanism as an
MRC1 inhibitor (53). From a public health
perspective, identification of at-risk pop-
ulations may guide prevention strategies,
e.g., prioritization of groups to receive
vaccination. Nevertheless, all the above
require substantial additional research
before clinical applications.

Table 2—FurtherMR analysis results for T2DMbased onwork byMahajan et al. (34)

Method b SE P Egger intercept Intercept P n_pleio nsnps

MR-IVW 0.177 0.060 2.91E203 d d d 196

MR-Egger 20.039 0.126 0.758 0.0159 0.0545 d 196

GSMR†
r2 5 0.001 0.170 0.060 4.46E203 d d 0 194
r2 5 0.05 0.140 0.035 7.12E205 0 289
r2 5 0.1 0.177 0.054 9.62E204 d d 0 332
r2 5 0.15 0.146 0.027 5.93E208 0 392
r2 5 0.2 0.197 0.023 9.74E218 0 448

MR-RAPS§ 0.064 0.030 3.43E202 d d d 3,737

We did not find any evidence of heterogeneity based on Cochran Q (heterogeneity PIVW5 0.431/
PEgger 5 0.486) or MR-PRESSO global test (P 5 0.418). We also computed the improvement in
model heterogeneity by usingMR-Eggerover IVWfollowing theRucker framework. Thedifference
was small and nonsignificant (QIVW5 197.77;QEgger5 196.06; difference5 1.71; P5 0.191). The
exposureGWASdata set onT2DMwasbasedonworkofMahajanet al. (34). InstrumentSNPswere
only selected if they passed genome-wide significance (P , 5e28) (except for MR-RAPS). If not
otherwise specified, SNPs were clumped at r2 5 0.001. n_pleio, number of pleiotropic SNPs
identified by GSMR; nsnps, number of SNPs. †GSMR can account for correlation among SNPs.
We performed GSMR based on SNPs clumped at different r2 clumping thresholds. We consider
the association to be more robust if significant results are observed across multiple r2 thresholds.
§MR-RAPS is an MR methodology designed for the inclusion of multiple weak instruments.
A more relaxed P value threshold (0.01) was used for SNP instrument selection.
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On ACE2 Expression and Pulmonary
Complications

Asdiscussedabove, increasedexpression
of ACE2 appears to correlate with sus-
ceptibility to SARS-CoV and SARS-CoV-2
infection. Nevertheless, the consequen-
ces of altered ACE2 expression on pul-
monary complications may be rather

complex. Kuba et al. (10) reported that
SARS-CoV downmodulated ACE2 expres-
sion,whichmay lead toheightened risksof
acute lung injury (ALI). Another study (54)
suggested that ACE2 may protect against
ALIbyblockingtherenin-angiotensinpath-
way. However, whether the same applies
to SARS-CoV-2 is unknown. If this is the

case, one may hypothesize that for un-
affected individuals or those without (or
withminimal) lung involvement yet, lower
ACE2 pulmonary expression may be ben-
eficial in reducing susceptibility to more
sustained infectionby reducing viral entry.
However, for patients with severe lung
involvement or at risk for ALI, higher ACE2
expression may prevent acute respiratory
failure. Therefore, it may be clinically
relevant to identify both risk factors and
drugs leading to increased and decreased
ACE2 expression. Further studies are war-
ranted to clarify the role of ACE2 inCOVID-
19 and related complications.

Another related controversy concerns
the use of ACE inhibitors (ACEI) and an-
giotensin II receptor blockers (ARB)
(55,56), although the current study does
not directly address this issue. There is
some evidence that ACEI/ARB may upre-
gulate ACE2 expression in the heart (57),
kidney (58), and aorta (59) in animal
models; however, how these drugs affect
pulmonary ACE2 levels in humans is still
unclear (60). In addition, it is possible that
patients’ other underlying conditions may
affect ACE2 expression. It is worthy to
further investigate how ACEI/ARB to-
gether with other chronic conditions af-
fects the risks and severity of infection.

Table 3—Top 10 enriched pathways for (nominally) significant proteins in MR analysis

GO ID GO term Ontology source Term P
Term P
(Bonf) Associated Genes

KEGG:04060 Cytokine-cytokine receptor
interaction

KEGG_27.02.2019 1.82E206 7.29E205 CCL25, CTF1, CX3CL1, CXCL12,
IL15RA, IL22, IL34, IL37, LTA,
LTBR,OSM,TNFSF4,TNFSF8

WP:3888 VEGFA-VEGFR2 signaling
pathway

WikiPathways_27.02.2019 7.79E206 3.11E204 ACACB, BCL2L1, CFL1, EEA1,
F3, IGFBP7, JAG1, KDR,
PIK3CA, PTPN1, TXNIP

WP:254 Apoptosis WikiPathways_27.02.2019 1.07E204 4.29E203 BCL2L1, BIRC5, DIABLO, IGF1,
LTA, MCL1

WP:3614 Photodynamic therapy-induced
HIF-1 survival signaling

WikiPathways_27.02.2019 2.99E204 1.19E202 BCL2L1, BIRC5, HK1, MCL1

R-HSA:399954 Sema3A PAK dependent axon
repulsion

REACTOME_Pathways_27.02.2019 3.40E204 1.36E202 CFL1, PAK3, PLXNA1

R-HSA:2173782 Binding and uptake of ligands
by scavenger receptors

REACTOME_Pathways_27.02.2019 4.89E204 1.96E202 FTH1, HP, STAB1, STAB2

KEGG:04630 JAK-STAT signaling pathway KEGG_27.02.2019 5.61E204 2.24E202 BCL2L1, CTF1, IL15RA, IL22,
MCL1, OSM, PIK3CA

KEGG:04672 Intestinal immune network
for IgA production

KEGG_27.02.2019 8.84E204 3.53E202 CCL25, CXCL12, IL15RA, LTBR

WP:3657 Hematopoietic stem cell
gene regulation by GABP
alpha/beta complex

WikiPathways_27.02.2019 9.00E204 3.60E202 BCL2L1, FLT3, MCL1

WP:3872 Regulation of apoptosis
by parathyroid
hormone-related protein

WikiPathways_27.02.2019 0.00090 0.03602 BCL2L1, MCL1, PIK3CG

Bonf, Bonferroni correction; GO, Gene Ontology; ID, identifier; Term P, P value for the GO term.

Table 4—Drugswith targets overlappingwith (nominally) significant proteins from
MR analysis

Drug

No. of
proteins
targeted

Targets (that overlap with proteins with at
least significance in MR analysis)

Fostamatinib 7 ZAP70 FLT3 HIPK3 KDR MST1R PAK3 PIK3CG

Copper 6 CFL1 S100A2 PARK7 AHSG APOD CBX5

Zinc 4 S100A2 AHSG C8A APLP2

Zonisamide 3 CA4 CA9 CA10

Benzthiazide 2 CA4 CA9

Hyaluronic acid 2 LAYN STAB2

Hydroflumethiazide 2 CA4 CA9

Isosorbide 2 BCL2L1 MCL1

Midostaurin 2 KDR FLT3

Nintedanib 2 KDR FLT3

Ponatinib 2 FLT3 KDR

Sodium carbonate 2 CA4 CA9

Sorafenib 2 KDR FLT3

Sunitinib 2 KDR FLT3

Direction andmagnitude of the drugs’ effects onACE2 expression cannot be determined fromour
analysis alone and hence are not indicated here.
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Highlight of Tentative Repositioning
Candidates Based on Blood Proteins
Potentially Linked to ACE2 Expression
The drugs we highlighted in this study
may help researchers to prioritize repo-
sitioning candidates for further studies,
given the huge cost and long time frame
in developing a brand-new drug. Never-
theless, the overall direction and magni-
tude of effect of each drug could not
be determined from our analysis alone;
hence, further studies are required. Here
we briefly highlight a few top candidates.
Fostamatinib targets the largest number
(seven) of proteins potentially linked to
ACE2 expression. According to DrugBank,
it serves as an inhibitor for all these
proteins, and all were linked to elevated
ACE2 expression except one. Interestingly,
a recent computational repositioning study
(61,62) identified baricitinib, a JAK1/2 and
AAK1 inhibitor approved for rheumatoid
arthritis as a top candidate. Fostamatinib
is a spleen tyrosine kinase inhibitor but also
inhibits JAK1/2 and AAK1 (from DrugBank)
(63) and can be used to treat rheumatoid
arthritis (64). JAK-STAT signaling was also
amongthetop10pathwaysenrichedfor top
proteins affectingACE2 expression. Interest-
ingly, fostamatinib was reported to be ef-
fective for T1DM (65). Another candidate,
highlighted in 61, sunitinib, was also top
listed by our analysis. Zinc is also a top-listed
candidate and was previously reported to
reduce risks of lower respiratory tract in-
fections (66), but the evidence is not firm.
Interestingly, a study in rat tissues showed
reduction of ACE2 activity by zinc (67). Zinc
and zinc-ionophores may inhibit SARS-CoV
as shown in experimental studies (68). Zinc
was recently suggested for clinical trials for
COVID-19, although there is no clinical ev-
idence yet (ClinicalTrials.gov, NCT04342728,
NCT04326725, and NCT04351490 [69]). As
for the enriched pathways for top-ranked
proteins affectingACE2 expression, they are
discussed in Supplementary Text.

Limitations
We wish to emphasize that we consider
this work as largely an exploratory rather
than confirmatory study. As such, the
findings might not be immediately ap-
plicable clinically. Our main purpose is to
prioritizediseases, traits, or proteinswith
potential causal links with ACE2 expres-
sion. There are several limitations in our
analysis. A major limitation is that the
sample size for GTEx is relatively modest
(N5 515), which limits the power of MR

analysis. However, to our knowledge,
GTEx is one of the largest databaseswith
both genotype and expression data. We
note that many associations were rel-
atively modest, with no results showing
FDR,0.05, although 25 had FDR ,0.2.
On the other hand, we examined the
consistency of the observed associations
across different data sets and considered
those supported by more than one set of
data (e.g., diabetes-related traits) as rel-
atively more robustdsimilar to the ap-
proach in 70. However, our findings will
require further support by further studies.
Besides, some results could be false neg-
atives owing to limited power. Also, while
most GWAS were based on predominantly
European samples, subjects of other ethnic-
ities were included in some samples. It is
possible for genetic associations to differ
across ethnicities, which may affect the
causal estimates of MR, e.g., if some
SNP-exposure or SNP-outcome associations
are stronger in one ethnic group than
another. Apart from the above, this study
does not address what factors may aggra-
vate or ameliorate coronavirus-induced
changes in ACE2 levels. Also, we studied
ACE2 mRNA expression as the outcome;
associations of the reported traits with
protein expression levels remain to be
investigated.

Finally, from a methodological point of
view, we have used MR in a manner
different from that of most other studies.
Usually MR is used to identify causal risk
factors with a disease as the outcome, for
which GWAS data are available. Here, we
presented a novel analytic approach: we
made use of existing knowledge of a key
receptor of an infectious agent to un-
cover causal risk factors and repositioning
candidates. This analytic framework may
also be applied to other diseases, espe-
cially when a target can be identified but
genomic data for the disease is limited
or if one is interested in the underlying
disease mechanism of the risk factor.

Conclusion
Notwithstanding the limitations,wehave
identified several diseases and traits that
may be causally related to ACE2 expres-
sion in the lung, which in turn may
mediate susceptibility to SARS-CoV-2 in-
fection. In addition, our proteome-wide
MR analysis revealed proteins that may
lead to changes in ACE2 expression. Sub-
sequent drug repositioning analysis high-
lighted several candidates that may

warrant further investigations. We stress
thatmostof thefindings requirevalidation
in further studies, especially the part on
repositioning. Nevertheless, we believe
this work is of value in viewof the urgency
to address the outbreak of COVID-19.
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