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Abstract 
 
Aggregation of intrinsically disordered amyloid β (Aβ) is a hallmark of Alzheimer's disease. 

Although complex aggregation mechanisms have been increasingly revealed, structural 

ensembles of Aβ monomers with heterogeneous and transient properties still hamper detailed 

experimental accesses to early events of amyloidogenesis. We herein developed a new 

mathematical tool based on multiple linear regression to obtain the reasonable ensemble 

structures of Aβ monomer by using the solution nuclear magnetic resonance (NMR) and 

molecular dynamics simulation data. Our approach provided the best-fit ensemble to two-

dimensional NMR chemical shifts, also consistent with circular dichroism and dynamic light 

scattering analyses. The major monomeric structures of Aβ including β-sheets in both terminal 

and central hydrophobic core regions and the minor partially-helical structures suggested initial 

structure-based explanation on possible mechanisms of early molecular association and 

nucleation for amyloid generation. A wide-spectrum application of the current approach was 

also indicated by showing a successful utilization for ensemble structures of folded proteins. 

We propose that multiple linear regression in combination to experimental results will be highly 

promising for studies on protein misfolding diseases and functions by providing a convincing 

template structure. 
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Introduction 

 

Proteins are a key player for numerous biological processes by using their unique three-

dimensional or intrinsically disordered structures. Highly regulated intermolecular interactions 

endow proteins with the gain-of-function. However, interprotein mis-regulation often causes 

the loss-of-function and the gain-of-toxic function such as protein misfolding diseases due to 

aggregation1-2. It has been widely accepted that protein aggregation is deeply related to the 

onset and progress of various degenerative diseases1-3. 

 Several forms of aggregates of amyloid proteins such as amorphous aggregates, 

oligomers, protofibrils, and amyloid fibrils have been reported. Results revealed that 

morphology, structure, aggregation process, and cytotoxicity depend on the type of aggregates. 

Oligomers have attracted particular attention owing to their strong cellular cytotoxicity. 

Amyloid fibrils are best studied among protein aggregates. Unique properties of amyloid fibrils 

including cell-to-cell propagation, seeding capability, and prion-like behaviors are major risk 

factors for cellular homeostasis. 

-structure-rich amyloid fibrils largely display a two-step formation, slow nucleation 

producing a lag time and subsequent rapid elongation4-6. In contrast to nucleation-dependent 

amyloid formation, amorphous aggregation, protofibrillation, and oligomerizaion have been 

regarded as a nucleation-independent one-step process. Usually, they form instantly without an 

appreciable lag phase, manifest a growth phase, and, sometimes, aggregate between themselves. 

Of note, depending on experimental conditions, oligomers appear prior to amyloid formation 

as an intermediate, i.e. on-pathway oligomers, or remain as a dead-end product from the 

amyloid generation, i.e. off-pathway oligomers7-8. Disappearance of oligomers and subsequent 

productive nucleation for amyloid generation indicated that oligomers are kinetically stable 

and amyloid fibrils are thermodynamically stable aggregates as nationalized by Ostwald's rule9. 

A number of studies in the last two decades have provided fundamental information 

on protein aggregation using various experimental approaches including nuclear magnetic 

resonance (NMR), circular dichroism (CD), and fluorescence spectroscopies; however, much 

remains to be fully characterized to elucidate detailed mechanisms of the aggregation process. 

Especially, intermolecular interactions between soluble precursor proteins as well as their self-

association and aggregation in the early stages of amyloid formation are fairly difficult to be 
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examined at atomic or residue levels using direct experimental methods. Heterogeneous and 

transient initial structures and intermolecular interactions of disordered precursors in 

ensembles significantly hamper accurate and precise investigations on the early event of 

amyloid formation and the oligomerization. In order to overcome these difficulties, various in 

silico approaches including the molecular dynamics (MD) simulation and theoretical 

computation have been efficiently developed and exploited, which provided invaluable insights 

into the possible structural state and molecular association of amyloid proteins for 

aggregation10-27. 

To date, numerous in silico investigations have been devoted to elucidating the 

structural properties of intrinsically disordered amyloid  (A) peptides, of which aggregation 

in brains is suggested to be crucial for the pathogenesis of Alzheimer’s disease (AD) by 

inducing the neuronal cell death10. Previous studies reported that the formation of a -sheet 

structure in the C-terminal region of A (i.e., -strands at positions 31–34 and 38–41) facilitates 

oligomerization and amyloid fibrillation11-15. N-terminal region, in contrast, is more likely to 

reduce the tendency of the formation of neurotoxic β-hairpin structures through direct 

interactions with the central hydrophobic region16. In addition to structural characterization, 

molecular actions of disordered A monomers have also been explored in other complex 

molecular systems: 1) small molecule-A interactions; 2) biomolecules/membranes-A 

interactions; 3) spontaneous amyloid formation, etc17-23. 

However, computational investigations on accurate structures of A monomers which 

are physiologically disordered are still major challenges. A number of in silico studies used 

highly helical structures of A monomers determined in water-alcohol mixtures with NMR 

spectroscopy as a starting structure even in aqueous solutions24-25. Moreover, disordered 

structures of A monomers generated from highly helical structures were also often used as an 

initial template for simulations without experimental validation. As the starting structure is 

critical for both MD simulations and aggregation pathways26), much careful attention should 

be required for whether the initial structures of A used in the simulation are sufficiently 

reliable. 

Although in silico studies have remarkably improved our understanding of the 

monomeric structure and the molecular association (e.g., dimerization12, 27) and aggregation of 

A, the data accuracy and reliability are always questionable due to the sensitivity of c
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omputational simulations to physical models. Thus, the incorporation of experimental d

ata to computation is of particular importance to guide the rational design of molecul

ar systems and validate in silico outcomes. In these regards, more reliable information on 

initial structures of A monomers in an ensemble is required based on both in silico 

computation and in vitro experiments. Here, we examined initial structures of A42 monomers 

in an ensemble in combination of computational and experimental approaches. Enormous 

ensemble structures of A42 monomers were sufficiently sampled using the temperature 

replica-exchange MD (REMD) with an all-atomic protein model. Compelling initial structures 

in the ensemble best fit to experimental NMR chemical shifts with a novel multiple linear 

regression were successfully revealed (Fig. 1). A42 ensemble structures currently elucidated 

well explained possible mechanisms underlying the molecular association and aggregation for 

early-stage A42 amyloidogenesis. Our new hybrid approach will contribute to obtaining the 

insights into the molecular mechanisms of the A42-related aggregation and the development 

of therapeutic molecules targeting AD. It will be also useful for the structural and functional 

studies on intrinsically-disordered proteins. 
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Results 
 
Characterization of averaged A42 conformations in solution using biophysical 

approaches 
 

In order to reveal an averaged conformational state of A42 monomers at a physiological pH 

condition, we performed colloidal and structural characterization of A42 using several 

biophysical approaches including dynamic light scattering (DLS) measurements as well as CD 

and solution NMR spectroscopies at pH 7.5 (Fig. 2) We first tested a colloidal state of A42 

molecules using the size distribution obtained by DLS. As shown in Fig. 2A, monodispersed 

DLS peaks centered at the hydrodynamic radius (RH) of ~1.666 nm, similar to RH of ~1.6 nm 

obtained by Förster resonance energy transfer (FRET) and fluorescence correlation 

spectroscopy28, were detected without any additional peaks of large RH values. This indicated 

that A42 was in a monomeric state without aggregates such as oligomers and amyloid fibrils. 

Next, the secondary structures of A42 were examined using the far-UV CD 

spectroscopy and an algorithm which calculates the content of the secondary structure.29 The 

far-UV CD spectrum of A42 showed a single negative peak at ~200 nm with a weak 

characteristic band in the region between 210 to 230 nm (Fig. 2B), suggesting that secondary 

structures of A42 monomers were highly disordered as reported in previous studies.30-32 For 

further characterization, we determined the proportion of the secondary structure using 

BeStSel33: the contents of the secondary structure were calculated to be ~1.0% of α-helix, ~30.5% 

of anti-parallel -sheet, ~18.0% of turn, and ~53.1% of others mainly including random coil-

like structures. 

The two-dimensional (2D) 1H-15N band-selective optimized flip-angle short transient 

(SOFAST)-heteronuclear multiple quantum coherence (HMQC) spectrum provided atomic 

level evidences of largely unfolded conformations of A42 monomer (Fig. 2C). The SOFAST-

HMQC spectrum of A42 obviously presented a narrow distribution of chemical shifts of 

amide protons spanning from ~7.6 to ~8.5 nm as well as intense NMR peak intensities, which 

are well-known characteristics of unfolded proteins.34 Taken together, our data demonstrate 

that A42 initially exists as a monomer and its averaged structure is largely disordered with 
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partial -structures. 

 

Comparison between replica-exchange MD simulation and experimental results 

 

Previous MD simulation studies have been performed using both the conventional and 

enhanced sampling methods such as temperature replica exchange MD (REMD) in order to 

sample the locally stable structures which are generally difficult to be detected.14, 35-36 Thus, we 

first used the REMD sampling method in an attempt to fully explore the ensemble states of 

A42 monomer in both the implicit and explicit solvent models after 200-ns trajectories 

(80,000 ensemble structures and the 1-μs simulation in total) (see supporting information). 

Analyzed results revealed the distribution of the radius of gyration (Rg) and the 

proportion of the secondary structure of A42 monomers (Fig. S1A, B). The distribution of Rg 

obtained by the implicit solvent model was more widespread than that of the explicit solvent 

model (Fig. S1A). Average values of Rg for the explicit and implicit solvent models were 1.091 

and 1.729 nm respectively, indicating that averaged A42 conformations in the explicit solvent 

model are more compact than those in the implicit solvent model. By using empirical 

relationships between Rg, RH, and the residue number of intrinsically disordered proteins 

(IDPs),37 RH values in the explicit and implicit solvent models were calculated to be 1.533 and 

1.835 nm, respectively, which did not match the RH value of ~1.666 nm directly obtained by 

the DLS experiment. In addition, the proportion of -structures computed based on the two 

solvent models was also inconsistent with the calculated proportion using the BeStSel and 

experimental results of the far-UV CD spectra (Fig. S1B). The averaged secondary proportion 

shows 7.22%, 3.31% α-helix and 6.33%, 4.56% β-sheet in explicit and implicit solvent model, 

respectively. However, the BeStSel result shows more less α-helix proportion (1.0%) and larger 

β-sheet proportion (30.5%) than averaged results. 

We further generated a series of NMR chemical shift prediction data from vast MD 

simulation trajectories using the several algorithms of SHIFTX238, SPARTA+39, and 

UCBSHIFT40 (Fig. S1). We obtained a total of 80,000 PDB inputs from 200 to 1000 ns for 

each implicit and explicit solvent MD simulation. SHIFTX2 and SPARTA+ have been 

generally used for globular proteins, by comparison, UCBSHIFT is a newly developed 

algorithm to predict the NMR chemical shift of both globular and disordered proteins like IDPs. 
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We compared the average of chemical shifts computed using UCBSHIFT (Fig. S1C, D and 
Table S1), SHIFTX2, and SPARTA+ (Table S1) with experimental NMR chemical shifts (Fig. 
2C). All Scoretotals , denoted R2 scores which represent the proportion of variances for the 

chemical shifts, of averaged chemical shifts are negative or small values (details of scoring 

method in supporting information).  

Although narrow distributions of chemical shifts in NMR spectra obtained by both the 

computation and direct NMR experiments appeared to be similar, almost all of the chemical 

shifts calculated using MD results did not match those obtained by NMR experiments. 

Collectively, all these comparative results indicated that ensemble conformations of whole 

A42 monomers obtained from in silico MD simulations do not convincingly explain in vitro 

experimental results. 

 

Best-fit ensemble structures of A42 monomer from the linear regression approach 

 

As the above-mentioned computation did not provide reasonable results, we set out to develop 

a regression method which bridge in silico and in vitro experimental results. Our hypothesis is 

that MD simulations with an enhanced sampling method can explore sufficiently possible 

ensemble states of A42 monomer, and, thus, a NMR chemical shift pool for whole A42 is 

predictable. If a multiple linear regression approach is valid, it will find the most compelling 

ensemble (hereafter referred to as “sampled ensemble”) which consists of initial A42 

structures (hereafter “sampled ensemble structure”) by fitting NMR chemical shifts predicted 

to those experimentally obtained. Thus, individual A42 monomeric structures in the ensemble 

are determined with and their populations (Fig. 1). Our multiple linear regression method is 

specialized for finding the most reasonable coefficient (𝑤  ) in given ensemble, which 

represents the probability of each conformational state. In this case, the reasonable coefficients 

should satisfy the following three conditions: 1) the sum of coefficients is equal to 1, 2) each 

coefficient has a positive value, and 3) multiple linear regression does not possess interception. 

We performed the multiple linear regression for all sets of predicted NMR chemical 

shifts obtained using the MD trajectory and three algorithms, SPARTA+ (Fig. S2A, B), 

SHIFTX2 (Fig. S2C, D), and UCBSHIFT in both solvent models (Fig. 1). For the more reliable 

multiple linear regression analyses, a scaling function to minimize the sum of squares of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.23.457317doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.23.457317


9 

 

residual errors for the chemical shift of 1H and 15N was introduced. We also developed an 

algorithm to revise the effectiveness in the 1H chemical shift which is often caused by 

experimental conditions such as temperature using the non-negative least squares regression 

and repeated optimization to be 𝑤  of 1 (details in supporting information). All regression 

scores of the multiple linear regression are represented in supporting information (Tables S2). 

All Scoretotals after the regression are closed to 1, which suggests that the regression provides 

more well-fitted ensemble than averaged chemical shift. 

Among three analyzed results, the multiple linear regression with UCBSHIFT 

manifested the highest regression scores with the most similar NMR chemical shifts to 

experimental one, indicating that the UCBSHIFT-based multiple linear regression analysis 

reflect experimental results more faithfully in both solvent models (Fig. 3B, D). It is thought 

that UCBSHIFT offers best prediction as it was tailored algorithms for IDP-like proteins. Top 

6 major structures (Fig. 3A, C) and top 10 major structures (Fig. S3) of Aβ42 monomer in the 

regression analyses with UCBSHIFT were presented. In addition, we obtained a similar 

structural ensemble of Aβ42 based on published chemical shift data (BMRB Entry 2521833) 

(Figs. S4–S5), which is left-shifted approximately 0.2 ppm in the 1H axis compared to our 

chemical shift due to distinct experimental temperature. This spectra shift depends on 

increasing temperature for Aβ40 is already reported in previous study41. Similar illustration 

about major structures of Aβ42 monomers from other chemical shift prediction algorithm is 

also in supplementary data. (SPARTA+; Figs S6–S7 and SHIFTX2; Figs S8–S9) 

 

Validation of the regression approach with comparison to experimental results 
 

In addition to verification of the NMR chemical shift above, we further evaluated our regressi

on approach based on the experimental results, the hydrodynamic property and the proportion

 of the secondary structure of the conformations of Aβ42 ensemble in solution (Fig. 4). The 

weighted averages of Rg for sampled ensemble structures were first computed based on the re

gression coefficients. Then, we quantified a variance of the prediction results using each che

mical shift prediction as a discrete random variable of the conformational space (Figs. 4A an
d S10A). The weighted averages of Rg in the explicit and implicit solvent model with UCBS

HIFT are 1.179 nm and 1.631 nm, respectively. RH was further calculated to be 1.586 nm and 
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1.799 nm, respectively, using the same relationship used earlier.37 These values are more simi

lar to the experimental RH value of 1.666 nm than that obtained by REMD without the linear

 regression (Fig. 2A). Thus, it was indicated that our regression approach is more appropriate

 to demonstrate Aβ42 structures in an ensemble. 

Next, we calculated and analyzed the secondary structures of Aβ42 structures in the 

sample ensemble. Secondary structures of the sampled ensemble showed increased portions of 

β-sheet formation in both implicit and explicit solvent models with UCBSHIFT, SPARTA+, 

and SHIFTX2 (Figs. 4B and S10B). Before regression with UCBSHIFT, the averaged 

proportions of the secondary structure of α-helix, 310-helix, β-sheet, coil, and turn were 7.22%, 

5.20%, 6.33%, 26.80%, and 54.45% in the explicit solvent model, and 3.31%, 2.29%, 4.56%, 

50.54%, and 39.30% in the implicit solvent model, respectively. After regression with 

UCBSHIFT, the proportions were 1.30%, 4.14% 16.97%, 34.17%, and 43.42% in the explicit 

solvent model, and 1.96%, 0.68%, 8.43%, 50.34%, and 38.59% in the implicit solvent model, 

respectively. Importantly, sampled ensemble structures of Aβ42 monomers, i.e., results with 

both solvent models showed more similar secondary structures to those predicted using CD 

spectra (Fig. 2B). A number of compact structures in the explicit solvent model were detected. 

Hence, we conceive that a higher tendency of the explicit solvent model to sample β-sheet 

formation may be attributable to an easier conformational collapse compared to the implicit 

solvent model. 

Considering all the data for regression analysis comprehensively, the regression results 

using UCBSHIFT provides the best score among all prediction algorithms. It is probably 

because UCBSHIFT gives better prediction than other algorithms for IDP-like protein. And the 

sampled ensemble using explicit solvent model with UCBSHIFT prediction gives us better  

explanation for the experimental data than implicit solvent model. Therefore, afterwards, we 

focused on the regression results using UCBSHIFT with explicit solvent model to progress 

getting more structural information for Aβ42 protein. All of the data discussed later used data 

based on UCBSHIFT with explicit solvent model. 

 

Characterization of averaged structures of Aβ42 monomer in ensembles 

Ensemble - of Aβ42 monomer in the explicit solvent model determined using UCBSHIFT were 

further analyzed at the residue level, and improvement of structural refinement by the multiple 

linear regression was assessed (Fig. 5). All Aβ monomers in ensembles before the multiple 
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linear regression showed intrinsically disordered features without three-dimensional 

conformations (Fig. 5A). Turn and random coil structures were mainly observed with relatively 

minor β- and helical conformations. β-sheet formation was prominent in the central 

hydrophobic core (CHC) and C-terminal region than the other parts. Helical structures were 

exclusively formed in the C-terminal part with a higher proportion than β-structures. 

Noticeable changes in the secondary structures of Aβ42 monomer were observed after 

the multiple linear regression by keeping intrinsically disordered features (Fig. 5B). Sampled 

ensemble structures of Aβ42 increased the β-sheet propensity with decreases in helical contents. 

Proportions of β-structures increased throughout an Aβ42 monomer, and, several 

distinguishable patterns of local β-sheet formation were detected in the N-terminal (residues 

2–6 and 10–14), CHC (residues 17–23), and C-terminal regions (residues 27–41). These results 

were consistent with CD-based analyses which showed appreciable contents of β-structures 

(~30%) (Fig. 2B). At the same time, tendencies of the formation of helical and turn structures 

were attenuated, and, a small proportion of helical structures appeared in the range of residues 

10–16.  

In order to examine further conformational features and impacts of the multiple linear 

regression, the contact maps of Aβ42 structures in ensembles before and after regression 

treatment were constructed (Fig. 5C, D). No significant patterns were obtained in the explicit 

solvent model before linear regression (Fig. 5C). However, the multiple linear regression 

obviously revealed several anti-parallel patterns in the sampled ensemble structures (Fig. 5D). 

Especially, an anti-parallel pattern between the residues 19–25 and the residues 27–34 and 

another anti-parallel pattern between the residues 32–36 and the residues 39–42 are strongly 

appeared in the contact map. These anti-parallel patterns in the contact map indicated the 

formation of several β-strands (Fig. S3A).  

To verify these significant β-sheet patterns, we further examined the contact map of 

the implicit solvent model. Before the regression, there was a marked tendency of β-sheet 

formation in the CHC (residues 17-23) and C-terminal regions (residues 29-42) (Fig. S11A, 
C). Anti-parallel β-sheet patterns in the contact map obtained after the regression of the explicit 

solvent model were also broadly detectable in the contact map of the implicit solvent model 

(Fig. S11B, D). These findings suggested that the trend of the contact maps in both solvent 

models was similar although detailed contacts were not identical. Thus, the Aβ42 monomers in 

the sample ensemble have a high potentiality to contain more than two β-strands in our 
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experimental data.  

 

Expandability of the linear regression approach to ensemble structures of folded proteins 
 

To generalize and validate our mathematical methodology, we applied the multiple linear 

regression to two different folded proteins, ubiquitin and chymotrypsin inhibitor II (CI2). We 

used the implicit solvent model since it can fully explore major conformational states of folded 

proteins, and UCBSHIFT for the prediction of the chemical shift prediction.  

Ubiquitin (PDB code: 1D3Z42) (BMRB Entry 1541043) is a small protein with 76 

residues, and, exists in all eukaryotes. A unique but generalized “ubiquitin fold” is 

characterized by a complex topology consisting of a 5-stranded β-sheet, an α-helix, and a short 

310-helix.44 Together with these properties and several advantages such as no prosthetic groups 

and disulfide bonds as well as high solubility and thermostability,44 it has been extensively used 

as a model protein for the studies on folding, structure, and NMR. We ran a 1-μs REMD 

simulation to maximally explore possible conformational space, and performed the regression 

approach with the optimization process as in the case of Aβ42. (Figs. 6A and S12). Detailed 

scores of chemical shift values are summarized is in Table S3–S4. Of note, results unveiled that 

all structures of the sampled ensemble were similar to solution NMR structures in PDB (Fig. 
6B).42 CI2 (PDB code: 3CI245) (BMRB Entry 497446) was further examined using the same 

procedures. CI2 is a small 64-residue serine proteinase, and has 4 β-sheet structures and an α-

helix.46-47 Although the chemical shift prediction result was not perfectly fit to reference data, 

all structures in the sampled ensemble were similar to NMR ensemble structures previously 

reported (Figs. S13–S14 and Tables S5–S6)45, suggesting that our approach is still valid for 

CI2. The comparisons between ensemble structures obtained using our linear regression 

approach and NMR spectroscopy are shown for both ubiquitin and CI2 (Fig. S13B). Overall, 

all these results verify that our multiple linear regression method is not limited to unstructured 

Aβ42, and, also valid for the investigation of structural ensembles of folded proteins. 
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Discussion 
 

The overall mechanism underlying Aβ aggregation has been increasingly revealed; 

however, early-stage intermolecular interactions and associations of Aβ monomers for the 

formation of oligomers and amyloid fibril still remain elusive. In this study, we hybrided in 

vivo and in silico results to compensate demerits and utilize advantages of two different 

methods, and, finally generated a new methodological approach which reveals heterogeneous 

initial structures of Aβ42 monomers in the ensemble. Accordingly, we exclusively describe 

several representative initial structures of Aβ42 monomers which would be important for 

understanding key of Aβ aggregation. 
Aβ protein is easy to aggregate in room temperature. This aggregation and 

accumulation of Aβ protein cause AD. Because of this pathogenetic necessity, it is important 

to study Aβ aggregation. Although Aβ protein have no well-defined secondary structure, the 

ensemble of protein in specific environment frequently reveals several local secondary 

structures. These patterns can be appeared in proportion to its energetic states. In this situation, 

some specific structures of ensemble provide additional opportunities to aggregate as nucleus. 

Knowing structures in an ensemble is important to have insights into the molecular mechanism 

of the polymorphs of amyloid fibrillation at the early event. Depending on ambient conditions, 

major and minor populations will be changed in new equilibrium, and, in turn, resulting in the 

formation of a new nucleus for amyloid formation. This view is based on thermodynamics. But, 

it would kinetically possible that a structure with a minor population can form rapidly a nucleus, 

and, immediately generate short amyloid fibrils. Although the population of aggregation-prone 

structures is minor, aggregation event is sequentially spread out from the small number of initial 

structures. 

Recent studies paid attention to a variety of self-association modes of Aβ.48-49 Tycko48 

reported that Aβ can construct varied specific fibril morphologies. The polymorphic 

characteristics can define a molecular mechanism for about different range of toxicity. It 

suggests that specific environment affects to make “the initial seed” of a specific aggregation 

for Aβ. A lot of previous studies investigated the aggregation condition of Aβ using NMR and 

further analysis.48-51 Similar initial structure-dependent aggregations were also reported in 

other proteins such as cytochrome c52, tau6, α-synuclein53 and 2-microglobulin.54 For example, 

membrane binding of α-synuclein induces the membrane-unbound regions to be relatively 
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unstructured so that this membrane disruption effect makes different aggregation patterns of α-

synuclein. 

 We suggested representative local β-sheet structures of Aβ42 ensemble. These local 

formations are supported by the CD spectra result in the region between 210 to 230 nm. These 

local β-sheet structures are influenced by the central hydrophobic core (CHC) and hydrophobic 

C-terminus region of Aβ42.55-56 Several MD simulation studies suggested that Aβ42 forms a 

major anti-parallel β-hairpin involving the central hydrophobic cluster residues 16–21 with 

residues 29–36.15, 57 Turn 26–27 occurs simultaneously with β-sheet structure involving the 

central hydrophobic cluster residues 16–21 with residues 29–36.57 Our results showed a similar 

appearance which has less secondary structures at the range of residues 25–28 (Figs. 5B and 
7) The structure which has the most highest occurrence (1st structure of figure 3A) in regression 

result are proximal to these tendency (Fig. 3A). These Aβ monomer structure might be 

energetically stable so that it appears more frequently. From a lot of studies, the CHC region 

and C-terminus region of Aβ42 seem to have a crucial role to compactness of Aβ42 for all 

conformations including monomer, dimer, oligomer and furthermore fibril state.58-60 Intra/inter-

molecular hydrophobic interactions between these regions control the amyloid-formation 

pathways of Aβ42.58, 60 Considering these evidences comprehensively, the most highest 

occurrence structure has a possibility to be initial structure of aggregation such as nucleation-

dependent amyloid formation including oligomerization and surface-catalyzed secondary 

nucleation and nucleation-independent elongation. The general kinetic model of amyloid fibril 

formation was reported on previous studies.11, 61 

 Nucleation-independent oligomerization of Aβ protein is commonly affected by 

certain hydrophobic units. Some previous studies reported the importance of extended β-

hairpins to form β-sheet oligomers.54, 62-63 And, Yang and Teplow13 reported the five 

independent β-strands, comprising residues 1–5, 10–13, 17–22, 28–37, and 39–42. These 

folding units are also shown in Aβ42 dimer simulation.62 Also, Hoyer et al64 suggested the β-

hairpin structure with several hydrophobic clusters (L17, F19, I32, L34, and V36) constitutes 

an intermediate conformation on the pathway to amyloid fibrils for Aβ40 protein. The Aβ40 

oligomers might form by hydrophobic stacking of β-hairpins.64 Our residual secondary 

proportion result for sampled structures shows similar significant local β-sheet patterns (Figs. 
5B and 7). The local β-sheet distribution can be distinguishable into small number of residues 

2–5, 9–12, wide range of CHC region which consists of residues 15–23, and two separated 
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hydrophobic C-terminus region spanning residues 30–36 and 38–41. Although these patterns 

are not appeared simultaneously, these characteristics of Aβ42 may make to progress into 

dimerization and oligomerization. Furthermore, the oligomerized Aβ protein can be continued 

to protofibril formations by hydrophobic stacking. 

 Elongation of amyloid fibrils and protofibrils in growth phase is nucleation-dependent 

amyloid formation because their fibral shapes depend on the initial nucleus of early-phase. 

Karamanos et al54 reported the rearrangements of the hydrophobic core plays key role in 

aggregation, which results in exposure of buried hydrophobic residues. A native-like 

arrangement of the main-chain is enough to expose hydrophobic parts of the protein that 

presumably act as nucleation points for amyloid aggregation. Also, they mentioned unfolding 

energies, hydrophobicity and propensity of inter/intra-molecular contacts are linked to amyloid 

propensity. Previous MD strudies13, 65 reported that the C-terminus of Aβ42 protein has an 

frequent β-sheet forming tendency. This thermodynamic feature makes inter-molecular 

contacts in elongation phase and sequential rearrangements of the hydrophobic core might be 

extended to amyloid elongation. Another previous solution NMR study showed the residue-

specific solvent protection map within the Aβ42 fibril.66 It is composed to two protected regions, 

spanning residues E11-G25 and K28-A42. These hydrophobically protected regions can be 

assembled from rearrangements of the hydrophobic cores, comprising residues 10–13, 17–22, 

28–37, and 39–42. The partially β-sheet forming structures are shown in supplementary figure 

S3A. 

 Another question is that it is possible to understand the primary nucleation event from 

our results. In the primary nucleation, a partial α-helical structure is important intermediated 

state for nucleation-dependent amyloid formation.26 Lin et al26 suggested various aggregation 

pathway of Aβ40. According to their aggregation pathway with conceptual energy diagrams, 

partial α-helical structures are aggregation-prone and sticky because of their enhanced 

hydrophobicity. These partial α-helical structures might strengthen the helix–helix interaction, 

causing rapid aggregation in primary nucleation. The partial α-helical structure is revealed on 

the residues E11, V12, H13, H14, Q15, and K16. Our residual secondary proportion data 

supports this significant composition in E11 to K16 region, which does not have only α-helix, 

but also 3-10 helix, too. Our sampled representative structures show a reliable partial α-helical 

structure (7th structure of Figure S3A) which satisfies previous thermodynamic feature of C-

terminus.65 However, we did not ensure that this structure to be able to initial seed for primary 
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nucleation and the measured experimental chemical shift which is used in performing multiple 

linear regression shows oligomerization process in progress. If we can measure sequential time 

series NMR chemical shift data, we could determine the linkage between partial helical 

structures and primary nucleation using our regression method. 

Our regression method provides several major structures and proportion of ensemble for each 

structure. It is developed by focusing to fit chemical shift prediction to experimental chemical 

shift, which used the data from both NMR chemical shift and MD simulation with replica 

exchange method. It suggests the ensemble structure in a specific environment. As a result, our 

regression approach provides the insight of Aβ ensemble structure by bridging between NMR 

chemical shift and MD simulation. 

Also, our method can be applied various other studies. For example, we can get 

structural information about major populations. We can perform further studies such as protein-

protein or protein-ligand binding MD simulation using given IDP-like structures as initial 

structures. Some monomers or more complex protein systems are important for pharmaceutical 

fields. Our mathematical tool can be easily applied to other molecules including amyloid 

proteins, metal ions, proteins including antibody and potent inhibitors so that we can easily get 

the insight of molecular and thermodynamical features.  

Although our study already shows some reasonable molecular features for Aβ protein, it still 

has some limitations and capability of improvements. The sampled structures from the 

regression have the potential to show specific Aβ conformation state at the time when it 

progresses into oligomerization. However, the results of MD simulation for Aβ monomer do 

not provide any intra-molecular interactions so that the chemical shift prediction does not 

consider the shielding effects for dimer, trimer, and oligomer state of Aβ protein. If we perform 

to enlarge the input ensemble pool for regression method, then we can catch out more reliable 

Aβ protein progressing dimerization and oligomerization. In addition, because our regression 

approach depends on sampling performance of MD simulation (the explored ensemble states) 

and accuracy of chemical shift prediction algorithm, the prediction errors can be caused. Better 

sampling and better chemical shift prediction would provide more reasonable ensemble 

structure of proteins. Moreover, there is another approach to improve the reliability of our 

regression approach, which is to combine previous NMR experimental data such as 

NOEs, J couplings.14-15, 36, 57, 67 
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Conclusions 
 
Heterogeneous and short-lived structures in ensembles are fundamental to unraveling the 

inherent dynamics and function as well as disease-causing aggregation of proteins. We 

developed the new mathematical tool to reveal compelling ensemble structures of intrinsically-

disordered Aβ based on the experimental NMR chemical shift and MD simulation data. Initial 

Aβ structures provided possible explanations for the association and aggregation of Aβ at the 

atomic resolution key to understanding of AD pathogenesis. The successful application to 

folded proteins supports a broader exploitation of our regression approach to study ensemble 

structures of proteins in solution. Convincing ensemble structures with our regression will 

particularly contribute to gaining insights into the aggregation mechanism as well as the 

intermolecular interaction between amyloid proteins and potent inhibitors by supplying a 

reasonable template structure for the in silico study. 
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Main Figures 

 
Figure 1. Schematic flow of the multiple linear regression approach. Three main 

steps are sequentially shown from A to C. (A) Possible Aβ42 monomer structures 

obtained from replica exchange MD simulation (REMD). (B) Best-fit of predicted NMR 

chemical shifts obtained using REMD and UCBSHIFT to the most compelling 

ensemble of initial Aβ42 structures using the multiple linear regression. (C) Solution 

structures of Aβ42 monomers in the ensemble (i.e., sampled ensemble structures). 
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Figure 2. Structural and colloidal characterization of Aβ42. (A-C) Several 

biophysical approaches were used: dynamics light scattering (A), far-UV circular 

dichroism spectroscopy (B), and two-dimensional solution NMR (SOFAST-HMQC) 

spectrum (C). RH in A indicates the hydrodynamic radius. The contents of the 

secondary structure calculated using the BeStSel are shown in B. 
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Figure 3. The major structures of Aβ42 monomers in the ensemble. (A, C) 

Representative Aβ42 structures with higher populations obtained using the 

experimental NMR chemical shift and UCBSHIFT in the explicit (A) and implicit solvent 

model (C). Secondary structures are colored as follows: α-helix (red), β-sheet (blue), 

310-helix (magenta), β-bridge (orange), turn (lime), and coil (white). The weighted 

average of chemical shift data by the proportion in the explicit (B) and implicit solvent 

model (D) is superimposed with experimentally-determined chemical shifts.  
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Figure 4. Effects of linear regression on structural properties of Aβ42 monomers 
in ensembles. (A, B) The radius of gyration (Rg) (A) and proportion of the secondary 

structure (B) of Aβ42 before (Explicit and Implicit) and after multiple linear regression 

(UCBSHIFTexp and UCBSHIFTimp). Error bars in A indicate the standard deviation. The 

type of the secondary structure is shown with the single letter and color as follows: H, 

α-helix (red); G, 310-helix (orange); E, β-sheet (blue); C, coil (gray); and T, turn (white). 
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Figure 5. Linear regression-dependent changes in the secondary structure and 
intramolecular contact of Aβ42. Proportion of the secondary structure (A and B) and 

contact map (C and D) of Aβ42 monomer ensemble in the ensemble before (A and C) 

and after the regression approach (B and D) in the explicit solvent model. The type of 

the secondary structure in A and B is shown with the single letter and color as follows: 

H, α-helix (red); G, 310-helix (orange); E, β-sheet (blue); C, coil (gray); and T, turn 

(white). Degree of the contact between residues of Aβ42 in C and D is scaled from 0.0 

to 1.0 which is shown by the gradation (right). 
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Figure 6. Multiple linear regression approach for ubiquitin. (A) Comparison of 
chemical shifts calculated using linear regression (red) with those directly obtained 
using NMR spectroscopy (black) (BMRB Entry 15410). (B and C) The contact map (B) 
and ensemble structures (C) of ubiquitin after multiple regression are shown. The 
secondary structures are colored as follows: α-helix (red), β-sheet (blue), 310-helix 
(magenta), β-bridge (orange), turn (lime), and coil (white). 
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Figure 7. Possible aggregation mechanism from generated A42 ensemble.  
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