
Exploring Event Correlation for Failure Prediction in
Coalitions of Clusters

Song Fu and Cheng-Zhong Xu
Department of Electrical and Computer Engineering

Wayne State University
Detroit, MI 48202

{song, czxu}@eng.wayne.edu

ABSTRACT
In large-scale networked computing systems, component failures
become norms instead of exceptions. Failure prediction is a cru-
cial technique for self-managing resource burdens. Failure events
in coalition systems exhibit strong correlations in time and space
domain. In this paper, we develop a spherical covariance model
with an adjustable timescale parameter to quantify the tempo-
ral correlation and a stochastic model to describe spatial correla-
tion. We further utilize the information of application allocation
to discover more correlations among failure instances. We cluster
failure events based on their correlations and predict their future
occurrences. We implemented a failure prediction framework,
called PREdictor of Failure Events Correlated Temporal-Spatially
(hP), which explores correlations among failures and fore-
casts the time-between-failure of future instances. We evaluate
the performance of hP in both offline prediction of fail-
ure by using the Los Alamos HPC traces and online prediction
in an institute-wide clusters coalition environment. Experimental
results show the system achieves more than 76% accuracy in of-
fline prediction and more than 70% accuracy in online prediction
during the time from May 2006 to April 2007.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, per-
formance measures

General Terms
Measurement, Algorithms, Experimentation, Performance.

Keywords
Failure prediction, Coalition clusters, Temporal correlation, Spa-
tial correlation, System availability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’07, November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

1 Introduction
Networked computing systems continue to grow in scale and in
the complexity of their components and interactions. In these sys-
tems, component failures become norms instead of exceptions.
For example, a recent system reliability study on a 512-node LLNL
ASC White machine showed that the mean time to failure of a
node was about 160 days [31]. If the same failure model is ap-
plied to the largest BlueGene/L machine, there would be more
than 17 node failures per hour. As a result, a long running job
on a large number of nodes may find it difficult to make progress
due to the frequent failures. It was because of the system avail-
ability concern, BlueGene/L in LLNL had to disable L1 cache in
each node when jobs larger than 4 hours was running because the
cache was found prone to failure.

Checkpointing is a conventional approach for fault tolerance.
Because checkpointing a job in a large-scale system could incur
overhead as high as more than half an hour execution time, fre-
quent periodic checkpointing often prove counter-effective. As
the scale and complexity of high performance computing (HPC)
systems continue to grow, research on failure management has re-
cently shifted onto failure prediction and related proactive auto-
nomic management technologies [29, 23, 41, 25, 22, 27, 13, 11,
10]. Failure prediction is a crucial technique for understanding
emergent, system-wide phenomena and self-managing resource
burdens. Based on the analysis of failure data in a system, a
failure predictor aims to determine possible occurrences of fatal
events in the near future and help develop more effective failure
tolerant solutions for improving system availability.

To predict the trend in failure occurrence, we need an in-depth
understanding of the cause of failures and their empirical and sta-
tistical properties. Past studies on component failures in produc-
tion systems, such as IBM BlueGene/L supercomputer [23] and
Los Alamos National Laboratory (LANL) HPC clusters [5, 29],
revealed important patterns in failure distribution. Although the
time-between-failure is highly non-linear, there exists the time-
of-day and day-of-week patterns in long time spans [29, 28]. Tem-
poral correlation aside, failure events, depending on their types,
display strong spatial correlations: a small fraction of nodes may
experience most of the failures in a coalition system [28] and mul-
tiple nodes may fail almost simultaneously [23]. These temporal
and spatial correlation properties of failure events revealed by of-
fline profiling provide important information for predicting the
trend of failure dynamics.

There were recent works utilizing temporal and/or spatial cor-
relations of failures for failure prediction and proactive manage-
ment; see [27, 22, 31] for examples. They explored the tempo-
ral correlation via profiling the time-between-failure of different

1

Internet

App. App. App.

Node Scheduler

Resource
Manager

Failure
Manager
Failure

Predictor

Event Sensor

Firewall

Failure events

Tier 1: node-wide

Master node

Worker node

Department cluster

Task
Dispatcher

Resource
Manager

Failure
Manager
Failure

Predictor
Failure

Collector

Administrat-
ive Tools

Tier 2: cluster-wide

Department cluster

Interconnected cluster system

Tier 3: system-wide

System management

Failure prediction

Failure event aggregation
from master nodes

Figure 1: hP: a hierarchical failure prediction system for a coalition system.

failure types. Lianget al. [22] also considered spatial correla-
tion among failures. They found skewness in the distribution of
network failures among the BlueGene midplanes.

We notice that most of today’s failure prediction approaches
are heavily empirical, applying heuristics to explore temporal and
spatial correlation of failures based on profiling. There lack for-
mal models to quantify the temporal correlation among failures
in different timescales. A cluster coalition system is hierarchi-
cal in structure and failures may occur in multiple scopes: node,
cluster and system. There are no models to quantify the spatial
correlation of failures for predicting their future distribution and
locations in different scopes. Because the co-existence of both
spatial and temporal correlation may lead to failure propagation
from node to node at different times, the models should also be
able to facilitate the study of failure propagation and its impact on
prediction accuracy. It is known that there is dependency between
the workload (its type and intensity) and the failure rate [29, 20,
28]. However, there are few work on the impact of application
allocation on failure prediction, either.

In this paper, we exploit both temporal and spatial correlations
for failure prediction in coalition systems. We develop a covari-
ance model with an adjustable timescale to quantify the temporal
correlation and a stochastic model to describe spatial correlation.
We utilize information of application allocation in a coalition sys-
tem to discover more correlations among failure instances. Fur-
ther, we investigate and model the failure propagation resulted
from both temporal and spatial correlations. We cluster failure
events in a coalition system based on their correlations and pre-
dict their future occurrences. We summarize our contributions as
follows:

1. We define afailure signaturerepresentation to capture the
system performance metrics associated with a failure event.
It’s effective for clustering and analyzing the temporal and
spatial correlations among failure events. The construction
of an effective signature requires to consider the hierarchi-
cal structure and interactions among components at differ-
ent scopes of a coalition system.

2. We develop a spherical covariance model with an adjustable
timescale parameter to quantify temporal correlation among
failure events. We use the distance in time between two
failures to calculate their covariance value, which specifies

the extent of their correlation. The timescale in calculating
the covariances is adjustable for different types of failures.

3. We propose a time-efficient aggregate stochastic model to
quantify spatial correlations. We use the probabilistic dis-
tribution of failures to compute the spatial covariance among
failures. We model the failure propagation phenomena by
investigating failure correlations in both time and space do-
mains.

4. We utilize the application allocation information to refine
the possible correlations among failure occurrences, based
on our observation in a real coalition system: 71.5% appli-
cation I/O failures are clustered in space and their locations
are determined by job scheduling decision.

5. We implemented a failure prediction framework, called PRE-
dictor of Failure Events Correlated Temp-Spatially (hP),
which explores correlations among failures and forecasts
the time-between-failure of future instances. We evaluate
the performance of hP node-wide and system-wide
in both offline prediction of failure by using the LANL HPC
traces and online prediction in an institute-wide computa-
tional grid.

A prototype of hP, has been in operation since May
2006 on a production coalition environment: the Wayne State
University Computational Grid (WSU Grid) [6]. The grid con-
sists of three clusters located in three campus buildings and con-
tains 40 high-performance compute servers in support of university-
wide high-performance computing application programs. Online
failure predictions were performed with observed failures and on
production traces from more than one and a half years of opera-
tions. The prediction results show our prediction system can fore-
cast the occurrence time of future failures with more than 70% of
accuracy. We also evaluated the performance of hP using
the trace from the LANL HPC coalition system. Offline evalua-
tion results show that we can forecast of the failure occurrences
with higher than 76% accuracy, and predict the occurrences of
failures on individual nodes with Bayesian networks.

The rest of this paper is organized as follows: Section 2 de-
scribes the framework of hP and its prediction method-
ology. Section 3 presents the algorithms to cluster failure sig-
natures based on their spatial and temporal correlations. Offline

2

Table 1: Variables characterizing failure dynamics.

Variable Description
f ID Failure identification number

f Loct Location of a failure including cluster ID and node ID
f Type Classification of a failure based on its cause
time Timestamp when a failure occurs
tb f Time between successive failures in node, cluster or system

fCount Number of failures in node, cluster or system for a time window
usrUtil Percentage of CPU utilization that occurred while executing at the user level in a node
sysUtil Percentage of CPU utilization that occurred while executing at the system level in a node
f rmUtil System frame utilization in a node

pktCount Number of packets transmitted and received by a node for a time window
ioCount Number of I/O requests to the physical disks of a node for a time window

alloc Allocation information of nodes to application jobs
sptCorr Spatial correlation among failures in cluster or system
tmpCorr Temporal correlation among failures in node, cluster or system

prediction by hP using the LANL HPC trace is evaluated
in Section 4. Section 5 discusses the performance of online pre-
diction in the WSU Grid. Section 6 presents the related work and
Section 7 summarizes the paper.

2 Failure Prediction Architecture and Method-
ology

In this section, we address two key issues in failure prediction:
(a) How do we design the architecture of failure prediction sub-
system that explores failure dynamics in a coalition? (b) What
representation should we use to describe failure instances and the
associated system performance variables? An additional issue is
how we cluster failure signatures to identify temporal and spatial
correlations among failure occurrences. We leave this issue to the
next section.

Without loss of generality, when we refer to a “failure” in the
following discussion, we mean any anomaly caused by hardware
or software defect, incorrect design, unstable environment or op-
erator mistakes that makes services or compute nodes unavail-
able. We also analyze the properties of particular types of failures
in Section 4.

2.1 Hierarchical Failure Prediction Frame-
work

To analyze the correlations of failure instances in different scopes
of a coalition system, we design a failure prediction framework
with a multi-layer prediction architecture. Failure events along
with the associated performance variables are described by a for-
mal representation, which allow us to cluster correlated failures
and to utilize this correlation information for prediction.

Figure 1 depicts the architecture of hP. Failure predic-
tion is invoked on a compute node or a master node upon its job
scheduler receiving a job submission from a user. In compute
node wide,event sensorkeeps track of the new events recorded
to the local event logs since its last operation, extracts failure
records and creates formatted failure reports for thefailure pre-
dictor. It also monitors the performance dynamics of executing
applications and measures the resource utilization. Upon invoca-
tion, the failure predictor calculates the estimates of future failure
occurrences based on information collected by the event sensor.
To filter out scheduled events, such as system maintenance oper-
ations, from failure reports, the failure predictor extracts records

of these scheduled events from received system activity reports
maintained and sent by the master node. With the prediction re-
sults,failure managergenerates failure alarms and system avail-
ability reports; and finally updates the system profiles. It also
sends a copy of the nodal failure report to the master node for
cluster-wide failure prediction and resource allocation.

In cluster wide, the master node collects failure reports from its
managed compute nodes; statistically processes and analyzes the
failure events; predicts prospective failures; and generates system
availability reports for the resource scheduler and system admin-
istrator. Cluster-wide failure predictor analyzes spatially and tem-
porally correlated failures and estimates cluster availability based
on predicted failure dynamics. System-wide failure predictor re-
ceives failure reports from master nodes of clusters and forecasts
the failure dynamics of the entire coalition environment for sys-
tem management.

2.2 Failure Signatures
An important issue we address is that of extracting from a running
system an indexable representation that distills the essential char-
acteristic from a system state associated with a failure event. For
this end, we define several performance variables of system char-
acteristics in the face of failures. However, defining these vari-
ables is nontrivial. They should be able to present the difference
between system states in normal execution and those in failures.
They also need to capture the temporal and spatial correlations of
failure events in multiple tiers of the system components.

By investigating the structure of coalition system and the corre-
lations of failure occurrences in multiple scopes of a system, we
define the performance variables used in our failure prediction
framework, as listed in Table 1. They are raw data collected from
the system event logs or derived from the raw data. The runtime
states of a subsystem is characterized by its processor and mem-
ory utilization and the volume of communication and I/O opera-
tions. These performance metrics provide insightful information
about the causes of failures. Variables, such as the number of fail-
ures in a time window, their types and intervals, are used to model
the statistical characteristics of failure dynamics. Along with the
nodal allocation information, these variables are utilized to estab-
lish the spatial and temporal correlations among failure events.
Note that some of the variables, such asfCount, tb f , sptCorr
andtmpCorr, can be used on a node, cluster or the entire system.
We use the subscript to specify the corresponding system scope
in which these variables are used in the following discussion.

3

CPU

Time between failures (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Time between failures (minutes)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

MEM

Time between failures (minutes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

HW-ALL

x103

(a) Hardware Failures

CPU

Time between failures (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Time between failures (minutes)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

MEM

Time between failures (minutes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

HW-ALL

x103

(b) CPU Failures

CPU

Time between failures (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Time between failures (minutes)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

MEM

Time between failures (minutes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

HW-ALL

x103

(c) Memory Failures

SW -all

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

OS

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Parallel File Syst

Time between failures (minutes)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

(d) Software Failures

SW -all

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

OS

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Parallel File Syst

Time between failures (minutes)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

(e) OS Failures

SW -all

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

OS

Time between failures (minutes)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

Parallel File Syst

Time between failures (minutes)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

x103

(f) Filesystem Failures

Figure 2: Temporal distribution of major hardware and software failure events in LANL Cluster 20 from September 1, 2003 to
August 31, 2005.

To predict occurrences of future failures in a coalition system,
we need a representation that provides essential information about
system performance status associated with a failure event. By
clustering these representations, we are able to capture the failure
dynamics across different scopes of the system. We will call such
a representation afailure signature. Based on the performance
variables defined in Table 1, a failure signature is constructed as a
tuple (f ID, time, f Loct, f Type, util, pktCount, ioCount), where
util includes (usrUtil, sysUtil, f rmUtil) of a compute node, and
pktCountandioCountmeasure the number of packets and I/O re-
quests in the sampling period that immediately precedes the fail-
ure. With these failure signatures collected in a coalition system
and the node allocation informationalloc, we will analyze the
failure distributions and correlations in both space and time do-
mains.

2.3 Design of Failure Predictor
The failure predictor of hP uses the failure signatures to-
gether with the derived temporal and spatial correlations among
failure signatures to forecast the probable patterns of failure oc-
currences in the future. (For simplicity in notation, we useδ to
denote time-between-failure (tbf).) That is, given the failure oc-
currence in an observation instanceδo, F(δo), estimateF(δo+δp),
whereδp is the interval after which a prospective failure will ap-
pear with probability.

Occurrences of failures are quite dynamic in a large-scale coali-
tion system. The number of failure events varies with time. Nu-
merically, its value is related to some performance metrics of the
system,e.g. the resource utilization, the volume of communi-
cation and I/O operation. We model this relationship by using
functionF in multiple scopes of a coalition, as

Fnode(δn, per fn, tmpCorrn) = 0
Fcluster(δc, per fc, sptCorrc, tmpCorrc) = 0
Fsystem(δs, per fs, sptCorrs, tmpCorrs) = 0

(2.1)

whereδ denotes the time-between-failure in a node, cluster or
system,sptCorrandtmpCorrare the spatial and temporal corre-
lation among failure events in the corresponding scope. The per-

formance state,per f, of a node can be represented by (usrUtil,
sysUtil, f rmUtil, pktCount, ioCount). The per fc and per fs are
composed of the mean and variance values of these performance
variables in a cluster and the system, respectively. To find the es-
sential performance variables for a failure instance, we analyze
their probabilistic dependency among them in experiment evalu-
ation sections.

In essence, predicting failures in a coalition system is to find
approximate functionF . Failure events are highly non-linear and
it is difficult to find the relation between failure occurrences and
performance states that fits various product systems. Instead of
deriving functionF directly, the predictor uses statistical learn-
ing approaches to perform failure prediction based on the current
failure statistics and the resource utilization level. The prediction
procedure can be expressed as follows,

x(δi+1) = G(x(δi), x(δi−1), . . . , x(δi−k+1)) (2.2)

wherex denotes the measures of failure dynamics andG is the
prediction function determined by a prediction mechanism with
parameters’ values in thek observations. The predictor’s input
layer isk consecutive measuresδi , δi−1, . . . , δi−k+1, obtained with
the aid of a tapped delay line.

In this way, failure correlations spanning across multiple obser-
vations are kept for failure prediction. In essence, for an average
interval δ̂, we can maintain the correlation information of a pe-
riod of k ∗ δ̂ by using the order-k predictor, while being able to
make failure predictions at a granularity ofδ̂ at the same time.
This scheme also increases the robustness of the failure predictor
to noisy inputs because the noise effect of each measure fed to
the predictor is suppressed by the multi-step looking back of the
prediction mechanism.

3 Signature Classification based on Tempo-
ral and Spatial Failure Correlations

The objective of applying clustering to a database of failure sig-
natures is to find the natural grouping of these signatures that
characterizes correlations among failure instances. The output
of clustering is a set of groups, plus a characterization of each

4

group. By inspecting the elements of failure signatures in each
group, we can identify different regions of anomaly as well as a
hint of the causing problems. In addition, the central signature
of a group can be used as a syndrome of the failures, because it
highlights the metrics that characterize a set of manifestations of
the neighboring failure instances.

In order to render the description above operational, we spec-
ify distance metrics and clustering algorithms. We cluster fail-
ure signatures in two directions. One is to discover the causal
dependency among failure instances in the space domain. The
other is to explore their temporal locality in the time domain. In
the following discussion, we use the availability and performance
traces [5] from the LANL HPC system. The data was collected
over the past 9 years and covers 22 high-performance computing
systems, including a total of 4750 computers and 24101 proces-
sors. The data contains an entry for every failure that occurred
during the 9-year time period. The associated performance traces
recorded the resource consumption information by each user ap-
plication and events occurred in the running of the system. For
detailed information about the traces, please refer to [29].

3.1 Temporal Correlation
Studies in [29, 28, 23] found the skewness of failure distribu-
tion in time domain. Multiple failures may occur in a short time
period. Liang [22] and Sahoo [27] used a fix time window to
classify failure patterns for all types of failures. In reality, the
time-between-failure (tb f) may follow various distributions for
different types of failures. We profile time-between-failure in the
LANL HPC system from its failure traces. Figure 2 presents the
cumulative distribution functions oftb f for the major hardware
and software failures. From the figure, we can see thattb f has a
heavy tail distribution and its shape varies with the failure type.
Software failures have a much more heavily tailed distribution
in time than hardware failures. Even different types of software
failures, such OS and file system failures, have distincttb f pat-
terns. This discovery suggests that we should use an adjustable
timescale to model and measure the temporal correlation among
failures of different types.

By closely inspecting the system event logs and performance
logs, we found that the temporal locality of failure events was
mainly due to two causes:

• (T1) some faults1 cause several failure instances occurred
on multiple compute nodes in a short interval;

• (T2) a failure event may appear multiple times on a node
before its root problem is solved.

To cluster failure signatures in the time domain, we define the
distance between two failure eventsfi and f j as the elapsed time
between them, denoted bydi, j = ‖ fi − f j ‖ = |t fi − t f j |. We
develop a spherical covariance model, based on recent advance
of Bayesian statistics [9], to quantify the temporal failure correla-
tions. The model characterizes the relations of failure instances in
time space based on their distance between each other, even when
they occur on different nodes. We assume the timers of compute
nodes in a cluster are synchronized. The spherical covariance,
CT(d), for temporal correlation is defined as:

CT(d) =

{
1− α d

θ
+ β(d

θ
)3 if 0≤d≤θ

0 if d > θ
(3.1)

1A fault is associated with incorrect state of a hardware or soft-
ware component and it may cause a reduction in, or loss of, the
capability of a component to perform a required function.

whereθ is an adjustable timescale parameter for determining the
temporal relevancy of two failure events,α and β are positive
constants withα = 1 + β. We use different values oftheta to
quantify temporal correlations of different types of failures. For
example, withθ = 1 hour for the LANL HPC system, we can
capture more than 35% OS failures. For other coalition systems,
θ can be determined by inspecting the cumulative distributions of
the inter-failure time from their event logs. Two failures taken
more thanθ distance apart are considered as uncorrelated in time.
CT(d) is nonnegative with limiting values of 1 atd = 0 and of 0
at d = ∞. After specifying the value ofθ, we cluster the failure
signatures of a compute node by comparing theirCT(d) pair-wise.
Failure signatures within a group is temporally correlated with
high probability and likely to appear closely in time. The central
signature is useful for investigating the root cause of the failure
group and analyzing the distribution of inter-failure time among
failure signatures in the same group.

In node-wide prediction, temporal correlations among failure
events can also be utilized to remove duplicate failures in pre-
processing event logs. To that end, we extend the spherical co-
variance model in (3.1) by dynamically settingθ using the current
measure of the mean-time-to-repair (MTTR) based on the fail-
ure repair records in the administrative log, and calculating the
temporal distancesdi, j for failures of the same type only. Then,
failure instances resulted from the same root problem are closely
correlated with high values of theirCT(d). The central signature
is selected to represent the group. In this way, duplicated failure
events are removed and the resulting set of events contains fail-
ures caused by distinct root problems. Algorithm 1 presents the
pseudo-code of correlating failure signatures in time by a com-
pute node and a master node in a cluster. The compute node con-
structs failure signatures and quantifies the temporal correlation
among them. The master node first collects the failure signatures
grouped by compute nodes in the cluster. It then inspects each
pair of failure signature from different groups to calculates the
temporal correlation. Although the algorithm needs to scan fail-
ure signatures of every compute node in a cluster, the total number
of failure events occurred within a time window is quite limited.

A 1. Temporal clustering of failure signatures

/* Temporal clustering on each compute node */
NodePredictor.TemplClustering(){
1: collect time, location, Util and nodeAlloc information

of failure instances in the current time window;
2: construct failure signatures into a set S ;
3: mttr = current measure of MTTR;
4: θ = inter-failure time with p cumulative distribution;
5: for any pair of failure signatures f and g (tf ≤ tg) in S do
6: df ,g = tg − t f ;
7: if f and g are of the same type and df ,g < mttr then
8: remove g from S ;
9: else ifdf ,g ≤ θ then
10: cf ,g = 1− α ∗ df ,g/θ + β ∗ (df ,g/θ)3;
11: if cf ,g ≥ C then
12: Groupf = Groupf ∪ {g};
13: remove g from S ;
14: end if
15: end if
16: end for
17: return Groups;
18:}

5

/* Temporal clustering on master nodes */
MasterPredictor.TemplClustering(){
1: collect signature groups from compute nodes in the cluster;
2: for any pair of nodes i, j in nodelistdo
3: T[i, j] =0;
4: for any failure signature f on node i and g on j (tf ≤ tg) do
5: df ,g = |t f − tg|;
6: if df ,g ≤ θ then
7: cf ,g = 1− α ∗ df ,g/θ + β ∗ (df ,g/θ)3;
8: T[i,j] = T[i, j] + cf ,g;
9: if cf ,g ≥ C then
10: Groupf = Groupf ∪ {g};
11: remove g from the signature set;
12: end if
13: end if
14: end for
15: return T, Groups;
16:}

3.2 Spatial Correlation
In cluster coalition environments, performance-hungry applica-
tions exploit computational power of available nodes and execute
their tasks in parallel. For example, in a typical cluster of the
LANL HPC system, say Cluster 20, 21.6% jobs consume 85.4%
processor time. They were run on at least 4 nodes and some were
allocated 52 nodes out of the total 256 nodes. In such a computing
environment, a software defect or bug in a running job will cause
multiple nodes to fail. In the LANL HPC system, 31.6% nodes
experienced 70.7% failures and these nodes serviced 85.2% ap-
plication jobs. The distribution of failures among compute nodes
is uneven. Figure 3 illustrates the spatial clustering among fail-
ures in Cluster 20. The figure presents that failures occurred in
groups. For example, 12 out of 16 nodes allocated to Job 1089
experienced OS failures between late January 28, 2004 and early
January 29, 2004. The figure also shows the strong correlation
between failure distribution and the application allocation among
nodes.

By inspecting the system failure and performance traces, we
found

• (S1) a failure may (nearly) simultaneously occur on multi-
ple nodes in a cluster or across its border;

• (S2) a failure on a node may cause another failure happen-
ing on a different node.

The first case is common in parallel computing, where a single-
program-multiple-data (SPMD) application runs on a set of nodes
and a fatal software bug in the application will make multiple
nodes come to failure. The second case happens among cooper-
ative nodes. For example, a processor failure on one node may
cause its running program to send wrong data to another node,
which leads to an overflow and system dump. We refer to Case
(S1) asfailure multiplication correlationand to Case (S2) asfail-
ure propagation correlation. Note that in this paper we consider
those propagation correlations that are caused by communication
between failing nodes.

We develop an aggregate stochastic model to cluster failure sig-
natures in the space domain and use these groups for failure pre-
diction. The model analyzes the probabilistic dependency among
failure instances of different nodes, and combines the nodal fail-
ure statistics in a cluster into an aggregated state, which is further
combined with failure states of other clusters into an aggregated
system state. Modeling based on hierarchical decomposition and

0
20
40
60
80

100
120
140
160
180
200
220
240

0
200
400
600
800
1000
1200

0.00.51.01.52.02.53.03.54.04.55.0

C
om

pu
te

 n
od

e
in

de
x

Jo
b

in
de

x

Time (minutes) x105

Figure 3: Spatial clustering of failures in Cluster 20 of the
LANL HPC system. There are 256 nodes in total.

aggregation makes it possible to treat a large scale system by con-
sidering a reduced one with essentially the same features but with
reduced complexity.

The analysis of failure multiplication correlation is based on
the occurrence relations of failure events. Let setF = { f1, f2, . . . , fm}
denote all possible types of failures that may occur in a coalition
clusters system, andN = {n1,n2, . . . ,nr } be the set of all compute
nodes in the system. Random variables ˆni and f̂ j are defined as:
So,ni and f j indicate whether a node fails or a failure happens. A

is uneven. Figure 3 illustrates the spatial clustering among failures in Cluster 20. The figure presents that
failures occurred in groups. For example, 12 out of 16 nodes allocated to Job 1089 experienced OS failures
between late 1/28/2004 and early 1/29/2004. The figure also shows the strong correlation between failure
distribution and the application allocation among nodes.

By inspecting the system failure and performance traces, we found

• (S1) a failure may (nearly) simultaneously occur on multiple nodes in a cluster or across its border;

• (S2) a failure on a node may cause another failure happening on a different node.

The first case is common in parallel computing, where a single-program-multiple-data (SPMD) application
runs on a set of nodes and a fatal software bug in the application will make multiple nodes come to failure.
The second case happens among cooperative nodes. For example, a processor failure on one node may cause
its running program to send wrong data to another node, which leads to an overflow and system dump. We
refer to Case (S1) asfailure multiplication correlationand to Case (S2) asfailure propagation correlation.
Note that in this paper we consider those propagation correlations that are caused by communication between
failing nodes.

We develop an aggregate stochastic model to cluster failure signatures in the space domain and use these
groups for failure prediction. The model analyzes the probabilistic dependency among failure instances of
different nodes, and combines the nodal failure statistics in a cluster into an aggregated state, which is further
combined with failure states of other clusters into an aggregated system state. Modeling based on hierarchical
decomposition and aggregation makes it possible to treat a large scale system by considering a reduced one
with essentially the same features but with reduced complexity.

The analysis of fault multiplication correlation is based on the occurrence relations of fault events. Let
setF = { f1, f2, . . . , fm} denote all possible types of faults that may occur in a coalition clusters system, and
N = {n1,n2, . . . ,nr } be the set of all compute nodes in the system. Random variables ˆni and f̂ j are defined as:

n̂i =

{
1 if nodeni fails in a unit interval,
0 otherwise.

f̂ j =

{
1 if failure f j occurs in a unit interval,
0 otherwise.

So,ni and f j indicate whether a node fails or a failure happens. A unit interval is a small period of time when
only one failure event can appear on a node. Time window is measured in unit intervals. Based on failure
statistics, we measure the conditional probabilitiesp(f̂ j | n̂i), that is if nodeni fails, the probability that the
failure is f j , for 1 ≤ i ≤ r and 1≤ j ≤ m.

Now, let’s first consider the failure multiplication correlations among two nodes, sayn1 andn2. The num-
ber of failures counted in a time window isnodeFCounti = n̂i ·w. If we fix the window size in measurements,
then the expected number of failures becomes,

E[nodeFCounti] = w · E[n̂i] = w · p(n̂i) = w
∑

j p(n̂i | f̂ j) · p(f̂ j).

We can further calculate the covariance ofnodeFCounti of different compute nodes to analyze the correla-
tions of these variables. Assume the failure dynamics of the two nodes are monitored independently. Then
according to the Bayesian theorem,

p(n̂1n̂2 | f̂ j) =
p(f̂ j | n̂1)·p(f̂ j | n̂2)·p(n̂1)·p(n̂2)

p(f̂ j)2 .

According to the inclusion-exclusion principle, the number of failure events after considering the failure
multiplication correlation becomes

E[clusterFCount] = w ·
(∑

i

p(n̂i) −
∑
i,k

∑
j

p(n̂i n̂k | f̂ j)p(f̂ j) + · · · +
∑

j

(−1)r p(n̂1· · ·n̂r | f̂ j)p(f̂ j)
)
. (3.2)

9

unit interval is a small period of time when only one failure event
can appear on a node. Time window is measured in unit intervals.
Based on failure statistics, we measure the conditional probabili-
tiesp(f̂ j | n̂i), that is if nodeni fails, the probability that the failure
is f j , for 1 ≤ i ≤ r and 1≤ j ≤ m.

Now, let’s first consider the failure multiplication correlations
among two nodes, sayn1 andn2. The number of failures counted
in a time window isnodeFCounti = n̂i · w. If we fix the win-
dow size in measurements, then the expected number of failures
becomes,

E[nodeFCounti] = w · E[n̂i] = w · p(n̂i) = w
∑

j p(n̂i | f̂ j) · p(f̂ j).

We can further calculate the covariance ofnodeFCounti of differ-
ent compute nodes to analyze the correlations of these variables.
Assume the failure dynamics of the two nodes are monitored in-
dependently. Then according to the Bayesian theorem,

p(n̂1n̂2 | f̂ j) =
p(f̂ j | n̂1)·p(f̂ j | n̂2)·p(n̂1)·p(n̂2)

p(f̂ j)2
.

According to the inclusion-exclusion principle, the number of
failure events after considering the failure multiplication corre-
lation becomes

E[clusterFCount] = w ·
(∑

i

p(n̂i) −
∑
i,k

∑
j

p(n̂i n̂k | f̂ j)p(f̂ j)+

· · · +
∑

j

(−1)r p(n̂1· · ·n̂r | f̂ j)p(f̂ j)
)
.

(3.2)
By using these probabilities of failure distributions along with

the temporal correlation among failure signatures, predictors in
node, cluster and system wide calculate the number of failures

6

that will occur in the prediction window with certain probability.
SinceE[nodeFCount], E[clusterFCount] andE[sysFCount] are
correlated, we use their corresponding prediction results to cross-
verify each other. Then we refine the temporal and spatial cor-
relations among the predicted failure instances by using the node
allocation information in the system.

For failure propagation correlations, we definepropagation gro-
upsto cluster failure signatures.

Definition 1 (Propagation relation). Let^ be a relation on
the set of failures F. It satisfies:

1. For any fi and fj in F, if fi can cause fj on another node,
then fi and fj have relation̂ , denoted as fi^ f j ;

2. For any fi , f j and fk in F, if fi^ f j and fj^ fk, then fi^ fk.

�
Relation^ formulates the failure propagation dynamics be-

tween nodes. According to its definition,̂ is irreflexive 2 and
asymmetric3, and transitive. Thus, (F, ^) is a strict partial or-
der set. The propagation relation can be represented by Hasse
diagrams. For strict partial order set (F, ^), we calculate the
transitive closure of relation̂ asD^. The members ofD^ are
groups of failure signatures that have possible propagation rela-
tions. Then we treat each member inD^ as a unit and calculate its
occurrence probability to compute nodes inN. After this trans-
formation, the failure propagation correlation can be reformulated
by the stochastic models that we use to analyze the failure multi-
plication correlation. Thus, we consider both of the spatial corre-
lations in failure prediction.

In implementation, predictor estimates the probabilitiesp(f̂ j | n̂i)
and constructs the propagation relation^ based on the failure
statistics derived from event logs. For example, the predictor in
nodeni counts the number off j occurrences and the total number
of all failures in all past time windows and calculates the ratio
between them as an estimate ofp(f̂ j | n̂i). We set the length of an
observation interval based on the measured mean-time-to-failures
(MTTF) so that only one failure event can occur on a node in an
interval. We also calculate the ratio of the number of intervals
in which failures are observed on nodeni to the total number of
intervals as the value ofp(n̂i). The master node of the system
collects failure signatures from all compute nodes and estimate
p(f̂ j) by (number off j instances)/(total number of failures) in the
system. The master node also mines failure signatures to estab-
lish the propagation relations between failures. Failuresf j and
fk follow f j^ fk, if fk occurs on a node, say A, after node A re-
ceives a message from another node B which suffers failure f j .
The probability of sending such a message equals to the inverse
of the total number of messages sent by node B in the interval
between occurrence time of failuresf j and fk. In runtime, the
predictor updates these probabilities and relation information us-
ing newly generated failure measures as system runs on. Then
the correlations among failure signatures are analyzed. Node al-
location information is utilized to refine failure correlations for
prediction.

Algorithm 2 presents the pseudo-code of correlating failure
signatures in space. Although the algorithm needs to scan fail-
ure events of every compute node in a cluster, the total number of
2We treat the case in which failurefi causesfi on another node in
a small interval as an instance of the failure multiplication corre-
lation.
3If failure fi causesf j and failuref j causesfi in a small interval,
then according to the transitive propertyfi causesfi , which is an
instance of the failure multiplication correlation.

Prediction All Ave(8) on Cluster 20 (9/04 - 8/05)

Failure index

0 30 60 90 120 150 180 210 240 270 300

M
ea

n
of

 k
 ti

m
e-

be
tw

ee
n-

fa
ilu

re
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Observed
Predicted

x103 min

Figure 4: Performance of failure prediction in Cluster 20 us-
ing order-8 neural network predictor. Training samples are
based on failure records from September 2003 to August 2004
and prediction is for September 2004 - August 2005.

failure events occurred within a time window is quite limited. The
system wide predictor finds the failure correlations, utilizes clus-
ter wide results and makes predictions in a similar way. The ag-
gregate stochastic model reduces the state space of failure statis-
tics and computational complexity, which facilitates online failure
prediction in a coalition system.

A 2. Spatial correlating of failure signatures

MasterPredictor.SpatioCluster(){
1: for i = 1 upto nodelist.sizedo
2: f j,i = number of failure signature of type j on node i;
3: ni = f1,i + f2,i + . . . + fm,i ;
4: p j,i = f j,i/ni ;
5: pf j = (f j,1 + f j,2 + . . . + f j,r)/(n1 + n2 + . . . + nr);
6: pni = number of intervals with failures on i/ total

number of intervals;
7: end for
8: for any pair of nodes i, j in nodelistdo
9: pni j , fk = pk,i ∗ pk, j ∗ pni ∗ pn j /p

2
fk

;
10: S[i, j] = pni j , f1 ∗ pf1 + . . . + pni j , fm ∗ pfm + pi ∗ pmi j ;
11: if node i and j are allocated to the same job in

nodeAllocthen
12: S[i, j] = S[i, j] + 1;
13: end if
14: end for
15: return S;
16:}

4 Offline Prediction Performance Evaluation
The hP provides a general failure prediction framework,
to which many prediction algorithms can be applied. As a proof
of concept, we implemented a prototype of hP using sev-
eral illustrating algorithms. In this section, we evaluate the per-
formance of hP for offline failure prediction using traces
from the LANL HPC system. We will discuss the results of online
prediction in the WSU Grid in the next section.

We used traces from the LANL HPC system in the experiments
of offline prediction, because the scale of the system is large for
analysis of failure dynamics in high-performance computing sys-
tems. In addition, the detailed records of failures and performance
information allow us to have a deep understanding of the causes
of failure events.

7

Figure 5: Bayesian network model for Node 1 in Cluster 20.

Time (minutes)

0 50 100 150 200 250 300 350 400 450 500 550 600

U
se

r u
til

iz
at

io
n

(%
)

20
30
40
50
60
70
80
90

100

Fr
am

e
ut

ili
za

tio
n

(%
)

50

55

60

65

70

75

80

85

Figure 6: A case study of failure prediction in Node 1. (Time
starts from September 6, 2004 22:20:00)

In our prototype, we implemented a group of illustrating pre-
diction algorithms, including a neural network approach, to learn
and forecast failure dynamics based on the temporal and spatial
data among the failure signature clusters. We selected Cluster 20
as the testing system in our experiments, due to the availability of
its performance traces. It is a typical HPC cluster in the LANL
computing system and has 256 compute nodes.

4.1 Failure Prediction Accuracy
In the first experiment, we predicted the time between failures us-
ing a neural network based predictor. The predictor network has 3
input neurons to receive temporal and spatial correlation data and
failure measures; 1 output neuron for prediction result; 3 hidden
layers and 4 neurons in each hidden layer. We used the Weka ma-
chine learning software [7] in the implementation. To mitigate the
measurement noises, we applied an order-k predicting approach,
wherek failure measures were tapped into the predictor. First, we
calculated the mean of thek measures, asmi = (

∑i
j=i−k+1 δ j)/k,

whereδ j = timej − timej−1 being the time between thejth and the
(j − 1)th failures. Then,mi was used as an input along with the
temporal and spatial correlation data to the predictor. After the
predictor outputs the predict, ˆmi+1, we retrieved the predict ofδ
of the next failure bŷδi+1 = m̂i+1 ∗ k−

∑i
j=i−k+2 δ j .

Figure 4 presents the prediction performance as we used the
neural network predicting algorithm with 8 tapped failure mea-
sures. The predictor was trained by the failure measures from
September 2003 to August 2004. We plotted the prediction re-
sults. The average error rate in predicting (mi), in Figure 4, is
errm̂ = |mi − m̂i |/mi = 14.9%. After retrieving the predicts ofδ,

the average error rate iserrδ̂ = |δi − δ̂i |/δi = 23.5% and the aver-
age prediction accuracy is 76.5%. From the figure, we also find
that the prediction error rate is high, when values of theδ mea-
sures are relatively small. Due to the temporal correlation among
failure events, the mean values may remain small for a period of
time. A small difference in the predict from the observed makes
the error rate relatively high. Actually, the inclusion of spatial
and temporal correlation information in our predictor has already
reduce the prediction error. Their effects will be discussed in the
following experiment.

Among the 450 failure events occurred in Cluster 20 within
September 2003 – August 2004, 252 (56%) were caused by hard-

ware faults, 175 (38.9%) by software faults, 17 (3.8%) by un-
dermined problems and the remaining 6 (1.3%) by power outage
and network breakdown. We extracted the two dominant types
of failures, hardware and software failures, from the traces and
evaluated the performance of predicting these two sets of failures
respectively. By using an order-8 neural network based predic-
tor, we predicted software failures with the average accuracy of
81.6%, and hardware failures with 72.9% accuracy. The differ-
ence in prediction performance of these two major types of fail-
ures is resulted from the different distribution patterns of them.
Software failures have stronger correlations among each other.
As an illustration, Figure 2 shows that software failures are dis-
tributed a much more heavy tail than hardware failures.

Time (minutes)

0 50 100 150 200 250 300 350 400 450 500 550

Failures by software errors
Failures by hardware faults
Failures by power outage
Failures by network breakdown

x 103

Failures caused by software faults
Failures caused by hardware faults

Failures caused by power outage

Failures caused by network breakdown

Figure 8: Failure events of Node 1 in Cluster 20.

In addition to analyzing the failure behavior of Cluster 20,
we conducted experiments to predict failure events in individ-
ual nodes. Figure 8 plots the 20 failures experienced by Node
1 in Cluster 20 from September 2003 to August 2004. Because
of the limited number of failure events occurred in a node, we
can not apply the supervised statistical learning approaches to
approximate the failure dynamics with a small training set. In-
stead, we extract low-level performance data, such as the pro-
cessor and memory utilization, communication and I/O operation
status, number of processes, file handles and network sockets,
from the failure signature for each failure event and from the
performance traces for normal execution. We then consider a
Bayesian network to present the probabilistic dependency among
these fine-grained performance metrics for failure prediction and
diagnosis. Due to the availability of these performance data in the
LANL HPC traces, we used the first 3 metrics in our experiments.
Figure 5 presents the dependency graph obtained by jBNC [3] for
Node 1 in Cluster 20, using the failure and performance data in

8

Predictors with different predicting algorithms

MEAN LAST AVE(8) AR(8) NN(8)

A
cc

ur
ac

y
of

 p
re

di
ct

in
g

(tb
f i)

 (%
)

0

10

20

30

40

50

60

70

80

90

100

All failures
Hardware failures
Software failures

(a) Prediction of hardware and software failures in different
algorithms

Smoothing factor k

1 2 4 8 16

A
ve

ra
ge

 p
re

di
ca

ta
bi

lit
y

(%
)

0

10

20

30

40

50

60

70

80

90

[5] Predicatability%
TempOnly
SpatOnly
None

Value of k
1 2 4 8 16

A
cc

ur
ac

y
of

 p
re

di
ct

in
g

(tb
f i)

(%
)

0

10

20

30

40

50

60

70

80

90

100
Using spatio-temporal corr. data
Using temporal corr. data only
Using spatial corr. data only
Using no corr. data

(b) Effects of k and correlation data on prediction perfor-
mance using order-k neural network predictor

Figure 7: Failure prediction in Cluster 20. Training samples are based on failure records from September 2003 to August 2004
and prediction is for September 2004 - August 2005.

September 2003 - August 2004. From the Bayesian network, we
found that among the failure events occurred in Node 1, 84% oc-
curred at the time with high user utilization and 61% occurred at
the time with inter-node communication. Between the user and
system utilization, the former affects the nodal availability more
than the latter.

Based on the preceding Bayesian network, we predicted the
occurrences of failures in Node 1. Figure 6 presents a case in our
prediction. The upper figure plots the frame utilization (f rmUtil)
of Node 1 between September 6, 2004 22:20 pm and September
7, 2004 08:20 am, and the lower figure shows the user utiliza-
tion (usrUtil) of Node 1 during the same period. At 03:50 am
on September 7, 2004, theusrUtil jumped to more than 86% and
became fluctuated; at about the same time, thef rmUtil had an
increase which was followed by a drop, and then continued to
increase. The hP predicted a failure occurred. After we
checked the failure traces, we found a record of scheduler soft-
ware failure recorder at September 7, 2004 08:20 am, after which
the node was shut down for repair.

4.2 Sensitivity to Prediction Algorithms
In the last experiment, we evaluated the sensitivity of our pre-
dictor to different prediction algorithms. In the hP pro-
totype, we implemented four additional time-series predictors by
using the gretl GNU time series library [2]: MEAN takes the av-
erage of previous measurements as prediction; LAST uses the last
measurement; AVE(k) uses the average of lastk measurements;
AR(k) is autoregressive algorithm. Figure 7(a) presents the re-
sults in predicting hardware and software caused failures with
different prediction algorithms. According to the figure, NN(8)
and AR(8) performed the best among them. This is because of
the learning capacity of these two approaches. They can adapt to
the change of time-between-failures and approximate their trend.
For the two major causes of failures, hardware faults and software
faults, failures resulted from the latter source are more predictable
compared with those from the former. This can be explained by
looking into the distribution of failures of these two categories.
Software-based failures are better clustered in time and space than
hardware-based failures (see Figure 2 as an example).

Recall that because the time-between-failure varies dramati-
cally from one measure to another, we use thek tapped measures
to smooth its variance and make it predicable by the NN(k) pre-
dictor. The choice ofk is critical. Figure 7(b) shows the effect of

differentk’s on the prediction performance. Whenk is small, the
fluctuation of measuredδ’s makes failure prediction difficult. As
k increases, the mean value sequence (mi) leads to improving the
prediction accuracy. However, ask increases further, the variance
of (δi) is smoothed out in (mi). Although the predictor can pre-
dict the sequence (mi) with less error rate, the retrieved sequence
(δ̂i) from (mi) is a distorted predict of the observed time-between-
failure sequence (δi). As a result, the prediction accuracy de-
creases instead.

The failure signatures are clustered according to their corre-
lations in time and space domains. Then, these correlation data
is used to predict the intervals of future failures. To analyze the
effects of the correlation data on the performance of failure pre-
diction, we conducted a series of experiments to measure the pre-
diction accuracy using different order-k algorithms with/without
correlation data. The results are presented in Figure 7(b). From
the figure, we can see that the existence of correlation data influ-
ences the prediction performance. For example, whenk = 8, by
using the temporal and spatial correlation data, the prediction ac-
curacy is creased by 6.6% and 10.4% respectively, compared with
that of the correlation-unaware one. Between these two correla-
tions, the spatial one makes more contribution to the improvement
of prediction performance for largek.

5 Online Prediction Performance
To evaluate the prediction performance in real system at runtime,
we performed online failure prediction in an institute-wide com-
putational grid. The WSU Grid consists of three Linux clusters,
denoted byC1, C2 andC3, located in three separate buildings on
campus. It contains 40 high-performance compute servers dedi-
cated to computational research. ClusterC1 andC2 consist each
of 16 nodes, and there are 8 nodes in clusterC3. Within each
cluster, nodes are interconnected by gigabit Ethernet switches.
Connections between clusters are through 100M fast Ethernet.

Typical applications running on the grid includes the molecu-
lar dynamics simulations, gene analysis, fluid dynamics simula-
tion and more. These parallel applications ran on 8 to 30 nodes
and some of them lasted for more than 10 days. The grid is also
open to institute students to execute their sequential and parallel
programs.

We installed our predictors on compute nodes of each clus-
ters and their master nodes in the WSU Grid. By making on-line
predictions, our failure predictors provide useful information for

9

2D Graph 15

Failure index

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ti
m

e
be

tw
ee

n
fa

ilu
re

 (m
in

ut
es

)

0
5

10
15
20
25
30
35
40
45
50
55
60x103

Figure 9: Online failure prediction in comparison with ob-
served failure events in the WSU Grid. Figure 10: Bayesian network model for Node 7 in clusterC1.

resource management, load distribution. In this experiment, first,
we trained the predictors using failure event records between May
2004 and April 2006. Then, we evaluated the on-line prediction
performance from May 12, 2006 to April 2, 2007. We record the
failure predictions and compare them with the observed failure
events later mined from the event logs.

Figure 9 depicts predicted and observedδ of failure events dur-
ing the online prediction based on the NN(8) algorithm in Grid
A. Temporal and spatial correlations among failure occurrences
were utilized for prediction. The node allocation information was
used to refine the correlations among failure signatures. From the
figure, we can see the predictor can capture the trends of failure
dynamics. The average accuracy of prediction is 70.3%. To make
a prediction, it took 2.26 seconds for the master node (a Pentium
Xeon computer with 2.6 GHz processor and 2.5 GB of memory)
to analyze the system wide failure events, find the failure correla-
tions and make a prediction, after receiving the failure event data
from the three clusters.

We conducted online prediction of failure occurrence for indi-
vidual nodes. From a total of eighteen low-level performance
variables, such as the processor utilization, percentage of idle
time, frame utilization, volume of communication and I/O opera-
tions, and swap utilization, we found seven of them were the dom-
inant factors in node-wide failure prediction. Figure 10 presents
the Bayesian probabilistic dependency network of these variables.
We used the failure event records between May 2004 and April
2006 in Node 7 to construct this network. From the figure, we
can see the I/O operation is also important factor in failure pre-
diction, and f rmUtil is not so important as that in Figure 5 due
to the different memory capacity and different operating systems
in the two compute nodes. In comparing Figure 10 with Figure 5,
we can see that some dependency relations are the same in both
nodes, such as that betweenusrUtil andsysUtil. We also noticed
the difference between the two networks. This is caused by the
different hardware/software configurations and applications in the
two nodes. Based on the Bayesian network (Figure 10), we suc-
cessfully predicted 5 out 6 software failures and 1 out 4 hardware
failures occurred in Node 7 between May 2006 and April 2007.

6 Related Work
As the complexity of computing systems increases, failure man-
agement tasks require significantly higher levels of automation.
Examples include diagnosis and prediction based on realtime stre-
ams of computer events, and performing continuous monitoring

of the runtime services. The core ofautonomic computing[17,
21] is the ability to analyze data in realtime and to predict poten-
tial problems. The goal is to avoid catastrophic failures through
prompt execution of remedial actions.

Failure prediction provides a vehicle for autonomic comput-
ing in coalition systems. To predict the occurrences of failures,
it is imperative to understand the characteristics of failure behav-
iors. Research in [29, 23, 28, 41] studied event traces collected
from clusters and supercomputers. They found that failures are
common in large-scale systems and their occurrences are quite
dynamic, displaying uneven inter-arrival time. Sahoo et al. [28]
found the correlation of failure rate with hour of the day and the
distribution of failures across nodes. They reported that less than
4% of the nodes in a machine room experience almost 70% of the
failures and found failure rates during the day to be four times
higher than during the night. Similar result was observed by
Schroeder and Gibson [29]. several studies [8, 37, 38] have ex-
amined system logs to identify causal events that lead to failures.
Correlation between the workload intensity and the failure rate in
real systems was pointed out in many studies [14, 24, 26, 20, 12].

Tang et al. [35, 34] studied the failure log collected from a
small VAX-cluster system and showed that failures on different
machines are correlated. Xu et al. [40] performed a study of error
logs collected from a heterogeneous distributed system consisting
of 503 PC servers. They showed that failures on a machine tend
to occur in bursts, possibly because common solutions such as
reboots cannot completely remove the problem causing the fail-
ure. They also observed a strong indication of error propagation
across the network, which leads to the correlation between fail-
ures of different nodes. A recent study [18] collected failure data
from three different clustered servers, and used Weibull distribu-
tion to model time-between-failure. Both these studies [40, 18]
found that nodes which just failed are more likely to fail again
in the near future. At the same time, it has also been found [36]
that software related error conditions can accumulate over time,
leading to system failing in the long run.

There were recent works utilizing temporal and/or spatial cor-
relations of failures for failure prediction and proactive manage-
ment. Sahoo et al. [27] inspected the eventset within a fixed time
window before a target event for repeated patterns to predict the
failure event of all types. Later, Liang et al. [22] profiled the time-
between-failure of different failure types and applied a heuristic
approach to detect failures by using a monitoring window of pre-
set size corresponding to event type. Mickens and Noble [25]
assumed the independency of failures among compute nodes and

10

used the per-node uptime data to predict whether a failure might
occur on that node in the next time window of fixed size. In
building classification rules, Sahoo et al. [27] took the ordering
of events into consideration. They utilized a Bayesian network
to analyze the causes of failures in a node individually. The spa-
tial correlation among failure was considered by Liang et al. [22].
The authors analyzed the number of failures in every midplane
of IBM BlueGene/L supercomputer. They found skewness in
the distribution of network failures only, among the midplanes.
Fu and Xu [16] exploited the failure correlation information to
predict the number of failures in a prediction time window in a
coalition environment. Besides, failure prediction aside, there are
many works on failure detection [39, 30, 15, 32]. These tech-
niques are complementary to our failure prediction approaches in
constructing a comprehensive failure management infrastructure.

There has been prior work on monitoring and predicting fail-
ures for specific components in computer systems. Storage is
one such subsystem which has received considerable attention be-
cause of its higher failure rates. S.M.A.R.T. is a recent technol-
ogy, that disk drive manufacturers now provide, to help predict
failures of storage devices [19]. SIGuardian [4] and Data Life-
guard [1] are utilities to check and monitor the state of a hard
drive, and predict the next failure, to take proactive remedies be-
fore the failure. More recently, a Reliability Odometer [33] has
been proposed for processors to track their wear-and-tear and pre-
dict lifetimes.

7 Conclusions
In this paper, we present a failure proactive prediction framework,
which exploits the temporal and spatial correlations among fail-
ure events in coalition systems. Failure events are formally repre-
sented by failure signatures. By clustering signatures in the time
and space domains, we explore the temporal and spatial correla-
tions among failure occurrences. Node allocation information is
utilized to refine the predicted correlations. Experimental results
of offline and online prediction on production coalition systems
present the feasibility of applying failure prediction to autonomic
management for high-availability network computing.

There are some limitations and potentials in our work. First,
the spherical covariance model quantifies temporal correlation of
failures with an adjustable timescale. However, the temporal dis-
tribution of failures of different types may interfere with each
other, which leads to a hybrid temporal correlation. More ad-
vanced model is needed to analyze such correlation. Second, we
model failure propagation that is caused by inter-node commu-
nication. There are other causes of propagation. For example,
busy waiting in synchronous computation among multiple nodes
may make one node unavailable, even though there is no message
passing to or from that node. To detect and predict such failures,
we need to analyze the detailed structure of application programs
and model their runtime behavior. Third, we use a limited num-
ber of performance variables to analyze the cause of failures. In
order to obtain an in-depth understanding of failure behavior and
trend, more performance information and non-performance infor-
mation, such as temperature and power, are needed for thorough
analysis.

Acknowledgments We would like to thank the anony-
mous reviewers for their constructive comments and suggestions.
We would also like to thank Philip Sokolowski and Michael Thomp-
son for their kind help in data collection from the WSU Grid. This

research was supported in part by U.S. NSF grants CCF-0611750,
DMS-0624849, CNS-0702488 and CRI-0708232.

References

[1] Data lifeguard. Available at: http://www.wdc.com/en/library/
2579-850105.pdf.

[2] gretl: GNU Regression, Econometrics and Time-series Li-
brary. Available at: http://gretl.sourceforge.net/.

[3] jbnc: Bayesian network classifier toolbox in java. Available
at: http://jbnc.sourceforge.net/.

[4] Siguardian. Available at: http://www.siguardian.com/.
[5] System availability, failure and usage data sets. Los Alamos

National Laboratory (LANL). Available at: http://institutes.
lanl.gov/data/fdata/.

[6] Wayne State University, Grid computing. Available at: https:
//www.grid.wayne.edu/.

[7] Weka: The university of waikato. machine learning software
in java. Available at: http://www.cs.waikato.ac.nz/ml/weka/.

[8] H. Berenji, J. Ametha, and D. Vengerov. Inductive learn-
ing for fault diagnosis. InProceeding of IEEE International
Conference on Fuzzy Systems, 2003.

[9] J. O. Berger, V. D. Oliveira, and B. Sansó. Objective Bayesian
analysis of spatially correlated data.Journal of the Ameri-
can Statistical Association, 96(456):1361–1374, 2001.

[10] G. Candea, A. B. Brown, A. Fox, and D. Patterson. Recovery-
oriented computing: Building multitier dependability.IEEE
Computer, 37(11):60–67, 2004.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot–a technique for cheap recovery. InProceeding
of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[12] X. CastiUo and D. P. Siewlorek. Workload, performance
and reliability of digital computing systems. InProceeding
of IEEE Symposium on Fault-Tolerant Computing (FTCS),
1981.

[13] R. Christodoulopoulou, K. Manassiev, A. Bilas, and C. Amza.
Fast and transparent recovery for continuous availability of
cluster-based servers. InProceeding of ACM Symposium on
Principles and practice of parallel programming (PPoPP),
2006.

[14] B. Chun and A. Vahdat. Workload and failure characteri-
zation on a large-scale federated testbed. Technical Report
IRB-TR-03-040, Intel Research Berkeley, 2003.

[15] J. Dunagan, N. J. A. Harvey, M. B. Jones, D. Kostic, M. The-
imer, and A. Wolman. FUSE: Lightweight guaranteed dis-
tributed failure notification. InProceeding of USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2004.

[16] S. Fu and C.-Z. Xu. Quantifying temporal and spatial cor-
relation of failure events for proactive management. InPro-
ceeding of IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS), 2007.

[17] A. G. Ganek and T. A. Corbi. The dawning of the autonomic
computing era.IBM Systems Journal, 42(1):5–18, 2003.

[18] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster
availability using workstation validation. InProceeding of
ACM International Conference on Measurement and mod-
eling of computer systems (SIGMETRICS), 2002.

[19] G. Hughes, J. Murray, K. Kreutz-Delgado, and C. Elkan.
Improved disk-drive failure warnings.IEEE Transactions

11

on Reliability, 51(3):350–357, 2002.
[20] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement

and modeling of computer reliability as affected by system
activity.ACM Transactions on Computer Systems, 4(3):214–
237, 1986.

[21] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.IEEE Computer, 36(1):41–50, 2003.

[22] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. K.
Sahoo. BlueGene/L failure analysis and prediction models.
In Proceeding of IEEE International Conference on Depend-
able Systems and Networks (DSN), 2006.

[23] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Mor-
eira, and M. Gupta. Filtering failure logs for a BlueGene/L
prototype. InProceeding of IEEE International Conference
on Dependable Systems and Networks (DSN), 2005.

[24] J. Meyer and L. Wei. Analysis of workload influence on
dependability. InProceeding of IEEE International Sympo-
sium on Fault-Tolerant Computing (FTCS), 1988.

[25] J. W. Mickens and B. D. Noble. Exploiting availability pre-
diction in distributed systems. InProceeding of USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2006.

[26] S. Mourad and D. Andrews. On the reliability of the IBM
MVS/XA operating system.IEEE Transactions on Software
Engineering, 13(10):1135–1139, 1987.

[27] R. K. Sahoo, A. J. Oliner, I. Rish, and et al. Critical event
prediction for proactive management in large-scale computer
clusters. InProceeding of ACM International Conference on
Knowledge Discovery and Data Dining (SIGKDD), 2003.

[28] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and
Y. Zhang. Failure data analysis of a large-scale heteroge-
neous server environment. InProceeding of IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN),
2004.

[29] B. Schroeder and G. Gibson. A large-scale study of failures
in high-performance-computing systems. InProceeding of
IEEE International Conference on Dependable Systems and
Networks (DSN), 2006.

[30] E. Schuchman and T. N. Vijaykumar. BlackJack: Hard error
detection with redundant threads on SMT. InProceeding of
IEEE International Conference on Dependable Systems and
Networks (DSN), 2007.

[31] H. Song, C. Leangsuksun, and R. Nassar. Availability mod-
eling and analysis on high performance cluster computing
systems. InProceeding of International Conference on Avail-
ability, Reliability and Security (ARES), 2006.

[32] N. Sridhar. Decentralized local failure detection in dynamic
distributed systems. InProceeding of IEEE International
Symposium on Reliable Distributed Systems (SRDS), 2006.

[33] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. A relia-
bility odometer - lemon check your processor! InProceed-
ing of Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2004.

[34] D. Tang and R. K. Iyer. Impact of correlated failures on de-
pendability in a VAXcluster system. InProceeding of IFIP
Working Conference on Dependable Computing for Critical
Applications, 1991.

[35] D. Tang, R. K. Iyer, and S. S. Subramani. Failure analysis
and modelling of a VAXcluster system. InProceeding of
IEEE International Symposium on Fault-Tolerant Comput-
ing (FTCS), 1990.

[36] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.
Trivedi. Analysis and implementation of software rejuvena-
tion in cluster systems. InProceeding of ACM International
Conference on Measurement and modeling of computer sys-
tems (SIGMETRICS), 2001.

[37] R. Vilalta and S. Ma. Predicting rare events in temporal do-
mains. InProceeding of IEEE International Conference on
Data Mining (ICDM), 2002.

[38] G. M. Weiss and H. Hirsh. Learning to predict rare events in
event sequences. InProceeding of ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD),
1998.

[39] M. Wiesmann, P. Urban, and X. Defago. An SNMP based
failure detection service. InProceeding of IEEE Interna-
tional Symposium on Reliable Distributed Systems (SRDS),
2006.

[40] J. Xu, Z. Kallbarczyk, and R. K. Iyer. Networked Windows
NT system field failure data analysis. Technical Report CRHC
9808, UIUC, 1999.

[41] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Sesha.
Beyond availability: Towards a deeper understanding of ma-
chine failure characteristics in large distributed systems. In
Proceeding of USENIX WORLDS, 2004.

12

